Doing Algebraic Geometry with the
RegularChains Library

Parisa Alvandi', Changbo Chen?, Steffen Marcus?, Marc Moreno Maza!, Eric
Schost!, and Paul Vrbik!

! University of Western Ontario, Canada
{palvandi,moreno,eschost,pvrbik}@csd.uwo.ca
2 Chongqing Institute of Green and Intelligent Technology, CAS, China,
changbo.chen@hotmail.com
3 The College of New Jersey, Ewing, USA
steffenmarcus@gmail.com

Abstract. Traditionally, Groebner bases and cylindrical algebraic de-
composition are the fundamental tools of computational algebraic geome-
try. Recent progress in the theory of regular chains has exhibited efficient
algorithms for doing local analysis on algebraic varieties. In this note,
we present the implementation of these new ideas within the module
AlgebraicGeometryTools of the RegularChains library. The function-
alities of this new module include the computation of the (non-trivial)
limit points of the quasi-component of a regular chain. This type of cal-
culation has several applications like computing the Zarisky closure of a
constructible set as well as computing tangent cones of space curves, thus
providing an alternative to the standard approaches based on Groebner
bases and standard bases, respectively. From there, we have derived an
algorithm which, under genericity assumptions, computes the intersec-
tion multiplicity of a zero-dimensional variety at any of its points. This
algorithm relies only on the manipulations of regular chains.

Keywords: Algebraic geometry, regular chains, local analysis

1 Overview

Today, regular chains are at the core of algorithms computing triangular de-
composition of polynomial systems and which are available in several software
packages [7,9, 10]. Moreover, those algorithms provide back-engines for computer
algebra system front-end solvers, such as MAPLE’s solve command.

One of the algorithmic strengths of the theory of regular chains is its reg-
ularity test procedure. Given a polynomial p and a regular chain R, both in a
polynomial ring k[X1,...,X,] over a field k, this procedure computes regular
chains Ry, ..., R such that Ry,..., R, is a decomposition of R in some tech-
nical sense 4 and for each 1 < i < e the polynomial p is either null or regular

* The radical of the saturated ideal sat(R) of R is equal to the intersection of the
radicals of the saturated ideals of Ri,..., Re.

2 Alvandi-Chen-Marcus-Moreno Maza-Schost-Vrbik

modulo the saturated ideal of R;. In algebraic terms, this procedure decides
whether the hypersurface V' (p) contains at least one irreducible component of
the variety V (sat(R)). Thanks to the D5 Principle [4], this regularity test avoids
factorization into irreducible polynomials and involves only polynomial GCD
computations. This is a core routine in most operations on regular chains.

One of the technical difficulties of regular chain theory, however, is the fact
that regular chains do not fit well in the “usual algebraic-geometric dictionary”
(Chapter 4, [3]). Indeed, the “good” zero set encoded by a regular chain R is a
constructible set W(R), called the quasi-component of R, which does not corre-
spond exactly to the “good” ideal encoded by R, namely sat(R), the saturated
ideal of R. In fact, the affine variety defined by sat(R) equals W (R), that is, the
Zariski closure of W (R). This difficulty probably explains why the use of regular
chains in computational algebraic geometry remains limited, despite their nice
algorithmic properties such as the above mentioned regularity test.

In [1], three of the co-authors of this note have recently proposed a procedure
for computing the non-trivial limit points of the quasi-component W (R), that
is, the set lim(W(R)) := W(R) \ W(R) as a finite union of quasi-components
of some other regular chains. This procedure, currently implemented in the case
where sat(R) has dimension one, relies only on operations on regular chains,
like the regularity test. As a byproduct, it becomes possible to compute W (R)
without any Grobner basis computations. We illustrate this feature in Section 2.

The regularity test for regular chains is a powerful tool which has been studied
and applied within many situations including polynomial algebra [6], differential
algebra [2, 5], and computing with algebraic numbers [4], etc. Broadly speaking,
it allows to extend an algorithm working over a field into an algorithm working
over a direct product of fields. Or, to phrase it in another way, it allows to extend
an algorithm working at point into an algorithm working at a group of points.

Following that strategy, three of the co-authors of this note have proposed,
in another recent work [8], an extension of Fulton’s algorithm for computing the
intersection multiplicity of two plane curves at any of their intersection points.
Indeed, as pointed out by Fulton in his Intersection Theory, the intersection
multiplicity of two plane curves V' (f) and V(g) satisfy a series of seven properties
which uniquely define I(p; f, g) at each point p € V(f,g). Moreover, the proof
of this remarkable fact is constructive, which leads to an algorithm, that we call
Fulton’s algorithm. Unfortunately, this algorithm implicitly assumes that the
coordinates of the point p are rational numbers.

Another limitation of Fulton’s algorithm is that it does not generalize to n
polynomials f1, ..., f, in n variables z1, ..., x,. In [8], two extensions of Fulton’s
algorithm are proposed. First, thanks to the regularity test for regular chains,
the construction is adapted such that it can work correctly at any point of
V(f,g), rational or not. Secondly, thanks to the above mentioned procedure
for computing the limit points of a quasi-component, an algorithmic criterion
is proposed for reducing the case of n variables to the bivariate one. These
algorithmic tools are now implemented in the module AlgebraicGeometryTools
and are illustrated in Sections 3 and 4.

AlgebraicGeometryTools 3

2 Computation of limit points

Fig. 1. Limit points of one-dimensional regular chain.

'Im.:= LimitPoints(C, R, false, true);
Display(Im, R);

> with(AlgebraicGeometryTools):

> R := PolynomialRing([x, y, t]); &

>F 1= [t¥yA2 + y + 1, (t + 2)*t*xA2 + (y +1)* (x + 1)];
> C := Chain(F, Empty(R), R);

>

>

R := pobmomial_ring
F=lty"+y+1, (t+2) txX*+ (y+ 1) (x+1)]
C:= regular_chain
Im := [regular_chain, regular_chain, regular_chain, regular_chain)

x+1=0

) x+1=0 x+%=0 x—1=0
yto =0 gy=1=0 4 g o (Yt1=0
(+2=0 t+2=0 t=0 t=0

Fig. 2. Limit point computation with AlgebraicGeometryTools.

For a regular chain ® R C k[Xy, ..., X,], recall that the quasi-component of
Ris W(R) :=V(R)\ V(hgr), that is, the common zeros of R that do not cancel
the product hg of the initials of R. As mentioned in Section 1, computing the
non-trivial limit points, that is, the set im(W(R)) := W(R) \ W(R) has many
applications. The algorithm proposed in [1] relies on the Puiseux series solutions
of the quasi-component W (R).

5 We refer to [1] for the basic concepts and properties of regular chain theory.

4 Alvandi-Chen-Marcus-Moreno Maza-Schost-Vrbik

The MAPLE session displayed on Figure 2 illustrates a limit point computa-
tion with R = {ty? +y+ 1, (t +2)tz? + (y + 1)(z + 1)} for the variable ordering
t <y < z. Thus we have hp = t(t—2). As shown in Figure 1, there are four limit
points - see the yellow dots - which are returned by the command LimitPoints
in the form of regular chains. Other formats are possible; they are controlled by
the last two arguments of the LimitPoints command.

3 Intersection multiplicity in the plane

Fig. 3. Two plane curves with an intersection multiplicity of 14 at the origin.

PolynomialRing([x,y1);

> F 1= [(XA2+yA2)A243%xA2 % y-yA3, (XA2+YyA2IA3-4 #xA2 *yA2];
> dec := TriangularizeWithMultiplicity(F, R);

> Display(dec,R);

>

>R :
F

R = polynomial_ring

Fi= x+y) +3x2y y3 (x2+y 4x2y2]
dec:= [[1, regular_chain), [14, regular_chain]]

x=0
.| 14,
{)/ZO]

Fig. 4. Intersection multiplicity computation with AlgebraicGeometryTools.

16y2—5=0

(64 ¥+ 80) e +20y—-15=0
64y+80+0

Let us now turn to intersection multiplicity computation. We start with the
bivariate case, illustrating it with the two plane curves depicted on Figure 3.
The command TriangularizeWithMultiplicity, see Figure 4, computes the
five intersection points of these curves and, for each of them, returns the cor-
responding intersection multiplicity. Observe that four of these five points are

AlgebraicGeometryTools 5

described by a single regular chain; moreover, at each of those, the intersection
multiplicity is 1. In fact, the computation of their intersection multiplicity is
performed as a single computation since there is no need to write explicitly the
coordinates of each of these points.

4 Intersection multiplicity in higher dimension and
computation of tangent cones

Fig. 5. Three surfaces: case where reduction 3D to 2D is straightforward.

>R := PolynomialRing([x,y,z]):

> F = [x, x-yA2-zA2,y-zA3];

> dec := Triangularize(F, R); Display(dec, R);
>

Fi=[x V=2 +x -2 +y]
dec := [regular_chain, regular_chain]

x=0 x=0
y—zs=0 {y=0
Z+1=0 z=0

> IsTransverse(dec[1], F[3], F[1..2], R); IsTransverse(dec[2], F[3], F[1..2], R);
true

true
:> dec := TriangularizeWithMultiplicity(F, R); Display(dec, R);

dec:= [[1, regular_chain), [2, regular_chain]]
x=0 x=0
L{y-2=0 ||2{y=0
A+1=-0 z=0

Fig. 6. Intersection multiplicity computation with AlgebraicGeometryTools.

6 Alvandi-Chen-Marcus-Moreno Maza-Schost-Vrbik

Fig. 7. Three surfaces: case where reduction 3D to 2D requires cylindrification.

[>R := PolynomialRing([z, y, x1):

> F 1= [xA2+y+z-1, x+yA2+z-1,z+y+zA2-1];

> dec := Triangularize(F, R); Display(dec, R);
>

F=[+y+z—1 1 +x+z-1,2+y+z—1]
dec := [regular_chain, regular_chain, regular_chain, regular_chain, regular_chain]

z—x=0

z+2=0 z=0 z—1=0 z+1=0
y—x=0 Ay+1=0 ,{y-1=0 ,{y+1=0 ,{y-1=0
X¥+2x-1=0 x—2=0 x=0 x+1=0 x—1=0

[> Display(dec[3], R); IsTransverse(dec[3], F[3], F[1..2], R);
z=0
y—1=0
x=0
false
[> Cylindrify(dec[3], F, R, true);
[Brzey—1 -¥+y+x—pxtr28y—3F+)y —2y+1]

Fig. 8. Intersection multiplicity computation with AlgebraicGeometryTools.

Fulton’s algorithm does not apply directly to n polynomials fy,...,f, in n
variables z1,...,z,. However, the criterion proved in [8] allows to reduce the
computation of the intersection multiplicity of fi,..., f, at a point p to an in-
tersection multiplicity calculation in a lower dimension space. We recall this
criterion. Assume that h,, = V(f,,) is non-singular at p. Let v, be tangent hy-
perplane of h,, at p. Assume that h, meets each component (through p) of the
curve C = V(fi1,..., fn—1) transversally (that is, the tangent cone T'C),(C) inter-

sects v, only at the point p). Let g € k[x1,...,2,] be the degree 1 polynomial
defining v,,. Then, we have

I(pafl)afn) :I(p;fla"'afn—lag>'

Assume® that the coefficient of x,, in ¢ is non-zero, thus g = x,, — ¢’, where ¢’ €
E[x1,...,Tn—1]. Hence, we can rewrite the ideal (fi,..., fn—1,9) as (g1, - -, Gn-1,9")
where g; is obtained from f; by substituting x,, with ¢’. Then, we have

Lu(ps fiy - fn) = Lnca(Playen 15915+ -+ 5 Gna1)-

5 One can always reduce to this case by means of a linear change of coordinates.

AlgebraicGeometryTools 7

In the example from Figure 5, the tangent hyperplane y = 0 of V (y—2?) at the
origin and each component (through the origin) of the curve C := V(z,z +y* —
2%) = V(x, (y—2)(y+2)) meet transversally. Therefore, we have I3((0,0,0); z, z+
y?—22,y—23) = I,((0,0); 2,7 —22%) = 2, as shown by the calculation on Figure 6.

Verifying this transversality condition requires the computation of tangent
cones of and tangent planes. The module AlgebraicGeometryTools provides
commands TangentCone (of space curves) and TangentPlane for that purpose.
Each tangent cone is computed as a limit of secants and reduces to compute
limit points of quasi-components of one-dimensional regular chains.

In Figure 8, the transversality condition does not hold. This is detected us-
ing the TangentCone and TangentPlane commands. Another strategy is then at-
tempted, we call it cylindrification. We explain its principle under simplifying as-
sumptions. Assume that among f1, ..., f, one polynomial, say f, has degree one
in x,, and assume that its coefficient in x,, is invertible in the local ring at p. Then,
one replaces f1,..., fn—1 by g1,...,9n_1 Where g; is the pseudo-remainder of f;
by fn w.r.t a,. It is not hard to see that I(p; f1,..., fn) = 1091, -+ Gn-1, fn)
holds. Moreover, the transversality condition clearly holds for g1, ..., gn—1, fn-
Therefore, we are back in the above case where we could reduce computations
from n to n — 1 variables. Returning to the example of Figure 8, cylindrification
replaces the three surfaces on the left of Figure 7 with the surfaces on the right.

5 Concluding remarks

The new module AlgebraicGeometryTools of the RegularChains library per-
forms various operations on one-dimensional objects (computation of limit points
of constructible sets, tangent cones of space curves) as well as intersection multi-
plicity computation for zero-dimensional varieties. All these operations rely only
on regular chain techniques, that is, no calculations of Grobner bases or standard
bases are performed.

Extending limit point computations to higher dimension is work in progress.
The cylindrification strategy (for reducing intersection multiplicity calculation
from n to n — 1 variables) may fail in some situations; improving this situation
is also work in progress.

Benchmarks reported in the PhD dissertation of the last author shows that
the command TriangularizeWithMultiplicity is computationally efficient in
the sense that it can process almost all examples which can be processed by the
Triangularize7

The RegularChains library is available at www.regularchains.org.

Acknowledgments
This work was supported by the NSFC (11301524) and the CSTC (cstc2013jjys0002).

" The Triangularize command decomposes a polynomial system into regular chains
but discards any multiplicity information.

8 Alvandi-Chen-Marcus-Moreno Maza-Schost-Vrbik

References

1. P. Alvandi, C. Chen, and M. Moreno Maza. Computing the limit points of the
quasi-component of a regular chain in dimension one. In Vladimir P. Gerdt, Wol-
fram Koepf, Ernst W. Mayr, and Evgenii V. Vorozhtsov, editors, CASC, volume
8136 of Lecture Notes in Computer Science, pages 30—45. Springer, 2013.

2. F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Computing representations
for radicals of finitely generated differential ideals. Appl. Algebra Eng. Commun.
Comput., 20(1):73-121, 2009.

3. D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Spinger-Verlag,
2nd edition, 1996.

4. J. Della Dora, C. Dicrescenzo, and D. Duval. About a new method for computing
in algebraic number fields. In Proc. of EUROCAL’ 85, pages 289-290, 1985.

5. E. Hubert. Factorization-free decomposition algorithms in differential algebra. J.
Symb. Comput., 29(4-5):641-662, 2000.

6. M. Kalkbrener. Algorithmic properties of polynomial rings. J. Symb. Comput.,
26(5):525-581, 1998.

7. F. Lemaire, M. Moreno Maza, and Y. Xie. The RegularChains library. In Maple
10, Maplesoft, Canada, 2005. www.regularchains.org

8. S. Marcus, M. Moreno Maza, and P. Vrbik. On Fulton’s algorithm for computing
intersection multiplicities. In Proc. of CASC’12, pages 198-211, 2012.

9. D. K. Wang. The Wsolve package. http://www.mmrc.iss.ac.cn/~dwang/wsolve. html.

10. D. M. Wang. Epsilon 0.618. http://www-calfor.lip6.fr/~wang/epsilon.

