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ABSTRACT: This article presents a new digital image compression
scheme which exploits a human visual system property—namely,
recognizing images by their regions—to achieve high compression
ratios. It also assigns a variable bit count to each image region that is
proportional to the amount of information it conveys to the viewer.
The new scheme copes with image nonstationarity by adaptively
segmenting the image into variable block–sized regions and classify-
ing them into statistically and perceptually different classes. These
classes include a smooth class, a textural class, and an edge class.
Blocks in each class are separately encoded. For smooth blocks, a
new adaptive prediction technique is used to encode block averages.
Meanwhile, an optimized DCT-based technique is used to encode
both edge and textural blocks. Based on extensive testing and com-
parisons with other existing compression techniques, the perfor-
mance of the new scheme surpasses the performance of the JPEG
standard and goes beyond its compression limits. In most test cases,
the new compression scheme results in a maximum compression
ratio that is at least twice of JPEG, while exhibiting lower objective
and subjective image degradations. Moreover, the performance of the
new block-based compression is comparable to the performance of
the state-of-the-art wavelet-based compression technique and pro-
vides a good alternative when adaptability to image content is of
interest. © 1999 John Wiley & Sons, Inc. Int J Imaging Syst Technol, 10,
33–46, 1999

I. INTRODUCTION
It is widely believed that a picture is worth more than a thousand words.
However, dealing with digital pictures (images) requires far more
computer memory and transmission time than that needed for plain text.
To be able to handle efficiently the huge amount of data associated with
images, compression schemes are needed. Image compression is a
process intended to yield a compact representation of an image, hence
reducing the image storage/transmission requirements.

Generally, images carry three main types of information: redun-
dant, irrelevant, and useful. Redundant information is the determin-
istic part of the information which can be reproduced, without loss,
from other information contained in the image (i.e., interpixel re-
dundancy): for example, low-varying background information. Ir-
relevant information is the part of information that has enormous
details which is beyond the limit of perceptual significance (i.e.,

psychovisual redundancy). Useful information is the part of infor-
mation which is neither redundant nor irrelevant.

Decompressed images are usually observed by human beings.
Therefore, their fidelities are subject to the capabilities and limita-
tions of the human visual system (HVS). A significant property of
the HVS is the fact that it recognizes images by their regions and not
by the intensity value of their pixels (Cornsweet, 1971). In addition
to this property, when an observer looks to an image, trying to
understand it, he or she searches for distinguishing features such as
edges (not pixel values) and mentally combines them together into
recognizable groupings.

This HVS property (recognizing images by their regions) can be
exploited by segmenting images into regions based on the amount of
information each region conveys to the viewer. Then, regions of
each category could be encoded using a distinct encoding procedure.
This encoding procedure should preserve the main visual character-
istics of this particular category (focusing on useful information)
while reducing the existing correlation (reducing redundant infor-
mation), and neglecting some of the irrelevant details (omitting
irrelevant information).

The idea of block classification has been used in a number of
encoding techniques. In Chen (1989) and Nasiopoulos et al. (1991),
quadtrees are used to segment a given image into smooth blocks of
variable sizes and nonsmooth blocks of a fixed smaller size. In Chen
(1989), three-level 43 4 to 163 16 bottom-up quadtrees were used.
The DCT followed by a fixed step-size quantizer was used to encode
each of these blocks, but with coarser quantization applied to
smooth-blocks (large blocks). In Nasiopoulos et al. (1991), two-
level 4 3 4 to 2 3 2 top-down quadtrees were used. The block
average was exploited to encode smooth blocks, while absolute
moment block truncation coding (AM-BTC) (Delp and Mitchell,
1979) and AM-BTC with lookup tables (based on block activities)
were used to encode nonsmooth blocks. The results reported in both
of those papers showed good-quality reconstructed images with
compression ratios of,12:1, i.e., at a bit rate of more than 0.66 bits
per pixel (bpp), assuming 8-bit gray levels. The reason for these high
bit rates might be either using the same fixed step-size quantizer for
all DCT coefficients regardless of their locations within the trans-
formed block, or using the BTC-encoding algorithm which has a
limited compression capability.

In Lee and Crebbin (1994), three-level 163 16 to 4 3 4
top-down quadtrees were used. The nonsmooth blocks were further
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classified into eight classes according to the orientation of their
edges. Then, VQ in the DCT domain was used to encode the AC
coefficients of each class separately, while the DC coefficients were
DPCM encoded. Although both textural and edge blocks represent
high-frequency data, textural blocks usually convey a low amount of
information to the viewer and should therefore be assigned fewer
bits. In Vaisey and Gersho (1992), this idea was exploited. In the
first stage, an initial four-level 323 32 to 43 4 top-down quadtree
segmentation of the input image was performed to locate regions
which have homogeneous mean values. Then, the mean of each
block was encoded to form the mean image, which was then
smoothed to generate an interpolated image. The interpolated image
was subtracted from the input image to obtain a residual image. The
residual image was segmented by other four-level 323 32 to 43
4 top-down quadtrees and their leaves were classified into three
classes (smooth, textural, and edge classes). Finally, the classified
residual blocks were vector quantized at different bit rates according
to their levels of information (i.e., according to the class to which
they belong). The reported results show that these two techniques
achieved good-quality reconstructed images with compression ratios
between 10:1 and 32:1, i.e., at bit rates between 0.8 and 0.25 bpp,
depending on the nature of the original image. The main disadvan-
tage of these two techniques is the long time needed to execute them.
For example, the latter technique typically takes about 10 min of
CPU time on a Sun-3/260 computer with a floating-point accelerator
to encode a 5123 512 image. Most of this time is devoted to
searching the codebooks. (The CPU power of a Sun-3/260 computer
with a floating-point accelerator is about 60 times less than the CPU
power of a single-processor Sun-Ultra-1 computer.)

In Wu (1992) and Radha et al. (1996), instead of using quadtrees
binary trees were used, and each leaf region was represented by a
first-order polynomial function. The polynomial function coeffi-
cients were determined using the least-square approximation
method. The main difference between these two techniques is that
the former restricts the dividing line orientations to one of four
possible orientations—namely, 0°, 45°, 90°, and 135°. Hence, the
latter technique provides a more general framework, yet requires
higher computational complexity, than the former technique. The
reported results show that these two techniques obtained a fair-
quality reconstructed images with compression ratios between 80:1
and 160:1, i.e., at bit rates between 0.1 and 0.05 bpp.

Other segmentation techniques, such as region growing (Kunt et
al., 1985, 1987), perform a more precise isolation on statistically
homogeneous regions. However, both the number of regions and
their shapes are determined solely by the contents of the examined
image. This implies that a very large number of bits may be needed
to represent the shape and location of each region.

Another approach for compressing images (Ran and Farvardin,
1995a) is to decompose images, instead of segmenting them, into
three components (namely, strong edge, smooth, and textural com-
ponents). The model used is the curvature energy minimization
model [developed in Ran and Farvardin (1995b)]. The intensity and
geometric information of strong edge contours in the strong edge
component were encoded separately using the chain-encoding tech-
nique (Freeman, 1961; Neuhoff and Castor, 1985). Two alternatives
for encoding the smooth and textural components were suggested:
namely, entropy-encoded fixed-block-size adaptive DCT encoding
and entropy-encoded subband encoding. It has been reported that
this technique has better performance over the JPEG continuous-
tone image compression standard (Wallace, 1992). However, its
main disadvantage is that it is extremely time-consuming. The main
bulk of complexity resides in the three-component decomposition.
For example, it typically takes about 23 min of CPU time on a
Sun-Sparc-station-1 just to decompose a 2563 256 image. (The
CPU power of a Sun-Sparc-station-1 computer is about 15 times less
than the CPU power of a single-processor Sun-Ultra-1 computer.)
Table I presents performance results of this technique as well as
several other encoding techniques mentioned in this section.

In this article, a new digital image compression technique called
adaptive block-based compression based on segmentation and clas-
sification (ABC-SC) is proposed (El-Sakka, 1997). The main objec-
tives of ABC-SC are:

1. to achieve a good rate-distortion performance at diverse
compression levels while maintaining a practical compres-
sion/decompression time, and

2. to achieve very high compression ratios while maintaining,
at least, the performance of the JPEG standard at low com-
pression ratios.

ABC-SC exploits one of the HVS properties—the recognition of
images by their regions—to achieve high compression ratios. It also
assigns a varying bit count to each image region that is proportional

Table I. Performance results of various encoding techniques for the 5123 512 “Lena” image.

Method Ref. CR RMSE

Segmentation: trilevel quadtrees {4, 8, 16}; encoding: DCT Chen (1989) 6.62:1 5.50
Segmentation: dilevel quadtrees {4, 2}; encoding: average/AM-BTC Nasiopoulos et al. (1991) 5.88:1 5.47

6.40:1 5.70
10.53:1 9.10

Segmentation: trilevel quadtrees {16, 8, 4}, block classification; encoding: DPCM/VQ in Lee and Crebbin (1994) 22.28:1 5.87
DCT domain 23.95:1 6.11

25.89:1 6.37
28.17:1 6.68

Segmentation: quadruple-level quadtrees {32, 16, 8, 4}, block classification; encoding: VQ Vaisey and Gersho (1992) 22.04:1 6.90
28.88:1 7.88

Segmentation: binary trees; encoding: first-order polynomial fitting Radha et al. (1996) 80.00:1 13.23
114.00:1 14.84

Image decomposition; encoding: chain encoding/DCT/subband Ran and Farvardin (1995a) 10.94:1 3.20
16.43:1 3.94
32.39:1 5.62
64.00:1 8.52
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to the amount of useful information conveyed in each region.
ABC-SC uses three-level 323 32 to 83 8 top-down quadtrees to
segment a given image, where the quadtree leaves are classified into
three classes (smooth, textural, and edge classes). Unlike Lee and
Crebbin’s work (1994), ABC-SC uses a new adaptive prediction
technique to encode smooth regions. Meanwhile, instead of using a
DCT-based technique with a fixed step-size quantizer, as in Chen
(1989), an optimized DCT-based technique is used to encode both
edge and textural blocks. Unlike VQ-based techniques, ABC-SC
does not require training or image ensemble statistics to be encoded.
Since ABC-SC is a block-based technique, blocking artifacts might
appear in the reconstructed images, especially at very high compres-
sion ratios. Therefore, an optional postprocessing filtering scheme
may be applied to restore the smooth continuity of the gray-scale
intensities over the entire reconstructed image. This postprocessing
filtering scheme uses the already-saved region content information.
Consequently, no additional bits are needed.

The organization of this article is as follows. Sections II and III
describe the proposed technique. In Section IV, performance metrics
for evaluating ABC-SC are discussed and the results of ABC-SC are
presented. Section V gives some concluding comments.

II. OVERVIEW OF ABC-SC
In the ABC-SC technique (El-Sakka, 1997), as shown in Figure 1, a
given input image is first subdivided into superblocks of 323 32
pixels. Then, for each of these superblocks, a quadtree with mini-
mum subblocks of 83 8 pixels is built. A block is declared to be a
leaf block if its homogeneity measure satisfies a certain threshold or
if the bottom of the tree is reached; otherwise the tree is traversed

down further. The leaf blocks are then classified into three percep-
tual classes according to the amount of useful information each
block conveys to the viewer. These perceptual classes are a smooth
class, a textural class, and an edge class. As a result of this classi-
fication, three segments of the image are produced (one per percep-
tual class). Each of these segments is then encoded separately. For
the smooth image segment, only the quantized average of each block
is encoded using a new adaptive differential pulse code modulation
(ADPCM) technique. In ADPCM, different linear prediction rules,
including second- and third-order two-dimensional prediction rules,
are used to predict the current block average—only one rule per
prediction is applied. The choice of prediction rule is based on the
differences between the neighboring encoded block averages. For
the textural and edge image segments, blocks are DCT transformed.
Then, the transformed coefficients are quantized, where the quanti-
zation matrix for each of the two classes is optimized based on the
amount of information conveyed in each region—coarser quantiza-
tion is applied to the textural blocks than to the edge blocks. This is
because the textural blocks convey less information to the viewer
than edge blocks. Since the averages of the adjacent blocks are
strongly correlated, the DC coefficients are ADPCM encoded.
Meanwhile, the AC coefficients of each block are zigzag ordered
and then run-length (RL) encoded (Golumb, 1966). Finally, each
group of encoded data—the quadtree structures (also called the side
information), the encoded average of each smooth block with the
encoded DC coefficients, and the encoded AC coefficients—are
arithmetically and separately encoded to produce the compressed
image.

At the receiver’s side, each group of data is arithmetically de-
coded. Then, using the decoded side information, the quadtrees are
reconstructed. Next, the quantized coefficients are multiplied by the
quantization step size and decoded to form a reconstructed image
segment. For the smooth segment, the inverse ADPCM (I-ADPCM)
is applied. Meanwhile, the RL decoding, the inverse zigzag order-
ing, the inverse DCT (I-DCT), as well as the inverse ADPCM are
applied to the edge and textural image segments. Finally, all of these
reconstructed image segments are gathered to form the reconstructed
image.

At high compression levels, smooth-block boundaries may be-
come visible and viewers might suffer from the annoying intrab-
locking effect. The reason for having this blocky appearance is that
smooth blocks were represented only by their quantized averages,
although their pixel intensity values might not be close enough to
this quantized average. Since it is always desired to reach high
compression ratios and still have a good reconstruction quality, a
postprocessing filtering scheme should be applied to reduce this
annoying intrablocking effect and return the lost gray-level conti-
nuity back to the reconstructed image.

A. Homogeneity Criteria.
1. Smoothness Criterion.Many smoothness criteria have been

proposed in previous studies, e.g., the weighted sum of the absolute
values of the transform coefficients (Gimlett, 1975), the block vari-
ance (Vaisey and Gersho, 1992), and the squared deviation from the
neighboring pixels mean (El-Sakka and Kamel, 1995). Since the
main focus of this work is to investigate whether the segmentation
approach will improve the compression performance, the block
variance as a simple and adequate measure is selected to be the
smoothness criterion in this work. To identify anm 3 m block to be

Figure 1. Block diagram of ABC-SC.
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a smooth block, its variancesm
2 must be less than or equal to a

certain thresholdTm, i.e.,

sm
2 # Tm (1)

Since ABC-SC is not sensitive to segmentation errors, it is
believed that the variance criterion is sufficient for the purpose of
this research. This is the case since even if a segmentation error is
made, it would result in only a small change in the bit rate.

2. Textural Criterion. It was found (Vaisey and Gersho, 1992)
that a block belonging to the textural class must have a high level of
details and exceed a minimum size. Also, the block’s contents
together with the contents of its surrounding blocks must be homog-
eneous. It was shown experimentally that 83 8 may be an adequate
size for textural blocks. Therefore, the candidates for the textural
class are those 83 8 blocks which do not satisfy the smoothness
criterion. To test the textural surrounding of a given candidate block,
a 16 3 16 augmented block which has the candidate block at its
center is considered. This augmented block is then broken up into
four nonoverlapped subblocks of size 83 8. Next, the variances of
these four blocks (s1

2, s2
2, s3

2, ands4
2), as well as the variance of the

candidate block (s5
2) are calculated. The candidate block is declared

as a textural block if the average of these five variances is greater
than or equal to a thresholdTaverage, and the relative absolute
deviation between each of them and their average is less than or
equal to a thresholdTdeviation, i.e.,

savg
2 $ Taverage (2)

and

us i
2 2 savg

2 u
savg

2 # Tdeviation, i 5 1, 2, . . . , 5 (3)

where

savg
2 5

s1
2 1 s2

2 1 s3
2 1 s4

2 1 s5
2

5
(4)

In other words, these conditions ensure that blocks classified into the
textural class are located in a region exhibiting a homogeneous high
value variance.

3. Edge Criterion.If a block is classified as neither a smooth
block nor a textural block and the bottom of the quadtree is reached,
then the block is simply declared an edge block.

B. Adaptive Differential Pulse Code Modulator. In an AD-
PCM, an attempt is made to predict the block average to be encoded.
Note that the DC coefficient is exactlym times the block average.
The prediction is made using the already encoded block averages.
Only the prediction error, i.e., the difference between the predicted
and the current block average values, is quantized. The absolute
quantized prediction error is then arithmetically encoded while the
sign of each nonzero quantized prediction error is encoded sepa-
rately in a single bit.

During the adaptive prediction process, different linear predic-
tion rules are used to predict the current block average (only one rule
per prediction is applied). These rules include second-order two-

dimensional prediction rules, (e.g.,1

4
A 1 3

4
C, 3

4
A 1 1

4
C, 11

4
A 2

1

4
C, and21

4
A 1 11

4
C), and third-order two-dimensional prediction

rules (e.g.,A 2 1

4
B 1 1

4
C, 1

4
A 2 1

4
B 1 C, A 2 1

2
B 1 1

2
C, 1

2
A 2

1

2
B 1 C, and3

4
A 2 1

2
B 1 3

4
C), whereA, B, andC are the neighboring

block averages.
The choice of a prediction rule is based on encoded block

averages local statistics, namely, the differences between the neigh-
boring encoded block averages. Table II shows all the different cases
of A, B, andC with all the possible relative distances between them;
Table III shows the corresponding prediction rule, the prediction
range, and the expected shape of this area for each case. Note that
the terms “small” and “large” in Table II mean that the difference
between the neighboring encoded block averages is less or greater,
respectively, than a certain valuev. In this work, the value ofv is
empirically determined so that the prediction rule usage is parti-
tioned as evenly as possible (Section IIIB).

C. Quantizers.
1. ADPCM Quantizer.Typically, ADPCM prediction errors

have a greatly reduced variance compared to the variance of the
original average values. However, more bit rate reduction can be
achieved by quantizing these prediction errors prior to encoding
them. For this purpose, a simple scalar quantizer is designed. In this
quantizer, each prediction error value is quantized using a simple
scalar value defined by

ADPCM quantization step5  256

KADPCM
class ~QF! (5)

Table II. All possible relative pixel values of A, B, and C.
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whereKADPCM
class (QF) is a class-dependent, positive, nonzero integer

function of the quality factor (QF), and “class” can be any of the
three perceptual classes. TheKADPCM

class is used as a scaling factor to
arrive at a compromise between the compression ratio and the
quality of the reconstructed images. The range ofKADPCM

class is

2 # KADPCM
class # 256 (6)

On the other hand, theKADPCM
class domain is arbitrarily set between 1

and 256, where a maximum reconstruction quality with a minimum
compression ratio is achieved whenQF 5 256, while a maximum
compression ratio with a minimum reconstruction quality is
achieved whenQF 5 1.

2. AC Quantizer.For most natural scene images, the majority of
the AC coefficients have small magnitudes. Hence, these coeffi-
cients have the smallest impact on the reconstructed image quality.

Consequently, they can be coarsely quantized or even discarded
entirely with the trade-off of having a little image distortion.

The role of the AC quantizer is to eliminate selectively or
quantize coarsely the AC coefficients that carry the least informa-
tion. In this quantizer, the AC coefficient in rowi and columnj is
quantized using a scalar value defined by

AC quantization step

5 5  qij

KAC
class~QF!/256

1  if qij 3 256. KAC
class~QF!

otherwise

(7)

whereqij [ Q, Q is an 83 8 normalization matrix andKAC
class(QF)

is a class-dependent, positive, nonzero integer function of the quality

Table III. ADPCM prediction rules.

Rule No. Prediction Rule Prediction Range Expected Shape

A $ B $ C 0 3

4
A 2 1

2
B 1 3

4
C [[C,A] Flat

1 3

4
A 2 1

2
B 1 3

4
C [ (C, A) Flat

2 1

2
A 2 1

2
B 1 C [ [C, B) Edge

3 A 2 1

2
B 1 1

2
C [ (B, A] Edge

4 3

4
A 2 1

2
B 1 3

4
C [ (C, A) Strong edge/texture

A $ C . B 5 3

4
A 1 1

4
C [ [C, A] Flat

6 A 2 1

2
B 1 1

2
C . A Edge

7 1 1

4
A 2 1

4
C $ A Edge/texture

8 A 2 1

2
B 1 1

2
C . A Edge

9 A 2 1

4
B 1 1

4
C . A Strong edge/texture

B . A $ C 10 1

4
A 1 3

4
C [ [C, A] Flat

11 1

2
A 2 1

2
B 1 C , C Edge

12 1

2
A 2 1

2
B 1 C , C Edge

13 2 1

4
A 1 1 1

4
C # C Edge/texture

14 1

4
A 2 1

4
B 1 C , C Strong edge/texture

B $ C . A 15 3

4
A 1 1

4
C [ (A, C) Flat

16 A 2 1

2
B 1 1

2
C , A Edge

17 A 2 1

2
B 1 1

2
C # A Edge

18 1 1

4
A 2 1

4
C , A Edge/texture

19 A 2 1

4
B 1 1

4
C , A Strong edge/texture

C . A $ B 20 1

4
A 1 3

4
C [ (A, C) Flat

21 1

2
A 2 1

2
B 1 C . C Edge

22 2 1

4
A 1 1 1

4
C . C Edge/texture

23 1

2
A 2 1

2
B 1 C $ C Edge

24 1

4
A 2 1

4
B 1 C . C Strong edge/texture

C . B . A 25 3

4
A 2 1

2
B 1 3

4
C [ (A, C) Flat

26 3

4
A 2 1

2
B 1 3

4
C [ (A, C) Flat

27 A 2 1

2
B 1 1

2
C [ (A, B) Edge

28 1

2
A 2 1

2
B 1 C [ (B, C) Edge

29 3

4
A 2 1

2
B 1 3

4
C [ (A, C) Strong edge/texture
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factor QF while “class” is restricted only to either textural or edge
class. TheQ normalization matrix, shown in Equation (8) is adopted
after the JPEG standard (Wallace, 1992). The role of thisQ matrix,
which was heuristically determined, is to weight the AC coefficients
according to their perceptual importance.

Q 5 1
* 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

2 (8)

Similar to theKADPCM
class the KAC

class is used as a scaling factor to
arrive at a compromise between the compression ratio and the
quality of the reconstructed images. As the smallest and the largest
element inQ are equal to 10 and 121, respectively, and the range of
the AC coefficients is between6(28 2 1) 3 block_size/2, the range
of KAC

classwill be

2 # KAC
class# 30976 (9)

At KAC
class5 2, all of the AC coefficients will be quantized to zero,

i.e., a given image block belongs to this class will be represented by
its DC coefficient only. On the other hand, atKAC

class5 30976, all of
the AC coefficients will be unquantized. Meanwhile, theKAC

class

Figure 2. Original images.
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domain is arbitrarily set between 1 and 256, where a maximum
reconstruction quality with a minimum compression ratio is
achieved whenQF 5 256, while a maximum compression ratio
with a minimum reconstruction quality is achieved whenQF 5 1.

III. PARAMETERS ADJUSTMENT
A. Thresholding and Quantization Functions. There is no
doubt that the impact of the quantization functions on the ABC-SC
performance is affected by the values of the thresholding parame-
ters. TheT thresholding parameters control the routing of the blocks
to the different compression modules. In the same time, the impact
of the T thresholding parameters on the ABC-SC performance is
also affected by the definition of theK quantization functions, which
control the allowed amount of distortions that might occur to the
blocks of each class. Therefore, care should be taken when identi-
fying these parameters and functions.

In this work, the parameters and functions’ identification process
is divided into two phases. In the first phase, all the nonsmooth
blocks are dealt with as if they are edge blocks, i.e., only two classes
of blocks are considered (smooth and edge classes). Consequently,
only the non–texture-related parameters and functions (i.e.,Tm,
KADPCM

smooth , KADPCM
edge , andKAC

edge) are identified in this phase. Then, in
the second phase, the rest of the parameters and functions (i.e., the
texture-related parameters functions, namely,Taverage, Tdeviation,
KADPCM

texture , and KAC
texture) are identified based on the value of the

already identified non–texture-related parameters and functions.
1. Non–Texture-Related Functions.To add more adaptability to

ABC-SC, each of theTm thresholding parameters is considered a
function of theQF rather than just a scalar value. The role of these
Tm thresholding functions depends on the value of theQF. For high
QF values, the role of these functions is to facilitate the conditions
on blocks to be classified as nonsmooth blocks. Hence, the blocks
gain less distortion. On the other hand, for lowQF values, their role

is to ease the conditions on blocks to be classified as smooth blocks.
Hence, they can be compressed further.

Theoretically speaking, any decreasing function can be consid-
ered as a valid definition for any of theTm thresholding functions.
Also, any increasing function can be considered as a valid definition
for any of the non–texture-relatedK quantization functions: namely,
KADPCM

smooth , KADPCM
edge , and KAC

edge. However, as the performance of
ABC-SC strongly depends on the definition of these functions, they
should be chosen carefully.

Since optimizing both of theT and theK functions simulta-
neously is not an easy optimization problem, we propose an iterative
solution for identifying them sequentially. The basic idea is to adjust
only one function at a time while fixing the rest of the functions, and
repeat doing this adjustment in sequence until no change occurs
during one full iteration.

During this identification process, each of these functions is
assumed to be a continuous piecewise linear function between some
predeterminedQF values—namely, 1, 8, 16, 32, 64, 96, 128, 160,
192, 224, 240, 248, and 255. AtQF 5 256, all theTm thresholding
functions are set to zero so that all blocks are classified as edge
blocks. In the same time, theKAC

edge and KADPCM
edge quantization

functions are set to a large number. This allows all the AC and the
DC coefficients to be preserved without quantization. Hence, the
lowest reconstruction degradation is achieved.

Note that the piecewise linear assumption is a reasonable as-
sumption, as each of these functions is either an increasing or a
decreasing function. Also note that the domains of the piecewise
segments are selected to be equal, except at low and highQF values,
where the changing rate of theTm thresholding functions and theK

Figure 3. Non–texture-related functions’ identification algorithm.

Figure 4. Example of an envelope curve for rate-distortion curves
which are generated for KADPCM

smooth during the functions’ second identi-
fication iteration.
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quantization functions are expected to be higher than the changing
rate for the rest of theQF values. With this assumption, our goal
now is to determine the output values of each function at these
predeterminedQF values.

During this phase, determining the function’s output values is
based on eight different 5123 512 images, shown in Figure 2(a).
These eight images are selected to represent different image classes
including, edge images (e.g., the “Monarch” and “Boats” images);
textural images (e.g., the “Rocks” and “Barbara” images); smooth
images (e.g., the “Zelda” and “Peppers” images); and natural scene
images (e.g., the “Goldhill” and “F16” images).

In this phase, the determination of the output values of a given
function is achieved by considering all the valid output values of this
function. Then, for eachQF value, a rate-distortion curve, based on
compressing the eight images, is generated. Note that each point on
this curve corresponds to one of the valid output values. Then, an
envelope curve for all these rate-distortion curves, which maximizes
the compression ratio and, at the same time, minimizes the root
mean squared error, is generated. The envelope curve may be
approximated by a continuous piecewise linear curve. The first
segment of this curve is the line tangent to the rate-distortion curve
corresponding toQF 5 255 starting from the rate-distortion point
corresponding toQF 5 256. Thesecond segment of this curve is
the line tangent to the next rate-distortion curve (i.e., the curve
corresponding toQF 5 248)starting from the current tangent point
(which is locating on the curve corresponding toQF 5 255), and
so on. Finally, the output values corresponding to the tangent points
between the envelope and each rate-distortion curve are determined
and assigned to the value of the function at the correspondingQF
values. This procedure is repeated for all the non–texture-related
functions until no change occurs to any of them over a one full
iteration. Note that after the adjustment of each function, the per-
formance of ABC-SC is either improved from a rate-distortion point
of view, or at worst it remains the same if the unchanged function
case is encountered. Hence, the procedure convergence is guaran-
teed. Figures 3 and 4 show the algorithmic steps of the non–texture-
related functions identification procedure, and an example of an
envelope curve for rate-distortion curves which are generated for
KADPCM

smooth during the functions’ second identification iteration, re-
spectively.

Note that this identification procedure is insensitive to initial
conditions; i.e., any increasing function can be considered as a valid
initial definition for any of theTm thresholding functions, and any
decreasing function can be considered as a valid initial definition for

any of theK quantization functions. In this work, the initial defini-
tions ofKADPCM

smooth andKADPCM
edge quantization functions are selected to

be constant functions, as given by Equations (10) and (11), respec-
tively.

KADPCM
smooth 5 256 (10)

KADPCM
edge 5 256 (11)

Meanwhile, the initial definitions ofT32, T16, andT8 functions are
selected to be continuous piecewise linear decreasing functions, as
given by Equations (12)–(14), respectively.

T32 5 H 23/8 3 QF 1 60 if 1 # QF , 64
22/8 3 QF 1 52 if 64 # QF , 160
21/8 3 QF 1 32 if 160 # QF , 255

(12)

Table IV. Converged values of all non–texture-related functions.

QF KAC
edge KADPCM

edge KADPCM
smooth T8 T16 T32

1 10 12 12 4000 700 58
8 12 12 13 2600 600 57

16 13 12 16 2000 500 56
32 14 13 16 1700 400 50
64 16 15 19 1400 240 36
96 18 16 20 1216 176 26

128 32 26 32 550 112 16
160 64 36 48 224 48 12
192 96 52 64 128 36 8
224 128 68 92 80 20 4
240 208 88 128 40 12 2
248 512 160 208 20 6 1
255 4096 256 256 0 0 0

Figure 5. Values of v as a function of QF.

Figure 6. Original “Lena” image.
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T16 5 H 29/2 3 QF 1 528 if 1 # QF , 64
24/2 3 QF 1 368 if 64 # QF , 160
21/2 3 QF 1 128 if 160 # QF , 255

(13)

T8 5 H 254 3 QF 1 5184 if 1 # QF , 64
216 3 QF 1 2752 if 64 # QF , 160

22 3 QF 1 512 if 160 # QF , 255
(14)

After the second full iteration, all functions are converged to their
final definitions. Table IV shows the converged values of each
function.

2. Texture-Related Functions.In general, the objective of theT
andK parameter and function identification process is to maximize
the compression ratios and at the same time minimize the recon-
struction errors. However, the texture-related parameters and func-
tions (i.e., Taverage, Tdeviation, KADPCM

texture , and KAC
texture) might have

different objectives according to the application. For example, in

some image compression applications, more reconstruction errors in
the textural regions might be allowed to achieve higher compression
ratios. The reason is that textural regions usually convey a low
amount of information to the viewer. However, there are image-
processing applications where the textural regions might be of
interest. Hence, reducing their reconstruction errors may be more
significant to the viewer than achieving higher compression ratios.

ABC-SC deals with these different situations by allowing users
to define the quality of the reconstructed textural regions relative to
the quality of the reconstructed edge regions [texture–quality ratio
(TQR)]. If this ratio is ,1, this means that the user is willing to
sacrifice some of the reconstruction quality in the textural regions in
order to achieve higher compression ratios. On the other hand, if this
ratio is .1, this means that the user is interested in the textural
regions. Hence, less degradation is allowed in these regions even if
the compression ratio is decreased. Finally, if this ratio5 1, this
means that both of the edge and the textural regions have the same

Figure 7. ABC-SC, IJPEG, and JPEG compression results for the “Lena” image.
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interest to the user and there is no need to differentiate between them
(two-class case), i.e., as done in the first phase.

The main difference between edge and textural blocks is the level
of activities within the block and not in its average (i.e., the AC
coefficients and not the DC coefficient). This suggests that the
texture-relatedK quantization functions,KADPCM

texture andKAC
texture, may

be defined as follows.

KADPCM
texture 5 KADPCM

edge (15)

KAC
texture5 TQR3 KAC

edge (16)

The values ofTaverageand Tdeviation have been determined ex-
perimentally by visually examining many textural and nontextural
blocks in the eight images. Based on these examinations, the fol-
lowing values are suggested.

Taverage5 400 (17)

Tdeviation5 0.96 (18)

According to experimentations, we found that these thresholding
values are quite successful in separating textural blocks from edge
blocks.

B. Neighboring Block Averages Parameter. To achieve a
maximum benefit from all prediction rules, it is required to choose
the value ofv so that all these prediction rules are used evenly. To
do so empirically, the eight images of Figure 2(a) are reconsidered.
This time, these images are used for studying the effect ofv on
partitioning the usage of the prediction rules. This can be done by
compressing these images and counting the number of times each

prediction rule is used. Since the variance of these counts gives an
indication about how even the use of the prediction rules is (the
higher/lower the variance value, the less/more even use of the
prediction rules is), the requiredv value is chosen to be the value
corresponding to the minimum variance for eachQF value. Figure
5 shows the chosenv values as a function ofQF.

IV. RESULTS
A. Performance Metrics. Since ABC-SC is a lossy technique,
its reconstructed image may have some loss of information which
may be visually useful. To assess the loss of fidelity in reconstructed
images, a measurement of distortion should be used. As most
decompressed images ultimately are viewed by human beings, it is
appropriate to measure their qualities by subjective evaluations of
human observers. Unfortunately, a simple, convenient, subjective
evaluating mechanism does not exist.

As alternative measures, root mean squared error (RMSE) and
peak signal-to-noise-ratio (PSNR),

RMSE5 Î 1

MN O
x50

M21 O
y50

N21

~ f̂~x, y! 2 f~x, y!!2 (19)

PSNR5 10 log10S 255

RMSED
2

dB (20)

are usually used to accomplish this task, wheref( x, y) and f̂( x, y)
represent the original and reconstructed images, respectively,
whereasM and N represent the image height and width, respec-
tively. During this work, the RMSE measure is used to assess the
reconstructed images degradation.

Finally, the compression ratio (CR) is used to assess the com-
pression level. In this work, the CRs are calculated from the actual
size of the compressed files, not entropy estimates, as follows:

CR 5
Image width3 Image height

Actual compressed file size
(21)

B. Experimental Setup. The validity of ABC-SC is demon-
strated by compressing, then decompressing several images and
comparing the input with the reconstructed images. Also other
existing compression techniques are used in the comparison, includ-
ing the Joint Photographic Experts Group (JPEG) (Wallace, 1992)
and set partitioning in hierarchical trees (SPIHT) (Said and Pearl-
man, 1996). JPEG is a widely accepted industrial standard for
continuous-tone natural scene image compression, whereas SPIHT
is believed to be the state-of-the-art still-image lossy-compression
method. While JPEG is a fixed-block-size, DCT-based compression
technique, SPIHT is an embedded wavelet-based compression tech-
nique which is based on the embedded zerotree wavelet approach
(EZW) (Shapiro, 1993).

The JPEG version that is used in this work is obtained via the
Internet from the Independent JPEG Group; the source code is
available by anonymous FTP from ftp.uu.net:/graphics/jpeg/
jpegsrc.v6.tar.gz. This JPEG version has two modes of operation:
the baseline JPEG mode and the improved JPEG (IJPEG) mode. The
only difference between these two modes of operations is that the

Figure 8. Comparison of rate distortion results between ABC-SC,
IJPEG, JPEG, and some other recent segmentation-based encoding
techniques for the “Lena” image.
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IJPEG employs a multiple-pass Huffman encoder to determine an
optimal symbol code.

Similarly, the SPIHT version that is used in this work is obtained
via the Internet, where the source code is available by anonymous
FTP from ipl.rpi.edu:/pub/EW_Code/codetree.tar.gz. SPIHT exists
in slow and fast versions. The slow version (SPIHT-A) uses an
arithmetic encoder to improve compression and the fast version
(SPIHT-B) produces a binary-uncoded bitstream. Hence, the former
version has the ability to compress images slightly more than that in
the latter version.

During this work, ABC-SC is extensively tested and compared
with JPEG, IJPEG, SPIHT-A, and SPIHT-B. (In most image com-
pression literature, researchers compare their compression results
with JPEG results, but not with IJPEG results, even though the latter
outperforms the former.) However, bear in mind that while testing
against JPEG is fair enough (since both of ABC-SC and JPEG are
DCT-based techniques), testing against SPIHT (the state of the art)

is a kind of an ultimate comparison. The 5123 512 “Lena” image
shown in Figure 6 is chosen to demonstrate the results. This 8-bpp
gray-level version of the “Lena” image is theY luminance compo-
nent of the original 24-bpp red, green, and blue (RGB) “Lena”
image, where theY pixel values are obtained from the RGB pixel
values using the following linear transform.

Y~i , j ! 5 0.2993 R~i , j ! 1 0.5873 G~i , j ! 1 0.1143 B~i , j !

The other way of getting an 8-bpp gray-level version from a 24-bpp
RGB image is by using only theG component. However, theG
component is darker and has slightly less fidelity than theY com-
ponent. Note that the results reported here were obtained by setting
TQR 5 1.

C. ABC-SC Versus JPEG/IJPEG. Figure 7(a–c) shows the de-
compressed “Lena” images using ABC-SC atQF 5 147, IJPEG at

Figure 9. ABC-SC, SPIHT-A, and SPIHT-B compression results for the “Lena” image.
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QF 5 6, and JPEG atQF 5 2, respectively. While the compression
ratios of these three reconstructed images are almost the same
(62.47:1, 59.89:1, and 62.22:1, respectively), ABC-SC has the
smallest RMSE reconstruction error (8.43, 9.86, and 20.42, respec-
tively). From the subjective quality point of view, the ABC-SC
reconstructed image is much better than the IJPEG reconstructed
image. This appears especially at smooth areas, where the blocking
effect is almost removed completely with ABC-SC. The ABC-SC
reconstructed image is also far much better than the JPEG recon-
structed image.

Figure 7(d) shows the rate-distortion curves for the “Lena” image
using ABC-SC, IJPEG, and JPEG. As the curves indicate, ABC-SC
outperforms both JPEG and IJPEG for all compression ratios under
consideration. Moreover, ABC-SC can achieve high compression
ratios—with a reasonable RMSE reconstruction error—which can-
not be achieved by either JPEG or IJPEG.

D. ABC-SC Versus a Number of Other Segmentation-
Based Compression Techniques. Figure 8 shows the rate-
distortion performance of ABC-SC, IJPEG, JPEG, and a number of
other segmentation-based compression techniques—which have
been reported in the recent compression literature (Section I). As
seen, ABC-SC outperforms all these techniques except for the one
which was reported in Ran and Farvardin. Nevertheless, the im-
provement in the RMSE reconstruction error is minor (,0.5) and
takes place in the perceptually lossless range. This means that it is
really hard to see a difference between the two reconstructed images.
On the other hand, from the practical point of view, the technique in
Ran and Farvardin is practically unacceptable, since it takes about
23 min of CPU time to decompose a 2563 256 image. The
ABC-SC average execution time on a comparable task is,1 s (see
Section IVI).

E. ABC-SC Versus SPIHT. Figure 9(a–c) shows the decom-
pressed “Lena” images using ABC-SC atQF 5 32, SPIHT-A, and
SPIHT-B, respectively. While the compression ratio of any of these
three reconstructed images is 235.11:1, the RMSE reconstruction
errors are 13.97, 12.29, and 12.95, respectively. This does not

represent a major difference. From the subjective quality point of
view, while ABC-SC start suffering from the blocking artifact, both
SPIHT-A and SPIHT-B are suffering from a ringing effect—which
is a well-known artifact in subband encoders in general, especially
near strong edges. However, in ABC-SC, there is always a chance to
restore the blocking artifact—since the exact deformity locations are
known. At the same time, in SPIHT-A and SPIHT-B there is no
chance to restore the ringing effect.

Figure 9(d) shows the rate-distortion curves for the “Lena” image
using ABC-SC, SPIHT-A, and SPIHT-B. The figure shows that the
ABC-SC rate-distortion curve is following both SPIHT-A and

Figure 10. Rate-distortion curves for eight different images, using
ABC-SC, JPEG, IJPEG, SPIHT-A, and SPIHT-B. Figure 11. ADPCM effect for the “Lena” image.

Figure 12. Effect of the lossless encoder on the performance of
ABC-SC for the “Lena” image.
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SPIHT-B rate-distortion curves. Although ABC-SC maintains a
minor increase in the RMSE reconstruction error, it does not really
make a major difference in the subjective quality of the recon-
structed images.

F. ABC-SC Versus Both JPEG/IJPEG and SPIHT. Figure 10
shows the rate-distortion curves for eight test images—different
from the images used for parameter adjustment in Section III—
using ABC-SC, JPEG, IJPEG, SPIHT-A, and SPIHT-B. These eight
images, shown in Figure 2(b), are “Man,” “Woman,” “Playgirl,”
“Couple,” “Crowd,” “Hotel,” “Eye,” and “Bridge.” The figure con-
firms the results presented in Figures 7(d) and 9(d).

G. ADPCM Effect. Figure 11 shows the rate-distortion curves for
the “Lena” image using three different versions of ABC-SC. The
only difference between these three versions is the DC coefficient
predictor. In the first version, the ADPCM predictor introduced in
Section IIB is used. In the second version, the JPEG/IJPEG DC
coefficient predictor is used, where the predicted value is always the
previous DC coefficient value of the block to the left of the current
block. Finally, in the third version there is no prediction at all. Figure
11 shows the superiority of the ADPCM predictor version over the
two other versions. We believe that this superiority justifies the
additional complexity introduced by the ADPCM predictor, which is
an insignificant extra complexity after all.

H. Lossless Encoder Effect. As an alternative to the arithmetic
encoder, we also considered the Huffman encoder. Figure 12 shows
the rate-distortion curves for the “Lena” image using two different
versions of ABC-SC. The only difference between these two ver-
sions is the lossless encoder used. While the first version uses an
arithmetic encoder, a two-pass Huffman encoder is used in the
second version. The figure shows that a minor rate-distortion im-
provement is achieved when the arithmetic encoder is used.

I. Execution Time. Table V shows the exact amount of time (in
seconds) required to execute ABC-SC, IJPEG, JPEG, SPIHT-A, and

SPIHT-B on a Sun-Ultra-1 computer for the “Lena” image at dif-
ferent compression ratios. Table VI shows the average amount of
time (in seconds) required to execute ABC-SC, SPIHT-A, SPIHT-B,
JPEG, and IJPEG on a Sun-Ultra-1 computer for the “Lena” image.
These averages are calculated based on actual runs over allQF
values in the case of ABC-SC, JPEG, and IJPEG, and equivalent
compression ratios in the case of SPIHT-A and SPIHT-B. From
Table VI, we can conclude the following:

1. On average, the ABC-SC compression/decompression time
falls between the SPIHT-A and SPIHT-B compression/de-
compression times.

2. The enhancement time is almost half the decompression
time. However, this time always can be waived, especially at
low compression ratios, where the blocking artifact is unno-
ticeable.

3. The execution time of JPEG/IJPEG is, dramatically, less by
an order of magnitude than the execution time of the rest of
the techniques.

Finally, it is worth mentioning that we have not made a major
effort to reduce the complexity or optimize the implementation of
ABC-SC. In fact, we believe that ABC-SC could be further opti-
mized and we anticipate that its execution time could be reduced to
a value in the vicinity of JPEG/IJPEG execution time, since both
ABC-SC and JPEG/IJPEG are DCT-based techniques. However,
further investigation is needed to support this belief.

V. CONCLUSIONS
In this work, a new adaptive compression technique is proposed.
Adaptability has been incorporated into many aspects of this tech-
nique, including adaptive block size determination, adaptive
multiblock-encoding techniques, adaptive block-average prediction,
adaptive arithmetic encoding, and adaptive postprocessing. The pro-
posed compression technique also exploits one of the HVS proper-
ties, which is recognizing images by their regions, to get high

Table V. Compression/decompression time for the “Lena” image at different compression ratios.

Compression
Time (s)

Decompression
Time (s)

Enhancement
Time (s)

ABC-SC atQF 5 147, i.e., CR 5 62.47:1 0.53 0.47 0.27
IJPEG atQF 5 6, i.e.,CR 5 59.89:1 0.18 0.07
JPEG atQF 5 2, i.e.,CR 5 62.22:1 0.14 0.06
SPIHT-A atCR 5 62.47:1 0.58 0.60
SPIHT-B atCR 5 62.47:1 0.51 0.53
ABC-SC atQF 5 32, i.e.,CR 5 235.11:1 0.38 0.35 0.30
SPIHT-A atCR 5 235.11:1 0.53 0.53
SPIHT-B atCR 5 235.11:1 0.49 0.52

Table VI. Average compression/decompression time (in seconds) for the “Lena” image.

Average
Execution Time ABC-SC SPIHT-A SPIHT-B JPEG IJPEG

Compression 0.9945 1.253 0.763 0.109 0.122
Decompression 0.8305 1.051 0.532 0.084 0.081
Enhancement 0.414

Vol. 10, 33–46 (1999) 45



compression ratios. Based on extensive test results and comparisons
with other existing compression techniques, the following conclu-
sions can be made:

1. ABC-SC produces good-quality reconstructed images at
both high and low bit rates.

2. It also produces a good rate-distortion performance as well
as good subjective-quality reconstructed images.

3. Although ABC-SC and the JPEG/IJPEG techniques are both
DCT-based techniques, the former technique consistently
exhibits a significantly better performance than the latter,
especially at high compression ratios.

4. ABC-SC moves block-based compression beyond the limits
of JPEG/IJPEG—usually, the maximum compression ratio
that can be achieved with ABC-SC is at least twice that of
IJPEG and five times that of JPEG, with even less objective
and subjective degradations.

5. In all of the test cases, the ABC-SC performance is compa-
rable to that of the wavelet compression technique from both
the rate-distortion and the subjective-quality points of view.

6. The execution time of ABC-SC is somewhere between the
execution time of SPIHT-A and SPIHT-B, the slow and fast
versions of SPIHT. However, ABC-SC has a potential to be
further optimized so that its execution time can be reduced
by an order of magnitude or so.

7. ABC-SC provides users with the ability to give certain
classes of image segments more importance than others, so
that they are less affected by the compression process.

8. ABC-SC provides a good alternative to wavelet-based com-
pression techniques, especially when adaptability to image
content is of interest.
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