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Abstract. Speckle Reducing Anisotropic Diffusion, SRAD, is a multiplicative 
noise reduction method. In highly speckled environment, SRAD occasionally 
produces over-smoothed, dislocated/broadened edge lines and inadequate de-
noising on homogeneous image regions where the speckles are well developed. 
To overcome these weaknesses, we propose a modification to SRAD with a 
weighted diffusion function. The proposed diffusion function is a weighted sum 
of two components – (1) a global ratio-based edge detection inspired compo-
nent and (2) the original diffusion function of SRAD. The proposed filter shows 
significant improvement in de-noising and edge preservation. 

Keywords: speckle, multiplicative noise reduction, diffusion, ratio-based edge 
detection, SRAD. 

1 Introduction 

Speckle is a form of locally correlated multiplicative noise. Synthetic Aperture Radar 
(SAR), Synthetic Aperture Sonar (SAS) and ultrasound images are usually laden with 
such noise. Several filters have been proposed to reduce speckle noise. Roughly, they 
can be grouped into two families: homomorphic and adaptive. Homomorphic filtering 
refers to a technique of preprocessing the observed image to transform non-additive 
noise into additive noise using some nonlinear memoryless operator. Then standard 
additive noise filtering is applied for noise reduction. The enhanced image is formed 
by applying the inverse nonlinear operator. For speckle-like multiplicative noise, 
logarithmic and exponential operators are required for forward and inverse transfor-
mation, respectively. In many cases, a speckled image represents the observed data as 
being multiplicative noise operated on by a linear system. Hence, a logarithmic opera-
tor cannot separate the signal from the noise in this case. As a result, homomorphic 
filters are not efficient in speckle reduction. 

Adaptive filters account for the local correlation of speckle model and exploit local 
statistics. Among the earlier speckle reducing adaptive filters, Lee [3] and Kuan [4] 
filters were quite successful. Both Lee and Kuan filters have the same formation 
though the signal model assumptions and derivations are different. They are based on 
a linear speckle noise model and the Minimum Mean Square Error (MMSE) design 
approach. These filters are designed to reduce speckle noise while preserving edges 
and point features in radar imagery. Both Lee and Kuan filters produce the enhanced 
data by 
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መ௦ܫ ൌ ௦ܫ כ ܹ ൅ ҧ௦ሺ1ܫ െ ܹሻ (1)

where ܫመ௦ is the filtered intensity data, ܫ ҧ௦ is the mean value of the intensity within the 
filter window ߟ௦ and ܹ is a weighting function representing the adaptive filter coeffi-
cient. To define ܹ, Lee and Kuan used the concept of coefficient of variation. In ideal 
situation, ܹ equals to 1 near edges and 0 in uniform regions.  Weighting functions of 
Lee and Kuan are slightly different. Frost [5] also proposed a speckle filter using 
similar concept of coefficient of variation. 

Perona and Malik [6] introduced a diffusion based filter to reduce additive noise. In 
their method, a gradient based diffusion function controls the level of smoothing. The 
diffusion function is chosen to vary spatially in such a way that it encourages intra-
region smoothing in preference to inter-region smoothing. Yu and Acton [1] modified 
the Perona-Malik filter using the concept of coefficient of variation of Lee [3] and 
Kuan[4]. Unlike Perona-Malik method, the diffusion function of their filter relies on a 
combination of gradient and Laplacian. The discrete update function of their proposed 
filter, SRAD, is given by ܫ௜,௝௧ା୼௧ ൌ ௜,௝௧ܫ ൅ Δߟ|ݐ௦ഥ | ௜,௝௧ܥሾܿ൫ݒ݅݀ ൯ܫ׏௜,௝௧ ሿ (2)

where ܿሺ. . ሻ is the diffusion function, ܥ௜,௝௧  is the Instantaneous Coefficient Of Varia-
tion (ICOV) of pixel ሺ݅, ݆ሻ in time ݐ, Δݐ is the time step size, |ߟ௦ഥ | represents the size of 
the filter window, ׏ is the gradient opearator and ݀݅ݒ represents the divergence. ܥ௜,௝௧  is 
directly influenced by the coefficient of variation of Lee and Kuan. Instantaneous 
coefficient of variation effectively controls the level of smoothing. 

Detail Preserving Anisotropic Diffusion [7], DPAD, is an extension of SRAD  
proposed by Aja-Fernandez et al. Unlike SRAD, DPAD relies on Kuan filter rather 
than Lee filter. Aja-Fernandez et al. further estimate the local statistics using a larger 
neighborhood than the four direct neighbors used by Yu and Acton [1]. For the  
estimation of scaling factor, they use a median based estimator. Oriented SRAD [8], 
OSRAD, is another diffusion filter that extended the original SRAD to a matrix aniso-
tropic diffusion, allowing different level of filtering across the image contours and in 
the principal curvature direction. 

For proper functioning of the diffusion filters, edge detection is crucial. The most 
common approaches to edge detection are based on gradient and Laplacian. However, 
in speckled environment, ratio-based edge detection techniques are more effective. 
Ratio-based edge detectors estimate edge strength on any pixel of interest in an image 
by calculating the ratio between neighboring pixel values. The estimated ratio may be 
improved by calculating averages of pixel values in two adjacent and non-overlapping 
regions, selected on opposite sides of pixel of interest. These two regions, ܲ and ܳ, 
may be selected from any orientation around the pixel of interest. Zaman and Molo-
ney proposed Modified Ratio of Averages [9], MRoA, method that uses four orienta-
tions (horizontal, vertical, left-slanted, and right-slanted) for ܲ and ܳ. ௜ܲ  is calculated 
as the average of pixels in the region ܲ of orientation ݅ and ௜ܳ  the average in the  
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region ܳ in the orientation ݅, for ݅ ൌ 1,2,3,4. The ratio edge strength for orientation ݅ 
is taken to be ܴ௜ ൌ ሺ݊݅ܯ ௜ܲ/ ௜ܳ, ௜ܳ/ ௜ܲሻ and the overall edge strength is taken as ܴ ൌ ,ሺܴଵ݊݅ܯ ܴଶ, ܴଷ, ܴସሻ. MRoA determines an edge location if ܴ ൑ ோܶ, where ோܶ is a 
user selected threshold. MRoA has been extended by combining gradient edge infor-
mation with ratio measure to improve the performance [9]. Edge is detected if either ܴ ൑ ோܶ OR ܩ ൒ ܶீ , where ܩ ൌ ,ଵܩሺݔܽܯ ,ଶܩ ,ଷܩ ௜ܩ ସሻ andܩ ൌ | ௜ܲ െ ௜ܳ| for ݅ ൌ1, … . ,4. Zhengyao et al. [10] changed the condition to ܴ ൑ ோܶ  AND ܩ ൒ ܶீ . They 
also calculated the threshold dynamically by taking the average of maximum and 
minimum ܴ values over the entire image.  

Maximum Strength-edge Pruned Ratio of Averages, MSP-RoA, method [11] of 
Moloney et al. performs pruning after the ratio comparison stage. For each pixel, this 
method stores both the minimal ratio and the direction values. If ܴ ൑ ோܶ, for a pixel, it 
is considered as a candidate edge pixel and pruning process is started which runs on a 
small window along the direction perpendicular to the minimal ratio producing  
direction. If the ratio value of the candidate pixel is the smallest one in the pruning 
window, the pixel is accepted as edge. Otherwise, it is rejected and the pruning 
process continues with other candidate edge pixels. This method produces thinner 
edge compared to the others. 

In highly speckled environment, SRAD and different extensions to SRAD produce 
over-smoothed and dislocated/broadened edges, and sometimes speckles are kept as 
edge details. This deficiency may be attributed to their reliance on gradient and Lap-
lacian based edge sensitive scoring function. Here, we propose Ratio-based Edge 
Detection Inspired SRAD with Weighted Diffusion Function, REDISRAD-WDF, to 
overcome the weaknesses of SRAD. REDISRAD-WDF uses the guidance of a ratio-
based edge detection technique, since ratio-based edge detection is quite efficient in 
speckled environment. 

We redefine the diffusion function as a weighted sum of global and local  
components where the global component, being augmented by ratio-based edge  
detection-like technique, incorporates edge-sensitive guidance for the sake of better 
accuracy. The local component is nothing but the original diffusion function of 
SRAD.  

The details of our proposed filter are described in Section 2. Section 3 presents the 
experimental results to evaluate the performance of the proposed filter. Finally,  
Section 4 offers the conclusion. 

2 Proposed Filter 

In this work, we introduced an extension to SRAD called Ratio-based Edge Detection 
Inspired SRAD with Weighted Diffusion Function, REDISRAD-WDF, to de-noise 
speckled images. We introduce a global component to the diffusion function which is 
computed by the help of a global ratio-based edge detection unit. The ratio-based 
edge detection unit collects edge information from the speckled image and later uses 
edge-sensitive knowledge to define the global component of the diffusion function.  
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2.1 Weighted Diffusion Function 

Since the local variance of the image speckle varies with the local image intensity, the 
statistics of the image gradient vary with the underlying intensity as well. In such a 
scenario, gradient and Laplacian based edge detectors cannot perform well [2]. That’s 
why the ICOV of SRAD does not perform well as an edge scoring function in highly 
speckled environment. The diffusion function of SRAD, which controls the amount of 
smoothing that needs to be applied, is directly dependent on the value of ICOV. 
Whenever ICOV produces misleading values in highly speckled environment, the 
diffusion function ends up producing incorrect amount of diffusion. To overcome this 
problem, we decided to guide the ICOV-centric diffusion function of SRAD using 
ratio-based edge detection technique.  

For ratio-based edge detection, we use MSP-RoA [11] of Moloney et al. combined 
with the strategy of dynamic threshold calculation of Zhengyao et al. [10]. Unlike 
MSP-RoA, we generate the ratio matrix from the Gaussian smoothed version of the 
speckled input image. Let the matrix containing (minimal) ratio-strength for each 
pixel of input image be ܴܽݔ݅ݎݐܽܯ_݋݅ݐܴܽ ,ݔ݅ݎݐܽܯ_݋݅ݐ௜,௝  be the ratio-strength of pixel ሺ݅, ݆ሻ in 2D image grid, and the dynamically calculated ratio threshold be ோܶ. After 
calculating the (minimal) ratio strength for each pixel of input image, REDISRAD-
WDF initiates a pruning process. In the pruning process, if the ratio-strength ܴܽݔ݅ݎݐܽܯ_݋݅ݐ௜,௝ is not the minimum in the pruning window, then REDISRAD-WDF 
replaces the original value of ܴܽݔ݅ݎݐܽܯ_݋݅ݐ௜,௝ by the ratio threshold value ோܶ. At the 
end of the pruning process, all false-positive edge candidates of the input image 
would have the ratio edge strength equal to the ratio threshold ோܶ. In a sense, they are 
forced to reside on the boundary of non-edge domain. Other entries of ܴܽݔ݅ݎݐܽܯ_݋݅ݐ 
are kept unchanged. 

After updating the ratio matrix through pruning, REDISRAD-WDF computes a 
global edge-sensitive diffusion function, ܿ௚௟௢௕௔௟ , by 

൫ܿ௚௟௢௕௔௟൯௜,௝ ൌ 1/ ൥1 ൅ ቆ ோܴܶܽݔ݅ݎݐܽܯ_݋݅ݐ௜,௝ ൅ ߳ቇଶ൩ (3)

where ൫ܿ௚௟௢௕௔௟൯௜,௝ is the value of the global diffusion function at pixel ሺ݅, ݆ሻ and ߳ is a 

small constant. If ܴܽݔ݅ݎݐܽܯ_݋݅ݐ௜,௝ ൌ 0, ൫ܿ௚௟௢௕௔௟൯௜,௝ ՜ 0. If ܴܽݔ݅ݎݐܽܯ_݋݅ݐ௜,௝ ൌ 1, ൫ܿ௚௟௢௕௔௟൯௜,௝ ՜ 1/ሺ1 ൅ ோܶଶሻ. It should be noted that the value of ratio threshold, ோܶ, is 

dynamically computed [10] and it holds the inequality 0 ൑ ோܶ ൑ 1. The global diffu-
sion function ൫ܿ௚௟௢௕௔௟൯௜,௝ takes a value from the open-close interval ሺ0,1ሿ, i.e., 0 ൏ ൫ܿ௚௟௢௕௔௟൯௜,௝ ൑ 1. For the strongest edge pixels, ܴܽݔ݅ݎݐܽܯ_݋݅ݐ௜,௝ value approaches 

0. So ൫ܿ௚௟௢௕௔௟൯௜,௝ also approaches 0 for these edge pixels. The higher the value of ܴܽݔ݅ݎݐܽܯ_݋݅ݐ௜,௝, the weaker the pixels are, in terms of edge strength. Higher edge 

strength (i.e., lower ܴܽݔ݅ݎݐܽܯ_݋݅ݐ௜,௝) generates lower value of ൫ܿ௚௟௢௕௔௟൯௜,௝. For the 
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non-edge points with high ܴܽݔ݅ݎݐܽܯ_݋݅ݐ௜,௝ values, ൫ܿ௚௟௢௕௔௟൯௜,௝takes higher values in 

the range 0 ൏ ൫ܿ௚௟௢௕௔௟൯௜,௝ ൑ 1. 

The diffusion function of the proposed filter, REDISRAD-WDF, is defined as 

௜݂,௝ ൌ ݉ ൈ ሺܿ௟௢௖௔௟ሻ௜,௝ ൅ ሺ1 െ ݉ሻ ൈ ൫ܿ௚௟௢௕௔௟൯௜,௝ (4)

where ݉ is a weight constant in the interval [0,1], ൫ܿ௚௟௢௕௔௟൯௜,௝ and ሺܿ௟௢௖௔௟ሻ௜,௝  are the 

global and local components of the weighted diffusion function ௜݂,௝, respectively. To 
allow the global edge-sensitive guidance, the inequality 0.5 ൏ ݓ ൏ 1 must be fol-
lowed. The local diffusion component, ሺܿ௟௢௖௔௟ሻ௜,௝, is nothing but the original diffusion 
function of SRAD which is given by   

ሺܿ௟௢௖௔௟ሻ௜,௝ ൌ 1/ ൭1 ൅ ൫ݍ௜,௝௧ ൯ଶ െ ሺݍ଴௧ሻଶሺݍ଴௧ሻଶሾ1 ൅ ሺݍ଴௧ሻଶሿ൱ (5)

where ሺܿ௟௢௖௔௟ሻ௜,௝ is the value of ܿ௟௢௖௔௟  at pixel ሺ݅, ݆ሻ, ݍ௜,௝௧  is the ICOV at pixel ሺ݅, ݆ሻ 
and ݍ଴௧  is the scaling factor of the original SRAD in iteration/time ݍ  .ݐ଴௧  is given by 
the ratio between standard deviation and mean over a small homogeneous region of 
the input image selected initially by the user. Finally, in a 2D image grid, the update 
equation of REDISRAD-WDF takes the form ܫ௜,௝௧ା୼௧ ൌ ௜,௝௧ܫ ൅ Δߟ|ݐ௦ഥ | ሾݒ݅݀ ௜݂,௝௧ ௜,௝௧ܫ׏ ሿ (6)

where ௜݂,௝௧  is the weighted diffusion function value for the pixel at location ሺ݅, ݆ሻ in 
time/iteration ݐ. 

There is an implicit assumption in the formulation of ݂ that gradient and Laplacian 
based ICOV is good enough to detect the strongest edges, even in speckled  
environment. In case of the strongest edges, where ratio strength approaches zero, ܿ௚௟௢௕௔௟ ՜ 0. In such a case, the global part contributes almost nothing to the weighted 
diffusion function. Still, we are doing less smoothing due to the weight distribution 
between local and global diffusion components in equation (4). Undoubtedly, the 
scale of reduction is highly biased by the value of the weight, ݉. So, tuning ݉ is cru-
cial. We found that 0.7 is a good value for ݉ in practice.  

In the ideally uniform regions, ܿ௚௟௢௕௔௟  takes a high value in its valid domain. The 
value is dependent on the dynamic threshold ோܶ. The best we can state, in the ideally 
uniform regions, ܿ௚௟௢௕௔௟ ՜ 1/ሺ1 ൅ ோܶଶሻ. Due to the high value of ܿ௚௟௢௕௔௟ , the weighted 
diffusion function ݂ takes a higher value which tells REDISRAD-WDF to do more 
aggressive smoothing. 

When the condition is not extreme, that is, the pixel of interest is neither belongs to 
an obvious edge nor to an ideally uniform area, then ܿ௚௟௢௕௔௟  should correct the ܿ௟௢௖௔௟  
decision, if wrong and encourage the ܿ௟௢௖௔௟  decision, if right. As ܿ௚௟௢௕௔௟  is guided by 
the ratio-based measures, we expect it to take the correct value based on the underly-
ing image region. After computing the weighted diffusion function ݂, we saturate the 
value of ݂ so that 0 ൑ ݂ ൑ 1.  
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Homomorphic Anisotropic Diffusion (Homo. AD) [6], DPAD [7], SRAD [1] and 
OSRAD [8]. For Lee and Frost filters, window sizes were set to 7 ൈ 7. The ܭ value of 
Frost filter was set to 3. We ran the Homo. AD filter with step size 0.1, threshold k = 
0.3 and 150 iterations. For DPAD, we chose the median of coefficient of variations as 
the scaling factor and used an additional 5 ൈ 5 window for ICOV estimation. The 
number of iterations for the same filter was set to 300. The time step size and number 
of iterations were set to 0.05 and 300, respectively, for both SRAD and REDISRAD-
WDF. For the initial Gaussian smoothing of REDISRAD-WDF we used a 5 ൈ 5  
kernel and set the standard deviation to 1. A 15 ൈ 15 window was chosen for initial 
ratio-based edge detection unit of REDISRAD-WDF. The value of the weight ݉ (for 
the weighted diffusion function) was set to 0.7 and the threshold ௘ܶ for scaling factor 
selection was set to 3. The step size and number of iterations for OSRAD were set to 
0.05 and 200. As the standard edge detection part of Pratt’s FOM, we used Canny’s 
edge detector [14]. The ߪ value and threshold of the edge detector was set to 1 and 
0.1, respectively. The constants of Wang’s SSIM [13] were set to 0.0001 and 0.0003. 
All the parameter values are chosen for optimal performance as suggested by the orig-
inal authors in most of the cases. 

Fig. 1 shows the synthetic input image and the filtered outputs of the seven filters. 
Subjectively, the performances of Lee, Frost, Homo. AD and DPAD filters are infe-
rior to SRAD, OSRAD and REDISRAD-WDF. SRAD noticeably kept some speckles 
as edges. OSRAD produced a de-noised image where the edges are dislocated and un-
sharp due to over-smoothing. The geometrical shapes are also diffused. REDISRAD-
WDF reduced more speckles compared to SRAD and at the same time, kept the edges 
sharp. Shapes are not diffused in the REDISRAD-WDF output. 

Table 1 summarizes the edge and structural similarity preservation performance. 
The FOM value of REDISRAD-WDF is significantly higher than other six filters. The 
MSSIM value of REDISRAD-WDF is also the highest in the table, though the 
MSSIM of OSRAD is pretty close. REDISRAD-WDF outperformed other filters in 
terms of edge and structural similarity preservation. 

Table 2 presents the mean preservation and standard deviation reduction  
performance. Means and standard deviations were calculated over three different  
 

                              Table 1. Edge and structural similarity preservation 

Filter FOM MSSIM 
Lee 0.492 0.933 
Frost 0.510 0.894 
Homo. AD 0.244 0.512 
DPAD 0.279 0.464 
SRAD 0.709 0.943 
OSRAD 0.639 0.952 
REDISRAD-WDF 0.806 0.955 

 



 SRAD with Weighted Diffusion Function 271 

homogeneous regions as shown in Fig. 2. According to the results of Table 2, 
REDISRAD-WDF consistently preserves the mean in the homogeneous regions. At 
the same time, it reduces the standard deviation efficiently which is a good sign for a 
de-noising filter. OSRAD showed better performance in standard deviation reduction, 
but it hugely suffered in mean preservation. Filters having a tendency of  
oversmoothing happen to show this type of characteristic. 

Table 2. Mean preservation and standard deviation reduction 

Filters 
Mean Standard deviation 

R1 R2 R3 R1 R2 R3 

Noisy 198.70 75.46 39.89 70.26 37.29 20.11 

Lee 200.84 75.61 39.91 9.33 5.22 2.89 

Frost 197.95 74.56 40.50 13.29 7.34 3.57 

Homo. AD 197.76 72.68 38.59 59.66 30.65 16.20 

DPAD 255.00 252.59 157.34 0.00 11.46 13.03 

SRAD 198.59 74.86 40.04 7.45 5.91 3.95 

OSRAD 249.84 94.08 50.16 3.79 2.05 1.17 

REDISRAD-WDF 201.06 76.29 40.14 7.41 3.60 2.35 

 
Finally, for the subjective evaluation, we ran various filters on a real SAR image 

shown in Fig. 3(a). This 800 ൈ 546 SAR image of the city of Angkor, Cambodia, was 
taken by NASA JPL SIR-C/X-SAR system. Fig. 3(b) shows a zoomed sub-region of 
interest that is located at the top part of image in Fig. 3(a). In Fig. 3(c)—Fig. 3(i), we 
present the zoomed de-noised sub-region of this SAR image generated by the same 
seven filters as in Fig 1. It is readily visible that REDISRAD-WDF was more success-
ful in preserving finer edge details compared to output of the all other six filters. 
Moreover, unlike other filters, REDISRAD-WDF managed to keep the edges sharp in 
the de-noised output. It is worth mentioning that SRAD produced diffused edge lines 
and some of the edge details are completely lost due to excessive smoothing. In addi-
tion, OSRAD output was even more disappointing, where most of the finer edge de-
tails are completely lost in the OSRAD output and at the same time, the preserved 
edges are highly over-smoothed.  
 

 

Fig. 2. Three homogeneous regions-- R1, R2, R3 (marked by three rectangles) selected for the 
mean preservation and variation reduction experiment 
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4 Conclusion 

We have introduced REDISRAD-WDF, a ratio-based edge detection inspired speckle 
reducing filter. Experimental results show that while doing robust smoothing, 
REDISRAD-WDF also improves the edge preservation and structural similarity pre-
servation performance. Unlike SRAD, it manages to produce sharper edges in the de-
noised output.  
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