CS 4424
GCD, XGCD
eschost@uwo.ca
GCD of polynomials

First definition

• Let A and B be in $k[x]$.
 $k[x]$ is the ring of polynomials with coefficients in k

• A Greatest Common Divisor of A and B is a polynomial G such that
 – G divides A
 – G divides B
 – if C divides both A and B, it divides G.

• If G and H are GCD’s of A and B, then $G = \ell H$, for some constant $\ell \neq 0$.

• So usually we say that THE GCD is the one with leading coefficient $=1$.
 A monic polynomial is a polynomial with leading coefficient $=1$.
GCD of polynomials

Irreducible polynomials

• Let A be in $k[x]$. Then A is irreducible if it cannot be factored into $A = PQ$.
 (except if either P or Q is a constant)

• Examples in $\mathbb{Q}[x]$

 $x, \ 2x, \ x^2 + 1, \ x^2 + 2, \ x^4 + 20, \ x^3 + 324x - 2342$.

 But $x^2 - 3x + 2$ is not irreducible.

• Any polynomial can be uniquely factored into a product

 $A = \alpha P_1^{e_1} \cdots P_s^{e_s}$

 with α constant, P_i irreducible, monic and $e_i \geq 1$.
GCD of polynomials

Second definition of the GCD

- Let A and B be in $k[x]$. Factor A and B as

 \[A = \alpha Q_1^{e_1} \cdots Q_s^{e_s} \]

 and

 \[B = \beta P_1^{f_1} \cdots P_r^{f_r}. \]

- Example: $A = x(x^2 + 1)$ and $B = (x - 1)(x + 1)(x^2 + 1)^2$ gives

 \[s = 2, \quad Q_1 = x, \quad e_1 = 1, \quad Q_2 = (x^2 + 1), \quad e_2 = 1 \]

 and

 \[r = 3, \quad P_1 = x - 1, \quad f_1 = 1, \quad P_2 = x + 1, \quad f_2 = 1, \quad P_3 = x^2 + 1, \quad f_3 = 2. \]
GCD of polynomials

Second definition of the GCD

- Let R_1, \ldots, R_t be the common irreducible factors between A and B.
- For any R_i, let g_i be the minimum of the exponents it has in A and B.
- Then $\gcd(A, B) = R_1^{g_1} \cdots R_t^{g_t}$.
- Example:

 $t = 1, \quad R_1 = x^2 + 1, \quad g_1 = 1,$

 so $\gcd(A, B) = x^2 + 1$.

The fact that these two definitions are equivalent requires a proof, that I'm not going to do.
Algorithms

Facts

- The previous definitions do not lead to an easy algorithm.
- To do better: Euclid's algorithm.

Complexity

- The naive version of Euclid’s algorithm takes $O(n^2)$ for polynomials of degree n.
- The fast version takes $O(M(n) \log(n))$.
A few useful rules

Prop.

- \(\gcd(A, B) = \gcd(B, A) \).
 The definition is symmetric.

- \(\gcd(A, 0) = A/\text{leading coefficient}(A) \).
 \(A \) divides \(A \), and \(A \) divides 0, so \(A \) divides their GCD. Conversely, the GCD divides \(A \). So the GCD is a constant times \(A \).

- \(\gcd(A, c) = 1 \) if \(c \) is a non-zero constant.
 Any polynomial that divides \(c \) is a constant.
The main idea

Prop.

• For all A, B in $k[\cdot]$,

$$\gcd(A, B) = \gcd(A, B \text{ rem } A) = \gcd(B, A \text{ rem } B).$$

Proof.

• Let $R = B \text{ rem } A$. Then

$$R = B - AQ.$$

• Let $G = \gcd(A, B)$ and $H = \gcd(A, R)$.

• G divides A and B, so G divides R.

 Property of the GCD for H: G divides H.

• H divides A and R, so H divides B.

 Property of the GCD for G: H divides G.
Euclid’s algorithm

gcd(A, B)

• if deg(A) < deg(B) then return gcd(B, A).
 so now we assume that deg(A) \geq deg(B)

• if B = 0 then return A/leading coefficient(A).
 second rule

• return gcd(B, A \text{ rem } B)
 previous slide
Towards the iterative presentation

Setup.

• We rewrite $A_0 = A$, $A_1 = B$.
• We assume $\deg(A_0) \geq \deg(A_1)$ (otherwise, swap them).

Steps.

• $\gcd(A_0, A_1) = \gcd(A_1, A_2)$ \quad $A_2 = A_0 \text{ rem } A_1$
• $\gcd(A_1, A_2) = \gcd(A_2, A_3)$ \quad $A_3 = A_1 \text{ rem } A_2$
• ...
• $\gcd(A_i, A_{i+1}) = \gcd(A_{i+1}, A_{i+2})$ \quad $A_{i+2} = A_i \text{ rem } A_{i+1}$
• ...
• $\gcd(A_N, 0) = A_N$/leading coefficient(A_N).
The iterative presentation

Setup.

- We rewrite $A_0 = A, A_1 = B$.
- We assume $\deg(A_0) \geq \deg(A_1)$ (otherwise, swap them).

Steps.

- $i = 1$
- while $A_i \neq 0$
- $A_{i+1} = A_{i-1} \text{ rem } A_i$
- $i++$
- return $A_{i-1}/\text{leading coefficient}(A_{i-1})$
Complexity

Setup.

• $n = \deg(A_0)$
• then, all polynomials have degree $\leq n$.

Naive analysis.

• We do at most $n + 1$ Euclidean divisions.
• Euclidean division in degree $\leq n$ takes $O(n^2)$ operations.
• So the total cost is $O(n^3)$.

Correct result, but we can do much better.
A more careful analysis of Euclidean division

Prop.

• If \(\text{deg}(A) = n \) and \(\text{deg}(B) = m \), we can compute the quotient and remainder of \(A \) by \(B \) in at most

\[
2(n - m)(n + 1)
\]

operations.

Proof.

• We do \(n - m \) reduction steps.

• Each takes \(\leq 2(n + 1) \) operations.
A better analysis of Euclid’s gcd algorithm

Prop.

• The total cost is \(O(n^2) \).

Proof. Let \(n_i = \deg(A_i) \) be the degrees of the successive remainders.

• Then the cost of computing \(A_{i+1} \) is at most

\[
2(n_{i-1} - n_i)(n_{i-1} + 1) \leq 2(n_{i-1} - n_i)(n + 1).
\]

• So the total cost is at most

\[
\sum_{i=1}^{N-1} 2(n_{i-1} - n_i)(n + 1) \leq 2(n + 1) \sum_{i=1}^{N-1} (n_{i-1} - n_i)
\]

• The sum simplifies into \(n_0 - n_{N-1} \leq n \)

• So the total cost is at most \(2(n + 1)n = O(n^2) \).
Extended gcd

Prop.

- Given A and B, one can compute $G = \gcd(A, B)$, as well as Bézout coefficients U, V such that

$$AU + BV = G, \quad \deg(U) < \deg(B), \quad \deg(V) < \deg(A)$$

by a small modification of Euclid’s algorithm.

Special case.

- We say that A and B are coprime if $\gcd(A, B) = 1$.
- In that case the Bézout coefficients satisfy

$$AU + BV = 1.$$
Example: complex numbers

How to compute with complex numbers

• **complex multiplication** is multiplication modulo $x^2 + 1$;

• **complex inversion** is extended gcd with $x^2 + 1$.

 – suppose $z = a + ib$

 – compute $G = \gcd(a + xb, x^2 + 1)$ and the coefficients $U(x), V(x)$

 – **facts**: $G = 1$, $\deg(U) < 2$ and $\deg(V) < 1$

 – then $(u_0 + u_1 x)(a + bx) + v_0(x^2 + 1) = 1$

 – evaluating at $x = i$ gives $(u_0 + u_1 i)(a + bi) = 1$
More general example

Suppose that P in $k[x]$ is irreducible: it has no divisor, other than constants or itself. Then for A in $k[x]$:

- either P divides A, and then $\gcd(A, P) = P$
- or $\gcd(A, P) = 1$.

Remember how we defined $k[x]/P$ as

- the set of all polynomials of degree less than $\deg(P)$
- with addition and multiplication defined modulo P.

Now we also have inversion modulo P:

- for $A \neq 0$ in $k[x]/P$, $\gcd(A, P) = 1$
- so there exists U, V with $AU + PV = 1$ (as polynomials)
- so $AU = 1$ in $k[x]/P$.
Towards the extended Euclidean algorithm

Getting the quotients.

- replace the step

\[A_{i+1} = A_{i-1} \text{ rem } A_i \]

by

\[Q_i = A_{i-1} \text{ div } A_i \]

and

\[A_{i+1} = A_{i-1} - Q_i A_i \]

- remark that we still have

\[A_{i+1} = A_{i-1} \text{ rem } A_i \]

- the algorithm is still \(O(n^2) \)
The extended Euclidean algorithm

Additionnally to \((A_i)\), we also compute sequence \((U_i)\) and \((V_i)\) with

\[
U_0 = 1, \quad U_1 = 0, \quad U_{i+1} = U_{i-1} - Q_i U_i
\]

and

\[
V_0 = 0, \quad V_1 = 1, \quad V_{i+1} = V_{i-1} - Q_i V_i
\]

Prop.

- For \(0 \leq i \leq N\), we have

\[
A_0 U_i + A_1 V_i = A_i
\]

Proof.

- By induction \((i = 0\) and \(1\) initiate the induction).

Prop.

- For \(i = N\) (when we get the gcd), we have

\[
A_0 U_N + A_1 V_N = A_N.
\]
Degrees and complexity

Roughly speaking

• the degrees of the U_i and V_i increase;
• the degrees of the A_i decrease.

Precisely

• $\deg(U_i) = \deg(Q_2) + \cdots + \deg(Q_{i-1}) \quad i \geq 2$
• $\deg(V_i) = \deg(Q_1) + \cdots + \deg(Q_{i-1}) \quad i \geq 2$

But $\deg(Q_i) = \deg(A_{i-1}) - \deg(A_i)$ so

• $\deg(U_i) = \deg(A_1) - \deg(A_{i-1}) \leq n \quad i \geq 2$
• $\deg(V_i) = \deg(A_0) - \deg(A_{i-1}) \leq n \quad i \geq 2$

Consequence: the complexity is still $O(n^2)$.
Rational reconstruction

With Newton iteration, we can **expand**

\[
S(x) = \frac{N(x)}{D(x)} = s_0 + s_1 x + s_2 x^2 + \cdots
\]

Assuming you know sufficiently many terms, it is possible to go backwards and recover \(N(x)/D(x) \).

Prop.

- This is a problem of **linear algebra**, so it **can** be solved in theory.

- Euclid’s algorithm give a **better** algorithm.

 When we get to fast Euclidean algorithm, this will be almost optimal.
Sketch of the algorithm

Suppose that:

- we know that $\deg(N) \leq n$ and $\deg(D) \leq d$;
- we know s_0, \ldots, s_{n+d}.

We run the extended Euclidean algorithm with input $A_0 = x^{n+d+1}$ and $A_1 = G = s_0 + \cdots + s_{n+d}x^{n+d}$.

- For $i = 0$, let $U_0 = 1, V_0 = 0, A_0 = x^{n+d+1}$.
- For $i = 1$, let $U_1 = 0, V_1 = 1, A_1 = G$.
- For $i \geq 2$
 - $Q_i = A_{i-1} \text{ div } A_i$
 - $A_{i+1} = A_{i-1} - Q_i A_i$,
 - $U_{i+1} = U_{i-1} - Q_i U_i$,
 - $V_{i+1} = V_{i-1} - Q_i V_i$.
Recovering N/D

At each step, we maintain the invariant $U_i x^{n+d+1} + V_i G = A_i$.

Moreover:

- the degrees of the A_i decrease;
- the degrees of the V_i increase.

Prop.

- Let i be the first index with $\deg(A_i) \leq n$.
- Then $\deg(V_i) = n + d + 1 - \deg(A_{i-1}) \leq d$.
- Hence, $A_i/V_i = N/D$.
IQ test

Problem: find the next term.

\[U : \ 1, 1, 1, 1, 1, 1, 1, 1 \]
\[V : \ 0, 1, 1, 2, 3, 5, 8, 13 \]
\[W : \ 12, 134, 222, 21, -3898, -40039, -347154, -2929918, -24657854 \]

Answer: 1, 21 and \(-207605083\).

How? The sequences \(U, V, W \) satisfy linear recurrences with constant coefficients:

\[U_{n+1} = U_n, \]
\[V_{n+2} = V_{n+1} + V_n, \]
\[W_{n+4} = 12W_{n+3} - 33W_{n+2} + 22W_{n+1} + 19W_n. \]
Generating series

Given a sequence \(u = u_0, u_1, \ldots \), we can construct the series

\[
S = \sum_{i \geq 0} u_i x^i.
\]

This is the generating series of \(u \).

- The properties of \(u \) (recurrence) translate to properties of \(S \).

Simple case

- \(u_n = 2^n \) (equivalently, \(u_0 = 1 \) and \(u_{n+1} - 2u_n = 0 \))
- generating series

\[
S = \sum_i 2^i x^i = \frac{1}{1 - 2x}
\]
Rational series

The series of the previous example is rational.

Prop.

- The generating series S is rational:
 \[S = \frac{N(x)}{D(x)}, \]
 with
 \[D(x) = 1 + a_{k-1}x + \cdots + a_1x^{k-1} + a_0x^k \]
 and \(\text{deg}(N) < \text{deg}(D) \)
 if and only if the sequence u satisfies the recurrence
 \[u_{n+k} + a_{k-1}u_{n+k-1} + \cdots + a_1u_{n+1} + a_0u_n = 0 \]

rational series \iff recurrence with constant coefficients
Proof on an example

Let’s check for recurrences of order 2, with

\[u_0 = \alpha, \quad u_1 = \beta, \quad u_{n+2} + au_{n+1} + bu_n = 0 \]

and

\[S = \sum_{i \geq 0} u_i x^i. \]

1. Multiply the recurrence relation by \(x^{n+2} \):

\[u_{n+2}x^{n+2} + au_{n+1}x^{n+2} + bu_nx^{n+2} = 0. \]

2. Sum, for \(n \geq 0 \):

\[S - (\alpha + \beta x) + ax(S - \alpha) + bx^2 S = 0. \]

3. Rearrange

\[S = \frac{\alpha + (\beta + \alpha a)x}{1 + ax + bx^2}. \]
Consequence

Suppose that you know that a sequence s_i satisfies a recurrence of order k:

- then, the generating series is rational with numerator of degree $n < k$ and denominator of degree $d = k$
- you need s_0, \ldots, s_{n+d}, so up to s_{2k-1}.
- you apply the Extended Euclidean Algorithm
- you get the first i with $\deg(A_i) \leq k - 1$.
Matrices in Euclid’s algorithm

Notation as before:

- A_0, A_1, \ldots the successives remainders
- Q_1, Q_2, \ldots the quotients.

We can write the transformation $(A_{i-1}, A_i) \rightarrow (A_i, A_{i+1})$ in a matrix way:

$$\begin{bmatrix} A_i \\ A_{i+1} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -Q_i \end{bmatrix} \begin{bmatrix} A_{i-1} \\ A_i \end{bmatrix}. $$

Multiplying matrices, we see that for all i, we can write

$$\begin{bmatrix} A_i \\ A_{i+1} \end{bmatrix} = R_i \begin{bmatrix} A_0 \\ A_1 \end{bmatrix}. $$
Main idea

• to compute the (x)gcd, it is too costly to compute all remainders;
• we are going to do big steps by skipping a lot of them.

Half-gcd

• we suppose $\deg(A_0) > \deg(A_1)$
• $n = \deg(A_0)$
• there exists a unique j such that
 \[\deg(A_j) \geq \frac{n}{2} > \deg(A_{j+1})\]
• the half-gcd algorithm computes the matrix R_j.
The GCD matrix

The GCD matrix is the matrix that corresponds to

\[
\begin{bmatrix}
A_N \\
0
\end{bmatrix}
= R_N
\begin{bmatrix}
A_0 \\
A_1
\end{bmatrix}.
\]

If we find it, we can get:

- the GCD \(A_N \);
- the Bézout coefficients (first row).
HGCD → GCD

Recursive algorithm for computing the GCD matrix.

\texttt{GCD_matrix}(A_0, A_1)

- \(S_0 = \text{HGCD}(A_0, A_1) \)
- Compute \(A_j \) and \(A_{j+1} \)
- If \(A_{j+1} = 0 \), return \(S_0 \)
- Compute \(Q_{j+1} \) and

\[
S_1 = \begin{bmatrix}
0 & 1 \\
1 & -Q_{j+1}
\end{bmatrix}
\]

- Compute \(A_{j+2} \)
- If \(A_{j+2} = 0 \), return \(S_1 S_0 \)
- Compute \(S_2 = \text{GCD_matrix}(A_{j+1}, A_{j+2}) \) and return \(S_2 S_1 S_0 \)
Cost analysis

Notation

• Let $G(n)$ be the cost of GCD_matrix in degree n

• Let $H(n)$ be the cost of HGCD in degree n.

 Fact: $H(n) = O(M(n) \log(n))$.

• Recall that quotient and remainder take $O(M(n))$.

Recurrence

$$G(n) = G(n/2) + O(M(n) \log(n))$$

Solving it gives

$$G(n) = O(M(n) \log(n))$$
Main idea of the HGCD

In Euclidean division

- when you divide two polynomials (of high degree),
- the remainder does depend on all coefficients
- but the quotient depends only on the high-degree ones.

You can see it:

- in the slow algorithm, you construct Q using the high-degree terms only
- in the fast algorithm, you construct Q by a truncated series product.
HGCD (for nice polynomials)

Assume

\[\deg(A_0) = n, \quad \deg(A_1) = n - 1, \quad \ldots \quad \deg(A_i) = n - i \]

so all quotients have degree 1.

Consequence

- the half-gcd matrix of \(A_0, A_1 \) has degrees about \(n/2 \) (up to \(\pm 1 \))

More generally

- the matrix of \(R_j \) to the remainder of degree \(n - j \) has degree about \(j \) (up to \(\pm 1 \))
Divide-and-conquer

Given

\[A_0 = a_n X^n + a_{n-1} X^{n-1} + \cdots, \quad A_1 = a'_{n-1} X^{n-1} + a'_{n-2} X^{n-2} + \cdots \]

we let

\[B_0 = a_n X^{n/2} + a_{n-1} X^{n/2-1} + \cdots, \quad B_1 = a'_{n-1} X^{n/2-1} + a'_{n-2} X^{n/2-2} + \cdots \]

and we compute

\[S_0 = \text{HGCD}(B_0, B_1) \]

If our polynomials are nice

- the degrees of \(S_0 \) should be about \(n/4 \)
- applying it to \((A_0, A_1) \) should give remainders of degree \(n - n/4 = 3n/4 \).
Continuing the divide-and-conquer

Let A'_0, A'_1 be obtained by

\[
\begin{bmatrix}
A'_0 \\
A'_1
\end{bmatrix} = S_0 \begin{bmatrix}
A_0 \\
A_1
\end{bmatrix} .
\]

These are the remainders of degree $(3n/4, 3n/4 - 1)$.

So they look like

\[
A'_0 = \alpha_{3n/4} X^{3n/4} + \alpha_{3n/4-1} X^{3n/4-1} + \cdots \\
A'_1 = \alpha'_{3n/4-1} X^{3n/4-1} + \alpha'_{3n/4-2} X^{3n/4-2} + \cdots
\]
Continuing the divide-and-conquer

We define

\[B_0' = \alpha_{3n/4}X^{n/2} + \alpha_{3n/4-1}X^{n/2-1} + \ldots \]
\[B_1' = \alpha'_{3n/4-1}X^{n/2-1} + \alpha'_{3n/4-2}X^{n/2-2} + \ldots \]

and we compute

\[S_1 = \text{HGCD}(B_0', B_1') \]

If our polynomials are nice

- the degrees of \(S_1 \) should be about \(n/4 \)
- applying it to \((A_0', A_1')\) should give remainders of degree \(3n/4 - n/4 = n/2 \).
Summary: HGCD algorithm

\(\text{HGCD}(A_0, A_1) \)

- \(S_0 = \text{HGCD}(B_0, B_1) \)
- Compute \(A_j \) and \(A_{j+1} \)
- If \(A_{j+1} = 0 \), return \(S_0 \)
- Compute \(Q_{j+1} \) and

 \[
 S_1 = \begin{bmatrix}
 0 & 1 \\
 1 & -Q_{j+1}
 \end{bmatrix}
 \]

- Compute \(A_{j+2} \)
- If \(A_{j+2} = 0 \), return \(S_1 S_0 \)
- Compute \(S_2 = \text{HGCD}(B_{j+1}, B_{j+2}) \)
- Return \(S_2 S_1 S_0 \)

\[B_i = A_i \text{ div } X^{n/2} \]
Complexity

The algorithm does:

- 2 recursives calls in degree $n/2$
- 1 Euclidean division in degree $\leq n$
- some products of 2×2 matrices in degree $\leq n$

Recurrence

$$H(n) = 2H(n/2) + O(M(n))$$

Solving it gives

$$H(n) \in O(M(n) \log(n)).$$