
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Weighted Ratio-based Adaptive Lossless Image
Coding

AbdulWahab Kabani and Mahmoud R. El-Sakka
The University of Western Ontario

Computer Science Department
London, ON, Canada

{akabani5,elsakka}@csd.uwo.ca

Abstract— in this paper, we present an image compression
algorithm called Weighted, Ratio-Based, Adaptive, Lossless
image Codec (WRALIC). The algorithm utilizes 5 ratio
predictions. The weight of each prediction is learned during a
training stage offline, whereas the prediction parameters are
adjusted using error context. The absolute value of the error is
encoded. The algorithm does not encode the sign. Instead, it
attempts to guess the sign of the error from the sign context of
the pixel. Using the energy and the average errors around a
pixel, the error is added to an encoding bin. Experimental
results demonstrate good compression performance compared
to other state of the art algorithms.

Keywords— image compression; lossless compression;
context modeling; adaotive prediction; entropy coding.

I. INTRODUCTION

Data compression is the process of representing an
information source using fewer bits than the original
representation would use. Compression can be applied on
various types of data such as text, speech, image or
video [1] [2]. In the field of compression, there are two major
approaches, namely: lossy and lossless. Lossless compression
schemes ensure that the exact original information is
recovered after decompressing the compressed file, but they
do not provide high compression. Lossy schemes, on the
other hand, provide high compression at the cost of
information loss in the original data because they reconstruct
an approximated replica of the original information after
decompression. The research presented in this paper is
focused only on lossless image compression.

Lossless image compression schemes can be further
classified into statistical-based, dictionary-based, prediction-
based and context-based methods. Statistical-based methods
encode each pixel value using its probability of occurrence,
such as Huffman encoding [3] and arithmetic encoding [4].
Dictionary-based methods utilize the existence of self-
similarity among image data and encode the current
sequence of pixel values as a pointer to another part of the
image that has been already encoded, such as Lempel-Ziv-77
(LZ77) scheme [5] and Lempel-Ziv-78 (LZ78) scheme [6].
Prediction-based methods attempt to estimate (predict) the
current pixel value, using surrounding pixels and encode the
prediction error, instead of the actual pixel value, such as
Differential pulse-code modulation (DPCM) scheme [7].
Context-based methods encode current pixel value using
statistical models built from contexts, such as Context-based
Adaptive Lossless Image Codec (CALIC) scheme [8], LOw
COmplexity LOssless COmpression for Images (LOCO-I)
scheme [9], and Prediction by Partial Matching (PPM)
scheme [10].

Statistical modeling [11] [12] plays a significant role in
determining how good a compression algorithm is. Our
algorithm takes advantage of statistical modeling to achieve a
relatively high compression rate.

In this article, a new lossless image compression scheme,
called Weighted, Ratio-Based, Adaptive, Lossless Image
Coding (WRALIC), is introduced. The WRALIC algorithm is
nearly symmetric, i.e., the time and space complexity to
encode is nearly equal to the time to decode. In addition, the
WRALIC algorithm is amenable for parallel realization.

The rest of the paper is organized as follows. Section II
provides a general overview about the proposed algorithm.
Sections III to VI explain each component of the codec in
more details. Section VII presents our experimental works
by showing the bit rates we achieved along with a
comparison with other lossless compression algorithms
Finally, Section VIII concludes this work.

II. THE ALGORITHM

WRALIC encodes and decodes an image in a raster scan
order. While iterating over the image, both the encoder and
decoder collect statistical information about the nearby
pixels to improve the encoding performance. It is worth
mentioning that our algorithm only encodes half of the
image (each other row of the image). The rest of the rows
are encoded using any other algorithm. In this work, we
chose CALIC scheme [8] to encode the rest of the image
rows. Figure 1 shows the arrangement of rows that are
encoded by our proposed scheme and the rows that are
encoded by CALIC.

Figure 1. The arrangement of the rows that are encoded by the
proposed scheme (WRALIC) and by CALIC

CALIC

CALIC

CALIC

:

WRALIC

WRALIC

WRALIC

:

0

1
2

3
4
5
:
:

CCECE 2014 1569888655

1

978-1-4799-3010-9/14/$31.00 ©2014 IEEE CCECE 2014 Toronto, Canada

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

In WRALIC, there are 5 major encoding and decoding
stages. These stages are:
• Initial predictions using neighborhood pattern,
• Energy quantization and context selection,
• Getting final prediction,
• Error sign guessing, and
• Entropy coding.
Each of these stages will be elaborated in Sections III to VI
(one stage per Section)

III. INITIAL PREDICTIONS

The initial Prediction ܫ௜௡௜௧௜௔௟ is based on five ratio
predictions. The weight of each ratio prediction is determined
offline (during a training stage).

A. The 5 RatioPredictions

Figure 2 shows the neighbors around the pixel being
encoded (X). These neighboring pixels are North-West pixel
(NW), North pixel (N), North-East pixel (NE), West pixel
(W), South-West pixel (SW), South pixel (S), and South-East
pixel (SE).

Figure 2. The neighbors of the pixel X being encoded: North-West
(NW), North (N), North-East (NE), West (W), South-West (SW),
South(S), and South-East (SE)

WRALIC uses five prediction rules to predict the value of
pixel X. These five prediction rules are based on the
following approximations:

ܹܰ = 	 ݔܹܰ

 (1)

ܹܹܵ = ݔܵ

 (2)

ݔܹܰ = (3) ܧݔܵ

ݔܧܰ = (4) ܹܵݔ

 ܰ − ݔ = ݔ	 − ܵ (5)

The above ratios can be re-arranged to look like the
equations below.

௥଴ܫ = 	ܹ × ܹܰܰ (6)

௥ଵܫ = 	ܹ × ܹܵܵ (7)

௥ଶܫ = 	√ܹܰ × (8) ܧܵ

௥ଷܫ = ܧܰ√	 × ܹܵ (9)

௥ସܫ = 	ܰ + ܵ2 (10)

B. Patterns

The initial prediction ܫ௜௡௜௧௜௔௟ is a weighted sum of the five
ratio predictions (ܫ௥଴, ܫ௥ଵ, ܫ௥ଶ, ܫ௥ଷ, and ܫ௥ସ). The five weights
are determined based on the pattern around the pixel being
encoded (context) using a training set.

The context is identified based on a set of 14 comparisons
between the pixels in the current and the previous blocks.
Seven of these comparisons are between individual
immediate neighboring pixels (see Figure 3(a)). Another three
are based on diagonal comparisons between (NW+SE,
NWW+S), (NE+SW, N+SWW), and (N+S, NW+SW) (see
Figure 3(b)). The last four comparisons are based on
comparing two group of pixels, including, (N + NW, W +
WW), (W + WW, S + SW), (||NW − SE||, ||NWW − S||), and
(||NE − SW||, ||N − SWW||).

(a)

(b)

Figure 3. The context is identified based on a set of comparisons
between the pixels in the current and the previous blocks.

Each comparison result is either 0 or 1, as shown in (11)

,ݔ)݁ݎܽ݌݉݋ܥ (ݕ = 	 ቄ 1, ݕ	݂݅ > (11) ݁ݏ݅ݓݎℎ݁ݐ݋	0	ݔ

With this arrangement, there are 214
 = 16384 possible

contexts.

C. Weighted Average

The initial prediction, ܫ௜௡௜௧௜௔௟, is determined by (12): ܫ௜௡௜௧௜௔௟ = ௥଴ܫ଴ߠ + ௥ଵܫଵߠ + ௥ଶܫଶߠ + ௥ଷܫଷߠ + ௥ସ (12)ܫସߠ

The values of the weights 0ߠ,	 	,1ߠ 	,2ߠ 	,3ߠ and	 are 4ߠ
determined offline for each possible context. At the
beginning of the training process, all weights are set to have
the same value, i.e., 0.2 = 4ߠ = 3ߠ = 2ߠ = 1ߠ = 0ߠ. Then, the
algorithm goes over the training images. While looping
through each training image, the counter of the ratio
prediction that gives the closest approximation to the current
pixel is incremented, as shown in (13).

ݐ݊݁݉݁ݎܿ݊݅ = ௣௜௫௘௟ܫฮߙ − ௜௡௜௧௜௔௟ฮ (13)ܫ

NW N NE

W X

SW S SE

NWW NW N NE

WW W X

SWW SW S SE

>? >? >?

>? >? >?
>?

NWW NW N NE

WW W X

SWW SW S SE

>?

>?

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

The symbol	 .denotes the energy in the current block ߙ
Simply, the energy ߙ is a measure of how smooth the current
block is. In non-smooth areas, the value of ߙ should be large.
Therefore, there’s a high probability to have a prediction that
is far from the pixel. Therefore, the increment should be high
in areas with high frequency. In smooth blocks, the weights
should be small, as the probability to get a wrong prediction
here is lower. We will explain how to compute the energy in
the Section IV.

The value ฮܫ௣௜௫௘௟ − ௜௡௜௧௜௔௟ฮ is the initial error. If the initialܫ
error is small, then the current weights are ideal. Therefore,
we don’t want to have a large increase that may change the
ideal weights. On the other hand, if the error is large, we
should have a large increment.

In other words, there’s a linear dependency between an
increment for a certain weight and the energy. Also, the
relation between an increment to a certain weight and the
initial error is also linear.

IV. ENERGY AND ERROR CONTEXT

The energy is a measure of how smooth the neighborhood
is. The smoother the neighborhood, the more accurate our
prediction will be. The energy value is quantized to 8 bins.
These 8 bins form our coding contexts. We do entropy
coding based on estimated conditional probabilities like in
Xu et al. [8].

A. Energy

The energy is a sum of 3 values: ݀௛ (horizontal absolute
changes), ݀௩ (vertical absolute changes), and ݁௪ (previous
error), where the value of ߙ is calculated according to (17). ݀௛ = 	 ܧܰ‖ − ܰ‖ + ‖ܰ − ܹܰ‖ + ܧܵ‖ − ܵ‖ + ‖ܵ − ܹܵ‖ (14)݀௩ = 	 ‖ܹܰ −ܹ‖ + ‖ܹ − ܹܵ‖ + 0.5	‖ܰ − ܵ‖ + ܧܰ‖	0.5 − ௪݁(15) ‖ܧܵ = ܹ − ߙ ௜௡௜௧௜௔௟(௣௥௘௩௜௢௨௦) (16)ܫ = ݀௛ + ݀௩ + 2	݁௪ (17)

It is worth mentioning that the energy value ߙ controls the
amount of increment in (13). In addition, it is used to
construct the error context, (see Section IV-B) and to
determine the bin that will be used to encode the final error
(see Section VI).

The energy is quantized using the following levels [9, 18,
30, 45, 90, 128, and 210]. For example, if the energy is ≤ 9,
the quantized energy is 0. If the energy is ≤ 18, the quantized
energy is 1 and so on.

B. Error Context

The error context is created by comparing the initial
prediction ܫ௜௡௜௧௜௔௟ with each neighboring pixel. If the
neighboring pixel is larger or equal to the initial prediction,
we append 1 to the context. Otherwise, we append 0. After
that, we append the quantized energy/2. Therefore, the total
number of possible error contexts is 27 × 4 (quantized energy)
= 512 error contexts.

For each error context, the initial error (how far the initial
prediction ܫ௜௡௜௧௜௔௟ is from the pixel being encoded) is summed
during the online learning stage (at the end of each iteration).
Also, a running count of the pixels that fall under each
context is kept. Using the running sum with the running
count of the initial error, the final prediction ܫ௙௜௡௔௟ is
calculated (see (18) and (19)).

(ܥ)߳ = (18) (ܥ)ݐ݊ݑ݋ܿ_݃݊݅݊݊ݑݎ(ܥ)݉ݑݏ_݃݊݅݊݊ݑݎ

௙௜௡௔௟ܫ = ௜௡௜௧௜௔௟ܫ + (19) (ܥ)߳

V. ERROR SIGN GUESSING

A. Encoding the Absolute Error

Instead of encoding the error with its sign, we encode the
absolute error. In order to do that, we create a sign context
that can help us determine the sign of the error. This context
cannot predict the sign correctly all the time. However, using
the sign context, we can create a skewed distribution, which
is great for encoding.

To illustrate, the number of negative errors is usually
similar to the number of positive errors. Since the probability
of both types of errors is almost the same for each sign, we
know from information theory that the arithmetic encoder
will not perform well due to the high uncertainty.

Using sign contexts, we don’t have to encode the sign of
the error. Instead, we encode whether the encoder was able to
guess the correct error sign or not. The probability
distribution of our guessing success or failure is skewed. This
leads to better entropy Encoding.

B. The Sign Error Context

Given the final prediction ܫ௙௜௡௔௟ , we construct a context
in a similar manner to the way we did it in Section IV.B,
where, we constructed a context using ܫ௜௡௜௧௜௔௟ and used the
context to calculate the average error for each context. Here,
we construct a context in the same manner but using ܫ௙௜௡௔௟.

For each context of the 512 sign contexts, the encoder
and decoder keep 2 running counts of the positive and
negative errors. This is done during the online learning
stage, which comes after encoding the pixel. Both the
encoder and decoder keep track of the number of positive
and negative errors for each sign context. This is illustrated
in Figure 4.

Figure 4. A flowchart of the content of the Sign Context. During
the learning stage (after encoding the pixel), if the error is positive,
the counter of positive errors is increased for this context.
Otherwise, the counter of negative errors for this sign context is
increased.

When encoding the pixel, if the sign of the current error
is the same as the dominate sign of the context, success (0) is
encoded. Otherwise, the encoder encodes failure (1).

As shown in Figure 5, in addition to encoding the sign
guessing result, a counter for success and failure is

Error>0

SignContext
[signContextIndex].pos ++

SignContext
[signContextIndex].neg++

Error<0

Yes
No

Yes

Error = 0; no need
to encode sign

No

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

incremented for each sign context. This is important for the
next stage, which is entropy encoding. The result of sign
guessing will be added to one of 6 bins depending on the
context probability of success. This leads to better
compression results because we are grouping symbols by
their probability distribution.

Figure 5. A flowchart of how both the success and failure
counters are being incremented during the online learning stage. If
the error is positive and the number of positive errors for this
context is more than the negative errors, the encoder increments the
“success” counter. Similarly, if the number of negative errors for
this context is more than the positive and the current error is
negative, the success counter is incremented. Otherwise, the
encoder increments the “failure” counter.

VI. ENTROPY ENCODING

We use an adaptive arithmetic encoder to encode
prediction errors and sign guessing data. Depending on the
context of the errors being encoded, the error can go into one
of 16 encoding bins. In addition , the sign guessing of the
error can get to one of 6 sign guessing bins. Each bin is
encoded using a separate arithmetic encoder.

As per Section IV, there are 8 possible energy levels. We
combine these 8 possible levels with average errors around
the pixel being encoded to end up with 16 possible error
bins. The errors around the pixel being encoded are: ||NN -
INN||, ||NNW - INNW||, ||NNE - INNE||, and ||W - IW||. We take
the average of these errors and depending on the energy
level, we decide to which error is added to.

The encoding bins are: binL0, binL1, binL2, binL3,
binL4, binL5, binL6, binL7, binH0, binH1, binH2, binH3,
binH4, binH5, binH6, and binH7. Each bin corresponds to
an energy level. For each energy level, there are two
possibilities, depending on the value of the average error
around the pixel being encoded. The threshold values for
each energy level are determined (20). These values are
tuned empirically:

N0 = 1; N1 = 1

N2 = 5; N3 = 6

N4 = 8; N5 = 9

N6 = 15; N7 = 15 (20)

For Example, if the energy level of the neighborhood of
the pixel is 4, the average error around the pixel is
calculated. If this value is less than N4, i.e., less than 8, the
error is added to binL4. Otherwise, it is added to binH4.

As mentioned in Section V, the encoder only encodes the
absolute value of the error. The sign is not encoded. Instead,
the encoder encodes whether we were able to guess the sign
of the error (0) or not (1). The probability distribution of the
guessing is skewed towards successful guessing (more 0s).

To improve the performance of the arithmetic encoder,
we divide the sign guessing into 6 bins. The division is
based on the success probability of each context. This
algorithm is summarized in Figure 6. The decision
boundaries (66%, 57%, 50%, 43%, 34%) are set empirically.

VII. RESULTS AND EXPERIMENTS

For the sake of compression performance evaluation, the
proposed method is tested on the Kodak image set, which
contains 24 grey-scale images (9437544 bytes in total).
FIGURE 7 shows the Kodak image set with the compression
performance of WRALIC. In order to demonstrate the
compression performance of WRALIC, we compare it with
some other lossless compression techniques, where each
image is compressed separately and the total size of
compressed files of each method is reported. Table 1 lists the
compression results achieved by WRALIC, JPEG-LS [9],
PAQ [13], CALIC [8]. Our Algorithm outperforms JPEG-
LS. In addition, we achieve a bit rate that is slightly better
than the one achieved by CALIC. However, PAQ achieves a
better compression rate. Yet, the execution time of PAQ is
very high. The execution time for WRALIC (implemented
using Python) is on average 9 seconds on a machine with
2GB memory. Currently, we are working on implementing it
using C and further optimizing the code to achieve faster
execution.

posCounter >
negCounter

AND
Error>0

posCounter = SignContext[signContextIndex].pos
negCounter = SignContext[signContextIndex].neg

posCounter <
negCounter

AND
Error<0

SignContext[signContextIndex]
.success ++

Encode
Success

SignContext[signContextIndex]
.Failure++

Yes No

Yes

No

Encode Failure

Figure 6. Flowchart of the entropy coding of the sign of the error.
The sign guessing is added to an encoding bin depending on the
sign context success probability.

No

successCounter = SignContext[signContextIndex].success
failureCounter = SignContext[signContextIndex].failure

Total = successCounter + failureCounter
Success = successCounter/Total

Success
>50%

Success
>57%

Success
>43%

Success
>66%

Success
>34%

bin0 bin1

bin2 bin3

bin4 bin5

Yes

Yes

Yes

Yes

YesNo

No

No

No

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Kodak01(768×512)

Bit rate: 5.17
Kodak02(768×512)

Bit rate: 3.90
Kodak03(768×512)

Bit rate: 3.35

Kodak04(512x768)

Bit rate: 4.03
Kodak05(768×512)

Bit rate: 4.99
Kodak06(768×512)

Bit rate: 4.50

Kodak07(768×512)

Bit rate: 3.51
Kodak08(768×512)

Bit rate: 5.19
Kodak09(512x768)

Bit rate: 3.83

Kodak10(512x768)

Bit rate: 3.85
Kodak11(768×512)

Bit rate: 4.31
Kodak12(768×512)

Bit rate: 3.73

Kodak13(768×512)

Bit rate: 5.87
Kodak14(768×512)

Bit rate: 4.80
Kodak15(768×512)

Bit rate: 3.75

Kodak16(768×512)

Bit rate: 3.99
Kodak17(512x768)

Bit rate: 4.00
Kodak18(512x768)

Bit rate: 4.97

Kodak19(512x768)

Bit rate: 4.39
Kodak20(768×512)

Bit rate: 3.01
Kodak21(768×512)

Bit rate: 4.44

Kodak22(768×512)

Bit rate: 4.45
Kodak23(768×512)

Bit rate: 3.38
Kodak24(768×512)

Bit rate: 4.50

Figure 7. Compression Bit Rate (bits/pixel) for Kodak standard
images

Table.1. The performance of WRALIC against other
algorithms. Bit Rats (bits/pixel). Sizes in bytes.

Original Size
Compressed

Size
Bit Rate

WRALIC 9,437,544.00 5,012,001.00 4.25

JPEG-LS 9,437,544.00 5,120,281.00 4.34

PAQ 9,437,544.00 4,726,326.00 4.01

CALIC 9,437,544.00 5,020,278.00 4.26

VIII. CONCLUSIONS

We have presented an image context-based coding
algorithm that achieves a good bit rate. The method utilizes
five ratio predictions. Instead of encoding the sign of the
error, we try to guess the sign. The probability distribution
of the guessing is skewed. Therefore, we achieve more
compression by encoding the guessing of the sign rather than
the sign of the error. We perform entropy encoding by
encoding the absolute error in one of 16 bins. The average
error around the pixel plays a significant role in determining
the error encoding bin.

We have also compared our algorithm to other state of
the art algorithms. Based on our experiments, we found that
WRALIC achieves an excellent bit rate. Its performance is
less than PAQ; however, WRALIC is much faster than PAQ.
Yet, we still have more room to further optimize our
implementation. Currently, we are doing so.

Since we are encoding only half of the image, we have
access to pixels below the pixel being encoded. If we were
able to encode the whole image in this algorithm, we would
end up with a bit rate that is better than most state of the art
algorithms. This is because having access to the row below
the pixel being encoded improves pixel predictions.
However, encoding the whole image is not possible because
the decoder will not be able to decode the image. The result
of this tradeoff is a slight improvement in performance over
state of the art algorithms.

ACKNOWLEDGEMENT

This research is partially funded by the Natural Sciences
and Engineering Research Council of Canada (NSERC).
This support is greatly appreciated.

REFERENCES

[1] K. Sayood, “Introduction to data compression,”
Amsterdam: Elsevier, 2012.

[2] D. Salomon, “Data compression: the complete
reference,” London: Springer, 2010.

[3] D. Huffman, “A method for the construction of
minimum-redundancy codes”, Proceedings of the I.R.E.,
pp. 1098–1102, September 1952.

[4] I. Witten, R. Neal, and J. Cleary, “Arithmetic coding
for data compression,” Communications of the ACM,
30(6), pp. 520–540, June 1987.

[5] J. Ziv and A. Lempel, “A universal algorithm for
sequential data compression,” IEEE Transactions on
Information Theory, 23(3), pp. 337–343, May 1977.

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

[6] J. Ziv and A. Lempel, “Compression of individual
sequences via variable-rate coding,” IEEE Transactions
on Information Theory, 24(5), pp. 530–536, September
1978.

[7] C. Cutler, “Differential quantization of communication
signals,” U.S. patent 2,605,361, July, 1952.

[8] X. Wu and N. Memon, “Context-based adaptive lossless
image coding,” IEEE Transactions on Communications,
45(4), pp. 437–444, April 1997.

[9] M. Weinberger, G. Seroussi, and G. Sapiro, “The
LOCO-I lossless image compression algorithm:
principles and standardization into JPEG-LS,” IEEE
Transactions on Image Processing, 9(8), pp. 1309–1324,
August 2000.

[10] J. Cleary and I. Witten. “Data compression using
adaptive coding and partial string matching,” IEEE
Transactions on Communications, 32(4), pp. 396–402,
April 1984.

[11] J. Rissanen, “Universal coding, information, prediction
and estimation,” IEEE Transactions on Information
Theory, 30(4), pp. 629–636, July 1984.

[12] M. Weinberger, J. Rissanen, and R. Arps, “Applications
of universal context modeling to lossless compression
of gray-scale images,” IEEE Transactions on Image
Processing, 5(4), pp. 575–586, April 1996.

[13] D. Salomon, G. Motta, (with contributions by D.
Bryant), Handbook of Data Compression, 5th edition,
pp.314–319, Springer, 2009.

6

