
Grayscale true two-dimensional dictionary-based image compression

Nathanael J. Brittain, Mahmoud R. El-Sakka *

Computer Science Department, The University of Western Ontario, London, Ont., Canada N6A 5B7

Received 13 September 2005; accepted 12 September 2006
Available online 25 October 2006

Abstract

Dictionary-based encoding methods are popular forms of data compression. These methods were initially implemented to reduce the
one-dimensional correlation in data, since they are designed to compress text. Therefore, they do not take advantage of the fact that
adjacent pixels in images are correlated in two dimensions. Previous attempts have been made to adapt dictionary-based compression
schemes to consider the two-dimensional nature of images, but mostly for binary images. In this paper, a two-dimensional dictio-
nary-based lossless image compression scheme for grayscale images is introduced. The proposed scheme reduces correlation in image
data by finding two-dimensional blocks of pixels that are approximately matched throughout the data and replacing them with short
codewords. Test results show that the compression performance of the proposed scheme outperforms and surpasses any other existing
dictionary-based lossless compression scheme. The results also show that it slightly outperforms JPEG-2000s compression performance,
when it operates in its lossless mode, and it is comparable to JPEG-LS’s and CALIC’s compression performance, where JPEG-2000 and
JPEG-LS are the current image compression standards, and CALIC is a Context-based Adaptive Lossless Image Coding scheme.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Image encoding; Lossless compression; Dictionary-based schemes; Two-dimensional compression; LZ schemes; Prediction

1. Introduction

In the field of image compression there are two major
approaches, lossless and lossy. In lossless compression,
when an image is compressed and then decompressed, the
reconstructed image is an exact copy of the original. In
lossy compression, some information about the image is
discarded in order to achieve better compression. This
means only a close replica of the original image can be
retrieved from the compressed data. The compression
scheme presented in this paper is a lossless scheme.

Among the most popular methods of lossless compres-
sion are dictionary-based schemes. Dictionary compressors
encode a string of data by partitioning the string into many
sub-strings, and then replacing each sub-string by a
codeword. Communication between the compressor and
decompressor is done using messages. Each message

consists of a codeword and possibly other information.
The dictionary in these schemes is the set of every possible
codeword. LZ77 [1] and LZ78 [2] are two of the most
famous dictionary-based compression schemes.

In LZ77, the dictionary is a portion of the most recently
encoded data. This is also called the search buffer. Code-
words for sub-strings are pointers to the longest match
for the sub-string found in the search buffer. Each message
consists of the codeword for the sub-string, the length of
the match and the code of the next symbol.

There are many modifications to the original LZ77
scheme. Rodeh et al. introduced LZR [3], a scheme that
uses LZ77 but with variable-size pointers. This means the
pointer can index a sub-string anywhere in the previously
encoded data, rather than just a previous portion. Storer
and Syzmanski introduced LZSS [4], in which a flag bit is
used to distinguish two types of messages, a pointer or a
character. Bell introduced LZB [5], which also uses LZSS
but with variable sized pointers as in LZR. LZH [6] is sim-
ilar to LZSS, but it uses a Huffman encoder [7] to further

1047-3203/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jvcir.2006.09.001

* Corresponding author. Fax: +1 519 661 3515.
E-mail address: elsakka@csd.uwo.ca (M.R. El-Sakka).

www.elsevier.com/locate/jvci

J. Vis. Commun. Image R. 18 (2007) 35–44



compress the generated messages. In software, the PNG file
format is based on LZ77.

The LZ77 approach assumes that similar patterns occur
close to each other. In situations where a pattern repeats
over a period larger than the search buffer size, the repeti-
tion cannot be taken advantage of. In LZ78 [2], no search
buffer, is used. Instead, the dictionary in this scheme is an
indexed list of some previously encountered sub-strings. In
LZ78, each codeword consists of two parts, a pointer to the
dictionary and the code of the next symbol.

As in LZ77, there are many modifications to the original
LZ78 scheme. Welch introduced LZW [8], which is similar
to LZ78, but its dictionary initially contains an entry for
every possible symbol. Thus, LZW eliminated the need to
include the code of the next symbol in messages. Miller
and Wegman [9] introduced LZMW. LZMW is similar to
LZW but is slightly modified when adding dictionary
entries. Where LZW composes the last codeword sent with
the next symbol to be encoded, LZMW composes the last
codeword sent with the entire next codeword. Jakobsson
introduced LZJ [10], which is similar to LZW but when
the dictionary becomes full, codewords that have been used
the least are replaced. Tischer introduced LZT [11]. In this
scheme, the dictionary entries are arranged according to
their recent use. When the dictionary becomes full, each
new entry replaces the least recently used entry. In
software, Unix Compress and the GIF file format are based
on LZW.

Fiala and Greene introduced LZFG [12], which is simi-
lar to LZ77 because it uses a sliding window but also sim-
ilar to LZ78 because only particular codewords are stored
in the dictionary.

LZ77, LZ78, and their variants, take advantage of the
fact that adjacent data values are highly correlated. These
dictionary-based schemes are designed to compress text
and so only reduce one-dimensional correlations in data.
Therefore, they do not take advantage of the fact that adja-
cent data values (pixels) in images are highly correlated in
two dimensions.

There have been few attempts to adapt LZ compressors
to suit the two-dimensional nature of images. Perhaps the
most straightforward attempt was to find a way to linearize
the data and then use a one-dimensional compressor on the
data [13]. However, tests showed that no one linearization
is best for all images.

Storer and Helfgott [14] and Rizzo et al. [15] present a
generalization of LZ77 to lossless compression of binary

images. The algorithm, known as two-dimensional sliding

window block matching, uses a wave heuristic to scan the
image and a multi-shape two-dimensional suffix trie data
structure to represent the dictionary, which is a window
in previously encoded pixels. However, it is likely that this
scheme will not perform well in the case of grayscale or col-
or images, since the chances of finding large exact matches
would be very small.

Dai and Zakhor [16] present a two-pass two-dimension-
al LZ77-based scheme for binary images. In this scheme,

pixels are encoded by searching for an exact matching
between these pixels and the already encoded pixels. Once
such a match is found, these matched pixels are represented
by the match location information. As in Storer and Helf-
gott and Rizzo et al. schemes, it is likely that, if this scheme
is applied on grayscale or color images, it would not
achieve very good results, due to the small chances of find-
ing large exact matches.

Alzina et al. [17] introduced a lossy two-dimensional
pattern matching compression scheme (2D-PMC) that is
based on LZ77. The central part of this scheme is the
search, in all previously encoded pixels, for approximate
matches of rectangular blocks of certain predetermined siz-
es (typically 2 · 3, 3 · 2, 1 · 5, or 5 · 1). A block is encoded
by a reference pointer to the previously encoded occurrence
that produces the least error.

The dictionary-based scheme presented in this paper is
designed to take advantage of the two-dimensional correla-
tion between pixels in grayscale images. It is similar to
Storer and Helfgott [14], Rizzo et al. [15], and Dai and
Zakhor [16] two-dimensional dictionary encoding schemes,
but it allows for approximate matches since it is designed to
compress grayscale images. It is also similar to Alzina et al.
[17] 2D-PMC scheme, but it considers any rectangular
block sizes. Moreover, the proposed scheme encodes resid-
uals as well to produce lossless results.

The rest of this paper is organized as follows. Section 2
describes the proposed scheme in detail. Section 3 presents
the results. Finally, Sections 4 and 5 offer the suggested
future work and the conclusions of this paper, respectively.

2. The proposed GS-2D-LZ scheme

In this paper, a novel grayscale two-dimensional Lem-
pel–Ziv image compression scheme (denoted GS-2D-LZ)
is proposed. This scheme is designed to take advantage of
the two-dimensional correlations in the image data. It relies
on three different compression strategies, namely: two-di-
mensional block matching, prediction, and statistical
encoding. The basic idea of the two-dimensional block
matching encoding is to represent a block of uncompressed
pixels by a pointer to the best approximate occurrence of
that block in the compressed part of the image. This should
reduce the interpixel redundancy of the block. In the case
of not finding good enough approximate occurrences, pre-
diction is used to reduce the interpixel redundancy of the
block. Since GS-2D-LZ is a lossless scheme, residuals gen-
erated from approximate matches and predictions are
encoded as well. To further compress the image, a statisti-
cal encoder is used to reduce the encoding redundancy as
much as possible.

2.1. An overview of the GS-2D-LZ scheme

In GS-2D-LZ, an image is encoded in raster scan order
processing one block of pixels at each step. For each block
of pixels, an approximate match is searched for in previ-

36 N.J. Brittain, M.R. El-Sakka / J. Vis. Commun. Image R. 18 (2007) 35–44



ously encoded data (as with all LZ schemes). The block is
encoded as a pointer to the location of this match, the
dimensions of the match, and residual information, to
ensure that the compression is lossless. If no suitable match
can be found, a block of pixels is encoded using a simple
prediction scheme. After the entire image is encoded, the
match location, match position, residual, and prediction
errors are encoded using a statistical compression scheme.
A high-level pseudo code for the GS-2D-LZ encoder and
decoder are presented in Figs. 1 and 2, respectively. More
details on each step of GS-2D-LZ are offered throughout
this section.

2.2. Finding and encoding matches

The search area, in which matches are considered for
each block, is the rectangular region above and to the left
of the block being encoded. The search region is a function
of search-width and search-height parameters, the horizon-
tal and vertical search distances, respectively. The search
region is shown in Fig. 3. When searching for a match of
a block rooted at the encoder position, each pixel in the
search region represents a root of a block at that position.
There are search-width · search-height � 1 unique roots to
be considered (since the block rooted at the encoder posi-
tion is not a possibility).

For a particular root pixel in the search region, the algo-
rithm calculates the difference between that pixel and the
pixel at the encoder position. To be considered a possible
match, the difference between these two pixels cannot

exceed the value of a parameter called threshold, which is
an adjustable parameter that identifies the maximum
allowable error between pixels. Fig. 4 shows the procedure
for the initial screening of potential matches.

If a pixel is qualified as a root of a potential match, the
match is then extended to the right as wide as possible
using the same criteria, i.e., in order for the match to be
extended one pixel to the right, the difference between cor-
responding pixels in the potential match and the block
being encoded must be less than the threshold. Fig. 5 dem-
onstrates extending a potential match to the right.

Once the match has been extended as far as possible to
the right (until a mismatch occurs), the match is then
extended as far down as possible. For each attempt to
extend the height of the match by one, a row of corre-
sponding pixels will be evaluated for a potential match.
The pixels in the row are evaluated left to right so that if
a mismatch occurs, there is no need to evaluate the rest
of the row.

When a mismatch occurs while extending the match
downward, the algorithm does not stop the search for a
best match rooted in this position. Yet, it reduces the min-
imum width of the match in order to continue extending
downwards.

It is worth mentioning that, in some cases it is possible
to extend matches into an un-encoded pixel region, if and
only if this un-encoded pixel region is below and to the
right of encoder position. In these cases, the decoder can
recursively decode these pixels. Fig. 6 shows an example
of a match that goes beyond the encoded region and yet
the decoder still can reconstruct such block.Fig. 1. High level pseudo code for the GS-2D-LZ encoder.

Fig. 2. High level pseudo code for the GS-2D-LZ decoder.

N.J. Brittain, M.R. El-Sakka / J. Vis. Commun. Image R. 18 (2007) 35–44 37



Fig. 7 shows an example of the matching process, where
the first row of pixels is extended to a width of seven (the
eighth pixel was a mismatch). In each of the second and
third rows, all seven pixels of the rows were matches. In
the fourth row, the third pixel from the left is a mismatch
so the match width is reduced to two. Note that, there is
no need to extend the matching width more than the min-
imum matching width found in the above rows. This is
because our goal is to find largest rectangular matching
block that has the root pixel in its top left corner. In the
fifth, sixth, seventh, and eighth rows the match width is

not reduced since no mismatches occur. In the ninth row,
the first pixel in the row is a mismatch, so the match cannot
be extended downwards any further. In this example, there
are two potential matches for this given root pixel; one is
seven pixels wide by three pixels high, whereas the other
is two pixels wide by eight pixels high.

Potential matches are evaluated according to two mea-
sures. The first measure is the size of the matched block,
where the match must be large enough such that there
are more new pixels being encoded than the value of a cer-
tain parameter called minimum-match-size, which is an
adjustable parameter. Because matched blocks can vary
in size and shape, encoded blocks will sometimes overlap
with previously encoded pixels. In this situation, it does
not matter if these pixels match or not, nor do these pixels
count as new pixels. For example, in Fig. 8 the last two pix-
els in each of the first two rows of the match region have
already been encoded. Hence, it does not matter if these
pixels match or not. Moreover, the number of new pixels
in this block is only (6 · 4) � 4 = 20. The second measure
for evaluating potential matches is the mean square error
(MSE), which must be less than the value of a parameter
called max-MSE (adjustable parameter).

Fig. 9 shows a pseudo code for locating the best approx-
imate match for a given root pixel. This module is consid-
ered to be the most time consuming step in the 2D-LZ-GS
scheme. However, since we used a small constant-size

Fig. 3. An example of a search region in GS-2D-LZ.

Fig. 4. The initial criteria for screening matches; the roots must match
within a certain threshold.

Fig. 5. An attempt to extend a match to the right in GS-2D-LZ; the pixels must match within a certain threshold.

38 N.J. Brittain, M.R. El-Sakka / J. Vis. Commun. Image R. 18 (2007) 35–44



search region, we can state that in the worst case scenario,
we only need to apply this module of order O(N), where N
is the original image size (i.e., linear running time
complexity).

After considering every match rooted at each pixel in the
search region, the largest match that has a MSE smaller
than max-MSE is considered the best match and hence
encoded.

Fig. 8. A match overlaps with previously encoded pixels; in this situation, it does not matter if the overlapping pixels match.

Fig. 6. An example of a match in GS-2D-LZ that extended beyond the encoded pixel region.

Fig. 7. An example of a match region.

N.J. Brittain, M.R. El-Sakka / J. Vis. Commun. Image R. 18 (2007) 35–44 39



2.3. Raw pixel encoding (no match)

In the case where no match satisfies the two measures
described in Section 2.2, the algorithm encodes a small
block of pixels rooted at the encoder position, in order to
ensure that progress is made. The dimensions of this block
are fixed to no-match-block-width · no-match-block-
height, which are two adjustable parameters. See Fig. 10.

To keep the algorithm simple, an uncomplicated predic-
tive scheme is used to predict the value of the pixels being
encoded, e.g., the initial CALIC predictor [18,19], in which
the surrounding pixels at the encoder position are utilized
to decides whether the data are horizontally or vertically
oriented. Based on this decision, a prediction is made for
the current pixel being encoded. Fig. 11 shows the context
model for predicting pixels, whereas Fig. 12 shows the used
prediction scheme.

2.4. Data structures defined

There are five tables that are used to record the match-
ing information. These tables are called: match flag, match

location, match dimensions, residual, and prediction errors.

The match flag table contains a Boolean value for each
block of pixels, where a value of true is recorded in the
table when a suitable match for the block is found or false
otherwise. When a suitable match is found for a block, the
position of the match, relative to the block being encoded,
is recorded in the match location table. At the same time,

Fig. 9. A pseudo code for locating the best approximate match for a given root pixel.

Fig. 10. When no suitable match can be found, a region of pixels specified
by no-match-block-width and no-match-block-height is encoded using a
simple predictive encoder.

40 N.J. Brittain, M.R. El-Sakka / J. Vis. Commun. Image R. 18 (2007) 35–44



the width and height of the block being encoded are record-
ed in the match dimensions table. The difference between
each pixel in the actual block and the corresponding pixel
in the matched block is recorded in the residual table.
When no suitable match could be found for a block, the
prediction errors table is used to hold the errors between
predicted and actual pixel values for each pixel in the
block.

2.5. Statistical encoder used

After the entire image has been scanned and the five
tables are generated, each table is encoded using a statisti-
cal encoder. A benchmark was made using a variety of sta-
tistical encoders to choose an encoder that gives the best
compression performance for these tables. These encoders
include two arithmetic encoder implementations, namely:
arib.exe [20] and PAQ6 [21] (predictive arithmetic encoder),
two regular Huffman encoder implementations, namely:
Huffman.exe and shcodec.exe (static Huffman) [22], and
one adaptive Huffman encoder, namely: h2com.exe [23].
It turns out that the best scheme for this job was PAQ6.

The PAQ6 scheme is similar to the well known predic-

tion by partial matching (PPM) [24] compression schemes,
where both compressors are divided into a predictor and
an arithmetic encoder. Yet, the two schemes differ in the
way that the next-symbol is predicted, where PAQ6 uses

a weighed combination of probability estimates from a
large number of models conditioned on different contexts.
Moreover, contexts in PPM must be contiguous, whereas
in PAQ6 contexts can be any arbitrary functions of the his-
tory [25]. These improvements make PAQ6 top ranked on
several independent benchmarks. Skibinski et al. [26]
empirically compared the performance of various lossless
data compression schemes, including PAQ6 and PPMonstr
(one of the most efficient PPM implementations). The
results (on text data) show that the compression perfor-
mance of PAQ6 is better than that of PPMonstr, even
though it needs more time to execute. In our proposed
scheme, PAQ6 is used to compress each of five generated
tables.

2.6. Variable settings

There are seven parameters that can be tuned in GS-2D-
LZ. These parameters are

• search-width and search-height (the furthest horizontal
and vertical distance a match can be); the larger the
match region, the better the approximate match might
be found, however a greater number of bits would be
required to encode the match pointers,

• threshold (the maximum allowable difference between a
pixel being encoded and the corresponding pixel within
a match); the larger the threshold value, the bigger the
approximate matches may be found, however more
residuals will be needed to be encoded,

• max-MSE (the maximum MSE a match can have in
order to still be considered a sufficient match), the lower
the max-MSE value, the fewer the number of bits will be
needed to encode the LZ residuals, however LZ com-
pression will be utilized less,

• min-match-size (the minimum number of newly matched
pixels that must be encoded in order to consider the
match block sufficiently large enough), the larger the
min-match-size value, the less of a chance to utilize LZ
compression, and the greater the chance to utilize the
prediction scheme,

• no-match-block-width and no-match-block-height (the
width and height of the block to be predicatively encod-
ed when no suitable match is found), the larger the no-

match-block, the less of a chance to utilize LZ compres-
sion, and the greater the chance to utilize the prediction
scheme.

To find the best setting for these parameters, a training
set composed of 24 images is used (six images in four differ-
ent classes of images namely, natural scene, geographic,
graphic, and medical). Natural scene images are those of
the natural world, e.g., images of people’s faces, houses,
a hill, and birds. Geographic images are those taken from
a high altitude above the earth (usually taken via satellite).
Graphic images are those are artificially created by hand or
by a computer, e.g., comic strips, charts, graphs, and car-

Fig. 11. The context model for predicting pixels.

Fig. 12. The prediction scheme.

N.J. Brittain, M.R. El-Sakka / J. Vis. Commun. Image R. 18 (2007) 35–44 41



toons. Medical images are those taken by X-rays, ultra-
sounds, or magnetic resonance. These classes of images
were chosen to represent a variety of image types.

The optimal setting for each parameter was found by
exhaustively considering all possible values for a given
parameter, while fixing all other parameters. After finding
the optimal setting for each parameter, the entire optimiza-
tion cycle was repeated. This repetition was continued
until two consecutive cycles produced no change in the
parameters (i.e., optimizing the parameters using successive
approximation).

The search-width, search-height, and threshold parame-
ters were tuned between 2 and 63. The min-match-size
parameter was tuned between 2 and 127. The max-MSE

parameter was tuned between 1.0 and 5.0. Finally, the
no-match-block-width and no-match-block-height parame-
ters were tuned between 1 and 31. Table 1 shows the best
settings for each parameter for each class of images.

3. Experimental results

The compression performance of GS-2D-LZ is com-
pared to other dictionary-based compression schemes as
well as state-of-the-art compression schemes. Section 3.1
describes the experimental set-up, while Sections 3.2
and 3.3 present the compression ratio results of GS-
2D-LZ versus other dictionary-based schemes and GS-
2D-LZ versus state-of-the-art compression schemes,
respectively.

3.1. Experimental setup

The GS-2D-LZ scheme, described in Section 2, was test-
ed on a set of 112 different gray scale images divided into:
24 natural scene images (a total of 10.3 MB), 24 geographic
images (a total of 12.9 MB), 24 graphic images (a total of
6.88 MB), 24 medical images (a total of 3.31 MB), and 16
standard test images. None of these images were part of
the training set that was used to determine the best settings
for GS-2D-LZ parameters.

Each test image was compressed and decompressed
using GS-2D-LZ and then compared pixel by pixel to the
original in order to ensure that the compression was loss-
less. The compression performance is measured in bits-
per-pixel, i.e., the total number of bits in the compressed
file divided by the number of pixels in the image.

3.2. Tests versus dictionary-based compression schemes

Since GS-2D-LZ is a dictionary-based scheme, it makes
sense to compare its performance with other dictionary-
based schemes. In this test, for each of the 4 image classes
and the standard test images, the GS-2D-LZ compression
performance is compared to that of PNG (which based
on LZ77), GIF (which based on LZW), and Unix Com-
press (which based on LZW). Tables 2 and 3 show the com-
pression performance (in bits per pixel) for the 4 classes of
images and the 16 standard test images, respectively.

On average, GS-2D-LZ outperforms each of the other
dictionary-based compression schemes in all image classes,
as well as on the set of standard test images. Out of 112
images tested, GS-2D-LZ has the best compression perfor-
mance on 99 of the images. From these results, we can con-
clude that GS-2D-LZ surpasses the compression
performance of any other dictionary-based scheme.

3.3. Tests versus state-of-the-art compression schemes

To demonstrate the potential of dictionary-based com-
pression, the performance of GS-2D-LZ is compared to
the current state-of-the-art compression schemes. In this
test, for each of the 4 image classes and the standard test
images, the GS-2D-LZ compression performance is com-
pared to that of BZIP2 [27], JPEG2000 [28], JPEG-LS
[29], and CALIC [18,19]. BZIP2 is based on the Burrows

Table 1
The best settings for the adjustable parameters in GS-2D-LZ

Natural scene Geographic Graphic Medical

Search-width 4 5 5 4
Search-height 4 5 5 4
Threshold 27 25 25 27
Min-match-size 17 17 21 16
Max-MSE 2.5 3.0 3.8 1.8
No-match-block-width 5 5 5 5
No-match-block-height 5 5 5 5

Table 2
Experimental compression performance (bits per pixel) for GS-2D-LZ and
popular dictionary-based compression schemes on 4 classes of images

Image class GS-2D-LZ PNG GIF Unix-Compress

Natural scene 4.50 4.73 6.83 6.21
Geographic 5.17 5.40 7.37 6.46
Graphic 1.61 1.77 2.73 2.48
Medical 3.25 3.42 4.96 4.58

Table 3
Experimental compression performance (bits per pixel) for GS-2D-LZ and
popular dictionary-based compression schemes on 16 standard test images

Image name GS-2D-LZ PNG GIF Unix-Compress

Baboon—512 · 512 5.84 6.01 8.98 7.84
Barbara—720 · 580 4.75 5.23 8.74 7.73
Boats—720 · 576 4.01 4.33 3.93 6.34
Bridge—512 · 512 5.35 4.94 5.44 5.00
Camera—256 · 256 4.38 4.67 6.77 6.68
Columbia—480 · 480 3.47 3.92 6.61 6.21
Couple—512 · 512 4.69 4.88 7.59 6.82
Crowd—512 · 512 4.05 4.53 6.89 6.01
Lake—512 · 512 5.08 5.37 8.18 7.42
Lax—512 · 512 5.81 5.98 8.64 7.73
Lena—512 · 512 4.06 4.39 7.66 6.68
Man—512 · 512 4.58 4.93 7.90 6.95
Milkdrop—512 · 512 3.74 3.97 6.43 5.97
Peppers—512 · 512 4.65 4.91 4.54 7.22
Woman1—512 · 512 4.75 4.98 6.94 6.14
Woman2—512 · 512 3.37 3.77 6.60 5.73

Weighted average 4.54 4.80 6.99 6.65

42 N.J. Brittain, M.R. El-Sakka / J. Vis. Commun. Image R. 18 (2007) 35–44



Wheeler transformation, JPEG2000 is the current JPEG
lossy compression standard but is operated in its lossless
mode, JPEG-LS is the current JPEG lossless compression
standard, and CALIC is a Context-based Adaptive Loss-
less Image Coding scheme. In CALIC-h, a Huffman encod-
er is internally used, whereas in CALIC-a, an arithmetic
encoder is internally used. Tables 4 and 5 show the com-
pression performance (in bits per pixel) for the 4 classes
of images and the 16 standard test images, respectively.

On average, GS-2D-LZ outperforms each of the state-of-
the-art compression schemes in the graphic image class. It
also outperforms each of the state-of-the-art compression
schemes (except CALIC-a) in natural scene and geographic
image classes. In the class of medical images, GS-2D-LZ is
outperformed (on average) by only a margin of 0.03 bits-
per-pixel by JPEG2000, LPEG-LS, and CALIC-a. Yet, it
outperforms both BZIP2 and CALIC-h. On the set of stan-
dard test images, GS-2D-LS scores lower than JPEG-LS
and CALIC, but only by a small margin of bits-per-pixel.
From these results it can be concluded that the compression
of GS-2D-LZ is at least comparable to that of the state-of-
the-art compression schemes, if not better.

4. Future work

It is worth mentioning that, the compression/decompres-
sion processes in the GS-2D-LZ scheme are slower than that
in the schemes mentioned in Section 3. This flaw can be

attributed to the time complexity of the PAQ6 scheme and
the fact that all other compression schemes are heavily opti-
mized, while the proposed scheme is not, since it was imple-
mented as a proof of concept. Currently, we are working on
optimizing the code, especially the patternmatchingmodule,
to reduce the execution time.We also are experimentingwith
other arithmetic encoders to improve both the compression
and the time performance of the proposed scheme.

Currently, the 2D-LZ-GS scheme has seven user defined
adjustable parameters. Further work need to be done to
automate the selection of these parameters.

5. Conclusions

In this paper, a novel true two-dimensional dictionary-
based scheme is introduced. Experimental results showed
that the compression performance of the GS-2D-LZ scheme
outperforms and surpasses any other dictionary-based com-
pression scheme. Furthermore, its performance is compara-
ble to JPEG2000, JPEG-LS, and CALIC. This implies that
dictionary-based compression schemes can be as efficient as
the current state-of-the-art compression schemes. Hence,
further research in this area would definitely be worth while.

Acknowledgments

This research is partially funded by the Natural Sciences
and Engineering Research Council of Canada (NSERC).

Table 4
Experimental compression performance (bits per pixel) for GS-2D-LZ and state-of-the-art compression schemes on 4 classes of images

Image name GS-2D-LZ BZIP2 JPEG2000 JPEG-LS CALIC-h CALIC-a

Natural scene 4.50 4.88 4.66 4.71 4.50 4.27
Geographic 5.17 5.24 5.31 5.24 5.23 5.06
Graphic 1.61 1.77 2.61 1.90 2.11 1.73
Medical 3.25 3.48 3.22 3.22 3.39 3.23

Table 5
Experimental compression performance (bits per pixel) for GS-2D-LZ and state-of-the-art compression schemes on 16 standard test images

Image name GS-2D-LZ BZIP2 JPEG2000 JPEG-LS CALIC-h CALIC-a

Baboon—512 · 512 5.84 6.38 5.88 5.82 5.80 5.66
Barbara—720 · 580 4.75 5.92 4.69 4.74 4.63 4.52
Boats—720 · 576 4.01 5.00 4.07 3.93 3.93 3.83
Bridge—512 · 512 5.35 4.30 5.74 5.50 5.53 5.37
Camera—256 · 256 4.38 5.12 4.54 4.31 4.25 4.20
Columbia—480 · 480 3.47 4.45 3.52 3.43 3.55 3.43
Couple—512 · 512 4.69 5.37 4.84 4.68 4.70 4.59
Crowd—512 · 512 4.05 4.71 4.20 3.91 3.87 3.77
Lake—512 · 512 5.08 5.68 5.15 4.98 5.01 4.91
Lax—512 · 512 5.81 6.38 5.96 5.76 5.77 5.63
Lena—512 · 512 4.06 5.07 4.06 3.99 3.93 3.87
Man—512 · 512 4.58 5.49 4.69 4.50 4.43 4.37
Milkdrop—512 · 512 3.74 4.37 3.77 3.63 3.65 3.57
Peppers—512 · 512 4.65 5.37 4.63 4.51 4.55 4.42
Woman1—512 · 512 4.75 5.00 4.81 4.67 4.67 4.55
Woman2—512 · 512 3.37 4.19 3.32 3.30 3.30 3.21

Weighted average 4.54 5.18 4.62 4.48 4.45 4.34

N.J. Brittain, M.R. El-Sakka / J. Vis. Commun. Image R. 18 (2007) 35–44 43



This support is greatly appreciated. Authors thank anony-
mous reviewers for their constructive comments that in-
deed help improving the presentation of this paper big
time.

References

[1] J. Ziv, A. Lempel, A universal algorithm for sequential data
compression, IEEE Transactions on Information Theory 23 (3)
(1977) 337–343.

[2] J. Ziv, A. Lempel, Compression of individual sequences via variable-
rate coding, IEEE Transactions on Information Theory 24 (5) (1978)
530–536.

[3] M. Rodeh, V. Pratt, S. Even, Linear algorithm for data compression
via string matching, Journal of the ACM 28 (1) (1981) 16–24.

[4] J. Storer, T. Syzmanski, Data compression via textual substitution,
Journal of the ACM 29 (4) (1982) 928–951.

[5] T. Bell, Better OPM/L text compression, IEEE Transactions on
Communications 34 (12) (1986) 1176–1182.

[6] R. Brent, A linear algorithm for data compression, Australian
Computer Journal 19 (2) (1987) 64–68.

[7] D. Huffman, A method for the construction of minimum redundancy
codes, Proceedings of the IRE 40 (9) (1952) 1098–1101.

[8] T. Welch, A technique for high-performance data compression, IEEE
Computer 17 (6) (1984) 8–19.

[9] V. Miller, M. Wegman, Variations on a scheme by Ziv and Lempel,
Combinatorial Algorithms on Words, NATO ASI Series, 1984,
F12:131–140.

[10] M. Jakobsson, Compression of character strings by an adaptive
dictionary, BIT Numerical Mathematics 25 (4) (1985) 593–603.

[11] P. Tischer, A modified Lempel–Ziv–Welch data compression
scheme, Australian Computer Science Communications 9 (1)
(1987) 262–272.

[12] E. Fiala, D. Greene, Data compression with finite windows, Com-
munications of the ACM 32 (4) (1989) 490–505.

[13] A. Amir, G. Landau, D. Sokol, Inplace 2D matching in compressed
images, Journal of Algorithms 49 (2) (2003) 240–261.

[14] J. Storer, H. Helfgott, Lossless image compression by block match-
ing, The Computer Journal 40 (2-3) (1997) 137–145.

[15] F. Rizzo, J. Storer, B. Carpentieri, LZ-based image compression,
Information Sciences 135 (1–2) (2001) 107–122.

[16] V. Dai, A. Zakhor, Lossless layout compression for maskless
lithography, Proceedings of the SPIE 3997 (2000) 467–477.

[17] M. Alzina, W. Szpankowski, A. Grama, 2D-pattern matching image
and video compression: theory, algorithms, and experiments, IEEE
Transactions on Image Processing 11 (3) (2002) 318–331.

[18] X. Wu, An algorithmic study on lossless image compression,
Proceedings of the 1996 IEEE Data Compression Conference
(1996) 150–159.

[19] X. Wu, N. Memon, Context-based, adaptive, lossless image coding,
IEEE Transactions on Communications 45 (3) (1997) 437–444.

[20] D. Scott, David Scott’s bijective arithmetic encoder, http://bijec-
tive.dogma.net/compres10.htm, 2001.

[21] M. Mahoney, The PAQ6 data compression program, http://
www.cs.fit.edu/~mmahoney/compression, 2004.

[22] A. Moffat et al., SHCODEC, http://webcenter.ru/~xander, 2002.
[23] D. Scott, David’ Scott’s Bijectified Vitter Adaptive Compression,

http://bijective.dogma.net/compress2vh.htm, 2002.
[24] T. Bell, J. Cleary, I. Witten, Data compression using adaptive coding

and partial string matching, IEEE Transactions on Communications
32 (4) (1984) 396–402.

[25] M. Mahoney, Adaptive Weighing of Context Models for Lossless
Data Compression, Florida Tech. Technical Report CS-2005-16,
2005.

[26] P. Skibinski, S. Grabowski, S. Deorowicz, Revisiting dictionary-
based compression, Software—Practice and Experience 35 (2005)
1455–1476.

[27] M. Burrows, D.J. Wheeler, A block-sorting lossless data compression
algorithm, Digital SRC Research Report 124 (1994).

[28] D. Taubman, M. Weinberger, JPEG2000: image compression funda-
mentals, Standards and Practice, Kluwer Academic Publishers,
Dordrecht, 2002.

[29] M. Weinberger, G. Seroussi, G. Sapiro, The LOCO-I lossless image
compression algorithm: principles and standardization into JPEG-LS,
IEEE Transactions on Image Processing 9 (8) (2000) 1309–1324.

44 N.J. Brittain, M.R. El-Sakka / J. Vis. Commun. Image R. 18 (2007) 35–44


