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A MODIFIED BLOCK MATCHING 3D ALGORITHM

FOR ADDITIVE NOISE REDUCTION

MONAGI H. ALKINANI and MAHMOUD R. EL-SAKKA

Abstract. This paper presents a patch-based image filtering algorithm for addi-

tive noise reduction. Our algorithm is a modification to the block matching 3D
algorithm, where an adaptive thresholding was used for the collaborative hard-

thresholding step. The collaborative Wiener filtering step was also modified by

assigning more weights for similar patches. Experimental results show that our
algorithm outperforms the original block matching 3D algorithm at various noise

levels.

1. Introduction

During images acquisition, compression or transmission phases, digital images are
often contaminated with undesired random additive noise. This noise is generally
modelled as:

υ(x) = u(x) + n(x), x ∈ Ω

where υ(x) is the noisy image, u(x) is the noise-free image, n(x) is the additive
noise, and Ω denotes the set of all pixels in the image. If n(x) is a Gaussian random
process, then the noise is recognized as an additive Gaussian noise. Such a noise
varies from being unnoticeable to being very visible. Image denoising schemes
attempt to estimate a new image that is closer to the noise-free image.

Patch-based image denoising schemes segregate the noisy image into patches, or
“blocks” using searching windows, and then manipulate those patches separately in
order to provide an estimate of the true pixel values. Patch-based methods include
Non-local Means filtering [2], Dictionary Learning filtering [1], Block Matching 3D
filtering [3], and Image Denoising with Patch-based PCA filtering [4].

The Block Matching 3D (BM3D) filter is considered to be the state-of-the-art
patch-based denoising method. It preserves edges and blurs homogeneous areas by
exploiting similarities among the various parts of the input image by using a 3D
transform-domain collaborative filtering.
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In this work, the BM3D scheme is modified in order to improve its performance.
Our proposed method uses an adaptive thresholding for the collaborative hard-
thresholding step. In addition, it utilizes modified weights for similar patches in
the collaborative Wiener filtering step.

The rest of the paper is organized as follows. Section 2 describes the method-
ology and the proposed method. In Section 3, the performance of the proposed
method is compared with the performance of the original BM3D. Section 4 offers
concluding comments.

2. Methodology

2.1. Block Matching 3D filtering

Block Matching 3D filtering is a sparse representation in the frequency domain.
BM3D groups the patches into 3D data arrays instead of into 2D arrays, then it
applies a transformation in the frequency domain. Collaborative filtering is used
for dealing with the 3D arrays. BM3D’s algorithm depends on two steps: (1)
collaborative hard thresholding and (2) the collaborative Wiener filtering. The
two steps allow the BM3D to suppress noise and to preserve more details. The
noise is suppressed in the thresholding step, and the details are restored in the
second step. The two steps have three functions: (1) 3D transformation, (2)
shrinkage and (3) 3D inverse transformation. The patches in the 3D arrays are
overlapped, so a weighted average is used for obtaining one estimate for each pixel.
Aggregation is an averaging procedure. In the following subsections, the two steps
of the BM3D algorithm are described. First, the collaborative hard thresholding
step is explained. Then, the collaborative Wiener filtering is discussed.

2.1.1. Step One: Collaborative Hard Thresholding.
Grouping: The grouping stage gathers similar patches to form 3D arrays. By ben-
efiting from the high redundancy among the neighbouring patches, a searching
window is used for gathering similar patches. There are several different patch
grouping techniques; such as, vector quantization [6], k-means clustering [9], self-
organizing maps [8] and others discussed in Jain et al. survey [7]. It is worth
mentioning that the grouping in BM3D is based on the similarity between patches
– the luminance distance between patches. Patches with a distance that is below
a fixed threshold are considered to be similar and are grouped into the 3D array.
Before measuring the distance, a coarse pre-filtering is used for linearly trans-
forming the patches using a 2D linear transformation such as: multiple wavelet
transforms [5, 10]. The formula in Equation (2.1) is used for computing the simi-
larity distance between patches,
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where [v]i , [v]j are the reference patches at i and its neighbour at j respectively,

T 2D
hard is the 2D linear transform, γ2D is a hard-thresholding operator equal to

λ2D × σ and
(
Nhard

1

)2
is the patch size N × N . λ2D = 2.7 when σ < 40, or

λ2D = 2.8 when σ ≥ 40. The σ is the estimated noise standard deviation. The
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2D thresholding operator γ2D makes all coefficients with absolute value less than
the threshold (λ2D × σ) equal to zero, and leaves the other coefficients unchanged.
After computing the Euclidian distance, the formula in Equation (2.2) is used for
gathering similar patches.

3DShardi =
{
j ∈ Ω : Dst

(
[v]i , [v]j

)
≤ Thardmatch

}
(2.2)

where 3DShardi is the constructed 3D array containing similar patches, and Thardmatch

is the maximum allowed similarity distance between two patches. The maximum
grouped patche sizes are restricted to Nhard

2 . The next stage is to apply the
collaborative filter by: (1) performing a 2D linear transform then a 1D linear
transform, (2) shrinkage, and (3) inverting the 1D transform and the 2D linear
transform.
Collaborative Filtering: Once the 3D array is built, a collaborative filter is used
for suppressing the noise. A 3D transform is applied to the 3D array, before the
shrinkage of the transforming coefficients. The 2D transformation in the Grouping
stage is applied along both horizontal and vertical lines for each patch, and here
a third transformation is conducted along the third diminution of the 3D array for
the 3D transform. The formulation of the collaborative filter is:

3D ûShard
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= T 3D−1

hard
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γ3D

(
T 3D
hard

(
3DShardi

)))
where T 3D

hard is the 3D linear transform of the first (hard) step, T 3D−1

hard is the inverse
of 3D transformation, and γ3D is a hard-thresholding operator equal to λ3D × σ.
λ3D = 2.7 when σ < 40, or λ3D = 2.8 when σ ≥ 40. The 3D thresholding operator
γ3D makes all coefficients with absolute value less than the threshold (λ3D × σ)
equal to zero.

Aggregation Weights: The overlapped patches of the 3D array
(

3D ûShard
i

)
have

multiple estimates for each pixel in the reference patch at the location i. A weighted
averaging procedure is required to provide an estimate for each pixel. Weights
in BM3D are inversely proportional to the total variance of the patches in the
3D ûShard

i
array. When the total variance is high, a small weight is assigned to the

patch.
The amount of the additive noise is independent when processing the collabo-

rative filter in Step One and Step Two. Thus, the total variance is not the same
after applying the collaborative filter in the first and second steps. In Step One,
the total variance is computed by σ2×Nhard

non−zero, where Nhard
non−zero is the number

of non-zero coefficients after the hard-thresholding. The total variance calculated
in Step Two depends on the results of the Wiener filter coefficients. The weights
of Step Two is explained 2.1.2. However, the weights for Step One is equal to:

ωhardi =

{
1

σ2×Nhard
non−zero

,

1,

if→ Nhard
non−zero ≥ 1,

otherwise.

2.1.2. Step Two: Collaborative Wiener filtering.
Grouping: Grouping here is, in some ways, similar to the grouping in Step One;
but here the power spectrums of Step One are grouped, not just the patches from
the noisy image. The same formula is used:
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where ûShard
[v]i

and ûShard
[v]j

are the estimated patches from Step One at locations i

and j, respectively. At this stage, there are two groups: (1) a group of similar
patches derived from the noisy image and (2) a group of similar patches derived
from Step One.
Collaborative filtering: After grouping the patches, a 3D transform is applied to the
3D array of the grouped patches. A Wiener shrinkage is applied to the transform
coefficients of the 3D array. The definition of the Wiener shrinkage coefficients is
shown in Equation (2.4):
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where TWiener
3D is the 3D linear transform and 3DSWiener

i is the result of Equation
(2.3). The final stage in the collaborative Wiener filtering is to multiply the Wiener
shrinkage coefficients element-by-element by the 3D transform coefficients of the
noisy image. The inverse of the 3D transform is applied. Multiplication and the
inverse of the 3D transform are shown in Equation (2.5):
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(
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×
(
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))

(2.5)

where 3Dνi are the 3D transform coefficients of the noisy data.
Aggregation Weights: Adjusting the weights, here, is not like the one in Step
One, which depends on the number of non-zero coefficients reached after the hard-
thresholding. The weights of this step depend on the Wiener shrinkage coefficients;
assigned as in Equation (2.6):

ωWiener
i = σ−2

∥∥∥WSWiener
i

∥∥∥−2

2
. (2.6)

2.2. The proposed method

In this section, we describe an algorithm for solving the problem of denoising
additive noisy images. The novelty of this algorithm is the use of an adaptive hard-
thresholding operator for the shrinkage of the transforming coefficients, and the
use of weighted average for the collaborative Wiener filtering step by using PSNR.
The scheme in Figure 1 shows the proposed filtering scheme. In the following
subsections, the two steps of the proposed algorithm are described. First, the
collaborative hard thresholding step is explained. Then, using the collaborative
Wiener filtering is discussed.

2.2.1. Step One modification. Collaborative filtering is the second stage of
Step One, where noise is suppressed via using a shrinkage function after apply-
ing a 3D transform for the built 3D array. The original BM3D uses a static
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Figure 1. The two steps of the proposed filtering scheme.

hard-thresholding operator as a shrinkage function for similar patches with low lu-
minance distance. This function suppresses blindly all the transformed coefficients
with absolute value from all patches of the 3D array under a threshold whether
the coefficients are noise or not.

In order to improve the thresholding process, an adaptive hard-thresholding op-
erator as a shrinkage function is proposed. We adapt the basic idea of the bilateral
filter [11] to be used for the thresholding in BM3D algorithm. Similarity weights
of the bilateral filter are based on geometric and luminance distances. We propose
to use an adaptive hard-thresholding operator, where the operator’s values depend
on geometric and luminance distance similarities between patches. When a patch
is geometrically far from to the reference patch, we enforce more thresholding to
the patch transforming coefficients. The formulation of the proposed collaborative
filter is:

3D ûShard
i

= T 3D−1

hard

(
γ3D

Γ

(
T 3D
hard

(
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where T 3D

hard is the 3D linear transform of the first (hard) step, T 3D−1

hard is the inverse
of 3D transformation, and γ3D

Γ is an adaptive hard-thresholding operator equal to
λ3D ×σ. λ3D’s value is choosen adaptively based on the geometric and luminance
distance similarities. When σ < 40, λ3D’s value is equal to:

λ3D =

{
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and when σ ≥ 40, λ3D’s value is equal to:
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{
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2

2 ,
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where Nhard
2 is the number of the collected similar patches. The 3D thresholding

operator γ3D
Γ makes all coefficients with absolute value less than the threshold

(λ3D × σ) equal to zero.

2.2.2. Step Two modification. As a final stage in the BM3D collaborative
Wiener filtering, the Wiener shrinkage coefficients of the 3D array and the 3D
transform coefficients of the noisy image are multiplied element-by-element. Before
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the multiplication process, Wiener shrinkage coefficients of the 3D array patches
must be averaged. BM3D averages those coefficients arithmetically. We proposed
to use weights for the 3D array patches; similar patches will be assigned more
weights. PSNR is utilized as a patch similarity measure for assigning those weights.
The inverse of the 3D transform is applied then.

3. Experimental results

The objective of this section is to experimentally study the performance of the
proposed method at various noise levels. The original BM3D parameters are used
for our method. We use 8× 8 patch size for low noise level (σ < 40) and 12× 12
patch size for high noise level (σ ≥ 40). A fixed 32 × 32 searching window size is
used. The step size is 3, and the numbers of similar patches for the 3D arrays
are 16 and 32 for Step One and Step Two, respectively. Ten gray-scale images
are used during this experiment. The images are shown in Figure 2. The code is
implemented in C++. The computer’s processor is Intelr CoreTM i7 (2.5 GHz). In
Subsection 3.1 and Subsection 3.2, the methods are evaluated both quantitatively
and qualitatively.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2. The ten images used in the experiment: (a) Cameraman image
256×256, (b) House image 256×256, (c) Peppers image 256×256, (d) Lena

image 512×512, (e) Barbara image 512×512, (f) Boats image 512×512, (g)
Fingerprint image 512 × 512, (h) Man image 512 × 512, (i) Couple image
512 × 512, and (j) Hill image 512 × 512.

3.1. Quantitative evaluation

3.1.1. Image similarity metric. Peak Signal-to-Noise Ratio (PSNR) is used
as a similarity metric to objectively assist the difference between the original and
denoised images. The higher the PSNR values, the better the results are. The
Peak Signal-to-Noise ratio is defined as:
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PSNR = 10 log10

(
(2n − 1)

2

MSE

)
where MSE is the Mean Squared Error value, and n is an integer number repre-
senting the number of bits per pixel, n = 8 in case of gray-scale images.

3.1.2. Results. The results of our proposed method are shown in Table 1, which
compares the performance of our method with the original BM3D. Each noise
level (σ) has two rows: the first row shows the results of the original BM3D, and
the second row shows the performance of our method. The higher PSNR values
are highlighted with a bold font. The results are computed by measuring the
differences between the noise-free images and the denoised ones.

Table 1. The performance of the denoising algorithms at various noise levels
(σ). At each noise level (σ): the first row shows the results of using BM3D,

and the second row shows the performance of our method.

σ C.man House Pep. Lena Barba. Boats F.print Man Couple Hill Avrage

10
33.99 36.48 34.52 35.87 34.78 33.84 32.40 33.93 33.93 33.62 34.33
34.07 36.52 34.61 35.94 34.90 33.89 32.55 33.95 33.97 33.62 34.40

20
30.21 33.60 31.14 33.01 31.59 30.77 28.82 30.59 30.63 30.68 31.10
30.29 33.70 31.23 33.08 31.71 30.83 28.91 30.60 30.67 30.69 31.17

30
28.22 31.96 29.10 31.24 29.60 28.93 26.84 28.87 28.68 29.03 29.25
28.25 32.04 29.18 31.30 29.70 29.00 26.91 28.89 28.73 29.06 29.31

40
26.38 30.57 27.42 29.93 28.14 27.54 25.52 27.60 27.24 27.86 27.82
26.58 30.60 27.57 29.92 28.12 27.62 25.54 27.68 27.29 27.87 27.88

50
25.10 29.37 26.08 28.80 26.81 26.42 24.40 26.62 26.13 26.85 26.66
25.34 29.34 26.23 28.77 26.80 26.50 24.44 26.70 26.16 26.88 26.71

60
23.86 28.15 24.88 27.71 25.58 25.46 23.44 25.73 25.18 25.95 25.59
24.08 28.19 25.04 27.73 25.58 25.53 23.49 25.82 25.20 26.00 25.67

70
22.79 27.01 23.78 26.67 24.44 24.59 22.56 24.87 24.32 25.09 24.61
23.00 27.06 23.95 26.73 24.44 24.68 22.63 24.98 24.37 25.16 24.70

80
21.87 25.94 22.74 25.66 23.36 23.79 21.74 24.05 23.56 24.27 23.70
22.11 25.98 22.94 25.75 23.38 23.88 21.81 24.17 23.63 24.38 23.80

90
21.12 24.93 21.81 24.70 22.35 23.04 20.96 23.26 22.88 23.47 22.85
21.33 24.95 22.03 24.81 22.41 23.14 21.05 23.40 22.95 23.61 22.97

100
20.29 23.92 20.99 23.78 21.45 22.36 20.23 22.52 22.26 22.72 22.05
20.50 23.98 21.15 23.91 21.53 22.45 20.31 22.67 22.33 22.87 22.17

Our method performs slightly better than the original BM3D at various noise
levels. BM3D is the state-of-the-art denoising method, so we believe that any
improvement would contribute to developing a better denoising method. BM3D
has two denoising steps and more than twenty parameters, we improved just one
parameter. Improving the twenty parameters is needed in order to achieve a bigger
improvement.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. The results of denoising the boat image at noise levels (σ = 30):
(a) noise-free boat image 512 × 512, (b) AWGN image, (σ = 30), (c) BM3D,
(d) Our method, and (e), (f), (g) and (h) fragments images of the first row.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. The results of denoising the boat image at noise levels (σ = 80):

(a) noise-free boat image 512 × 512, (b) AWGN image, (σ = 80), (c) BM3D,
(d) Our method, and (e), (f), (g) and (h) fragments images of the first row.
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3.2. Qualitative evaluation

The evaluation in this section is subjective, where the quality of the denoised
images is addressed via the visual perception. Additive White Gaussian Noisy
(AWGN) images with the noise levels (σ = 30, 80) are chosen to perform this
evaluation. Fragments of the noisy gray-scale boat images and the corresponding
estimates are shown in Figure 3 and Figure 4.

The fragment images in Figure 3h and Figure 4h show that our method out-
performs the BM3D method. Our method preserves sharp edges; e.g., the mast
and ropes of the boat image in Figure 3h. Homogeneous regions are smoothed
properly by our method; i.e., lighthouse in the boat image in Figure 4h.

4. Conclusion

In this work, we have explored the problem of gray-scale image denoising process.
We restored the noisy images by using BM3D approach with adaptive thresholding
and weighted Wiener filtering. The results show that our method achieved better
denoising than the original BM3D at various noise level.
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