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 Linear Classifiers
fx

α

yest

denotes +1

denotes -1

f(x,w,b) = sign(w · x + b)

How would you
classify this data?



2

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 3

 Linear Classifiers
fx

α

yest

denotes +1

denotes -1

f(x,w,b) = sign(w · x - b)

How would you
classify this data?
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 Linear Classifiers
fx

α

yest

denotes +1

denotes -1

f(x,w,b) = sign(w · x - b)

How would you
classify this data?
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 Linear Classifiers
fx

α

yest

denotes +1

denotes -1

f(x,w,b) = sign(w · x - b)

How would you
classify this data?
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 Linear Classifiers
fx

α

yest

denotes +1

denotes -1

f(x,w,b) = sign(w · x - b)

Any of these
would be fine..

..but which is
best?
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Classifier Margin
fx

α

yest

denotes +1

denotes -1

f(x,w,b) = sign(w · x - b)

Define the margin
of a linear
classifier as the
width that the
boundary could be
increased by
before hitting a
datapoint.
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Maximum Margin
fx

α

yest

denotes +1

denotes -1

f(x,w,b) = sign(w · x - b)

The maximum
margin linear
classifier is the
linear classifier
with the, um,
maximum margin.

This is the
simplest kind of
SVM (Called an
LSVM)

Linear SVM

Note: SMO
(Sequential
Minimal
Optimization)
is one
algorithm for
computing w
and b.
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Maximum Margin
fx

α

yest

denotes +1

denotes -1

f(x,w,b) = sign(w · x - b)

The maximum
margin linear
classifier is the
linear classifier
with the, um,
maximum margin.

This is the
simplest kind of
SVM (Called an
LSVM)

Support Vectors
are those
datapoints that
the margin
pushes up
against

Linear SVM
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Why Maximum Margin?

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

The maximum
margin linear
classifier is the
linear classifier
with the, um,
maximum margin.

This is the
simplest kind of
SVM (Called an
LSVM)

Support Vectors
are those
datapoints that
the margin
pushes up
against

1. Intuitively this feels safest.

2. If we’ve made a small error in the
location of the boundary (it’s been
jolted in its perpendicular direction)
this gives us least chance of causing a
misclassification.

3. LOOCV is easy since the model is
immune to removal of any non-
support-vector datapoints.

4. There’s some theory (using VC
dimension) that is related to (but not
the same as) the proposition that this
is a good thing.

5. Empirically it works very very well.
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Specifying a line and margin

• How do we represent this mathematically?
• …in m input dimensions?
• …so that we can maximize the margin?

Plus-Plane

Minus-Plane
Classifier Boundary

“Pred
ict C

lass
 = +1”

zone

“Pred
ict C

lass
 = -1”

zone

Copyright © 2001, 2003, Andrew W. Moore Support Vector Machines: Slide 12

Specifying a line and margin

• Plus-plane   =    { x : w · x + b = +1 }
• Minus-plane =   { x : w · x + b = -1 }

Plus-Plane

Minus-Plane
Classifier Boundary

“Pred
ict C

lass
 = +1”

zone

“Pred
ict C

lass
 = -1”

zone

-1 < w · x + b < 1ifUniverse
explodes

w · x + b <= -1if-1

w · x + b >= 1if+1Classify as..

wx+b=1

wx+b=0

wx+b=-1
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Computing the margin width

• Plus-plane   =    { x : w · x + b = +1 }
• Minus-plane =   { x : w · x + b = -1 }
Claim: The vector w is perpendicular to the Plus Plane. Why?

“Pred
ict C

lass
 = +1”

zone

“Pred
ict C

lass
 = -1”

zone
wx+b=1

wx+b=0

wx+b=-1

M = Margin Width

How do we compute
M in terms of w
and b?
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Computing the margin width

• Plus-plane   =    { x : w · x + b = +1 }
• Minus-plane =   { x : w · x + b = -1 }
Claim: The vector w is perpendicular to the Plus Plane. Why?
• Definitions: “vector” == “point”
• x1 perpendicular to x2 iff x1·x2 == 0

“Pred
ict C

lass
 = +1”

zone

“Pred
ict C

lass
 = -1”

zone
wx+b=1

wx+b=0

wx+b=-1

M = Margin Width

How do we compute
M in terms of w
and b?

Let u and v be two vectors on the
Plus Plane. What is w · ( u – v ) ?

And so of course the vector w is also
perpendicular to the Minus Plane
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Computing the margin width

• Plus-plane   =    { x : w · x + b = +1 }
• Minus-plane =   { x : w · x + b = -1 }
• The vector w is perpendicular to the Plus Plane
• Let x- be any point on the minus plane
• Let x+ be the closest plus-plane-point to x-.

“Pred
ict C

lass
 = +1”

zone

“Pred
ict C

lass
 = -1”

zone
wx+b=1

wx+b=0

wx+b=-1

M = Margin Width

How do we compute
M in terms of w
and b?

x-

x+

Any location in
ℜm: not
necessarily a
datapoint

Any location in
Rm: not
necessarily a
datapoint
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Computing the margin width

• Plus-plane   =    { x : w · x + b = +1 }
• Minus-plane =   { x : w · x + b = -1 }
• The vector w is perpendicular to the Plus Plane
• Let x- be any point on the minus plane
• Let x+ be the closest plus-plane-point to x-.
• Claim: x+ = x- + λ w  for some value of λ. Why?

• Note: λ is scalar and positive.

“Pred
ict C

lass
 = +1”

zone

“Pred
ict C

lass
 = -1”

zone
wx+b=1

wx+b=0

wx+b=-1

M = Margin Width

How do we compute
M in terms of w
and b?

x-

x+
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Computing the margin width

• Plus-plane   =    { x : w · x + b = +1 }
• Minus-plane =   { x : w · x + b = -1 }
• The vector w is perpendicular to the Plus Plane
• Let x- be any point on the minus plane
• Let x+ be the closest plus-plane-point to x-.
• Claim: x+ = x- + λ w  for some value of λ. Why?

• Note: λ is scalar and positive.

“Pred
ict C

lass
 = +1”

zone

“Pred
ict C

lass
 = -1”

zone
wx+b=1

wx+b=0

wx+b=-1

M = Margin Width

How do we compute
M in terms of w
and b?

x-

x+

The line from x- to x+ is
perpendicular to the
planes.

So to get from  x- to x+

travel some distance in
the direction of w.
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Computing the margin width

• Plus-plane   =    { x : w · x + b = +1 }
• Minus-plane =   { x : w · x + b = -1 }
• The vector w is perpendicular to the Plus Plane
• Let x- be any point on the minus plane
• Let x+ be the closest plus-plane-point to x-.
• Claim: x+ = x- + λ w  for some value of λ. Why?

• Note: λ is scalar and positive.

“Pred
ict C

lass
 = +1”

zone

“Pred
ict C

lass
 = -1”

zone
wx+b=1

wx+b=0

wx+b=-1

M = Margin Width

How do we compute
M in terms of w
and b?

x-

x+

The line from x- to x+ is
perpendicular to the
planes.

So to get from  x- to x+

travel some distance in
the direction of w.

So to now we know that
x+ - x-  = λ w.
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Computing the margin width

What we know:
• w · x+ + b = +1
• w · x- + b = -1
• x+ - x- = λ w
• |x+ - x-| = M
It’s now easy to get M

in terms of w and b

“Pred
ict C

lass
 = +1”

zone

“Pred
ict C

lass
 = -1”

zone
wx+b=1

wx+b=0

wx+b=-1

M = Margin Width

x-

x+
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Computing the margin width

What we know:
• w · x+ + b = +1
• w · x- + b = -1
• x+ - x- = λ w
• |x+ - x-| = M
It’s now easy to get M

in terms of w and b

“Pred
ict C

lass
 = +1”

zone

“Pred
ict C

lass
 = -1”

zone
wx+b=1

wx+b=0

wx+b=-1

M = Margin Width

w · (x - + λ w) + b = 1

=>

(w · x - + b) + λ w · w = 1

=>

-1 + λ w · w = 1

=>

x-

x+

! 

" =
2

w #w
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Computing the margin width

What we know:
• w · x+ + b = +1
• w · x- + b = -1
• x+ = x- + λ w
• |x+ - x-| = M
•

“Pred
ict C

lass
 = +1”

zone

“Pred
ict C

lass
 = -1”

zone
wx+b=1

wx+b=0

wx+b=-1

M = Margin Width =

M = |x+ - x- | =| λ w |=

x-

x+

! 

" =
2

w #w

! 

=
2 w "w

w "w
=

2

w "w
! 

= " |w |= " w #w

! 

2

w "w

Yay! Just maximize 

! 

2

w "w

Wait…OMG the data! I forgot!
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Learning the Maximum Margin Classifier

Given a guess of w and b we can
• Compute whether all data points in the correct half-planes
• Compute the width of the margin
So now we just need to write a program to search the space

of w’s and b’s to find the widest margin that matches all
the datapoints. How?

Gradient descent? Simulated Annealing? Matrix Inversion?
EM? Newton’s Method?

“Pred
ict C

lass
 = +1”

zone

“Pred
ict C

lass
 = -1”

zone
wx+b=1

wx+b=0

wx+b=-1

M = Margin Width =

x-

x+

! 

2

w "w
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Learning via Quadratic Programming
• QP is a well-studied class of optimization algorithms

to maximize a quadratic function of some real-valued
variables subject to linear constraints.

• It will solve our problem for us!

• It doesn’t matter how it works!

• Popular ML approach:
• Describe your learning problem as optimization…
• …and give it to somebody else to solve!
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Quadratic Programming - Don’t Panic

! 

argmin
w

c + d
T
w+

w
T
Kw

2
Find

! 

a
11
w
1
+ a

12
w
2

+ ...+ a
1m
w
m
" b

1

a
21
w
1
+ a

22
w
2

+ ...+ a
2m
w
m
" b

2

:

a
n1
w
1
+ a

n2
w
2

+ ...+ a
nm
w
m
" b

n

! 

a
(n+1)1w1 + a

(n+1)2w2
+ ...+ a

(n+1)mwm
= b

(n+1)

a
(n+2)1w1 + a

(n+2)2w2
+ ...+ a

(n+2)mwm
= b

(n+2)

:

a
(n+e )1w1 + a

(n+e )2w2
+ ...+ a

(n+e )mwm
= b

(n+e )

And subject to

n additional linear
inequality
constraints

e additional linear
equality
constraints

Quadratic criterion

Subject to

Note w·x = wTx
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Quadratic Programming

! 

argmin
w

c + d
T
w+

w
T
Kw

2
Find

! 

a
11
w
1
+ a

12
w
2

+ ...+ a
1m
w
m
" b

1

a
21
w
1
+ a

22
w
2

+ ...+ a
2m
w
m
" b

2

:

a
n1
w
1
+ a

n2
w
2

+ ...+ a
nm
w
m
" b

n

! 

a
(n+1)1w1 + a

(n+1)2w2
+ ...+ a

(n+1)mwm
= b

(n+1)

a
(n+2)1w1 + a

(n+2)2w2
+ ...+ a

(n+2)mwm
= b

(n+2)

:

a
(n+e )1w1 + a

(n+e )2w2
+ ...+ a

(n+e )mwm
= b

(n+e )

And subject to

n additional linear
inequality
constraints

e additional linear
equality
constraints

Quadratic criterion

Subject to

There exist algorithms for finding

such constrained quadratic

optima much more efficiently

and reliably than gradient

ascent.

(But they are very fiddly…you

probably don’t want to write

one yourself)
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Learning the Maximum Margin Classifier

What should our quadratic
optimization criterion be?

How many constraints will we
have?

What should they be?

Given guess of w , b we can
• Compute whether all data

points are in the correct
half-planes

• Compute the margin width
Assume R datapoints, each

(xk,yk) where yk = +/- 1

“Pred
ict C

lass
 = +1”

zone

“Pred
ict C

lass
 = -1”

zone
wx+b=1

wx+b=0

wx+b=-1

M =

! 

2

w "w
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Learning the Maximum Margin Classifier
Given guess of w , b we can
• Compute whether all data

points are in the correct
half-planes

• Compute the margin width
Assume R datapoints, each

(xk,yk) where yk = +/- 1

What should our quadratic
optimization criterion be?

Minimize w·w

How many constraints will we
have? R

What should they be?
w · xk + b >= 1 if yk = 1
w · xk + b <= -1 if yk = -1

“Pred
ict C

lass
 = +1”

zone

“Pred
ict C

lass
 = -1”

zone
wx+b=1

wx+b=0

wx+b=-1

M =

! 

2

w "w
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Uh-oh!

denotes +1

denotes -1

This is going to be a problem!

What should we do?
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Uh-oh!

denotes +1

denotes -1

This is going to be a problem!

What should we do?

Idea 1:

Find minimum w·w, while
minimizing number of
training set errors.

Problemette: Two things
to minimize makes for
an ill-defined
optimization
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Uh-oh!

denotes +1

denotes -1

This is going to be a problem!

What should we do?

Idea 1.1:

Minimize

 w·w + C (#train errors)

There’s a serious practical
problem that’s about to make
us reject this approach. Can
you guess what it is?

Tradeoff parameter
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Uh-oh!

denotes +1

denotes -1

This is going to be a problem!

What should we do?

Idea 1.1:

Minimize

 w·w + C (#train errors)

There’s a serious practical
problem that’s about to make
us reject this approach. Can
you guess what it is?

Tradeoff parameter
Can’t be expressed as a Quadratic

Programming problem.

Solving it may be too slow.

(Also, doesn’t distinguish between
disastrous errors and near misses) So… any

other

ideas?
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Uh-oh!

denotes +1

denotes -1

This is going to be a problem!

What should we do?

Idea 2.0:

Minimize
 w·w + C (distance from

incorrectly labeled
                points to their
                correct place)
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Learning Maximum Margin with Noise
Given guess of w , b we can
• Compute sum of distances

of points to their correct
zones

• Compute the margin width
Assume R datapoints, each

(xk,yk) where yk = +/- 1

wx+b=1

wx+b=0

wx+b=-1

M =

ww.

2

What should our quadratic
optimization criterion be?

How many constraints will we
have?

What should they be?
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Learning Maximum Margin with Noise
Given guess of w , b we can
• Compute sum of distances

of points to their correct
zones

• Compute the margin width
Assume R datapoints, each

(xk,yk) where yk = +/- 1

wx+b=1

wx+b=0

wx+b=-1

M =

ww.

2

What should our quadratic
optimization criterion be?

Minimize

! 

1

2
w "w+ C #

k

k=1

R

$

ε7

ε11

ε2

How many constraints will we
have? R

What should they be?
w · xk + b >= (1 - εk) if yk= 1
w · xk + b <= (-1+εk) if yk=-1
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Learning Maximum Margin with Noise
Given guess of w , b we can
• Compute sum of distances

of points to their correct
zones

• Compute the margin width
Assume R datapoints, each

(xk,yk) where yk = +/- 1

wx+b=1

wx+b=0

wx+b=-1

M =

ww.

2

What should our quadratic
optimization criterion be?

Minimize

! 

1

2
w "w+ C #

k

k=1

R

$

ε7

ε11

ε2

How many constraints will we
have? R

What should they be?
w · xk + b >= (1 - εk) if yk= 1
w · xk + b <= (-1+εk) if yk=-1

Our original (noiseless data) QP had m+1
variables: w1, w2, … wm, and b.

Our new (noisy data) QP has m+1+R
variables: w1, w2, … wm, b, εk , ε1 ,… εR

m = # input
dimensions

R= # records
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Learning Maximum Margin with Noise
Given guess of w , b we can
• Compute sum of distances

of points to their correct
zones

• Compute the margin width
Assume R datapoints, each

(xk,yk) where yk = +/- 1

wx+b=1

wx+b=0

wx+b=-1

M =

ww.

2

What should our quadratic
optimization criterion be?

Minimize

! 

1

2
w "w+ C #

k

k=1

R

$

ε7

ε11

ε2

How many constraints will we
have? R

What should they be?
w · xk + b >= (1 - εk) if yk= 1
w · xk + b <= (-1+εk) if yk=-1

There’s a bug in this QP. Can you spot it?
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Learning Maximum Margin with Noise
Given guess of w , b we can
• Compute sum of distances

of points to their correct
zones

• Compute the margin width
Assume R datapoints, each

(xk,yk) where yk = +/- 1

wx+b=1

wx+b=0

wx+b=-1

M =

ww.

2

What should our quadratic
optimization criterion be?

Minimize

! 

1

2
w "w+ C #

k

k=1

R

$

ε7

ε11

ε2

How many constraints will we
have? 2R

What should they be?
w · xk + b >= (1 - εk) if yk= 1
w · xk + b <= (-1+εk) if yk=-1
εk >= 0 for all kCalled “slack variables”
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Learning Maximum Margin with Noise
Given guess of w , b we can
• Compute sum of distances

of points to their correct
zones

• Compute the margin width
Assume R datapoints, each

(xk,yk) where yk = +/- 1

wx+b=1

wx+b=0

wx+b=-1

M =

ww.

2

What should our quadratic
optimization criterion be?

Minimize

! 

1

2
w "w+ C #

k

k=1

R

$

ε7

ε11

ε2

How many constraints will we
have? 2R

What should they be?
w · xk + b >= (1 - εk) if yk= 1
w · xk + b <= (-1+εk) if yk=-1
εk >= 0 for all kCalled “slack variables”

Big C  means “Fit the training
data as much as possible!”
(at the expense of
maximizing margin)

Small C  means “Maximize the
margin as much as possible!”
(at the expense of fitting the
training data)
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What do we have?
• Method for learning a maximum-margin linear

classifier when the data are
• “Linearly separable” - i.e. there is a line that

gets 0 training error
• Not linearly separable - there is no such line.

• If not linearly separable, we make a trade-off
between maximizing margin and minimizing
“stuff-is-on-the-wrong-side-ness”

• Still, our output for a given x is

f(x,w,b) = sign(w · x  + b)


