Exponential of a series.

In this problem, all power series we consider will have coefficients in \(\mathbb{Q} \); all complexity estimates will count operations in \(\mathbb{Q} \) at unit cost. You can reuse all results seen or used in class on the function \(M \), such as

\[
M(n), \quad M(n+1) = O(M(n)), \quad M(2n) = O(M(n)), \quad M(1)+M(2)+\cdots+M(2^k) = O(M(2^k)), \quad \ldots,
\]
as well as the results on the cost of power series inversion.

1. Suppose that \(f \) is a power series of the form

\[
f = f_1 x + f_2 x^2 + f_3 x^3 + \cdots,
\]

so that \(f_0 = 0 \). Prove that the coefficients of \(x^0, x^1, \ldots, x^{n-1} \) in \(f^n \) are zero.

In all this problem, we will use such an \(f \).

2. We now define

\[
i(f) = 1 - f + f^2 + \cdots + (-1)^n f^n + \cdots \\
\ell(f) = f - \frac{f^2}{2} + \frac{f^3}{3} + \cdots + (-1)^{n-1} \frac{f^n}{n} + \cdots \\
\exp(f) = 1 + f + \frac{f^2}{2!} + \frac{f^3}{3!} + \cdots + \frac{f^n}{n!} + \cdots
\]

We admit that all these power series are well-defined. You should imagine that \(\exp(f) \) is the exponential of \(f \) and that \(\ell(f) \) is the logarithm of \(1 + f \).

(a) Compute \(\exp(x + 2x^2 + 1000x^3) \mod x^3 \)

(b) Question (1) implies that \(f^n \mod x^n = 0 \), but also \(f^{n+1} \mod x^n = 0, f^{n+2} \mod x^n = 0, \ldots \) (this is easy; I don’t ask you to prove it). Use this to give a (naive) algorithm that computes \(\exp(f) \mod x^n \) in \(O(nM(n)) \) operations.

The goal of this problem is to compute \(n \) terms of \(\exp(f) \) more efficiently; we will first show how to compute \(n \) terms of \(\ell(f) \).
3. Prove that \(i(f) = 1/(1 + f) \), by proving that \((1 + f)i(f) = 1\). Using Newton iteration, how many operations does it take to compute \(n \) terms of \(i(f) \)?

4. Let \(f' \) be the derivative of \(f \) with respect to \(x \). If
\[
f = f_1x + f_2x^2 + f_3x^3 + \cdots,
\]
what does \(f' \) look like?

5. Prove that the derivative of \(\ell(f) \) with respect to \(x \) is \(f'i(f) \). Deduce that you can compute \(n \) terms of \(\ell(f) \) in \(O(M(n)) \) operations.

Hint: \((f^k)' = kf'f^{k-1}\). **You can freely use term-wise differentiation without justifying it.**

6. We will admit that
\[
\ell(\exp(f) - 1) = f.
\]
I’m not asking for a proof; instead, verify that, for \(f = x \),
\[
\ell(\exp(x) - 1) \text{ rem } x^4 = x.
\]

7. If we write \(g = \exp(f) - 1 \), then the previous equality shows that
\[
\ell(g) - f = 0.
\]
Show that the Newton iteration for this equation (when \(g \) is the unknown to solve for) is
\[
g_{(i+1)} = g_{(i)} - (g_{(i)} + 1)(\ell(g_{(i)}) - f) \mod x^{2i+1}.
\]
You don’t have to prove correctness of the iteration. You can start by explaining why the derivative of \(\ell(g) \) with respect to \(g \) should be \(1/(1 + g) \).

8. Taking correctness for granted, prove that you can compute \(n \) terms of \(\exp(f) \) in \(O(M(n)) \) operations.