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Abstract: - As the gap between processor and disk performance continues to grow in modern computing 
systems, so too does the need for improvements in disk performance management.  In an effort to remove or 
reduce the performance bottleneck created by disk accesses, new approaches and algorithms for disk 
scheduling have been developed in recent years.  While providing performance improvements, these 
approaches each have their own strengths and weaknesses that ultimately limit their applicability and 
usefulness across a wide variety of system workloads. 
 
This paper introduces a new method of disk access optimization which focuses primarily on dynamic 
scheduling algorithm selection and algorithm tuning. Disk activity is continuously collected in real-time and 
cached for later analysis to discover current system load patterns, while a scoring system is used to detect 
overall trends by system processes. Once analysis is complete, disk scheduling algorithms are automatically 
selected and/or tuned based on heuristics or criteria to ensure that the disk scheduling algorithm in use is well 
suited to the current workload of the system.  Experimentation to date has been quite positive, demonstrating 
this approach has great potential for assisting in the optimization of system performance. 
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1   Introduction 
While processing speed in computing systems has 
been increasing at a rapid pace for the last two 
decades, relatively little has been done to improve 
access to stable and reliable mass storage.  On 
average, processing speeds tend to increase 55% per 
year, while disk access speeds only increase a mere 
7% [5].  Even though cost effective disk space has 
increased dramatically, access to secondary non-
volatile memory is in the order of magnitudes 
slower than access to faster primary memory.  This 
has created a very large bottleneck in modern 
computers.  It is no longer sufficient to simply store 
the data; high performance access to it must be 
provided regardless of size or location to support the 
rigors of modern computing [2].   

New approaches and algorithms for disk 
scheduling have been developed in recent years in 
an attempt to eliminate or reduce this performance 
bottleneck.  Most current approaches to disk 
scheduling implement algorithms that attempt to 
provide the best-overall performance for every 
possible workload.  This is not possible; however, as 
operating system workloads are varied, diverse, and 
change over time, and a single algorithm cannot 
appropriately service all of them.  For example, a 
scheduler which best serves random pattern disk 
activity will not provide the same performance 

under sequential activity.  There are simply many 
fundamental trade-offs in disk scheduling algorithm 
design that ultimately limit the effectiveness of a 
single approach on its own [7]. 

This paper introduces a new approach to disk 
access optimization to overcome this.  Instead of 
creating algorithms to best service all activity, our 
approach is to utilize existing algorithms depending 
on their respective strengths and performance 
benefits under each different workload scenario.  In 
essence, the disk scheduling algorithm in use is 
selected and tuned based on the observed workload 
and performance of the system.  If the scheduling 
algorithm in use cannot appropriately handle the 
current system workload, it can be quickly swapped 
out and replaced by one that can.   This allows our 
approach to disk scheduling to effectively exploit 
the strengths of all disk scheduling algorithms while 
masking their weaknesses.   

At the core of our approach is a real-time 
analysis engine which detects disk access patterns 
and imposes decision heuristics to inform the 
underlying system when to switch algorithms and 
which available algorithm is best suited for the 
current workload.  The system in turn loads and 
unloads algorithms on demand as requested.  This 
requires the modularization of algorithm code in a 
shared library type of approach in which algorithms 



must register themselves with the scheduler and be 
prepared to run at any point in time.  The requisite 
support mechanisms are becoming available in 
modern operating systems, and are currently 
available in Linux [1], which was the target platform 
for our prototyping and proof of concept efforts. 

The remainder of this paper is structured as 
follows.  Section 2 presents a brief overview of 
background and related work in this area.  Section 3 
describes our I/O Analyzer system (IOAZ), capable 
of carrying out disk access analyses in real-time and 
switching and tuning disk scheduling algorithms.  
This includes architectural and implementation 
details, along with experimentation used to calibrate 
disk access pattern detection and algorithm 
selection.  Section 4 presents results from using 
IOAZ to date.  Section 5 concludes this paper with a 
summary and discussion of future work in this area. 

 
2   Background and Related Work 
Several classic disk scheduling algorithms are 
discussed at length in [10], including First Come, 
First Serve (FCFS), Shortest Seek Time First 
(SSTF), SCAN, Cyclic SCAN (C-SCAN), LOOK, 
and Cyclic LOOK (C-LOOK), each with their own 
performance characteristics.  While being relatively 
simplistic, these algorithms can still provide solid 
performance under certain workloads.  For example, 
FCFS performs quite well when disk accesses are 
dominated by a single process making sequential 
requests, as discussed later in this paper. 

Newer approaches have emerged to provide 
more stringent and flexible performance controls to 
disk schedulers.  These approaches include Yet 
another Fair Queuing (YFQ) [3], the Anticipatory 
Scheduler (AS) [6], and the Deadline Scheduler 
(DEAD) and Complete Fair Queuing (CFQ) created 
for Linux by Jens Axboe and discussed in [1], which 
apply queuing models, deadlines, and advanced 
heuristics to the problem of disk scheduling.  Other 
approaches have been introduced that take into 
account physical disk characteristics (such as arm 
positioning time) into scheduling decisions [4]. 

The above approaches to disk scheduling each 
have their own strengths and weaknesses.  As a 
result, there is no clear winner across all possible 
disk access workloads.  Our approach to disk 
scheduling overcomes this by, in essence, providing 
a meta-scheduling framework that does not delve 
into the details of scheduling, but rather focuses on 
the pattern of activity created by the current 
workload and the selection of an appropriate disk 
scheduling algorithm that excels at scheduling that 
particular type of workload. 

3   The I/O Analyzer  
In the previous section, we examined the current 
state of disk scheduling.  Most approaches employ 
algorithms which are best suited for a particular 
pattern of disk accesses.  Some work best for 
sequential accesses, others for random activity, and 
others attempt to provide the best overall throughput 
and provide reasonable performance for both 
sequential and random accesses. 

If these patterns of disk accesses could be 
detected in real-time, then the system could select 
the disk scheduling algorithm best suited to this 
workload, and improve performance accordingly.  
This is the basis of our I/O Analyzer (IOAZ), 
discussed in this section. 

 
3.1  Architecture and Design of IOAZ 
IOAZ is a collection of dependent modules to 
collect real-time disk access information, perform 
analysis of collected data and allow administrative 
users to view or edit configuration of the entire 
system.  Each module is responsible for a distinct 
area of the overall IOAZ architecture.  This 
architecture is shown in Figure 1.   
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Figure 1.  IOAZ Architecture 
 

Without IOAZ present, as system processes 
submit requests for disk accesses, these requests are 
submitted to the Disk Request Queuing System to 
wait for further processing and dispatching. When a 
new disk request can be serviced, the Disk I/O 
Scheduler determines the next request to process 
according to the scheduling algorithm currently in 
use, fetches it from the Disk Request Queuing 
System, and then goes to the appropriate disk to 
satisfy the request.  Results then trickle back to the 
requesting process upon completion. 



The presence of IOAZ does not disrupt this flow 
of activity.  IOAZ was designed to easily integrate 
with the existing disk I/O subsystem of the host 
operating system without disrupting its operation or 
consuming great quantities of memory or processing 
resources.  Hooks placed within the Disk Request 
Queuing System inform the I/O Analyzer Interface 
of any requests which pass through the layer.  IOAZ 
quickly accounts for the request information in its 
internal Activity Store and returns control so as not 
to delay request processing. 

Actual analysis of collected data occurs in a 
passive fashion through a background process, the 
I/O Analyzer Process, which executes periodically.  
When it executes, it analyzes data collected during 
the last period of time from the Activity Store and 
purges this data from the Store when it is no longer 
needed.  This analysis first identifies the pattern in 
disk accesses, and then determines the best disk 
scheduling algorithm to service that pattern of 
accesses.  If the results of this analysis indicate that 
a new algorithm is required, the I/O Analyzer 
Process informs the Disk I/O Scheduler of its 
decision, and the new algorithm is activated. 

The last module of IOAZ is the I/O Analyzer 
Management Utility, responsible for allowing 
administrative users control over the behavior of 
IOAZ.  This allows manual selection and tuning of 
disk scheduling algorithms as well as changing of 
various IOAZ parameters, including how frequently 
the I/O Analyzer Process executes, and so on. 

 
3.2  Implementation of IOAZ 
IOAZ was implemented in C and integrated as 
kernel modules into version 2.6.11 of the Linux 
kernel.  This version of the Linux kernel supports 
relatively new abstractions that allow multiple disk 
scheduling algorithms to co-exist in the kernel to be 
switched at either boot-time or run-time through a 
manual process that requires administrative user 
privileges. 

Since the Linux kernel is open source, changes to 
the kernel could be easily made to integrate IOAZ 
into its disk I/O subsystem.  Collecting data was a 
simple task, by passing disk request structures from 
the Disk Request Queuing System to the IOAZ 
through the I/O Analyzer Interface.  Since the Linux 
kernel already contained mechanisms for switching 
disk scheduling algorithms at run-time in a manual 
fashion, adding support for IOAZ controlled 
switching of algorithms only required modifications 
to these mechanisms.  Since these mechanisms are 
rarely used in practice, however, many updates were 
required to fix outstanding or previously unknown 
problems as part of this process. 

3.3  Disk Access Pattern Identification 
In order to determine which disk scheduling 
algorithm is best suited to the current system 
workload, IOAZ first needs to identify patterns in 
disk access requests to determine the dominant 
characteristics of the workload.  With this 
information, IOAZ can make an informed decision 
as to which algorithm is most appropriate. 

While there are a wide variety of potential 
defining characteristics that could be used in this 
kind of analysis, in our current work, we focus on 
the following workload characteristics: 
• The number of processes making disk requests.  

This can be tracked easily because disk requests 
are tagged according to the process that generated 
the request, and so IOAZ will have direct access 
to this information. 

• Whether the requests are sequential or random in 
nature.  Sequential access can be detected as an 
I/O merge activity that pools multiple requests for 
adjacent disk blocks into a single request for 
multiple blocks before IOAZ sees the disk 
request.  Observing a large number of merged 
requests for multiple blocks is highly indicative of 
sequential activity.  Conversely, the absence of 
this activity indicates a more random workload. 

• Whether the requests tend to be read requests or 
write requests to retrieve or store data 
respectively.  Since requests are tagged with this 
information, simple counters can collect the 
necessary information. 

Restricting the characteristics initially studied 
allows us to focus on relatively simple patterns of 
activity, while the extensibility and flexibility of 
IOAZ allows us to add support for additional 
characteristics to support identifying more complex 
patterns of activity in the future. 

After the above analysis, IOAZ has a measure of 
the number of processes generating activity, the 
proportion of activity that was sequential in nature 
as opposed to random, and the proportion of activity 
that was read requests as opposed to write requests.  
To simplify pattern matching and algorithm 
selection, empirically derived thresholds were 
applied to this data to categorize the workload 
according to these measurements.  Categories were 
determined by every combination of the following 
characteristics:  number of processes generating the 
workload (1, 4, 8, or 16 or more), access 
sequentiality (sequential or random), and access 
mode (read or write). 

To validate our data collection and categorization 
of identified disk access patterns, IOAZ was fed 
traces of disk accesses generated by a collection of 



workloads with known characteristics.  (For 
example, we used an invocation of the cat command 
to read a file from start to finish to produce a 
sequential read pattern of activity.)  Without fail, 
IOAZ was able to correctly identify the dominant 
disk access pattern in all cases.   For details on these 
experiments, the reader is urged to consult [7]. 

Since IOAZ could now categorize disk 
workloads in a reliable fashion, the next step was to 
conduct experimentation to determine which disk 
scheduling algorithm could best service each 
workload category. 

 
3.4  Analysis of Disk Scheduling Algorithms 
In this section, we analyze the performance of four 
of the disk scheduling algorithms introduced in 
Section 2 commonly available in the Linux 2.6.11 
kernel:  FCFS, AS, DEAD, and CFQ.  The purpose 
of this analysis was to determine which algorithm 
performed better on which categories of workloads. 

To carry out this analysis, experimentation was 
conducted using the IOZone tool [9] on a test 
system with the following configuration: 
• AMD Athlon 1.2GHZ processor with 266MHZ 

Front Side Bus and 256KB Cache 
• 1GB PC2100 RAM 
• 40GB Maxtor IDE Hard Drives, 4MB Cache, 8ms 

Seek Time 
• Linux Kernel 2.6.11 
IOZone is an incredibly flexible benchmarking tool, 
capable of generating disk workloads across all of 
the workload categories that could be identified by 
our IOAZ system.   

Experimentation consisted of executing standard 
IOZone tests [9] with 1, 4, 8, and 16 worker 
processes generating the appropriate workloads, and 
with each experiment replicated 5 times.  Each 
IOZone test was manually categorized as generating 
sequential read, sequential write, random read, or 
random write patterns of access to match the 
categorizations used by IOAZ.   

It was thought originally that each experiment 
would have a decisive winner, but that was not 
always the case.  Ultimately the success of each 
algorithm depended on how success was being 
defined.  Did the algorithm maximize the 
performance of the lowest performing process?  Did 
it maximize the performance of the highest 
performing process?  Or, did it maximize the mean 
performance across all processes?  Since any of 
these goals ultimately could be desirable, we tracked 
results for each of these goals separately. This 
allows administrators to configure IOAZ to base its 
decisions for switching and tuning disk scheduling 

algorithms on the given goal for optimizing system 
performance. 

Below, we have summarized the key results of 
this experimentation, highlighting the best disk 
scheduling algorithms under the various workload 
categories currently tracked by IOAZ.  Results are 
given for each of the three performance goals 
discussed above.  Further details of experiments can 
be found in [7]. 

 
# Worker
Processes

Sequential
Read 

Sequential 
Write 

Random
Read 

Random
Write 

1 FCFS FCFS FCFS DEAD
4 AS FCFS FCFS FCFS 
8 AS DEAD FCFS FCFS 

≥ 16 FCFS FCFS FCFS FCFS 
Table 1.  Best Algorithm for Maximizing 

Performance of Lowest Performing Process 
 

# Worker
Processes

Sequential
Read 

Sequential 
Write 

Random
Read 

Random
Write 

1 FCFS FCFS FCFS DEAD
4 AS AS AS AS 
8 AS AS AS AS 

≥ 16 AS AS DEAD DEAD
Table 2.  Best Algorithm for Maximizing 

Performance of Highest Performing Process 
 

# Worker
Processes

Sequential
Read 

Sequential 
Write 

Random
Read 

Random
Write 

1 FCFS FCFS FCFS DEAD
4 AS FCFS AS AS 
8 AS DEAD AS AS 

≥ 16 AS AS AS AS 
Table 3.  Best Algorithm for Maximizing the Mean 

Performance Across All Processes 
 

As can be seen from Table 1, the FCFS disk 
scheduling algorithm dominated most workload 
categories when the goal was to maximize the 
performance of the lowest performing process.  
When it came to maximizing the performance of the 
highest performing process or the mean performance 
of all processes, as shown in Table 2 and Table 3 
respectively, the AS approach tended to be the best 
suited for most workload categories.  It is interesting 
to note that FCFS was consistently better with only 
a single worker process generating workload across 
all goals, except for random write, which fared best 
with the DEAD approach. 

The above experiments were conducted with the 
IOZone tool imposing a controlled workload with 
very dominant characteristics that allow for easy 
categorization of the workload.  In practice, 



however, this may not be the case, depending on the 
application mix executing on the system.  In such 
cases, it might become quite difficult to determine 
the appropriate category for the current workload, 
making decisions made by IOAZ more difficult, less 
reliable, and more apt to change over time.  
Consequently, experiments were also conducted 
where the sequential versus random and read versus 
write aspects of disk accesses were ignored, and 
only the number of worker processes contributing to 
the workload was tracked.   

 
# Worker 
Processes 

Best 
Algorithm 

1 FCFS 
4 AS 
8 AS 

≥ 16 AS 
Table 4.  Best Algorithm for Maximizing 

Performance Tracking Only Number of Processes 
 

Table 4 presents the results of experiments when 
only the number of worker processes was being 
tracked, and other workload characteristics were 
ignored.  Interestingly, in this case, the same disk 
scheduling algorithms worked best for maximizing 
the performance of the highest performing process, 
the lowest performing processes, and processes on 
average. 

With experimentation completed, these results 
were used as the basis for decision matrices to be 
used by IOAZ in determining which disk scheduling 
algorithm to use given observations of system 
workload and an optimization goal.  IOAZ can be 
configured to either use or ignore data on sequential 
versus random and read versus write patterns in disk 
accesses, to switch between using decision matrices 
derived from Tables 1, 2, and 3, or Table 4.  
Because these decision matrices are logically 
separate from the decision mechanisms in IOAZ, it 
is easy to tune the decision making process used by 
IOAZ by adjusting the appropriate decision matrix if 
new data suggests a different algorithm should be 
used in a particular situation.  These changes can be 
put into effect at boot-time or run-time, using the 
I/O Analyzer Management Utility. 

At this point, IOAZ now has everything it needs 
to function.  It can identify patterns in disk accesses, 
and use these patterns to select an appropriate disk 
scheduling algorithm capable of best servicing the 
observed pattern.  With this in mind, we can now 
conduct experiments to examine the performance of 
IOAZ as a whole in optimizing disk-related system 
performance. 

4   Experimental Results and  
     Experience 
To investigate the performance benefits of IOAZ, 
additional experiments were conducted.  These 
experiments were conducted using the same test 
system configuration discussed in the previous 
section, using IOAZ configured to use the decision 
matrices developed in that section.  IOAZ was also 
configured so that its background process would 
execute once every second to analyze current disk 
activity and determine if a new disk scheduling 
algorithm should be put in place.  The results 
presented below are only a sampling of the results of 
using IOAZ to date; for complete experimental 
results, refer to [7] for more details. 

 
4.1 MySQL Experimentation 
The MySQL database server [8] provides a standard 
benchmarking suite to test the performance of a 
server installation.  Because of the heavy disk 
activity involved with database management 
systems, this seemed to be an appropriate test of 
IOAZ performance.  The latest version of the 
MySQL database, version 5.0, was installed on our 
test system, and the included sql-bench benchmark 
was run to execute all available benchmarking tests, 
including a mix of read and write tests, and both 
sequential and random access behaviours.  Better 
performance in this benchmark is shown by a lower 
time of completion for the benchmark. 
 

 
Figure 2.  MySQL Benchmark Results 

 
The mean results of 5 repetitions of experiments 

with the MySQL benchmarking tool are shown in 
Figure 2.  In these experiments, IOAZ provided 
better performance on average for the MySQL 
benchmark than all other schedulers tested, with an 
average test time of 73 minutes and 25 seconds.  
This is a 4% increase over FCFS and nearly 14% 
better than AS. 
 



4.2 Disk Zeroing 
Additional experimentation was conducted using a 
test script used for zeroing disks within our 
department for safe asset disposal.  We executed 
this tool to overwrite a one gigabyte partition 
entirely with zeroes in a sequential fashion in a 
single pass, and repeated this experiment 5 times. 
 

 
Figure 3.  Disk Zeroing Results 

 
As can be seen from the experimental results 

shown in Figure 3, IOAZ outperforms all other 
algorithms during this test with an average time 
savings of 4% to 9%. 
 
4.3 Additional Results 
Other tests were carried out using IOZone to 
produce a variety of extreme workloads.  IOAZ 
consistently outperformed the DEAD and CFQ 
algorithms, but had difficulty bettering AS in 
experiments with many processes or FCFS in 
experiments with a single process [7], because of 
algorithm switching that occurred when IOAZ 
concluded one was necessary according to its 
observations.  (This was improved by switching 
decision matrices to ignore hints of sequential 
versus random and read versus write accesses in the 
data, as discussed earlier in the previous section.)  
Nevertheless, IOAZ appeared to perform better 
overall as FCFS and AS could not alter their 
behaviours over time when it was necessary.  More 
testing for further study is currently under way. 

 
5   Concluding Remarks 
This paper introduced a new approach to disk 
scheduling to improve system performance.  This 
approach focuses on using analyses of disk accesses 
to determine the best disk scheduling algorithm for 
the current workload, and switching and tuning 
algorithms as necessary to improve performance.  A 
prototype system, IOAZ, was implemented as a 

proof of concept, and experimentation with this 
prototype has been quite positive, yielding 
interesting results and showing great promise. 

There are many possible avenues for continued 
research in this area worthy of examination.  New 
heuristics need to be developed for the identification 
of additional and more complex patterns of disk 
accesses.  Further experimentation is necessary to 
determine the best disk scheduling algorithm to 
select in a wider variety of workload conditions and 
hardware configurations.  Work is also required to 
better detect changes in workloads to support faster 
reaction times without sacrificing stability. 
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