
Disk Access Analysis for System Performance Optimization

DANIEL L. MARTENS AND MICHAEL J. KATCHABAW
Department of Computer Science

The University of Western Ontario
London, Ontario

CANADA
{dlmarten,katchab}@csd.uwo.ca http://www.csd.uwo.ca

Abstract: - As the gap between processor and disk performance continues to grow in modern computing
systems, so too does the need for improvements in disk performance management. In an effort to remove or
reduce the performance bottleneck created by disk accesses, new approaches and algorithms for disk
scheduling have been developed in recent years. While providing performance improvements, these
approaches each have their own strengths and weaknesses that ultimately limit their applicability and
usefulness across a wide variety of system workloads.

This paper introduces a new method of disk access optimization which focuses primarily on dynamic
scheduling algorithm selection and algorithm tuning. Disk activity is continuously collected in real-time and
cached for later analysis to discover current system load patterns, while a scoring system is used to detect
overall trends by system processes. Once analysis is complete, disk scheduling algorithms are automatically
selected and/or tuned based on heuristics or criteria to ensure that the disk scheduling algorithm in use is well
suited to the current workload of the system. Experimentation to date has been quite positive, demonstrating
this approach has great potential for assisting in the optimization of system performance.

Key-Words: - Disk scheduling, disk analysis, disk pattern recognition, system performance optimization

1 Introduction
While processing speed in computing systems has
been increasing at a rapid pace for the last two
decades, relatively little has been done to improve
access to stable and reliable mass storage. On
average, processing speeds tend to increase 55% per
year, while disk access speeds only increase a mere
7% [5]. Even though cost effective disk space has
increased dramatically, access to secondary non-
volatile memory is in the order of magnitudes
slower than access to faster primary memory. This
has created a very large bottleneck in modern
computers. It is no longer sufficient to simply store
the data; high performance access to it must be
provided regardless of size or location to support the
rigors of modern computing [2].

New approaches and algorithms for disk
scheduling have been developed in recent years in
an attempt to eliminate or reduce this performance
bottleneck. Most current approaches to disk
scheduling implement algorithms that attempt to
provide the best-overall performance for every
possible workload. This is not possible; however, as
operating system workloads are varied, diverse, and
change over time, and a single algorithm cannot
appropriately service all of them. For example, a
scheduler which best serves random pattern disk
activity will not provide the same performance

under sequential activity. There are simply many
fundamental trade-offs in disk scheduling algorithm
design that ultimately limit the effectiveness of a
single approach on its own [7].

This paper introduces a new approach to disk
access optimization to overcome this. Instead of
creating algorithms to best service all activity, our
approach is to utilize existing algorithms depending
on their respective strengths and performance
benefits under each different workload scenario. In
essence, the disk scheduling algorithm in use is
selected and tuned based on the observed workload
and performance of the system. If the scheduling
algorithm in use cannot appropriately handle the
current system workload, it can be quickly swapped
out and replaced by one that can. This allows our
approach to disk scheduling to effectively exploit
the strengths of all disk scheduling algorithms while
masking their weaknesses.

At the core of our approach is a real-time
analysis engine which detects disk access patterns
and imposes decision heuristics to inform the
underlying system when to switch algorithms and
which available algorithm is best suited for the
current workload. The system in turn loads and
unloads algorithms on demand as requested. This
requires the modularization of algorithm code in a
shared library type of approach in which algorithms

must register themselves with the scheduler and be
prepared to run at any point in time. The requisite
support mechanisms are becoming available in
modern operating systems, and are currently
available in Linux [1], which was the target platform
for our prototyping and proof of concept efforts.

The remainder of this paper is structured as
follows. Section 2 presents a brief overview of
background and related work in this area. Section 3
describes our I/O Analyzer system (IOAZ), capable
of carrying out disk access analyses in real-time and
switching and tuning disk scheduling algorithms.
This includes architectural and implementation
details, along with experimentation used to calibrate
disk access pattern detection and algorithm
selection. Section 4 presents results from using
IOAZ to date. Section 5 concludes this paper with a
summary and discussion of future work in this area.

2 Background and Related Work
Several classic disk scheduling algorithms are
discussed at length in [10], including First Come,
First Serve (FCFS), Shortest Seek Time First
(SSTF), SCAN, Cyclic SCAN (C-SCAN), LOOK,
and Cyclic LOOK (C-LOOK), each with their own
performance characteristics. While being relatively
simplistic, these algorithms can still provide solid
performance under certain workloads. For example,
FCFS performs quite well when disk accesses are
dominated by a single process making sequential
requests, as discussed later in this paper.

Newer approaches have emerged to provide
more stringent and flexible performance controls to
disk schedulers. These approaches include Yet
another Fair Queuing (YFQ) [3], the Anticipatory
Scheduler (AS) [6], and the Deadline Scheduler
(DEAD) and Complete Fair Queuing (CFQ) created
for Linux by Jens Axboe and discussed in [1], which
apply queuing models, deadlines, and advanced
heuristics to the problem of disk scheduling. Other
approaches have been introduced that take into
account physical disk characteristics (such as arm
positioning time) into scheduling decisions [4].

The above approaches to disk scheduling each
have their own strengths and weaknesses. As a
result, there is no clear winner across all possible
disk access workloads. Our approach to disk
scheduling overcomes this by, in essence, providing
a meta-scheduling framework that does not delve
into the details of scheduling, but rather focuses on
the pattern of activity created by the current
workload and the selection of an appropriate disk
scheduling algorithm that excels at scheduling that
particular type of workload.

3 The I/O Analyzer
In the previous section, we examined the current
state of disk scheduling. Most approaches employ
algorithms which are best suited for a particular
pattern of disk accesses. Some work best for
sequential accesses, others for random activity, and
others attempt to provide the best overall throughput
and provide reasonable performance for both
sequential and random accesses.

If these patterns of disk accesses could be
detected in real-time, then the system could select
the disk scheduling algorithm best suited to this
workload, and improve performance accordingly.
This is the basis of our I/O Analyzer (IOAZ),
discussed in this section.

3.1 Architecture and Design of IOAZ
IOAZ is a collection of dependent modules to
collect real-time disk access information, perform
analysis of collected data and allow administrative
users to view or edit configuration of the entire
system. Each module is responsible for a distinct
area of the overall IOAZ architecture. This
architecture is shown in Figure 1.

Process Process

Disk Request Queuing System

Process

I/O Analyzer
Interface

Activity
Collector

Process

Activity
Store

I/O Analyzer
Process

Analysis

Disk I/O Scheduler

Disk Access
Select

Algorithm

I/O Analyzer
Management

Utility

Disk Disk Disk

Kernel/User Level

Figure 1. IOAZ Architecture

Without IOAZ present, as system processes
submit requests for disk accesses, these requests are
submitted to the Disk Request Queuing System to
wait for further processing and dispatching. When a
new disk request can be serviced, the Disk I/O
Scheduler determines the next request to process
according to the scheduling algorithm currently in
use, fetches it from the Disk Request Queuing
System, and then goes to the appropriate disk to
satisfy the request. Results then trickle back to the
requesting process upon completion.

The presence of IOAZ does not disrupt this flow
of activity. IOAZ was designed to easily integrate
with the existing disk I/O subsystem of the host
operating system without disrupting its operation or
consuming great quantities of memory or processing
resources. Hooks placed within the Disk Request
Queuing System inform the I/O Analyzer Interface
of any requests which pass through the layer. IOAZ
quickly accounts for the request information in its
internal Activity Store and returns control so as not
to delay request processing.

Actual analysis of collected data occurs in a
passive fashion through a background process, the
I/O Analyzer Process, which executes periodically.
When it executes, it analyzes data collected during
the last period of time from the Activity Store and
purges this data from the Store when it is no longer
needed. This analysis first identifies the pattern in
disk accesses, and then determines the best disk
scheduling algorithm to service that pattern of
accesses. If the results of this analysis indicate that
a new algorithm is required, the I/O Analyzer
Process informs the Disk I/O Scheduler of its
decision, and the new algorithm is activated.

The last module of IOAZ is the I/O Analyzer
Management Utility, responsible for allowing
administrative users control over the behavior of
IOAZ. This allows manual selection and tuning of
disk scheduling algorithms as well as changing of
various IOAZ parameters, including how frequently
the I/O Analyzer Process executes, and so on.

3.2 Implementation of IOAZ
IOAZ was implemented in C and integrated as
kernel modules into version 2.6.11 of the Linux
kernel. This version of the Linux kernel supports
relatively new abstractions that allow multiple disk
scheduling algorithms to co-exist in the kernel to be
switched at either boot-time or run-time through a
manual process that requires administrative user
privileges.

Since the Linux kernel is open source, changes to
the kernel could be easily made to integrate IOAZ
into its disk I/O subsystem. Collecting data was a
simple task, by passing disk request structures from
the Disk Request Queuing System to the IOAZ
through the I/O Analyzer Interface. Since the Linux
kernel already contained mechanisms for switching
disk scheduling algorithms at run-time in a manual
fashion, adding support for IOAZ controlled
switching of algorithms only required modifications
to these mechanisms. Since these mechanisms are
rarely used in practice, however, many updates were
required to fix outstanding or previously unknown
problems as part of this process.

3.3 Disk Access Pattern Identification
In order to determine which disk scheduling
algorithm is best suited to the current system
workload, IOAZ first needs to identify patterns in
disk access requests to determine the dominant
characteristics of the workload. With this
information, IOAZ can make an informed decision
as to which algorithm is most appropriate.

While there are a wide variety of potential
defining characteristics that could be used in this
kind of analysis, in our current work, we focus on
the following workload characteristics:
• The number of processes making disk requests.

This can be tracked easily because disk requests
are tagged according to the process that generated
the request, and so IOAZ will have direct access
to this information.

• Whether the requests are sequential or random in
nature. Sequential access can be detected as an
I/O merge activity that pools multiple requests for
adjacent disk blocks into a single request for
multiple blocks before IOAZ sees the disk
request. Observing a large number of merged
requests for multiple blocks is highly indicative of
sequential activity. Conversely, the absence of
this activity indicates a more random workload.

• Whether the requests tend to be read requests or
write requests to retrieve or store data
respectively. Since requests are tagged with this
information, simple counters can collect the
necessary information.

Restricting the characteristics initially studied
allows us to focus on relatively simple patterns of
activity, while the extensibility and flexibility of
IOAZ allows us to add support for additional
characteristics to support identifying more complex
patterns of activity in the future.

After the above analysis, IOAZ has a measure of
the number of processes generating activity, the
proportion of activity that was sequential in nature
as opposed to random, and the proportion of activity
that was read requests as opposed to write requests.
To simplify pattern matching and algorithm
selection, empirically derived thresholds were
applied to this data to categorize the workload
according to these measurements. Categories were
determined by every combination of the following
characteristics: number of processes generating the
workload (1, 4, 8, or 16 or more), access
sequentiality (sequential or random), and access
mode (read or write).

To validate our data collection and categorization
of identified disk access patterns, IOAZ was fed
traces of disk accesses generated by a collection of

workloads with known characteristics. (For
example, we used an invocation of the cat command
to read a file from start to finish to produce a
sequential read pattern of activity.) Without fail,
IOAZ was able to correctly identify the dominant
disk access pattern in all cases. For details on these
experiments, the reader is urged to consult [7].

Since IOAZ could now categorize disk
workloads in a reliable fashion, the next step was to
conduct experimentation to determine which disk
scheduling algorithm could best service each
workload category.

3.4 Analysis of Disk Scheduling Algorithms
In this section, we analyze the performance of four
of the disk scheduling algorithms introduced in
Section 2 commonly available in the Linux 2.6.11
kernel: FCFS, AS, DEAD, and CFQ. The purpose
of this analysis was to determine which algorithm
performed better on which categories of workloads.

To carry out this analysis, experimentation was
conducted using the IOZone tool [9] on a test
system with the following configuration:
• AMD Athlon 1.2GHZ processor with 266MHZ

Front Side Bus and 256KB Cache
• 1GB PC2100 RAM
• 40GB Maxtor IDE Hard Drives, 4MB Cache, 8ms

Seek Time
• Linux Kernel 2.6.11
IOZone is an incredibly flexible benchmarking tool,
capable of generating disk workloads across all of
the workload categories that could be identified by
our IOAZ system.

Experimentation consisted of executing standard
IOZone tests [9] with 1, 4, 8, and 16 worker
processes generating the appropriate workloads, and
with each experiment replicated 5 times. Each
IOZone test was manually categorized as generating
sequential read, sequential write, random read, or
random write patterns of access to match the
categorizations used by IOAZ.

It was thought originally that each experiment
would have a decisive winner, but that was not
always the case. Ultimately the success of each
algorithm depended on how success was being
defined. Did the algorithm maximize the
performance of the lowest performing process? Did
it maximize the performance of the highest
performing process? Or, did it maximize the mean
performance across all processes? Since any of
these goals ultimately could be desirable, we tracked
results for each of these goals separately. This
allows administrators to configure IOAZ to base its
decisions for switching and tuning disk scheduling

algorithms on the given goal for optimizing system
performance.

Below, we have summarized the key results of
this experimentation, highlighting the best disk
scheduling algorithms under the various workload
categories currently tracked by IOAZ. Results are
given for each of the three performance goals
discussed above. Further details of experiments can
be found in [7].

Worker
Processes

Sequential
Read

Sequential
Write

Random
Read

Random
Write

1 FCFS FCFS FCFS DEAD
4 AS FCFS FCFS FCFS
8 AS DEAD FCFS FCFS

≥ 16 FCFS FCFS FCFS FCFS
Table 1. Best Algorithm for Maximizing

Performance of Lowest Performing Process

Worker
Processes

Sequential
Read

Sequential
Write

Random
Read

Random
Write

1 FCFS FCFS FCFS DEAD
4 AS AS AS AS
8 AS AS AS AS

≥ 16 AS AS DEAD DEAD
Table 2. Best Algorithm for Maximizing

Performance of Highest Performing Process

Worker
Processes

Sequential
Read

Sequential
Write

Random
Read

Random
Write

1 FCFS FCFS FCFS DEAD
4 AS FCFS AS AS
8 AS DEAD AS AS

≥ 16 AS AS AS AS
Table 3. Best Algorithm for Maximizing the Mean

Performance Across All Processes

As can be seen from Table 1, the FCFS disk
scheduling algorithm dominated most workload
categories when the goal was to maximize the
performance of the lowest performing process.
When it came to maximizing the performance of the
highest performing process or the mean performance
of all processes, as shown in Table 2 and Table 3
respectively, the AS approach tended to be the best
suited for most workload categories. It is interesting
to note that FCFS was consistently better with only
a single worker process generating workload across
all goals, except for random write, which fared best
with the DEAD approach.

The above experiments were conducted with the
IOZone tool imposing a controlled workload with
very dominant characteristics that allow for easy
categorization of the workload. In practice,

however, this may not be the case, depending on the
application mix executing on the system. In such
cases, it might become quite difficult to determine
the appropriate category for the current workload,
making decisions made by IOAZ more difficult, less
reliable, and more apt to change over time.
Consequently, experiments were also conducted
where the sequential versus random and read versus
write aspects of disk accesses were ignored, and
only the number of worker processes contributing to
the workload was tracked.

Worker
Processes

Best
Algorithm

1 FCFS
4 AS
8 AS

≥ 16 AS
Table 4. Best Algorithm for Maximizing

Performance Tracking Only Number of Processes

Table 4 presents the results of experiments when
only the number of worker processes was being
tracked, and other workload characteristics were
ignored. Interestingly, in this case, the same disk
scheduling algorithms worked best for maximizing
the performance of the highest performing process,
the lowest performing processes, and processes on
average.

With experimentation completed, these results
were used as the basis for decision matrices to be
used by IOAZ in determining which disk scheduling
algorithm to use given observations of system
workload and an optimization goal. IOAZ can be
configured to either use or ignore data on sequential
versus random and read versus write patterns in disk
accesses, to switch between using decision matrices
derived from Tables 1, 2, and 3, or Table 4.
Because these decision matrices are logically
separate from the decision mechanisms in IOAZ, it
is easy to tune the decision making process used by
IOAZ by adjusting the appropriate decision matrix if
new data suggests a different algorithm should be
used in a particular situation. These changes can be
put into effect at boot-time or run-time, using the
I/O Analyzer Management Utility.

At this point, IOAZ now has everything it needs
to function. It can identify patterns in disk accesses,
and use these patterns to select an appropriate disk
scheduling algorithm capable of best servicing the
observed pattern. With this in mind, we can now
conduct experiments to examine the performance of
IOAZ as a whole in optimizing disk-related system
performance.

4 Experimental Results and
 Experience
To investigate the performance benefits of IOAZ,
additional experiments were conducted. These
experiments were conducted using the same test
system configuration discussed in the previous
section, using IOAZ configured to use the decision
matrices developed in that section. IOAZ was also
configured so that its background process would
execute once every second to analyze current disk
activity and determine if a new disk scheduling
algorithm should be put in place. The results
presented below are only a sampling of the results of
using IOAZ to date; for complete experimental
results, refer to [7] for more details.

4.1 MySQL Experimentation
The MySQL database server [8] provides a standard
benchmarking suite to test the performance of a
server installation. Because of the heavy disk
activity involved with database management
systems, this seemed to be an appropriate test of
IOAZ performance. The latest version of the
MySQL database, version 5.0, was installed on our
test system, and the included sql-bench benchmark
was run to execute all available benchmarking tests,
including a mix of read and write tests, and both
sequential and random access behaviours. Better
performance in this benchmark is shown by a lower
time of completion for the benchmark.

Figure 2. MySQL Benchmark Results

The mean results of 5 repetitions of experiments

with the MySQL benchmarking tool are shown in
Figure 2. In these experiments, IOAZ provided
better performance on average for the MySQL
benchmark than all other schedulers tested, with an
average test time of 73 minutes and 25 seconds.
This is a 4% increase over FCFS and nearly 14%
better than AS.

4.2 Disk Zeroing
Additional experimentation was conducted using a
test script used for zeroing disks within our
department for safe asset disposal. We executed
this tool to overwrite a one gigabyte partition
entirely with zeroes in a sequential fashion in a
single pass, and repeated this experiment 5 times.

Figure 3. Disk Zeroing Results

As can be seen from the experimental results

shown in Figure 3, IOAZ outperforms all other
algorithms during this test with an average time
savings of 4% to 9%.

4.3 Additional Results
Other tests were carried out using IOZone to
produce a variety of extreme workloads. IOAZ
consistently outperformed the DEAD and CFQ
algorithms, but had difficulty bettering AS in
experiments with many processes or FCFS in
experiments with a single process [7], because of
algorithm switching that occurred when IOAZ
concluded one was necessary according to its
observations. (This was improved by switching
decision matrices to ignore hints of sequential
versus random and read versus write accesses in the
data, as discussed earlier in the previous section.)
Nevertheless, IOAZ appeared to perform better
overall as FCFS and AS could not alter their
behaviours over time when it was necessary. More
testing for further study is currently under way.

5 Concluding Remarks
This paper introduced a new approach to disk
scheduling to improve system performance. This
approach focuses on using analyses of disk accesses
to determine the best disk scheduling algorithm for
the current workload, and switching and tuning
algorithms as necessary to improve performance. A
prototype system, IOAZ, was implemented as a

proof of concept, and experimentation with this
prototype has been quite positive, yielding
interesting results and showing great promise.

There are many possible avenues for continued
research in this area worthy of examination. New
heuristics need to be developed for the identification
of additional and more complex patterns of disk
accesses. Further experimentation is necessary to
determine the best disk scheduling algorithm to
select in a wider variety of workload conditions and
hardware configurations. Work is also required to
better detect changes in workloads to support faster
reaction times without sacrificing stability.

References:
[1] R. Appleton. Disk Scheduling in Linux.

Departmental Talk in the Computer Science
Department at Northern Michigan University.
December 2003.

[2] G. Gibson, J. Vitter and J. Wilkes. Report of the
Working Group on Storage I/O for Large-Scale
Computing. ACM Computing Surveys, 28 (4).
December 1996.

[3] P. Goyal, X. Guo, and H. Vin. A Hierarchical
CPU Scheduler for Multimedia Operating
Systems. The Second Symposium on Operating
Systems Design and Implementation. Seattle,
Washington, October 1996.

[4] L. Huang and T. Chiueh. Experiences in
Building a Software-Based SATF Scheduler.
Technical report, State University of New York
at Stony Brook. July 2002.

[5] S. Iyer. The Effect of Deceptive Idleness on
Disk Schedulers. Master’s Thesis, Computer
Science Department, Rice University. April
2001.

[6] S. Iyer and P. Druschel. Anticipatory
Scheduling: A Disk Scheduling Framework to
Overcome Deceptive Idleness in Synchronous
I/O. Proceedings of the 18th ACM Symposium
on Operating Systems Principles. Banff,
Canada. October, 2001.

[7] D. Martens. Disk Access Analysis for Optimal
Performance. Master’s Thesis, Department of
Computer Science, The University of Western
Ontario. September 2005.

[8] MySQL Inc. MySQL 5.0 Reference Manual.
Software Documentation, 2005.

[9] W. Norcott and D. Capps. IOZone Filesystem
Benchmark. Software User Manual and
Documentation, August 2003.

[10] B. Worthington, G. Ganger, and Y. Patt.
Scheduling Algorithms for Modern Disk Drives.
Proceedings of the 1994 ACM Sigmetrics
Conference. Nashville, Tennessee, May 1994.

