CS 829
Polynomial systems: geometry and algorithms
Lecture 7: Putting the pieces together
Éric Schost
eschost@uwo.ca
Main algorithm

Let F_1, \ldots, F_n be in $\mathbb{K}[X_1, \ldots, X_n]$, such that

- for $i = 1, \ldots, n$, $V_i = V(F_1, \ldots, F_i)$ is equidimensional of dimension $n - i$;
- for $i = 1, \ldots, n - 1$, the Jacobian determinant of F_1, \ldots, F_{i-1} has maximal rank on V_i (except maybe on a subvariety of lower dimension).
Main algorithm

Let F_1, \ldots, F_n be in $\mathbb{K}[X_1, \ldots, X_n]$, such that

- for $i = 1, \ldots, n$, $V_i = V(F_1, \ldots, F_i)$ is equidimensional of dimension $n - i$;
- for $i = 1, \ldots, n - 1$, the Jacobian determinant of F_1, \ldots, F_{i-1} has maximal rank on V_i (except maybe on a subvariety of lower dimension).

We will solve the system equation after equation.

- **Preliminary:** apply a generic linear change of coordinates
- **Incremental step:** supposing we have solved $X_1 = x_1, \ldots, X_{n-i} = x_{n-i}, F_1 = \ldots, F_i = 0$ we deduce a solution of $X_1 = x_1, \ldots, X_{n-i-1} = x_{n-i-1}, F_1 = \ldots, F_{i+1} = 0$.
Initial change of variable

We replace X_1, \ldots, X_n by Y_1, \ldots, Y_n through the change of variables

$$\begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} = A \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix},$$

for a random invertible matrix A.
Initial change of variable

We replace X_1, \ldots, X_n by Y_1, \ldots, Y_n through the change of variables

$$
\begin{bmatrix}
X_1 \\
\vdots \\
X_n
\end{bmatrix}
= A
\begin{bmatrix}
Y_1 \\
\vdots \\
Y_n
\end{bmatrix},
$$

for a random invertible matrix A.

In the new coordinates:

- the equations become $F_i^A(Y_1, \ldots, Y_n)$;
- a point α, after change of variable, is written α^A.

The matrix A should be “generic enough”, to ensure several nice geometric properties.
Making the appropriate Jacobian non-zero

Let J^A be the Jacobian determinant of F_1^A, \ldots, F_i^A w.r.t. Y_{n-i+1}, \ldots, Y_n.

Theorem. For a generic A, J^A is identically zero on no component of V_i.
Making the appropriate Jacobian non-zero

Let J^A be the Jacobian determinant of F_1^A, \ldots, F_i^A w.r.t. Y_{n-i+1}, \ldots, Y_n.

Theorem. For a generic A, J^A is identically zero on no component of V_i.

Proof. The Jacobian determinant J^A equals

$$J^A = \det \left(\text{Jac}(F_1, \ldots, F_i) \begin{bmatrix} A_{1,n-i+1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{n,n-i+1} & \cdots & A_{n,n} \end{bmatrix} \right).$$

Let $(V_{i,j})_{j \leq d_i}$ be the irreducible components of V_i. For $j \leq d_i$, there exists a minor $D_{i,j}$ of $\text{Jac}(F_1, \ldots, F_i)$ and a witness point $\alpha_{i,j}$ of $V_{i,j}$ such that

$$\det(D_{i,j})(\alpha_{i,j}) \neq 0.$$

Let $\Delta(A) = \prod_j J^A(\alpha_{i,j}^A)$.

Exercise: $\Delta \neq 0$ and if $\Delta(A) \neq 0$, then OK.
Consequences

Consequence (Jacobian criterion).

When this is the case, for generic y_1, \ldots, y_i, the system

$$\{ F_1^A = \cdots = F_i^A = 0, Y_1 = y_1, \ldots, Y_{n-i} = y_{n-i} \}$$

has dimension 0.

In other words, the system $\{ F_1^A = \cdots = F_i^A = 0 \}$ has dimension 0 in $\mathbb{K}(Y_1, \ldots, Y_{n-i})[Y_{n-i+1}, \ldots, Y_n]$.
Consequences

Consequence (Jacobian criterion). When this is the case, for generic y_1, \ldots, y_i, the system

$$\{ Y_1 = y_1, \ldots, Y_{n-i} = y_{n-i}, F_1^A = \cdots = F_i^A = 0 \}$$

has dimension 0. In other words, the system $\{ F_1^A = \cdots = F_i^A = 0 \}$ has dimension 0 in $\mathbb{K}(Y_1, \ldots, Y_{n-i})[Y_{n-i+1}, \ldots, Y_n]$.

Better, all components of V_i have a dense projection on the Y_1, \ldots, Y_{n-i}-space.

Theorem. For a generic choice of A:

- the former system has $\delta_i = \deg(V_i)$ solutions for generic y (and exactly that number when counting multiplicities);
- Y_{n-i+1} is a separating element for that system.

Proof (not quite easy): use the definition of degree for point 1. and the Chow form for point 2.
There exist $Q_i, P_{i,n-i+2}, \ldots, P_{i,n}$ in $\mathbb{K}(Y_1, \ldots, Y_{n-i})[Y_{n-i+1}]$ such that
\[
Q_i(Y_{n-i+1}) = 0, \quad Y_{n-i+2} = P_{i,n-i+2}(Y_{n-i+1}), \ldots, \quad Y_n = P_{i,n}(Y_{n-i+1})
\]
describes the solutions of $\{F_{1}^{\mathbf{A}} = \cdots = F_{i}^{\mathbf{A}} = 0\}$ over $\mathbb{K}(Y_1, \ldots, Y_{n-i})$.
Consequences, continued

There exist $Q_i, P_{i,n-i+2}, \ldots, P_{i,n}$ in $\mathbb{K}(Y_1, \ldots, Y_{n-i})[Y_{n-i+1}]$ such that

$$Q_i(Y_{n-i+1}) = 0, \ Y_{n-i+2} = P_{i,n-i+2}(Y_{n-i+1}), \ldots, \ Y_n = P_{i,n}(Y_{n-i+1})$$

describes the solutions of $\{F_1^A = \cdots = F_i^A = 0\}$ over $\mathbb{K}(Y_1, \ldots, Y_{n-i})$.

Further properties.

- (difficult) $\gcd(Q_i, Q'_i) = 1$,
- for all $j \leq i$, $F_j^A(Y_1, \ldots, Y_{n-i}, Y_{n-1+i}, P_{i,n-1+2}, \ldots, P_{i,n}) = 0 \mod Q_i$,
- the determinant of

$$
\begin{vmatrix}
\frac{\partial F_1^A}{\partial Y_{n-i+1}}(\cdots) & \cdots & \frac{\partial F_1^A}{\partial Y_n}(\cdots) \\
\vdots & \ddots & \vdots \\
\frac{\partial F_i^A}{\partial Y_{n-i+1}}(\cdots) & \cdots & \frac{\partial F_i^A}{\partial Y_n}(\cdots)
\end{vmatrix}
$$

is invertible modulo Q_i.

Degree bounds

Instead of $P_{i,j}$, one can use $S_{i,j}$ such that

$$P_{i,j} = \frac{S_{i,j}}{Q_i'} \mod Q_i \text{ or } S_{i,j} = P_{i,j} Q_i' \mod Q_i.$$
Degree bounds

Instead of $P_{i,j}$, one can use $S_{i,j}$ such that

$$P_{i,j} = \frac{S_{i,j}}{Q'_i} \mod Q_i \quad \text{or} \quad S_{i,j} = P_{i,j} Q'_i \mod Q_i.$$

Theorem.

- Q_i is polynomial in Y_1, \ldots, Y_{n-i} and has total degree δ_i.
- The $P_{i,j}$ have degree less than δ_i in Y_{n-i+1}.
- The $S_{i,j}$ are polynomial in Y_1, \ldots, Y_{n-i} and have total degree at most δ_i.
- All denominators in the $P_{i,j}$ divide the discriminant of Q_i and have degree at most δ_i^2. All numerators have degree at most δ_i^2.

Proof. Similar the the proof of the height bound from Lecture 2.
Specialization properties

Theorem Let $\Gamma_i(Y_1, \ldots, Y_{n-i})$ be the discriminant of Q_i w.r.t. Y_{n-i+1}. Then:

- $\Gamma_i \neq 0$,
- if $\Gamma_i(y_1, \ldots, y_{n-i}) \neq 0$, $Q_i(y_1, \ldots, y_{n-i}, Y_{n-i+1})$ remains squarefree, and

\[
Q_i(y_1, \ldots, y_{n-i}, Y_{n-i+1}), \quad Y_{n-i+2} = P_{i,n-i+2}(y_1, \ldots, y_{n-i}, Y_{n-i+1}),
\]

\[
\ldots \quad Y_n = P_{i,n}(y_1, \ldots, y_{n-i}, Y_{n-i+1})
\]

is a univariate representation of the system

\[
\{ F_1^A = \cdots = F_i^A = 0, Y_1 = y_1, \ldots, Y_{n-i} = y_{n-i} \}\]
Specialization properties

Theorem Let $\Gamma_i(Y_1, \ldots, Y_{n-i})$ be the discriminant of Q_i w.r.t. Y_{n-i+1}. Then:

- $\Gamma_i \neq 0$,
- if $\Gamma_i(y_1, \ldots, y_{n-i}) \neq 0$, $Q_i(y_1, \ldots, y_{n-i}, Y_{n-i+1})$ remains squarefree, and

\[Q_i(y_1, \ldots, y_{n-i}, Y_{n-i+1}), \quad Y_{n-i+2} = \frac{S_{i,n-i+2}(y_1, \ldots, y_{n-i}, Y_{n-i+1})}{Q'_i(y_1, \ldots, y_{n-i}, Y_{n-i+1})}, \]
\[\ldots \quad Y_n = \frac{S_{i,n}(y_1, \ldots, y_{n-i}, Y_{n-i+1})}{Q'_i(y_1, \ldots, y_{n-i}, Y_{n-i+1})} \]

is a univariate representation of the system

\[\{ F_1^A = \cdots = F_i^A = 0, Y_1 = y_1, \ldots, Y_{n-i} = y_{n-i} \}. \]
Specialization properties

Theorem Let \(\Gamma_i(Y_1, \ldots, Y_{n-i}) \) be the discriminant of \(Q_i \) w.r.t. \(Y_{n-i+1} \). Then:

- \(\Gamma_i \neq 0 \),
- if \(\Gamma_i(y_1, \ldots, y_{n-i}) \neq 0 \), \(Q_i(y_1, \ldots, y_{n-i}, Y_{n-i+1}) \) remains squarefree, and

\[
Q_i(y_1, \ldots, y_{n-i}, Y_{n-i+1}), \quad Y_{n-i+2} = \frac{S_i,n-i+2(y_1, \ldots, y_{n-i}, Y_{n-i+1})}{Q_i'(y_1, \ldots, y_{n-i}, Y_{n-i+1})}, \quad \ldots \quad Y_n = \frac{S_i,n(y_1, \ldots, y_{n-i}, Y_{n-i+1})}{Q_i'(y_1, \ldots, y_{n-i}, Y_{n-i+1})}
\]

is a univariate representation of the system

\[
\{ F_1^A = \cdots = F_i^A = 0, Y_1 = y_1, \ldots, Y_{n-i} = y_{n-i} \}.
\]

Proof. Easy: this univariate representation gives solutions to the system.

Harder: there are no other solutions.

Remark. \(\Gamma_i \) has degree \(\leq \delta_i^2 \leq d^{2n} \).
Specialization properties

Theorem There exists a non-zero polynomial $\Gamma'_i(Y_1, \ldots, Y_{n-i})$ of degree $\leq nd^{m+1}$ such that if $\Gamma'_i(y_1, \ldots, y_{n-i}) \neq 0$, the Jacobian determinant J^A of

$$F_1^A, \ldots, F_i^A$$

w.r.t. Y_{n-i+1}, \ldots, Y_n vanishes on none of the solutions of the system

$$\{F_1^A = \cdots = F_i^A = 0, Y_1 = y_1, \ldots, Y_{n-i} = y_{n-i}\}.$$
Specialization properties

Theorem There exists a non-zero polynomial \(\Gamma'_i(Y_1, \ldots, Y_{n-i}) \) of degree \(\leq nd^{n+1} \) such that if \(\Gamma'_i(y_1, \ldots, y_{n-i}) \neq 0 \), the Jacobian determinant \(J^A \) of

\[
F^A_1, \ldots, F^A_i
\]

w.r.t. \(Y_{n-i+1}, \ldots, Y_n \) vanishes on none of the solutions of the system

\[
\{F^A_1 = \cdots = F^A_i = 0, Y_1 = y_1, \ldots, Y_{n-i} = y_{n-i}\}.
\]

Proof. The intersection

\[
V \cap V(J^A)
\]

has dimension less than \(n - i \) and degree at most \(nd\delta_i \leq nd^{n+1} \). The same holds for its projection on the \(Y_1, \ldots, Y_{n-i} \)-space.

Remark: I think that \(\Gamma_i \neq 0 \implies \Gamma'_i \neq 0 \). Proof welcome!
Inductive step
Inductive step

Input: a univariate description

\[Q_i(y_1, \ldots, y_{n-i}, Y_{n-i+1}), \quad Y_{n-i+2} = P_{i,n-i+2}(y_1, \ldots, y_{n-i}, Y_{n-i+1}), \]

\[\ldots \quad Y_n = P_{i,n}(y_1, \ldots, y_{n-i}, Y_{n-i+1}) \]

of the system \(\{ F_1^A = \cdots = F_i^A = 0, Y_1 = y_1, \ldots, Y_{n-i} = y_{n-i} \} \).
Inductive step

Input: a univariate description

\[Q_i(y_1, \ldots, y_{n-i}, Y_{n-i+1}), \quad Y_{n-i+2} = P_{i,n-i+2}(y_1, \ldots, y_{n-i}, Y_{n-i+1}), \]

\[\ldots \quad Y_n = P_{i,n}(y_1, \ldots, y_{n-i}, Y_{n-i+1}) \]

of the system \(\{F_1^A = \cdots = F_i^A = 0, Y_1 = y_1, \ldots, Y_{n-i} = y_{n-i}\} \).

Output: a univariate description

\[Q_{i+1}(y_1, \ldots, y_{n-i-1}, Y_{n-i}), \quad Y_{n-i+1} = P_{i+1,n-i+1}(y_1, \ldots, y_{n-i-1}, Y_{n-i}), \]

\[\ldots \quad Y_n = P_{i+1,n}(y_1, \ldots, y_{n-i-1}, Y_{n-i}) \]

of the system \(\{F_1^A = \cdots = F_{i+1}^A = 0, Y_1 = y_1, \ldots, Y_{n-i-1} = y_{n-i-1}\} \).
Step 1: lifting

Let $\gamma(Y_{n-i}) = \Gamma \Gamma'(y_1, \ldots, y_{n-i-1}, Y_{n-i})$ and suppose that $\gamma(y_{n-i}) \neq 0$.

- We can apply the lifting algorithm modulo the powers of $<Y_{n-i} - y_{n-i}>$.
- The polynomials $P_{i,j}$ do not have coefficients in $\mathbb{K}[Y_{n-i}]$, but the $S_{i,j}$ do.
- We stop the lifting after reaching degree δ_i and deduce the $S_{i,j}$.
Step 1: lifting

Let $\gamma(Y_{n-i}) = \Gamma\Gamma'(y_1, \ldots, y_{n-i-1}, Y_{n-i})$ and suppose that $\gamma(y_{n-i}) \neq 0$.

- We can apply the lifting algorithm modulo the powers of $\langle Y_{n-i} - y_{n-i} \rangle$.
- The polynomials $P_{i,j}$ do not have coefficients in $\mathbb{K}[Y_{n-i}]$, but the $S_{i,j}$ do.
- We stop the lifting after reaching degree δ_i and deduce the $S_{i,j}$.

Hence, the total cost is

$$O(n^4M(\delta_i) + (n^3 + nL)M(\delta_i)^2)$$

to obtain the parametrization

$$Q_i(y_1, \ldots, Y_{n-i}, Y_{n-i+1}), \quad Y_{n-i+2} = \frac{S_{i,n-i+2}(y_1, \ldots, Y_{n-i}, Y_{n-i+1})}{Q_i'(y_1, \ldots, Y_{n-i}, Y_{n-i+1})},$$

$$\ldots \quad Y_n = \frac{S_{i,n}(y_1, \ldots, Y_{n-i}, Y_{n-i+1})}{Q_i'(y_1, \ldots, Y_{n-i}, Y_{n-i+1})}.$$
Avoiding degenerate points

The solutions of

\[F_1^A = \cdots = F_i^A = F_{i+1}^A = 0, \Gamma_i \Gamma_i' \neq 0 \]

are the solutions of

\[Q_i = 0, \quad Y_{n-i+2} = P_{i,n-i+2}, \quad \cdots, \quad Y_n = P_{i,n}, \quad F_{i+1}^A = 0, \Gamma_i \Gamma_i' \neq 0. \]
Avoiding degenerate points

The solutions of

\[F_1^A = \cdots = F_i^A = F_{i+1}^A = 0, \; \Gamma_i \Gamma'_i \neq 0 \]

are the solutions of

\[Q_i = 0, \; Y_{n-i+2} = P_{i,n-i+2}, \; \ldots, \; Y_n = P_{i,n}, \; F_{i+1}^A = 0, \; \Gamma_i \Gamma'_i \neq 0. \]

Theorem (not easy). Let

\[W_i = V(F_1^A, \ldots, F_{i+1}^A, \Gamma_i \Gamma'_i). \]

For a generic matrix \(A \), the projection of \(W_i \) on the \(Y_1, \ldots, Y_{n-i-1} \)-space is contained in \(V(\Lambda_i) \), for some non-zero \(\Lambda_i \) of degree at most \(n^{O(1)} d^{3n} \).

Corollary for a random choice of \(y_1, \ldots, y_{n-i-1} \), we can forget about the constraint \(\Gamma_i \Gamma'_i \neq 0 \). In other words, we can assume that all denominators are non-zero.
Step 2: intersection

Let

\[F(Y_1, \ldots, Y_{n-i}, Y_{n-i+1}) = F^A_{i+1}(Y_1, \ldots, Y_{n-i+1}, P_{i,n-i+2}, \ldots, P_{i,n}). \]

This is a rational function.
Step 2: intersection

Let

$$F(Y_1, \ldots, Y_{n-i}, Y_{n-i+1}) = F_{i+1}^A(Y_1, \ldots, Y_{n-i+1}, P_{i,n-i+2}, \ldots, P_{i,n}).$$

This is a rational function.

Proposition (not easy). The polynomial Q_{i+1} is given by

$$Q_{i+1} = \text{res}_{Y_{n-i+1}}(F, Q_i).$$

In particular, this resultant

- is in $\mathbb{K}[Y_1, \ldots, Y_{n-i}]$, of degree at most $\delta_{i+1} \leq d\delta_i$,
- has no multiple factor.
Step 2: intersection

Let

\[F(Y_1, \ldots, Y_{n-i}, Y_{n-i+1}) = F_{i+1}^A(Y_1, \ldots, Y_{n-i+1}, P_i, n-i+2, \ldots, P_{i,n}). \]

This is a rational function.

Proposition (not easy). The polynomial \(Q_{i+1} \) is given by

\[Q_{i+1} = \text{res}_{Y_{n-i+1}}(F, Q_i). \]

In particular, this resultant

- is in \(\mathbb{K}[Y_1, \ldots, Y_{n-i}] \), of degree at most \(\delta_{i+1} \leq d\delta_i \),
- has no multiple factor.

If \(y_1, \ldots, y_{n-i-1} \) does not cancel \(\Gamma_{i+1} \), then the specialization

\[Q_{i+1}(y_1, \ldots, y_{n-i-1}, Y_{n-i}) \]

has no multiple factor.
Complexity of the intersection

Preliminaries. We do not compute the

\[P_{i,j}(y_1, \ldots, y_{n-i-1}, Y_{n-i}, Y_{n-i+1}), \]

which have degrees \(\delta_i^2, \delta_i \). Since the resultant \(Q_{i+1} \) has degree \(\leq d\delta_i \) in \(Y_{n-i} \), it is enough to compute

\[P_{i,j}(y_1, \ldots, y_{n-i-1}, Y_{n-i}, Y_{n-i+1}) \mod \langle Y_{n-i} - y_{n-i} \rangle^{d\delta_i+1}. \]
Complexity of the intersection

Preliminaries. We do not compute the

\[P_{i,j}(y_1, \ldots, y_{n-i-1}, Y_{n-i}, Y_{n-i+1}), \]

which have degrees \(\delta_i^2, \delta_i \). Since the resultant \(Q_{i+1} \) has degree \(\leq d\delta_i \) in \(Y_{n-i} \), it is enough to compute

\[P_{i,j}(y_1, \ldots, y_{n-i-1}, Y_{n-i}, Y_{n-i+1}) \mod (Y_{n-i} - y_{n-i})^{d\delta_i+1}. \]

- Using the extended Euclidean algorithm with coefficients modulo \(Y_{n-i}^{d\delta_i+1} \), the cost is
 \[O(M(\delta_i)M(d\delta_i) \log(\delta_i)). \]

- This requires that \((y_1, \ldots, y_{n-i}) \) cancels no leading term in the Euclidean algorithm: need to avoid a hypersurface of degree \(\simeq d^{4n+O(1)}. \)
Complexity of the intersection

Substitution: we use the given straight-line program to evaluate

\[F(y_1, \ldots, y_{n-i-1}, Y_{n-i}, Y_{n-i+1}, P_{i,n-i+2}, \ldots, P_{i,n}) \mod \langle Q_i, Y_{n-i} - y_{n-i} \rangle^{d\delta_i+1}. \]

Cost: \(O(LM(d\delta_i)M(\delta_i)) \).
Complexity of the intersection

Substitution: we use the given straight-line program to evaluate

\[F(y_1, \ldots, y_{n-i-1}, Y_{n-i}, Y_{n-i+1}, P_{i,n-i+2}, \ldots, P_{i,n}) \mod \langle Q_i, Y_{n-i} - y_{n-i} \rangle^{d\delta_i+1}. \]

Cost: \(O(LM(d\delta_i)M(\delta_i)) \).

Resultant: we compute the resultant of

\[F(y_1, \ldots, y_{n-i-1}, Y_{n-i}, Y_{n-i+1}, P_{i,n-i+2}, \ldots, P_{i,n}) \mod \langle Q_i, Y_{n-i} - y_{n-i} \rangle^{d\delta_i+1} \]

and \(Q_i(y_1, \ldots, y_{n-i-1}, Y_{n-i}, Y_{n-i+1}) \). This gives \(Q_{i+1}(y_1, \ldots, y_{n-i-1}, Y_{n-i}) \). We get the parametrization \(S_{i+1,n-i+1}(y_1, \ldots, y_{n-i-1}, Y_{n-i}) \) using the \(\lambda \)-resultant.
Complexity of the intersection

Substitution: we use the given straight-line program to evaluate

\[F(y_1, \ldots, y_{n-i-1}, Y_{n-i}, Y_{n-i+1}, P_{i,n-i+2}, \ldots, P_{i,n}) \mod \langle Q_i, Y_{n-i} - y_{n-i} \rangle^{d\delta_i+1}. \]

Cost: \(O(LM(d\delta_i)M(\delta_i)) \).

Resultant: we compute the resultant of

\[F(y_1, \ldots, y_{n-i-1}, Y_{n-i}, Y_{n-i+1}, P_{i,n-i+2}, \ldots, P_{i,n}) \mod \langle Q_i, Y_{n-i} - y_{n-i} \rangle^{d\delta_i+1} \]

and \(Q_i(y_1, \ldots, y_{n-i-1}, Y_{n-i}, Y_{n-i+1}) \). This gives \(Q_{i+1}(y_1, \ldots, y_{n-i-1}, Y_{n-i}) \). We get the parametrization \(S_{i+1,n-i+1}(y_1, \ldots, y_{n-i-1}, Y_{n-i}) \) using the \(\lambda \)-resultant.

Cost: using evaluation / interpolation, \(O(\delta_i M(d\delta_i) \log(d\delta_i)) \).

Remark: the evaluation / interpolation points should not cancel any leading term in the Euclidean remainder sequence.
Summary

The cost of the inductive step is (after simplifying a bit)

\[O((n^4 + nL)M(\delta_i)M(d\delta_i) \log(d\delta_i)). \]

Hence, the total cost is

\[O((n^4 + nL)M(\Delta)M(d\Delta) \log(d\Delta)), \]

where \(\Delta = \max \delta_i \).
Summary

The cost of the inductive step is (after simplifying a bit)

\[O((n^4 + nL)M(\delta_i)M(d\delta_i)\log(d\delta_i)). \]

Hence, the total cost is

\[O((n^4 + nL)M(\Delta)M(d\Delta)\log(d\Delta)), \]

where \(\Delta = \max \delta_i \).

There are several genericity conditions to be fulfilled:

- the change of variable should be generic enough;
- the points \(y_1, \ldots, y_{n-i} \) should avoid a degeneracy hypersurface;
- additional lucky sample points are needed for the resultant computations.

One can quantify these conditions. If all values are chosen in a finite subset \(S \) of \(\mathbb{K} \), the probability of failure is \(\sim \frac{d^{4n}}{|S|} \).
Bertini’s theorem
Bertini’s theorem

Theorem Suppose that $V(G_1, \ldots, G_s)$ has dimension 0, over a field of characteristic $>(d + 1)^s$. Then a generic linear combination

$$F_i = \lambda_{i,1}G_1 + \cdots + \lambda_{i,s}G_s$$

satisfies the conditions:

- $V_i = V(F_1, \ldots, F_i)$ has dimension $n - i$ for all i
- the Jacobian of F_1, \ldots, F_i has maximal rank on V_i for $i < n$.
Bertini’s theorem

Theorem Suppose that $V(G_1, \ldots, G_s)$ has dimension 0, over a field of characteristic $>(d+1)^s$. Then a generic linear combination

$$F_i = \lambda_{i,1}G_1 + \cdots + \lambda_{i,s}G_s$$

satisfies the conditions:

- $V_i = V(F_1, \ldots, F_i)$ has dimension $n - i$ for all i
- the Jacobian of F_1, \ldots, F_i has maximal rank on V_i for $i < n$.

Bonus If $s = n$ and the Jacobian determinant of G vanishes on none of the solutions, then this is still the case for F (generically).
Modular methods
Modular methods

Let F_1, \ldots, F_n be in $\mathbb{Q}[X_1, \ldots, X_n]$ that satisfy the following conditions (over \mathbb{Q}). For all i:

- $V_i = V(F_1, \ldots, F_i)$ has dimension $n - i$,
- the Jacobian determinant of F_1, \ldots, F_i has maximal rank on each component of V_i.

We will compute the target univariate representation by modular methods:

- do all computations modulo a prime p,
- lift the result over \mathbb{Q},
- and use a probabilistic test to stop the lifting.
Good specialization of the system

Theorem. There exists a non-zero integer A such that if $A \mod p \neq 0$, the following holds:

- the Jacobian determinant of $(F \mod p)$ vanishes on no solution of $(F \mod p)$,
- (Jacobian criterion) thus $(F \mod p)$ has dimension zero,
- and the number of solutions of $(F \mod p)$ is \leq the number of solutions of F.

Furthermore, one can take $\text{height}(A) \lesssim nhd^n$.
Good specialization of the system

Theorem. There exists a non-zero integer A such that if $A \mod p \neq 0$, the following holds:

- the Jacobian determinant of $(F \mod p)$ vanishes on no solution of $(F \mod p)$,
- (Jacobian criterion) thus $(F \mod p)$ has dimension zero,
- and the number of solutions of $(F \mod p)$ is \leq the number of solutions of F.

Furthermore, one can take $\text{height}(A) \lesssim nhd^n$.

Proof: effective Nullstellensatz. Since the Jacobian is non-zero on all solutions, there exists a non-zero integer A such that

$$A = G_0J + \sum G_iF_i,$$

with all G_i in $\mathbb{Z}[X_1, \ldots, X_n]$. Bounds on the size of A are a difficult theorem.
Good specialization, continued

Theorem. There exists a non-zero integer A' such that if $A' \mod p \neq 0$, the following holds:

- The discriminant of Q and all denominators in either P_1, \ldots, P_n or Q_1, \ldots, Q_n are non-zero modulo p.

Furthermore, one can take $\text{height}(A') \lesssim nhd^{2n}$.

Proof: bounds of the coefficients in Lecture 2.
Good specialization, continued

Theorem. There exists a non-zero integer A' such that if $A' \mod p \neq 0$, the following holds:

- The discriminant of Q and all denominators in either P_1, \ldots, P_n or Q_1, \ldots, Q_n are non-zero modulo p.

Furthermore, one can take $\text{height}(A') \lesssim nhd^{2n}$.

Proof: bounds of the coefficients in Lecture 2.

Corollary. When $AA' \mod p \neq 0$, $(Q, P_1, \ldots, P_n \mod p)$ are a univariate representation of the system $(F \mod p)$.

Proof. Easy: this describes solutions of the system mod p. Harder: this describes all solutions of the system mod p.
Lifting strategy

When \(AA' \mod p \neq 0 \), one can lift \((Q, P_1, \ldots, P_n) \mod p\), to compute either

\[Q, P_1, \ldots, P_n \mod p^{2^\ell} \quad \text{or rather} \quad Q, S_1, \ldots, S_n \mod p^{2^\ell} \]

for any \(\ell \).
Lifting strategy

When $AA' \mod p \neq 0$, one can lift $(Q, P_1, \ldots, P_n) \mod p$, to compute either

$$Q, P_1, \ldots, P_n \mod p^{2^\ell}$$

or rather

$$Q, S_1, \ldots, S_n \mod p^{2^\ell}$$

for any ℓ.

However, contrary to what happened before, we do not know what exactly is the height in the output. Two solutions:

- lift until we reach the upper-bound nhd^m on the S_i, and deduce the P_i (if needed),

- or use a probabilistic stop criterion:
 - at each lifting step, try a rational reconstruction, to get $(Q^*, P_1^*, \ldots, P_n^*)$ with coefficients in \mathbb{Q},
 - test $(Q^*, P_1^*, \ldots, P_n^*)$ modulo another prime p'.
Lifting and rational reconstruction
Rational reconstruction

Compare the two problems:

- Given $A/B \mod X^\alpha$, with $B(0) \neq 0$, reconstruct $A/B \in \mathbb{K}(X)$.
- Given $a/b \mod p^\alpha$, with $b \mod p \neq 0$, reconstruct $a/b \in \mathbb{Q}$.
Rational reconstruction

Compare the two problems:

- Given $A/B \mod X^\alpha$, with $B(0) \neq 0$, reconstruct $A/B \in \mathbb{K}(X)$.
- Given $a/b \mod p^\alpha$, with $b \mod p \neq 0$, reconstruct $a/b \in \mathbb{Q}$.

Assuming a bound d on the degrees of A, B, the first problem can be translated as a linear system in the coefficients of A and B. Dimension count suggests to take $\alpha \simeq 2d$.

Suppose a bound h is given on the height of a, b. The second problem has no linear algebra interpretation, but counting digits suggests to take $\alpha \simeq 2h/\log(p)$.
Rational reconstruction

Let M_Z be such that one can multiply integers of size ℓ in $M_Z(\ell)$ word operations.

Theorem. Suppose that $a/b = c \mod p^\alpha$, with $\log(|a|), \log(|b|) \leq h$, and that $\alpha > 2h/\log(p)$. From c, one can compute a/b in $O(M_Z(h) \log(h))$ word operations.

Remarks

- The condition means that $\text{height}(p^\alpha) > 2h$.
- The complexity is quasi-optimal.
Rational reconstruction

Let \(M_\mathbb{Z} \) be such that one can multiply integers of size \(\ell \) in \(M_\mathbb{Z}(\ell) \) word operations.

Theorem. Suppose that \(a/b = c \mod p^\alpha \), with \(\log(|a|), \log(|b|) \leq h \), and that \(\alpha > 2h/\log(p) \). From \(c \), one can compute \(a/b \) in \(O(M_\mathbb{Z}(h) \log(h)) \) word operations.

Remarks

- The condition means that \(\text{height}(p^\alpha) > 2h \).
- The complexity is quasi-optimal.

Sketch of proof. Apply the extended GCD algorithm to \(c \) and \(p^\alpha \). One gets a series of Bézout equalities

\[u_i c + v_i p^\alpha = r_i, \]

so that \(c = r_i/u_i \mod p^\alpha \) (assuming \(u_i \) is a unit).

The \(r_i \) decrease, the \(u_i \) increase, and the sum of their height is always \(\simeq 2h \).

Somewhere in the middle, there are \(u_{i_0} \) and \(r_{i_0} \) of height \(\simeq h \).
Complexity

Recall that:

- the P_i have height $\lesssim nhd^{2n}$,
- the $S_i = P_iQ' \mod Q$ have height $\lesssim nhd^n$.

Hence, at each lifting step, we convert the $P_i \mod p^{2\ell}$ to $S_i \mod p^{2\ell}$ and do rational reconstruction on the latter.
Complexity

Recall that:

- the P_i have height $\lesssim nhd^{2n}$,
- the $S_i = P_i Q'$ mod Q have height $\lesssim nhd^n$.

Hence, at each lifting step, we convert the P_i mod p^{2^ℓ} to S_i mod p^{2^ℓ} and do rational reconstruction on the latter.

Let $\ell' = 2^\ell \log(p)$. Then, the output size of the ℓth lifting step is $n\delta\ell'$ words.

Cost: $O((n^3 + nL)M(\delta)M_\mathbb{Z}(\ell')) + nM(\delta)M_\mathbb{Z}(\ell') + n\delta M_\mathbb{Z}(\ell') \log(\ell'))$.

- $\delta = \deg(Q)$.

- first term: lifting,
- second term: conversion to S_i,
- third term: rational reconstruction.
Stop criterion
Stop criterion

Pick a new prime p' and define a procedure $\text{test}(Q^*, S^*_1, \ldots, S^*_n)$, for a candidate resolution with coefficients in \mathbb{Q}.

- If p' cancels a denominator or the discriminant of Q^*, return false.
- Let $(q^*, p^*_1, \ldots, p^*_n) = (Q^*, S^*_1, \ldots, S^*_n \mod p')$.
- If not all F_i are reduced to zero modulo $(q^*, p^*_1, \ldots, p^*_n)$ and p', return false.
- If the Jacobian determinant is invertible modulo $(q^*, p^*_1, \ldots, p^*_n)$ and p', return true, else return false.
Stop criterion

Pick a new prime \(p' \) and define a procedure \(\text{test}(Q^*, S_1^*, \ldots, S_n^*) \), for a candidate resolution with coefficients in \(\mathbb{Q} \).

- If \(p' \) cancels a denominator or the discriminant of \(Q^* \), return \text{false}.
- Let \((q^*, p_1^*, \ldots, p_n^*) = (Q^*, S_1^*, \ldots, S_n^* \mod p')\).
- If not all \(F_i \) are reduced to zero modulo \((q^*, p_1^*, \ldots, p_n^*)\) and \(p' \), return \text{false}.
- If the Jacobian determinant is invertible modulo \((q^*, p_1^*, \ldots, p_n^*)\) and \(p' \), return \text{true}, else return \text{false}.

\textbf{Theorem.} If \(AA' \mod p' \neq 0 \), then \(\text{test}(Q^*, S_1^*, \ldots, S_n^*) \) outputs \text{true} if and only if

\[(Q^*, S_1^*, \ldots, S_n^*) = (Q, S_1, \ldots, S_n) \mod p'. \]

\textbf{Proof:} easy consequence of the definitions of \(A, A' \).

\textbf{Cost:} similar to that of the first lifting step.
Possible failures

Let p, p' be such that $AA' \mod p \neq 0$ and $AA' \mod p' \neq 0$.

- If we let the lifting process run, it will eventually correctly reconstruct Q, P_1, \ldots, P_n, and test will then output true.
- The possibility of failure is that we stop too early.
Possible failures

Let p, p' be such that $AA' \mod p \neq 0$ and $AA' \mod p' \neq 0$.

- If we let the lifting process run, it will eventually correctly reconstruct Q, P_1, \ldots, P_n, and test will then output true.

- The possibility of failure is that we stop too early.

Suppose that at step ℓ we have reconstructed $(Q^*, S_1^*, \ldots, S_n^*)$ with rational coefficients. The risk is that

$$(Q^*, S_1^*, \ldots, S_n^*) = (Q, S_1, \ldots, S_n) \mod p',$$

whereas they are actually different over \mathbb{Q}.

The coefficients $(Q^*, S_1^*, \ldots, S_n^*)$ of have height 2^ℓ; those of (Q, S_1, \ldots, S_n) have height $\simeq nhd^n$.

Hence, there exists an integer B_ℓ of height $\simeq 2^\ell + nhd^n$ such that, if $B_\ell \mod p' \neq 0$, the reductions mod p' differ, and we do not stop at step ℓ.
Possible failures

Let ℓ_{max} be the number of lifting steps to do before we can reconstruct Q, P_1, \ldots, P_n. Using the bounds on the output size, we get

$$\ell_{\text{max}} \leq \log(nhd^n).$$

Hence, there is a non-zero integer $M(p) = A A' B_1 \cdots B_{\ell_{\text{max}}}$ such that if

- p does not divide $A A'$,
- p' does not divide $M(p)$,

the whole lifting process works correctly.

The height of $M(p)$ is $\simeq nhd^{2n} \log(nhd^n)$ (rough upper bound).
Counting probabilities
Probabilistic arguments

Compare the two statements:

• There exists a non-zero polynomial \(P(E_1, \ldots, E_r) \) of degree \(\leq \cdots \) such that if \(P(e_1, \ldots, e_r) \neq 0 \), algorithm \(X \) succeeds.

 Remark: \(P(e_1, \ldots, e_r) = P \mod \langle E_1 - e_1, \ldots, E_r - e_r \rangle \).

• There exists a non-zero integer \(M \) of height \(\leq \cdots \) such that if \((M \mod p) \neq 0 \), algorithm \(Y \) succeeds.
Probabilistic arguments

Compare the two statements:

• There exists a non-zero polynomial $P(E_1, \ldots, E_r)$ of degree $\leq \cdots$ such that if $P(e_1, \ldots, e_r) \neq 0$, algorithm X succeeds.

 Remark: $P(e_1, \ldots, e_r) = P \mod \langle E_1 - e_1, \ldots, E_r - e_r \rangle$.

• There exists a non-zero integer M of height $\leq \cdots$ such that if $(M \mod p) \neq 0$, algorithm Y succeeds.

In both cases, we expect that for a random choice of e_1, \ldots, e_r (resp. of p), we should have a large probability of success.

• In the first case, this is controlled by Zippel-Schwartz’ result.

• In the second, we are going to use number theory.
Let B be an integer (which will control the probability of failure). We will pick our primes in $\Gamma = [B, \ldots, 2B]$.

Theorem. The cardinality of Γ is at least $\frac{B}{2 \log(B)}$.

Proof: hard.

Proposition. There are at most $\frac{\log(M)}{\log(B)}$ primes in Γ that divide M.

Proof: The product of these primes divides M.

Arithmetic Zippel-Schwartz
Arithmetic Zippel-Schwartz

Let B be an integer (which will control the probability of failure). We will pick our primes in $\Gamma = [B, \ldots, 2B]$.

Theorem. The cardinality of Γ is at least $\frac{B}{2 \log(B)}$.

Proof: hard.

Proposition. There are at most $\frac{\log(M)}{\log(B)}$ primes in Γ that divide M.

Proof: The product of these primes divides M.

Corollary. Suppose you can pick primes at random in Γ. Then the probability of finding one that divides M is at most $\frac{2 \log(M)}{B}$.

Corollary. Choosing $B \simeq 4 \log(M) = 4 \text{height}(M)$ gives $\simeq 50\%$ probability of success.

Our situation is slightly more involved (we have p and p'). However, similar bounds $B \simeq nhd^{2n} \log(nhd^{2n})$ give $\simeq 50\%$ probability of success.
Overall complexity

1. Solving the system mod p.

The resolution mod p is probabilistic. Hence, we have new constraint $p \gtrsim d^{4n}$ to get a probability of success of order 50%. Complexity:

$$O((n^4 + nL)M(\Delta)M(d\Delta)\log(d\Delta)M_\mathbb{Z}(n \log(d) + \log(h) + \cdots))$$

word operations, where $\Delta = \max \delta_i$.

- **blue term**: number of operations mod p,
- **red term**: cost of computations mod p.
Overall complexity

2. Lifting over \mathbb{Q}.

We have seen that $p, p' \gtrsim nhd^{2n}$ is enough to get 50% probability of success. Complexity:

$$O((n^4 + nL)M(\delta)M_\mathbb{Z}(H) \log(H))$$

word operations (a little bit oversimplified), where H is the height of the polynomials S_1, \ldots, S_n and $\delta = \delta_n = \text{deg}(Q)$.
Overall complexity

2. Lifting over \(\mathbb{Q} \).

We have seen that \(p, p' \gtrsim nhd^{2n} \) is enough to get 50% probability of success. Complexity:

\[
O((n^4 + nL)M(\delta)M_{\mathbb{Z}}(H) \log(H))
\]

word operations (a little bit oversimplified), where \(H \) is the height of the polynomials \(S_1, \ldots, S_n \) and \(\delta = \delta_n = \deg(Q) \).

3. Worst case.

Putting things at worst, all \(\delta_i \) are \(\leq d^i \), \(H \) is \(\leq nhd^n \), so we get a cost of

\[
O(Lhd^{2n+1})
\]

up to logarithmic factors.
Extras
Lifting fibers

In the previous algorithms, we used a description of the positive-dimensional varieties

\[V_i = \{F_1 = \cdots = F_i = 0\} \]

by means of zero-dimensional ones

\[F_1 = \cdots = F_i = 0, \ Y_1 = y_1, \ldots, \ Y_{n-i} = y_{n-i} \quad (\ast) \]

Using Newton iteration, one can recover a (generic) description of \(V_i \) from the solutions of (\ast), assuming the Jacobian determinant of \(F_1, \ldots, F_i \) vanishes nowhere on them.

- A system such as (\ast), together with a univariate representation for it, is called a \textit{lifting fiber} for \(F_1, \ldots, F_i \).
- Lifting fibers can be used to describe positive-dimensional varieties.
The most general version (Lecerf)

• Let F_1, \ldots, F_s be polynomials over a field \mathbb{K} of large enough characteristic.

• Let $V = V(F_1, \ldots, F_s)$ and write its equidimensional decomposition

$$ V = V_0 \cup V_1 \cup \cdots \cup V_r. $$

One can compute a family of lifting fibers $L F_0, \ldots, L F_r$ for V_0, \ldots, V_r by an algorithm that extends the previous one.

Difficult points: one needs to handle

• splittings (when intersections are not proper)

• multiple components (some Jacobian determinants are added to the system).

The cost is polynomial in L, s and some algebraic degree (that counts multiplicities).