
Adaptive Weighted Neighbors Lossless
Image Coding

AbdulWahab Kabani and Mahmoud R. El-Sakka(B)

Department of Computer Science,
The University of Western Ontario, London, ON, Canada

{akabani5,melsakka}@uwo.ca

Abstract. Adaptive Weighted Neighbors Lossless Image Coding AWN
is a symmetric lossless image compression algorithm. AWN makes two
initial predictions, creates a weighted combination of the initial predic-
tions before adjusting the prediction to end up with the final prediction.
In order to achieve more compression, we encode the error in multiple
bins depending on the expected error magnitude. Also, instead of encod-
ing the signed error, the algorithm attempts to guess the sign and encodes
the error magnitude and whether guessing the sign was successful or not.

Keywords: Image compression · Lossless compression · Context
modeling · Adaptive prediction · Entropy coding

1 Introduction

Data compression is the process of representing information using fewer bits than
the original representation would use. The main objective of data compression is
to reduce the size of the information being encoded. As the size of different kinds
of data (text, audio, and video) is growing, the need to have better compression
techniques is increasing [5,7].

In general, compression can be broken down into two major fields, namely:
lossy compression and lossless compression. Lossy compression usually achieves
excellent compression rates at the expense of information loss. In other words,
the reconstructed information after compression and decompression is not an
exact replica of the original information before compression. On the other hand,
lossless compression achieves less compression than lossy. The main advantage of
lossless compression is that the reconstructed information matches the original
information exactly. This is very important for legal and medical applications.
The research presented in this paper is a lossless image compression. Therefore,
the reconstructed image is exactly the same as the original image.

There are many methods that are used on image to achieve compression. These
methods include statistical methods (Huffman encoding [3] and Arithmetic encod-
ing [9]), dictionary methods (Lempel-Ziv-77 (LZ77) scheme [11] and Lempel-Ziv-
78 (LZ78) scheme [12]), prediction methods (Differential pulse-code modulation
c© Springer International Publishing Switzerland 2015
M. Kamel and A. Campilho (Eds.): ICIAR 2015, LNCS 9164, pp. 129–138, 2015.
DOI: 10.1007/978-3-319-20801-5 14

130 A. Kabani and M.R. El-Sakka

Fig. 1. Algorithm Overview: AWN consists of two main stages. The first stage is the
Prediction Enhancement Stage, which consists of three steps that starts with two initial
predictions and ends with a final prediction. The second stage aims to improve the
entropy to achieve a better compression. This is achieved by grouping the errors in
different encoding bins and attempting to guess the sign of the error.

(DPCM) scheme [2]), and context methods (Context-based Adaptive Lossless
Image Codec (CALIC) scheme [10], LOw COmplexity LOssless COmpression for
Images (LOCO-I) scheme [8], Prediction by Partial Matching (PPM) scheme [1],
and Weighted Ratio-based Adaptive Lossless Image Coding [4]).

In this paper, we introduce Adaptive Weighted Neighbors (AWN) Lossless
Image Coding. AWN is a lossless image codec. It combines statistical-based,
prediction-based, and context-based techniques to achieve an excellent compres-
sion rate. The rest of the paper is organized as follows. Section 2 provides a
general overview about the proposed algorithm. Sections 3 to 6 explain each
component of the codec in more details. Section 7 presents our experimental
works by showing the bit rates we achieved along with a comparison with other
lossless compression algorithms. Finally, Sect. 8 concludes this work.

2 General Overview

The system can be broken down into 6 major steps. These steps are: calculating
two initial predictions, combining the two predictions, prediction adjustment,
error sign guessing, choosing an encoding bin and entropy encoding.

Figure 1 shows how these steps can be broken down into two stages: pre-
diction enhancement stage and encoding improvement stage. In the prediction
enhancement stage, we start with two initial predictions. Then, we combine them
into an intermediate prediction. After that, the prediction is adjusted through
an error context feedback. The aim of this stage is to come up a prediction of the
pixel being encoded.

Better compression can be achieved when encoding the error in an effective
way. This is done in the encoding improvement stage. In this stage, we choose
the encoding bin that promises to yield the lowest entropy. In addition, we do
not encode the sign of the error. Instead, we try to guess the sign. Finally, we
perform entropy encoding such as: arithmetic encoding.

Adaptive Weighted Neighbors Lossless Image Coding 131

3 Predictors: Calculating Initial Predictions

Statistical redundancy in a set of pixels is the smoothness of the intensity func-
tion. In other words, pixels spatially close to each other tend to have similar
values. The predictor of AWN views the prediction as depending on the direc-
tion of the small changes. There are four directions that we use to calculate
the prediction. These directions are: horizontal, diagonal (45 degrees), vertical,
diagonal (135 degrees). The direction with the smallest absolute change tends
to give the best prediction.

Based on this notion, we designed our predictor. The predictor gives more
weight to predictions that are inferred from the directions with the least changes.
Equations 1–4 define the gradient magnitude estimates in the four directions:

GMh = ||IW − IWW || + ||INW − INWW || + ||IN − INW || + ||INE − IN || (1)

GMD1 = ||IW − INWW || + ||INW − INNWW || + ||IN − INNW || + ||INE − INN ||
(2)

GMv = ||IW − INW || + ||INW − INNW || + ||IN − INN || + ||INE − INNE || (3)

GMD2 = ||IW − IN || + ||INW − INN || + ||IN − INNE || + ||INE − INNEE ||
(4)

where IW , IWW , ..., INNEE are the values of the neighbours of the pixel. For
example, IW is the pixel to the west of the current pixel and INW is the north-
west neighbour of the pixel.

Figure 2 shows how we calculate the gradient magnitude estimates in the four
directions. The gradient magnitude estimate in each direction is the summation
of the absolute differences of the neighboring pixels. The lower the value of the
magnitude, the more likely a prediction based on the corresponding direction
can yield better results.

The less the magnitude of absolute changes in one direction, the higher the
weight of the corresponding pixel should be. In other words, the weight of each
pixel is determined by dividing the total absolute changes in all directions by
the directional absolute changes.

δ = GMh + GMd1 + GMv + GMd2 (5)

wh =
δ

GMh
, wd1 =

δ

GMd1
, wv =

δ

GMv
, wd2 =

δ

GMd2
(6)

We define two initial predictions. The first initial prediction is a weighted
combination of the neighboring pixels: W, NW, N, and NE. The Horizontal,
Diagonal 1, Horizontal, and Diagonal 2 directions correspond to W, NW, N, and
NE, respectively. The resulting weights are normalized. We need to normalize
them when we calculate the predictions.

wtotal1 = wh + wd1 + wv + wd2 (7)

132 A. Kabani and M.R. El-Sakka

Fig. 2. Gradient magnitude estimation: (a) The estimation of the horizontal gradient
magnitude, which is performed by taking the absolute values of the differences indicated
by the arrows. (c),(b) and (d) are the gradient magnitude estimations in the vertical
directions and the diagonals respectively.

wh,norm =
wh

wtotal1
, wd1,norm =

wd1

wtotal1
, wv,norm =

wv

wtotal1
, wd2,norm =

wd2

wtotal1
(8)

After normalizing the weights for the initial prediction 1, we can now calculate
the initial prediction 1. The weights play a significant role in computing the
first initial prediction. If the gradient magnitude estimation in one of the four
directions is low, the corresponding neighbor will have higher contribution to
the first initial prediction.

Iinitial1 = wh,norm × IW + wd1,norm × INW + wv,norm × IN + wd2,norm × INE

(9)
The second initial prediction uses only the pixels that correspond to the

directions with the least changes and the second least changes (lowest and
second lowest gradient magnitude estimations). More weight is given to the pixel
that corresponds to the direction with the least change. To do that, we boost
the original weight of the pixel with the minimum change. The boosting value
will always be larger than 1 because the nominator is always larger than the
denominator.

wLowestBoosted =
wlowest

w2ndLowest
× wlowest (10)

In order to use these weights, we should normalize them first. The normal-
ization process is similar to the one we did for the initial prediction 1. We first
get the total of the 2 weights. Then, we divide these weights by the total.

wtotal2 = wLowestBoosted + w2ndLowest (11)

wLowestBoosted,Norm =
wLowestBoosted

wtotal2
(12)

w2ndSmoothest,Norm =
w2ndSmoothest

wtotal2
(13)

Adaptive Weighted Neighbors Lossless Image Coding 133

Fig. 3. This figure shows the weights of the neighbours of the pixel being encoded.

Using the normalized weights, we can compute the second initial prediction
(Eq. 14). The contribution of the neighbor that corresponds to the best prediction
is always more than the one with the second best. For example, if the lowest
and second lowest gradient magnitude estimations were in the horizontal and
the vertical directions, the best and second neighbors that we use to compute
the second initial prediction are the W and N pixels.

Iinitial2 = wLowestBoosted,Norm × Ibest + w2ndSmoothest,Norm × I2ndbest (14)

4 Combining the Two Predictions

Using the two initial predictions we calculated, we compute the intermediate
prediction. The intermediate prediction is a weighted combination of the two
initial predictions. We have found that creating a weighted combination of the
two initial predictions yields a better compression rate. In order to determine
the weight of the two initial predictions, we examine their errors for pixels that
are spatially close to the pixel being encoded. Pixels closer to the pixel we are
encoding are much more important than pixels that are far away. Figure 3 shows
the weights of the neighbours surrounding the pixel being encoded.

Using the weights shown in Fig. 3, we can now compute the spatial sum of errors
that correspond for the initial prediction 1 and 2 as shown in Eqs. 15 and 16:

Einitial1 =
∑

n∈Neighbours

wn||Iinitial1,n − In|| (15)

Einitial2 =
∑

n∈Neighbours

wn||Iinitial2,n − In|| (16)

In order to speed up the computation in Eqs. 15 and 16, a shift left operation
may be performed instead of the multiplication since all weights are multiples
of 2.

To get the intermediate prediction, we combine the initial predictions for
this block. The weight of each initial prediction depends on the value of the sum
of absolute error E for each prediction. The prediction with the higher sum of
absolute error E will contribute less to the intermediate prediction. On the other
hand, the prediction with the lower sum of absolute error E will contribute more
to the intermediate prediction. Equation 17 show how we calculate the weights
of each prediction using the spatial error of each:

winitial1 = 1 − Einitial1

Einitial1 + Einitial2

winitial2 = 1 − winitial1

(17)

134 A. Kabani and M.R. El-Sakka

The intermediate prediction is the weighted combination of the 2 initial pre-
dictions. It is calculated as shown in Eq. 18:

Iintermediate = winitial1 × Iinitial1 + winitial2 × Iinitial2 (18)

5 Contexts

In order to improve the compression performance, we quantize the blocks into
a set of contexts based on different features such as: comparisons between the
prediction to other pixels in the block, the magnitude of the gradient, the direc-
tion of the gradient, and the quantization of the average prediction error in the
block. Using contexts helps us to:

– Adjust prediction through error context feedback (Sect. 5.1)
– Guess the sign of the error (Sect. 5.2)
– Choose an Encoding Bin (Sect. 5.3)

5.1 Prediction Adjustment Through Error Context Feedback

After we calculated the intermediate prediction, we adjust the prediction to end
up with the final prediction. Adjusting the intermediate prediction to get the
final prediction is a very important step. This step removes any redundancy
in predicting pixels that belong to the same context. In other words, this step
allows the algorithm to improve the quality of the prediction for each context.
Equation 19 shows how we calculate the adjustment value. The adjustment value
is the result of dividing the running sum of the error for a context by the running
count of the pixels that belong to this context.

eC =
sum(C)
count(C)

Ifinal = Iintermediate + eC

(19)

5.2 Sign Guessing

When encoding an image, it is expected that the number of positive and the
number of negative errors to be almost the same. For example, the total number
of +2 errors is expected to be similar to −2. Therefore, instead of encoding the
sign, we can encode our success or failure in guessing the sign. For example,
when the encoder receives the error −2, it knows that the absolute error 2 and
we were not successful at guessing the sign. Since both the encoder and decoder
use the same method to guess the sign, the sign can be inferred.

In order to guess the sign, we collect the above features about the block and
keep track of the number of positive and negative errors for each context. When
encoding a pixel, we check its context, if the number of negative error is more
than the positive, it is more likely that the sign of error is negative. Therefore, the
error magnitude is encoded and in case the guess was not successful, a negative
error is encoded.

Adaptive Weighted Neighbors Lossless Image Coding 135

5.3 Choosing Encoding Bin

Instead of encoding all errors as one sequence of numbers, the performance can
be enhanced by grouping the pixels into different bins. Ideally, if all errors in a
bin have the same values, the entropy is 0 (for the bin). Of course, this is very
unlikely to happen. However, having similar errors in each bin tends to yield
better compression.

In order to determine the best bin to add the error to, we examine both the
spatial neighbors of the pixel and the context of the pixel.

Bin = round(Wspatial × Espatial + Wcontext × Econtext) (20)

where ESpatial is the average absolute error of the neighbours surrounding the
pixel and EContext is the average absolute error of the context.

In other words, the bin is a weighted combination of the spatial absolute error
and the context absolute error. The weights in this equation are calculated as
shown in Eqs. 21. If the weighted average of the absolute errors of the encoding
block is higher than the context average absolute error, the spatial weight will
be low. On the other hand, if it is lower than the context average absolute error,
the spatial weight will be high. The values of the spatial weight and the context
weight add up to 1.

Wspatial = 1 − ESpatial

ESpatial + EContext

Wcontext = 1 − WSpatial

(21)

The outcome of this process is an integer that determines the bin number
that we will add the error to encode. This number is a weighted combination of
the spatial weighted average of the absolute error of the block and the average
context error.

Fig. 4. This figures shows the bit rate (lower values are better) of our algorithm along
with other algorithms. AWN achieves good results than many well known algorithms.

136 A. Kabani and M.R. El-Sakka

Table 1. Table showing the compressed size, compression rates, and encoding/decoding
times (in seconds) achieved for each image in the Kodak image set. The original size
for all images is 393,231 bytes.

Image name Compressed (Bytes) Bit rate Encoding time Decoding time

Kodim01 251,815 5.12 1.417 0.997

Kodim02 190,330 3.87 1.401 0.919

Kodim03 161,017 3.28 1.308 0.872

Kodim04 194,411 3.96 1.307 0.919

Kodim05 237,627 4.83 1.479 0.981

Kodim06 220,010 4.48 1.416 0.967

Kodim07 166,452 3.39 1.337 0.889

Kodim08 253,493 5.16 1.556 0.982

Kodim09 185,926 3.78 1.323 0.903

Kodim10 187,353 3.81 1.339 0.903

Kodim11 210,567 4.28 1.354 0.936

Kodim12 181,273 3.69 1.274 0.887

Kodim13 288,567 5.87 1.604 1.043

Kodim14 234,230 4.77 1.417 0.965

Kodim15 181,350 3.69 1.34 0.935

Kodim16 194,952 3.97 1.307 0.903

Kodim17 191,591 3.9 1.339 0.919

Kodim18 244,072 4.97 1.432 0.982

Kodim19 213,896 4.35 1.369 0.919

Kodim20 149,730 3.05 1.229 0.889

Kodim21 217,703 4.43 1.4 1.013

Kodim22 217,811 4.43 1.386 0.966

Kodim23 164,854 3.35 1.277 0.888

Kodim24 217,589 4.43 1.386 0.951

Average - 4.2 1.38 0.94

6 Entropy Encoding

We use an adaptive arithmetic encoder to encode prediction errors and sign
guessing data. Depending on the context of the errors being encoded, the error
can go into one of 16 encoding bins.

In a similar manner to the entropy encoding in [10], each encoding bin is
further split into 2 bins. In other words, the total number of encoding bins is
32. Depending on the value of the error and the bin, the encoder may encode an
escape symbol and encode the error in an extended bin. The values of the bins
are: {5, 9, 12, 13, 15, 17, 21, 25, 29, 33, 37, 41, 46, 57, 93, 128}. If the absolute value

Adaptive Weighted Neighbors Lossless Image Coding 137

of an error being encoding is higher than the boundary, an escape symbol is
encoded and the error is encoded in a separate bin.

7 Results and Experiments

We tested AWN on the well known Kodak image set, which is comprised of 24
gray-scale images. The total size of the images is 9437544 bytes. The overall bit
rate we achieved for the whole set is 4.2, which is comparable to many state of
the art algorithms.

Figure 4 shows a comparison between our algorithm with other algorithms.
AWN achieves better results than our older proposed algorithm WRALIC [4].
In addition, AWN outperforms JPEG-LS [8] and CALIC [10]. On the other
hand, PAQ [6] achieved better results than our proposed algorithm. However,
because PAQ uses neural nets, the execution time is very high. Table 1 shows
the compression rates and encoding/decoding times for each image in the Kodak
set. As shown in Table 1, the average encoding and decoding times is 1.38 s and
0.94 s, respectively, on a machine with 2.2 GHz processor.

8 Conclusion and Future Work

We have presented a symmetric lossless image compression algorithm. The algo-
rithm makes two initial predictions, creates a weighted combination of the initial
predictions before adjusting the prediction to end up with the final prediction.
In order to achieve more compression, we encode the error in multiple bins
depending on the expected error magnitude. Also, instead of encoding the signed
error, the algorithm attempts to guess the sign and encodes the error magnitude
and whether guessing the sign was successful or not.

While developing our solution, we noticed that using multiple predictions
enhances the compression rate. Therefore, we intend to build on this observa-
tion in the future and make more initial predictions. We can create a ensemble
(weighted combination) of these initial predictions by using an on-line stochas-
tic gradient descent SGD. The objective of the SGD is to give more weights to
predictions that are closer to the real pixel values in a certain image.

Acknowledgment. This research is partially funded by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC). This support is greatly appreciated.

References

1. Cleary, J.G., Witten, I.: Data compression using adaptive coding and partial string
matching. IEEE Trans. Commun. 32(4), 396–402 (1984)

2. Cutler, C.C.: Cutler (July 29 1952), uS Patent 2,605,361
3. Huffman, D.A., et al.: A method for the construction of minimum redundancy

codes. Proc. IRE 40(9), 1098–1101 (1952)

138 A. Kabani and M.R. El-Sakka

4. Kabani, A., El-Sakka, M.R.: Weighted ratio-based adaptive lossless image coding.
In: 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering
(CCECE), pp. 1–6. IEEE (2014)

5. Salomon, D.: Data Compression: The Complete Reference. Springer, New York
(2004)

6. Salomon, D., Motta, G.: Handbook of Data Compression. Springer Science & Busi-
ness Media, London (2009)

7. Sayood, K.: Introduction to Data Compression. Newnes, Amsterdam (2012)
8. Weinberger, M.J., Seroussi, G., Sapiro, G.: The loco-i lossless image compression

algorithm: principles and standardization into jpeg-ls. IEEE Trans. Image Process.
9(8), 1309–1324 (2000)

9. Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression.
Commun. ACM 30(6), 520–540 (1987)

10. Wu, X., Memon, N.: Context-based, adaptive, lossless image coding. IEEE Trans.
Commun. 45(4), 437–444 (1997)

11. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory 23(3), 337–343 (1977)

12. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theory 24(5), 530–536 (1978)

