

A Flexible Music Composition Engine

Maia Hoeberechts, Ryan J. Demopoulos and Michael Katchabaw

Department of Computer Science
Middlesex College

University of Western Ontario
London, Canada N6A 5B7

hoebere, rdemopo2, katchab@csd.uwo.ca

Abstract. There is increasing interest and demand for adaptive music composition systems, which can change the character of
generated music on the fly, for use in diverse areas such as video game music generation, film score composition, and development
of interactive composition tools. This paper describes AMEETM (Algorithmic Music Evolution Engine), a prototype system for
dynamic music generation. The features which distinguish AMEETM from other composition systems are the use of a pipelined
architecture in the generation process to allow a structured, yet flexible approach to composition, the inclusion of pattern libraries
for storing and accessing musical information, and the addition of an emotion mapper which allows music to be altered according to
emotional characteristics.

1. Introduction

Traditionally, the music one finds in video games consists of a
static set of compositions packaged with the game. Creating
game music is often an expensive proposition, requiring either
the licensing of existing pieces from artists, or hiring
professionals for custom compositions. Furthermore, having a
static collection of music can become repetitive, and fixed
selections cannot be altered as part of the user’s interactive
experience during game play. Considering these limitations, we
are working towards an alternative: music generated on demand
during game play, which can be influenced by game events and
change its character on the fly.

This paper describes AMEETM (Algorithmic Music Evolution
Engine), a prototype system for dynamic music generation.
AMEETM was designed with several principal goals in mind:

(a) Permit maximal flexibility in the composition process. The

engine can either generate music without any restrictions,
or a human composer can guide musical choices.

(b) Provide an extensible architecture that can be easily
integrated with other software.

(c) Incorporate a multi-level application programming
interface which makes AMEETM functionality accessible to
users with varying levels of musical and/or programming
knowledge.

(d) Reuse elements, such as note sequences and harmonic
structure, both from existing human composed pieces or
computer generated material.

(e) Allow music to be altered based on emotional
characteristics such as happiness, sadness, anxiety,
liveliness etc.

AMEETM is an object-oriented system written in J# and Java. It
includes high-level classes such as Musician and Instrument that
model real-world entities involved in music composition. The
features which distinguish AMEETM from other composition
systems are the use of a pipelined architecture in the generation
process to allow a structured, yet flexible approach to
composition, the inclusion of pattern libraries for storing and

accessing musical information, and the addition of an emotion
mapper which allows music to be altered according to emotional
characteristics. A more detailed description of these features
can be found in Section 3.

There are two main applications areas we envision for AMEETM
at the present time. First, AMEETM could be embedded within
application software to facilitate online, dynamic composition of
music for immediate use within that application. For example,
using the engine in a video game would allow endless variety in
the game music, and since composition is done dynamically, the
generated music could be tuned to reflect emotional context
during game play. Alterations to the music could be initiated
from within the game, by the game player, or both. Second, we
foresee using AMEETM as a basis for stand-alone composition
tools. For example, consider a system which would permit
collaboration among human composers who could exchange
parts of pieces created with the engine, or share virtual
musicians, instruments, and musical elements. The AMEETM
architecture can also support the creation of virtual bands and
jam sessions.

AMEETM is currently in a prototype stage. The software is fully
functional, but there are many planned extensions and
improvements that we are working on. This paper describes the
features, design, implementation, and future development of the
AMEETM prototype.

1.1. Related Work

AMEETM is an example of an automatic music composition
system. These systems can be broadly classified into five
categories: stochastic (random) methods, genetic/evolutionary
approaches, recombination approaches, grammar/automata
based methods, and interactive variants. An overview of some of
these systems can be found in [3] and an historical account of
some automatic music composition systems can be found in [1].
Concerning the above classification, AMEETM is a flexible
system which uses a combination of stochastic methods,
recombination and interaction.

A Flexible Music Composition Engine

Recently, the terms interactive music or adaptive music have
been adopted to describe music which changes its character
according to context in a film, video game or real-life scenario.
A comprehensive survey of these systems is beyond the scope of
this paper, but the following are few examples of interactive
music systems. MAgentA (Musical Agent Architecture)
supports the generation of mood-appropriate background music
by dynamically choosing composition algorithms which were
previously associated with particular emotional states [2]. In
[6], the authors describe a system for altering music to produce
emotional variation based on structural rules (for example,
affecting tempo) and performance rules (for example affecting
accenting). Informal empirical testing showed some sucess of
the system in perceived emotional content of the generated
music. Scorebot [7] is a low-level API to manipulate music to
be used in a film score based on scene information such as
emotional content, timing and events. It enables the storage of
musical themes which can be sent to manipulation modules that
change the characteristics of the theme. Dynamic Object Music
Engine (DOME) appears to be a system with similar goals to
AMEETM, although not much information is publically available
on its implementation details [9].

2. Overview of Design and Implementation

The prototype was developed in J# and Java. The source code
of the version described in this paper was assembled and
compiled under Microsoft Visual Studio .NET. We believe that
the software can easily be ported to standard Java and with some
modifications to J2ME, although we have not attempted these
conversions at this time.

The software is divided into several main groups of classes:

• The pipeline. These classes control the flow of the music

generation process, and are responsible for calling methods
on the generating classes.

• The producers. These classes produce high level musical
elements from which the composed piece is comprised
(sections, blocks and musical lines).

• The generators. These classes create the lower level
musical elements (harmonic patterns, motif patterns,
modes, meters) from which the products are assembled.
Generators can have library-based or pseudo-random
implementations.

• High-level classes. Musician, Instrument, Performer,
Piece Characteristics, Style, Mode, Meter, and Mood.
These classes implement the real-world entities modelled in
the engine.

For the prototype of AMEETM described in this paper, we have
provided rudimentary implementations of all the necessary
classes in order for the engine to produce music. The classes are
named using the convention “StandardClassName,” for example
the StandardPipeline and StandardMotifGenerator. The purpose
of writing these classes was as a proof-of-concept for the
method of music generation used by AMEETM.

2.1. Process of Music Generation

In order to use the engine, producers and generators must be
created and loaded in the pipeline.

The first step is to use a GeneratorFactory to create the
generators. Five types of generator are necessary for the engine:
a StructureGenerator which creates the overall sectional
structure of the piece (e.g. ABA form), a HarmonicGenerator

which creates a sequence of chords for each section (e.g. I-IV-
V-I), a MotifGenerator which creates short sequences of notes
(e.g. a four note ascending scale of sixteenth notes beginning on
the tonic), a ModeGenerator which returns modes for the piece
(e.g. start in F+, progress to C+, divert to D- and return to F+),
and a MeterGenerator (e.g. 4/4 time). Every generator contains
at least one pseudo-random number component which is used
for decisions it needs to make.

The generator might also contain a PatternLibrary which
provides the generator with musical elements it can use directly,
or as starting points for musical element generation.
PatternLibraries are created in advance, and are intended to
embody musical knowledge. For example, for the purposes of
the prototype, we have created a “Bach” MotifPatternLibrary
containing motifs from Bach’s Invention No. 8 and a
HarmonicPatternLibrary based on the same piece. Eventually,
more extensive PatternLibraries should be created by musicians
for distribution with the engine, and end users of the music
generation package will also have the ability to add to the
libraries.

Once the generators have been created, then the producers must
be created using a ProducerFactory. There are four producers
necessary. The SectionProducer uses the StructureGenerator to
produce Sections, where a Section is a chunk of the piece with
an associated length in seconds. Each Section contains a
number of “blocks” which are short segments of the piece (for
example, 4 bars) composed of a musical line played by each
musician. The BlockProducer is responsible for deciding how to
coordinate the musical lines using a HarmonicPattern created by
a HarmonicGenerator associated with the BlockProducer. The
musical lines themselves are composed by the LineProducer
which uses a MotifGenerator to create the actual note sequences
in the musical line played by each musician. Finally, an
OutputProducer must be initialized which will convert the
generated piece to MIDI and output it as audio.

When the producers have been initialized, they are loaded into a
Pipeline. The Pipeline oversees the generation process and calls
on each producer in turn to assemble the piece. An example of
the process is as follows: the SectionProducer is called on to get
a new section of the piece, then the BlockProducer returns the
first block of that section, which in turn is passed to the
LineProducer and filled in with notes, and lastly the completed
block is sent to the OutputProducer for sound output. At each
step in the pipeline, if desired the products can be sent to the
EmotionMapper for Mood dependent adjustments. Music
generation continues until the duration for the piece, specified
by the user or determined by AMEETM, is completed.

Figure 1: Illustration of pipelined generation

Section containing blocks

Section
Producer

Block
Producer

Line
Producer

Output
Producer

Pipeline

Emotion
Mapper

I-IV-V-I

A Flexible Music Composition Engine

3. High-level Features of AMEETM

This section will describe the unique features of AMEETM, and
highlight some of the design choices which were made.

3.1. Realistic Modelling

A key consideration in the design phase was that the entities
involved in music creation reflect their real-life counterparts. At
the highest level, the engine deals with the following classes:
Musician, Instrument, Performer, PieceCharacteristics, Style,
Mode, Meter, and Mood.

A Musician plays an Instrument and has a Mood. Also, a
Musician has an Ability, and knows a number of Styles. Our
intention was to model a real musician, who can play one
instrument at a time, but has the ability to play that instrument in
different styles with varying ability. Consider a pianist who is
classically trained, but also plays some improvisational jazz.
We would model this pianist as a Musician who knows (at least)
three styles: classical, jazz and her own style – a personal
repertoire of improvisational riffs.

The purpose of storing an ability for the musician is that
eventually we would like to be able to model “good” and “bad”
musicians. Some aspects we have considered are: ability to
play an instrument in tune; ability to follow a beat; ability to
contain one’s mood and play in the manner desired by the
conductor. The styles known by the musician will also reflect
ability. On the other hand, we might want to model a musician
with limited ability – perhaps in a video game role (imagine a
bar scene where a bad band is playing), or perhaps eventually
we might create an application where one has to “train”
musicians, or one might want “bad” musicians simply for the
entertainment value of hearing them play. Although our
prototype does not currently make use of a Musician’s Ability,
all the hooks are in place to make this possible.

Our motivation for modelling musicians in this way is that we
envisioned applications where users could eventually develop
and trade musicians with one another. When considering an
end-user of the software, we pictured users having collections of
musicians each with their own skill set. The Musicians could be
shared, traded, combined into groups, and perhaps even
marketed.

3.2. Pattern Libraries

The purpose of the PatternLibraries is to allow new music to be
generated by reusing compositional elements: either elements
from existing pieces or elements which have been previously
generated. Existing pieces used to extract musical elements will
be in the public domain to ensure that no copyright issues are
encountered. A PatternLibrary can be thought of as a repository
of musical ideas. The four libraries which are currently used in
AMEETM are the HarmonicPatternLibrary, the
MotifPatternLibrary, the ModePatternLibrary and the
MeterPatternLibrary. Our motivation in creating the
PatternLibraries was twofold: to give the system the ability to
compose in different styles, and to provide a mechanism for
exchanging and storing musical ideas. Each of these goals will
be discussed in turn.

To answer the question, “What style is this piece of music?”
you would listen for clues among the musical elements of the
piece to determine its classification. The instruments being
played are often an initial hint (the “sound” of the piece).

Further to that, you would attend to the rhythmic structure, the
harmony, the melody, the mode and the meter, and transitions
between elements. Consider the knowledge of a jazz trumpet
player, for instance Louis Armstrong. He knows typical
harmonic progressions that will be used in a piece, and has
many “riffs” in mind that he can use and improvise on. In our
system, this knowledge would be captured in a HarmonicLibrary
and MotifLibrary respectively.

How the libraries are used is determined by the implementation
of the generators. A generator implementation could use the
library as its only compositional resource, that is, all the musical
elements returned by the generator are those taken from the
library, or it could use the library patterns as starting points
which are then modified, or it could return a mixture of library
patterns and generated patterns (and naturally, it could ignore
the library contents entirely and return only generated patterns).
Thus the libraries are rich musical resources which can be
flexibly used depending on the desired musical outcome.

Regarding the exchange of musical ideas, consider a situation
where you meet someone using AMEETM who has a very
dynamic guitar player (let us call him Jesse Cook). The
knowledge of the guitar player is contained in the libraries the
guitar player is using for music generation. You could allow
your Louis Armstrong player to learn how to make his trumpet
sound like a flamenco guitar by incorporating the riffs from
Jesse Cook’s MotifLibrary into Louis Armstrong’s existing
library. A different possibility is that you could add the Jesse
Cook player to your band. What would it sound like if the two
musicians jammed together? Or, you could ask Jesse Cook and
Louis Armstrong to collaborate in an Ensemble. Could they
influence each other while playing? All of these functions are
directly supported by the idea of PatternLibraries as
embodiments of musical knowledge.

3.3. Pipelined Architecture

The pipelined architecture described in Section 2.1 has several
significant advantages over other potential architectures. The
generation process can be pictured as an assembly line for
constructing musical blocks. Each of the producers along the
pipeline fills in the elements its generators create, until the
finished block is eventually passed to the OutputProducer for
playback. The producers all work independently, which means
that there is potential to parallelize the generation process.
Furthermore, to dynamically alter a composition, a different
generator can be substituted in a producer without affecting the
rest of the pipeline.

3.4. Emotion Mapper: Mood Based Variations to Music

A key feature of AMEETM is the incorporation of Mood as a
factor which can affect music generation. Mood is considered in
two contexts: individual Musicians have a Mood which can be
adjusted independently of other Musicians, and a piece can have
a Mood as well. Imagine an orchestra with 27 members.
Suppose that the bassoon player is depressed because she just
learned that she can no longer afford her car payments on her
musician’s salary. Suppose that the orchestra conductor is
trying to achieve a “happy” sound at the end of the piece
currently being played. Depending on how professional the
bassoon player is, she will play in a way which reflects her own
“sad” mood, and the desired “happy” mood to varying degrees.
These are the two contexts in which we have considered musical
mood.

A Flexible Music Composition Engine

The StandardEmotionMapper is a simple implementation of a
class which makes adjustments to musical elements based only
on the emotions Happy and Sad. The StandardEmotionMapper
has methods which adjust the Mode, MotifPattern (pitch) and
tempo. The logic behind the emotion-based changes is based on
research in music psychology. A summary of some papers and
ideas which was done for this project can be found in [5]. The
adjective descriptors used in the mood class are those defined by
Kate Hevner as her well-known Adjective Circle [4].

Presently, all mood adjustments are made based on the Mood
characteristics of the first musician added to the group. All
other musicians have Mood as well, but it is ignored at this time.
The changes necessary to use Moods from all musicians are
minimal, however there are a few questions which need to be
resolved regarding interactions between global (piece based)
mood and local (musician based) mood. For example, Mood
can affect tempo of the piece. Should tempo be constant for all
musicians? What would happen if musicians could play at
different tempos depending on their moods? Our current
implementation shows that interesting results can be achieved
by altering mood, but we have envisioned many other
possibilities which have yet to be fully explored.

4. Implementation Features

This section provides some details about the implementation of
AMEETM. Extensive planning was done in the design phase
such that the engine is easily extensible, and in order to allow
additional features to be added. Hence, the current capabilities
of the prototype only reflect a proof-of-concept of the engine’s
functionality, and by no means define its limitations.

4.1. The MotifGenerator

The MotifGenerator, although it is only one small component in
AMEETM, contains the code which one would normally think of
as the main element of a music generation system: it generates
sequences of notes and rests with associated timing. One very
important design decision differentiates AMEETM from most
other music generation systems: the notes (Motifs) that are
generated are independent of both the mode and the harmony.
This is best illustrated by example.

Consider the opening phrase of Mozart’s Sonata in A+, K.331:

Figure 2: Mozart Sonata in A+, K.331

The right hand melody in the first bar begins on C#, the third of
the scale, and is played over the tonic chord in root position in
the bass (harmony I). In the second bar, in the left hand part, we
see the exact same melodic pattern, this time starting on G#,
played over the dominant chord in first inversion (harmony V6).

In a motif, we would encode this musical idea as
Pitches: 2 3 2 4 4
Locations: 0.0 1.5 2.0 3.0 5.0
Durations: 1.5 0.5 1.0 2.0 1.0

where pitches are positions in the mode relative to the root of
the harmonic chord (with the root as 0), the locations indicate an
offset from the beginning of the bar (location 0.0), and the
duration specifies the length of the note. Locations and
durations are expressed in terms of number of beats (in 6/8 time,
an eighth note gets one beat).

The purpose of encoding motifs in this way is to capture the
musical pattern associated with the sequence of notes, without
restricting ourselves to a specific mode or harmonic chord. The
approach we have chosen for motif storage allows composed
pieces and musical lines to be transposed and reinterpreted in
any mode. Moreover, as illustrated in the above example, a
particular pattern of notes often appears more than once during a
piece, but serving a different function depending on the
underlying harmony.

The StandardMotifGenerator in the prototype operates in both
the library-based and pseudo-random manner. When a motif is
requested, it first checks whether a library has been loaded. If it
has, it attempts to retrieve a motif of the specified length
(number of beats), and the desired type (end pattern, which is
one that could be found at the end of a section, or regular
pattern, or either). If any suitable patterns are found, they are
returned. Otherwise, a new pattern will be generated.

Two pseudo-random generators are used in motif creation: a
number generator and a pitch generator. A loop continues
generating notes/rests as long as the desired number of bars has
not been filled. The motifs are generated according to musically
plausible rules and probabilities.

As previously mentioned, the motif is encoded in a mode-
independent and harmony-independent manner. Thus, the
“pitches” that are generated and stored are actually relative
pitches to the tonic note in the mode. Consider the following
concrete example: Suppose the motif contains the pitches
values 0 – 1 – 0. If that motif is eventually resolved in a position
where it appears as part of the I chord in C+, would be resolved
to the actual MIDI pitches for C – D – C. However, if that same
motif were used in a position where the harmony required the V
chord in C+, the motif would now be resolved to G – A – G.
Suppose now that the motif contains the pitch values 0 – 0.5 – 1
– 0. The value “0.5” indicates that a note between the first and
second tone should be sounded, if it exists (this will produce a
dissonance). Thus, in C+ for chord I, 0 – 0.5 – 1 – 0 would be
resolved as C – C# – D – C. If an attempt is made to resolve a
dissonant note where one does not exist (for example, between E
and F in C+), one of the neighbouring notes is selected instead.

4.2. Collaboration Between Musicians

The purpose of generating a harmonic structure for a piece is to
permit groups of musicians to perform a piece together which
will sound musically coordinated. The LineProducer is the
entity in the pipeline which is responsible for resolving motifs
into notes that fit into chords within a mode. When multiple
Musicians are playing together in an Ensemble, the harmonic
structure of the block being generated is determined (a
HarmonicPattern is chosen), and then each Musician’s line is
generated based on this same HarmonicPattern. The result is
that even though each musician is playing a different line from
the others (and possibly different instruments, each with its own
range), at any given time each musician will be playing a motif
which fits into the current harmonic chord and mode for the
piece. Of course, this does not imply that every note each
musician plays will be consonant with all other notes sounding

A Flexible Music Composition Engine

at that time – that would be musically uninteresting. Musicians
might be playing passing tones, ornaments, dissonant notes, and
so on, but the harmonic analysis of each of their musical lines
will be the same.

4.3. Choice of Mode

Music can be generated in AMEETM in any mode which can be
supported by the underlying MIDI technology. This is a very
flexible implementation which allows music played to be played
in any major or minor key, or using a whole-tone scale,
chromatic scale, blues scale, Japanese scale etc. The restrictions
imposed by MIDI on the scale are that the period of repetition
for the scale is an octave, and that the smallest distance between
two notes is a semi-tone. Thus, an octave is divided into 12
semi-tones, designated by consecutive whole numbers in the
MIDI format (i.e. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11). Note that
these are “normal” restrictions for Western music. The pattern
of the scale is stored using offsets from the starting note of the
scale. These offsets specify the number of semi-tones between
steps in the scale. For example, every major scale has the
following step pattern: 0, 2, 4, 5, 7, 9, 11. To specify which
major scale is desired, we also store the starting note of the
scale, which is a whole number between 0 and 11 which
corresponds to an offset from MIDI pitch 0, which represents C.

Motifs can be resolved into any mode, regardless of the mode in
which they were originally specified. An unavoidable
consequence of this flexible implementation is that the motifs
might sound strange if the mode into which they are resolved
contains less tones than the mode in which they were designed.
The resolution method which is used in this case is that the notes
are “wrapped around” using a modulus-style computation (i.e.,
the sixth note in a five note mode becomes the first note one
octave higher).

4.4. Flexibility of Implementation

A key consideration in the design and implementation of
AMEETM was to provide maximal flexibility for additions,
improvements and extensions. We achieved this by
implementing all the key classes as Abstract classes which can
be subclassed according to the goals of the programmer. As an
example, consider the Abstract class MotifGenerator. We have
provided a simple concrete implementation of the
MotifGenerator in the class StandardMotifGenerator. Now
suppose that a developer wishes to have a MotifGenerator which
is designed to create jazz style motifs. This would be
accomplished by writing a class, JazzMotifGenerator, which
extends MotifGenerator, and provides implementations of all the
abstract methods. Once this was done, the rest of AMEETM can
be used without any changes.

All the other principal classes in AMEETM follow this same
pattern, and thus the whole system is easily extensible and
enhanced.

A further area in which we have attempted to maximize
flexibility is in the data structures for the musical elements. As
previously mentioned, the mode can be anything which is MIDI
supported. The piece length can be user defined or determined
by AMEETM. Any MIDI available instruments can be used.
Motifs can be as long or as short as the user desires. Any
number of PatternLibraries can be developed and used. Any
harmonic chords can be defined, which include any number of
notes. Musical styles are completely user defined. And so on...

5. Future Development and Open Questions

5.1. Checkpointing

All the pseudo-random number generators are completely
deterministic. This means that if generators are initialized with
the same seed values during two different runs, the music
produced will be exactly the same. We plan to exploit this
characteristic in order to be able to checkpoint the pipeline
during music generation so that musical elements can be saved
and repeated.

5.2. Dynamic Alterations to Music

Eventually, we would like to be able to alter the music which is
playing “on the fly.” This would permit us, for example, to
allow the music generated in a video game to change depending
on the player’s interactions within the game. Alterations to the
music could occur because of a change in mood, addition or
removal of a musician, or direct request from a user.

We designed AMEETM such that one block (a small number of
bars) is generated at a time and then output to MIDI. It is
therefore possible to make changes between blocks to the music
being produced. The difficulty in doing this is that music
generation occurs much more quickly than playback, and thus,
all the blocks are generated while the first one is playing. To
support dynamic alterations, we need a means of keeping track
of which block is currently being played and we need to be able
to alter or replace subsequent blocks when a change is made.

Furthermore, we might want alterations to occur gradually rather
than abruptly, or a mixture of the two. For a gradual change, we
would need to know the parameters for starting and end points
of the transition, and generate blocks in between accordingly.
This gives rise to an additional checkpointing problem since we
need to keep track of present and future parameters.

5.3. Better Generator Implementations

To improve and vary the music produced by AMEETM, it will be
necessary to implement better generators. Our current prototype
only represents a proof of concept; in the next steps of
development we are looking to collaborate with musicians to
produce different generators for various styles, and to extend the
functionality which currently exists.

A few examples of improvements we have planned are the
following. (This is by no means an exhaustive list!)

(a) For harmonic generators, we would like to consider

transitions between blocks of music – if the previous block
ended with an imperfect cadence to chord V, what should
come next?

(b) Develop MotifGenerators for various styles of music
(c) Allow generated motifs to be stored in the pattern libraries

to facilitate repetition and variations
(d) Some additional musical aspects which we would like to

consider are: staccato vs. legato playing; better motifs for
endings; motifs typical on different instruments (piano vs.
violin vs. guitar vs. electronic etc.)

5.4. Extensions to Mood Implementation

Presently, although our implementation of the Mood class
contains 66 emotional descriptors, the StandardEmotionMapper
only alters music based on the emotions Happy and Sad. We

A Flexible Music Composition Engine

need to do more research to determine which emotions we want
to be able to vary, and how those emotions will be translated
into changes to musical elements. Over the past 70 years, there
have been many publications concerning emotional expression
in music which we can draw on, but we might also need to do
some empirical research in order to properly implement a full
EmotionMapper. There is evidence that people only perceive
certain emotions in music, but not others [8]. Maybe we will
find that some terms collapse into others (perhaps Merry and
Joyous are exactly the same in terms of musical expression?)
All of these questions require more theoretical investigation.

5.5. Extensions to PatternLibraries

At present, only one of each type of pattern library can be used
by the generators. We would like to make it possible for more
than one library to be loaded into a generator, especially in the
case of the MotifPatternLibrary. This would facilitate
combining resources from more than one style in the same
piece. Also, it would allow the user to try library combinations
without having to make any changes to the libraries themselves.
There would be some decisions to be made concerning how
patterns are chosen if there are multiple libraries – are any
patterns of the desired length returned, or only from one library?
Are all the libraries accessed equally often?

We would also like all musicians to be able to use their own
libraries. The main difficulty in using a different library for
every musician is that it will necessitate storing and copying
large amounts of data every time the musician is changed. On a
PC this is not a problem, but in future it might be a concern if
we try to implement AMEETM on cell phones or PDAs.

In addition, we would like to be able to add to pattern libraries
during composition. This would be simple to implement, and
would facilitate repetition in a piece, and also reuse of motifs in
future compositions. The only difficulty would be in deciding
which motifs to store – for a 3 minute song with 4 musicians, a
typical number of generated motifs would be around 200, some
of which we might not want to save. Also, if the same library
were used many times, it would start accumulating an
unreasonably large number of patterns.

5.6. Jam Sessions and Ensembles

We designed AMEETM such that musicians could play together
in two ways: as a coordinated ensemble, which performs a
piece with a harmonic structure followed by all the musicians,
and as musicians jamming, in which case there is no decided
upon harmonic structure, and all the musicians rely on their own
musical knowledge to decide what to play. Currently, only the
ensembles are implemented, although it is possible to generate a
piece with no harmonic structure.

5.7. User Interface

For testing and demonstration purposes, we will be adding a
graphical user interface which will allow the functionality of the
software to be easily accessed.

6. Potential Applications

As mentioned in the Introduction, the versatile functionality in
AMEETM allows it to be used as an embedded component in a
larger software product such as a video game, or to form the
basis for a stand-alone music composition application. In this
section we mention two other potential applications.

6.1. Emotional Equalizer

A Mood is a collection of emotional descriptors, each present to
a different degree. Imagine an “emotional equalizer” which
would allow a listener to alter the music’s mood as it is playing.
This could be either a hardware or a software device which
would operate exactly like a normal stereo equalizer, except that
the sliders would be marked with emotional descriptors rather
than frequency ranges. So, while listening, rather than turning
up the bass in the song, you could turn up the “happy.”

6.2. Long Distance Musical Collaboration

An application for AMEETM which is particularly relevant in
Canada where people are spread over long distances, would
Internet based musical collaboration. Picture three users, one in
Iqaluit, one in Vancouver and one in Halifax, each of whom has
a collection of Musicians with different qualities and abilities.
Those Musicians could perform together and the results could be
heard by all the users.

7. Conclusions

The AMEETM prototype described in this paper is a promising
first step toward a dynamic music composition system. We are
continuing development based on the extension ideas presented
above, and we anticipate using AMEETM in several exciting
application areas in the near future.

Acknowledgments

This research was funded in part by CITO/OCE and by
Condition30 Inc.

References

[1] Charles Ames, Automated composition in Retrospect,

Leonardo, 20(2), 169-185 (1987)
[2] Pietro Casella and Ana Paiva, MAgentA: an architecture

for real time automatic composition of background music,
Intelligent Virtual Agents, LNCS 2190, 224-232 (2001)

[3] Ryan J. Demopoulos, Towards an Integrated Automatic
Music Composition Framework, MSc Thesis, Department
of Computer Science, University of Western Ontario
(2007)

[4] Kate Hevner, Experimental Studies of the Elements of
Expression in Music, The American Journal of
Psychology, 48(2), 246-268 (1936)

[5] Maia Hoeberechts, API Design: Summary of Progress to
Date, Internal progress report, University of Western
Ontario (2005)

[6] Steven R. Livingstone, Ralf Mühlberger, Andrew R. Brown
and Andrew Loch, Controlling musical emotionality: an
affective computational architecture for influencing
musical emotions, Digital Creativity, 18(1), 43-53 (2007)

[7] Steven M. Pierce, Experimental Frameworks for
Algorithmic Film Scores, MA Thesis, Dartmouth College
(2004)

[8] Mark Meerum Terwogt and Flora Van Grinsven, Musical
Expressions of Moodstates, Psychology of Music, 19, 99-
109 (1991)

[9] Dynamic Object Music Engine (DOME),
http://www.dometechnics.com, accessed August 23, 2007.

