
A SCALABLE APPROACH TO BELIEVABLE NON PLAYER CHARACTERS
IN MODERN VIDEO GAMES

A. Rankin, G. Acton, and M. Katchabaw

Department of Computer Science
The University of Western Ontario

London, Ontario, Canada N6A 5B7
arankin@csd.uwo.ca, gacton@csd.uwo.ca, katchab@csd.uwo.ca

KEYWORDS

Believable decision making, non player characters,
performance, scalability, artificial intelligence, video games

ABSTRACT

 Recognizing the importance of artificial intelligence to
modern video games, considerable efforts have been
directed towards creating more believable non player
characters in games, complete with personalities, emotions,
relationships, and other psychosocial elements. To date,
research in the field has primarily focused on the quality of
character behaviour, and not on aspects of performance and
scalability. This is increasingly a problem as we strive for
more complex, dynamic, and realistic behaviour in an ever-
growing population of characters in a virtual game world.

 In this paper, we explore the performance and scalability
of believable non player characters in modern video games.
We propose an approach to scalability that is able to
improve performance and increase the ability to support a
larger quantity of characters without sacrificing the
believability or quality of behaviour. We then discuss a
prototype implementation of this approach, as well as
experiences in experiments and simulations using this
prototype. Results to date have been quite positive, and
show tremendous potential for continued work in the future.

INTRODUCTION

 Artificial intelligence is an increasingly important aspect
of modern video games, and can be a determining factor in
the overall success of a game (Cass 2002; Champandard
2004; Orkin 2004; Roberts and Isbel 2007; Sweetser 2008).
One of the more active areas of research in game artificial
intelligence is making more believable characters, also
known as non player characters (Baille-de Byl 2004; Funge
2004;Guye-Vuilleme and Thalmann 2001; Lawson 2003;
Predinger and Ishizuka 2001; Rizzo et al. 1997), as this can
lead to games that are ultimately more immersive,
engaging, and entertaining to the player (Dias and Paiva
2005; Livingstone 2006; Sweetser 2008). Doing so,
however, requires developers to reach beyond traditional
approaches to game artificial intelligence, including finite
state machines, rule based systems, and static scripting
(Bailey and Katchabaw 2009).

 The requirements for character believability tend to be
quite steep (Loyall 1997). They include elements such as

personality, emotion, self-motivation, social relationships,
consistency, the ability to change, and the ability to
maintain an “illusion of life”, through having goals,
reacting and responding to external stimuli, and so on
(Loyall 1997).

 Computationally, these believable non player characters
are orders of magnitude more complex than traditional
approaches to character artificial intelligence, and so they
introduce the potential for serious performance problems,
especially when there are a great number of them inhabiting
a game world (Bailey and Katchabaw 2009). This problem
is only exacerbated by the computational needs of other
game sub-systems, which together put an even larger strain
on often limited and over-taxed system resources.
Consequently, if we are to truly take advantage of
believable characters in modern video games, we must take
into consideration issues of performance and scaling with
artificial intelligence as it has been done with other aspects
of games, such as graphics (Rankin 2009).

 To improve performance and scalability of games,
techniques generally involve various different kinds of pre-
processing of game data and various types of run-time
optimizations to reduce the processing load as the game
runs. From an artificial intelligence perspective, we can
adopt both techniques as well, to optimize both the
believable character models used prior to execution and
their use in-game at run-time.

 This paper introduces and examines a scalable approach
to believable non player characters that utilizes several
techniques to improve in-game performance. These include
dynamic importance calculation, capability scaling or
reduction, and pre-emptive, priority-based character
scheduling and dispatching. Through utilizing these
techniques, we can ensure that scarce computational
resources are allocated to characters where they are most
needed, and that characters are using the decision-making
processes best suited to their current state and importance to
the game, while still maintaining believability.

 To take advantage of these performance and scalability
optimizations, this paper also introduces a new approach to
believable non player characters using utility based
planning and action selection combined with dynamic,
emergent behaviour. To support believability, various
psychosocial elements are captured in this approach,
including personality, emotions, relationships, roles,
beliefs, desires, intentions, and coping. This extends our

earlier work in (Bailey and Katchabaw 2008; You and
Katchabaw 2010), enabling richer and more compelling
non player character behaviour.

 The remainder of this paper is organized as follows. We
begin by presenting and discussing related work in this
area. We then describe our approach to performance and
scalability for believable characters, outlining the various
optimization techniques and strategies used in our own
work. We then discuss our prototype system, including the
implementation of both the non player characters and the
various performance and scalability enhancements we
employed. We then present and discuss our experiences
from using this in a variety of experimental scenarios.
Finally, we conclude this paper with a summary and a
discussion of directions for future work.

RELATED WORK

 To date, unfortunately, a literature survey reveals
relatively little in performance and scalability specifically
intended for affective artificial intelligence systems for
games. That said, there is important and relevant research
to note, as discussed in this section below.

 Affective approaches designed for improved believability,
such as the work in (Bates et al. 1994; Gratch and Marsella
2004; Imbert et al. 2005; Reilly and Bates 1992),
unfortunately, make little mention of performance or
scalability issues. Most frequently, this work focuses on
the creation and simulation of a single character without
considering the issues that arise in placing this character
within a living game world, with numerous other
inhabitants. While some work examines interacting
characters, there are no measures of performance or
scalability provided, and no mention of allocating
computing resources to the characters (Rankin 2009).

 Looking at other game artificial intelligence research,
some attention has been given to issues of performance.
The work in (Wright and Marshall 2000) is notable for
providing a flexible general-purpose framework for
artificial intelligence processing in games. While taking an
“egocentric” approach, this work, unfortunately, provides
no specific insight or performance optimizations for
characters with psychosocial systems for believable
behaviour, as in our current work. Work towards scalable
crowd behaviour, such as (Pettré et al. 2006; Sung et al.
2004), is also relevant, but tends to focus on the believable
simulation of groups, as opposed to the believable
simulation of a large number of individuals, which can be
very different problems.

 We can also view believable non player characters as a
form of agent, and games themselves to therefore be a kind
of multi-agent system (Rankin 2009). Performance and
scaling in multi-agent systems is still not a thoroughly
explored area of research, however, but there are works of
interest that borrow heavily from such diverse areas as
operations research (Baker 1998; Haupt 1989; Holthaus and
Rajendran 1997), distributed computing (Rana and Stout
2000), and operating system process scheduling
(Ramamritham and Stankovic, 1994; Tanenbaum 2008).

While not directly involving games, this work provides
insight into the issues at hand, as well as potential solutions
relevant to this problem domain.

 While there is a lack of literature focused on performance
and scalability in affective artificial intelligence for video
games, there are tremendous opportunities for research in
this area. Fortunately, insight and experience is available to
be borrowed from other aspects of gaming research, as well
as other disciplines, and can applied to this problem in a
rather unique and innovative fashion, as we have done as
described in this paper.

GENERAL APPROACH

 As discussed earlier, we take advantage of several
techniques in unison to improve performance and
scalability of non player characters in video games. In this
section, we present these various techniques.

Overview

 We begin by recognizing that not every non player
character in a game has equal importance to the player and
the game at any point in time. Some characters are the
focus of attention, are engaged in significant activities, or
are otherwise critical to what is unfolding in the game.
Others are of less importance, and their activities will
largely, if not completely, go unnoticed to the player. As
the player moves through the game world and plays the
game, the importance of the various characters changes,
with some becoming more important and others less so.

 Furthermore, we note that characters that are not visible
to the player, or otherwise not important to the player, do
not need the same richness, detail, and fidelity in their
behaviour as those that are the focus of attention, or are
otherwise important, to maintain believability. In those
cases, a game can safely do less with those characters, in
many cases significantly so, with no perceptible difference
to the player’s experience. For example, suppose we have
two non player characters in a game that are hungry; one,
Alice, is in the same room as the player, while the other,
Bob, is in a different locale far across the game world,
outside of the player’s ability to sense. To maintain
believability, Alice must recognize her hunger, formulate a
plan to satisfy her hunger considering her current
psychosocial and physiological state and surroundings, and
then execute this plan. After all, the player is in the same
room and is able to see and hear everything she does; the
slightest out of place action could sacrifice believability and
adversely affect the player’s experience. On the other hand,
Bob would not need to do anything except simply continue
to live to maintain believability. In the player’s absence, it
is likely reasonable to believe that he could provide himself
with the necessities of life, without actually needing to do
anything about it. In fact, the game would not even need to
track Bob’s hunger level to maintain the same level of
believability. (That said, Bob would still need to progress
in his life in the absence of the player, as it is likewise
unreasonable to believe that he would do absolutely nothing
at all when the player is not around. How this should be
done to maintain believability is discussed below.)

 With this in mind, we can safely scale or reduce the
capabilities of a non player character according to their
current visibility and importance to the player while still
maintaining believability across all characters in the game,
as shown in Figure 1. In doing so, we can achieve
tremendous performance savings in characters with reduced
capabilities as they require significantly less processing and
this processing is far less complicated than characters
operating at full capacity. This, in turn, allows the game to
support a much larger number of characters without
requiring additional resources to be dedicated to artificial
intelligence processing.

Figure 1: Characters in the Game World

 To support this approach, each non player character in a
game is a separately schedulable and executable entity,
enabling computational resources to be allocated by a
scheduling and dispatching subsystem on a character-by-
character basis according to their importance. Furthermore,
each character has access to a range of decision-making and
processing algorithms, allowing their capabilities to be
scaled or reduced based on their importance. Lastly,
character importance is calculated and updated regularly
based on a variety of factors to ensure that scheduling,
dispatching, and capability adjustment are all carried out
using the best available information. Each of these
activities is discussed in further detail in the sections that
follow below.

Scheduling and Dispatching of Characters

 To allocate computational resources to non player
characters in a game, a scheduling and dispatching
subsystem is added to the game. The goal of this
subsystem is rather simple—choosing the most appropriate
characters to run at each game tick or frame of game
execution.

 Producing an optimal schedule for each tick is itself a
computationally expensive task, and so we take a simpler,
more heuristic approach using a system of priorities
assigned to each non player character in the game.
(Priorities are derived from the perceived importance of the
characters, as discussed earlier in the paper, and below in
further detail.) With this in mind, the most appropriate
characters to execute in any tick are simply those with the

highest priorities. Resource starvation is averted in
characters of low importance through an aging mechanism
built into the calculation of priorities.

 Each game tick, the x characters with highest priorities
are selected to run, where x is a positive integer
configurable and tunable at run-time, based on a number of
factors including the number of available processor cores,
the workload being generated by other game subsystems,
and so on. Each of the x selected characters is allocated one
or more update cycles, depending on their relative
importance. Each update cycle allows a character to
execute for a period of time. This execution can be pre-
empted, and does not necessarily allow the character to
complete the task on which it was working. If the task is
not completed when the character’s update cycle ends, the
character is paused and its priority is adjusted to reflect the
work in progress.

 Depending on the number of characters in the game, the
priority system could be realized as either a single list
sorted by priority, or a series of priority queues. While the
mechanics of each approach is different, they can both
deliver the same pre-emptive, priority-driven scheduling
and dispatching of non player characters in a game.

Capability Scaling or Reduction

 As discussed earlier, not every non player character in a
game needs the highest levels of richness, detail, and
fidelity in their behaviour in order to be perceived by the
player as believable. Indeed, some characters could
function believably with greatly reduced capabilities,
depending on the state of the player, the game, and the
various characters within it.

 To better understand how capability scaling or reduction
can be accomplished, we first outline how a believable non
player character must function in the first place. We
assume at least a basic set of psychosocial/cognitive
processing elements, as without some form of these
elements, it is extremely difficult for a character to deliver
behaviour that could be truly considered believable (Acton
2009). This results in the high level character decision-
making process shown in Figure 2. Each of the stages
from this process is discussed below.

• Event: A notification of activity in the game world,

whether it is from other characters, the world itself, or
simply the passage of time.

• Appraisal: The event is examined to see if it is of
interest to the character, and if so, does the event or its
consequences have sufficient importance to the
character to warrant further consideration. Deadlines
for action/reaction may also be set, depending on the
event.

• Coping: The character reflects on the event and
updates its internal psychosocial and physiological state
based on the event. This adjusts the character’s mood,
emotional memory, and so on.

Game World

Player Character Reduced Character

Player
Focus

 Figure 2: High Level Character Decision-Making Process

• Goal Selection: Given the current state of the

character, its surroundings, and recent events, the
character determines the goals that it should be trying to
meet. Goals might be immediate, short-term, medium-
term, and long-term.

• Planning/Action Selection: Considering the goals in
place, a plan is created to achieve the goals with the
desired results and acceptable side effects and
consequences. If a plan already exists and is in process,
it might be revised to reflect changes in goals, character
state, and so on. With the plan in mind, appropriate
actions are selected to have the plan implemented. Note
that if events indicate a quick reaction is required, the
current plan may be temporarily bypassed or abandoned
to carry out alternate actions. (This may be the case, for
example, to ensure self-preservation.)

• Output Events: Based on the actions selected, new
events are generated and propagated into the game
accordingly.

 When this approach to character decision-making is
considered, scaling a non player character can be
accomplished in several ways. Generally, these methods
can be grouped into either data reductions or processing
reductions.

 The purpose of data reductions is to limit the amount of
information that is used in the various stages of the
decision-making process. When done properly, this can
greatly collapse decision spaces into smaller problems,
making them far more efficient and less costly to work
with. With care, these reductions can be carried out with

little to no perceivable change in character believability.
Data reductions can themselves take many forms.

 One such form is a model or state reduction. As
discussed earlier, in our approach, every character has a
psychosocial model associated with them, defining their
personalities, emotions, relationships, roles, values, and so
on. A fully populated model could have a character’s state
defined by dozens of traits, all of which need to be
maintained, and all of which could affect decisions made by
the character. While rich, expressive, and useful during
design to fully define a character, this can be very
expensive computationally to use at run-time, as these
factors must be consulted during appraisal, coping, goal
selection, and planning/action selection. A careful
reduction of this design model to a few key traits can
produce a run-time model that is orders of magnitude more
efficient, and far less costly to use within a game. This
process is shown in Figure 3.

 Another form of data reduction is event reduction. In this
case, the number of events used to trigger decision-making
or provide information during decision-making is limited,
by reducing the types of events of interest, the importance
of the various events or their consequences, or the
frequency of their reporting to the character. This results in
either fewer events reaching the character, fewer events
moving past the appraisal stage (as the events are now
deemed irrelevant, unimportant or inconsequential), or
simpler decisions throughout the various stages of
processing with fewer variables and factors to consider. All
of these alternatives have the potential to improve
performance substantially.

 Processing reductions, on the other hand, generally
involve altering a character’s decision-making processes by
changing algorithms or omitting aspects or complete stages
of decision-making to improve performance. Again, if
done with care, these performance improvements can be
achieved without sacrificing believability. Possible
processing reductions include the following.

• Use of Defaults. To accelerate the various stages of

decision-making, default strategies can be used instead
of analyzing and developing them dynamically on
demand. For coping, events could have default impacts
on character state, instead of determining this impact
from the current state and other factors. For goal
selection, characters could be assigned default goals to
meet instead of developing them from scratch. For
planning and action selection, default plans could be
provided for each possible goal, complete with
prescribed actions so that they do not need to be
developed at run-time. While the defaults used will not
do as well at reflecting the current state of characters or
the game, the performance savings can be substantial
even if this approach is used only for out of focus
characters, or those that are unimportant.

• Use of Randomization. Much like through the use of

defaults, randomization can be used to replace various
aspects of behaviour, although doing so likely makes

sense only with unimportant characters in the game. It

Event

Appraisal

Coping

Goal Selection

Planning/Action
Selection

Output
Events

Figure 3: Character Model Reduction

is likely also wise to constrain randomness to ensure
that characters are still acting believably. This can be
accomplished in a variety of ways, such as constraining
randomness to choose from a pre-defined set of
defaults, or by permitting some level of initial
processing develop sensible options that are chosen
from randomly, instead of using a more expensive
algorithm to make a more optimal choice.

• Streamlining of Coping. Integrating the impact of
events into a character’s internal state can be expensive,
especially with a complex psychosocial model in use.
To improve performance we can perform coping only in
response to a limited set of critical events when
characters are outside of the focus of the player. While
this will result in characters whose moods and emotions
change only in extreme circumstances, the player will
be largely unaware of this.

• Disabling of Goal Changing. Whenever a character
changes goals, any existing plan must be discarded and
a new plan must be formulated, which can be quite
expensive. To improve performance, characters can be
prevented from modifying their goals while a plan is
executing to avoid re-planning, unless very exceptional
circumstances arise. While this will result in characters
sticking with plans when they should likely be changed,
this should not have too large an impact on their
believability, provided that they are outside the focus of
the player.

• Automatic Achievement of Goals. As mentioned
above, planning and action selection can be
computationally expensive tasks. When a character is
outside the focus of the player, these tasks can be
avoided entirely by simply allowing the character’s
goals to be achieved automatically. After all, if a goal is
achievable by the character, and the player is not present
to witness the goal actually being achieved, planning
and action selection and execution are not required for
the player to believe what has happened. It is important
to ensure, however, that the goal is likely to be achieved
by the character, and that the time required to meet the
goal is properly taken into account; otherwise

believability may be inadvertently sacrificed.

• Disabling of All Processing. If a character is relatively
unimportant and is someone with whom the player has
had no prior personal contact or knowledge thereof, it is
possible to disable all, or nearly all, decision-making in
the character. After all, the player would have little to
no expectation of the character’s mood, goals, or actions
and so it is believable for the character to be in their
initial state when first encountered by the player. The
player has no way of knowing that the character was
largely inactive up until when they entered the focus of
the player.

This strategy might also be applicable to important
characters or characters that have been previously
encountered, provided that they are out of the player’s
focus and will remain out of their focus until the next
break in the game, such as a cut-scene, level transition,
and so on. If important events are recorded, their effects
on the character, as well as the character’s goals, plans,
and actions can all be simulated during the break, so
that they are up-to-date when the player next encounters
them.

 When we combine the various forms of data and
processing reductions together, we have great flexibility in
the amount of capability scaling or reduction available to a
game. If taken too far, this can eventually impact the
believability of the game, but if done with care in an
intelligent fashion, we can achieve tremendous performance
savings with little to no effect on the believability perceived
by the player.

 Character Importance and Priority Calculation

 The process of scheduling and dispatching, as well as the
process of capability scaling or reduction both use a
measure of a non player character’s importance as a factor
that ultimately affects both resource allocation and
performance. Capability scaling or reduction uses a
measure of importance directly, adjusting the capabilities of
a character accordingly. Scheduling and dispatching use
importance in the form of a priority in determining which
characters are run in each game tick. Below, we examine
how each measure is computed.

 The importance of a non player character is determined
by a collection of factors, with one calculating the
importance, i, of a character as:

 i = (αf + βd + γr + δc) / 4

where α, β, γ, and δ are weights between 0 and 1.0 to tune
and balance the equation. The factor f is a measure of
player focus on the character, which takes into
consideration the distance between the player and the
character, whether the character is within range of the
player’s senses, and the strength of relationships between
the player and the character. The factor d is a designer-
imposed measure of importance of the character, usually
with respect to the story of the game. The factor r is a
measure of importance defined by the currently active roles

Rich,
expressive,
descriptive, for
game designers

Efficient,
inexpensive, for
in-game use

Design Model

Run-time Model

of the character in question, as some roles in the game are
inherently more important than others. Lastly, the factor c
is a measure of importance that comes from character
interactions. If a given character is involved with other,
more important characters, their own importance might
require a boost to put the characters on more equal footing.
(For example, if the two are fighting each other, an
inherently more important character could enjoy an unfair
advantage over less important characters because the
seemingly more important character has more capabilities
and better access to computational resources.) The factors
f, d, r, and c all range between 0 and 1.0 and so after
scaling, the importance of a character also lies between 0
and 1.0.

 With this in mind, the priority, pri, of a non player
character can be computed as follows:

 pri = εi + ζs - ηrc + θp

where ε, ζ, η, and θ are also weights between 0 and 1.0 to
tune and balance the equation. (Carefully setting of these
weights can also result in various scheduling policies, such
as fair, least-slack-time, and so on (Rankin, 2009).) The
factor i is the importance of the character as defined above.
The factor s is a starvation factor that increases at a certain
rate for each game tick that the character is not run; by
doing this, even an unimportant character’s priority will
eventually exceed the most important character, allowing
the unimportant character to run and avoid starvation. The
factor rc is a run counter used to ensure that a single
character is not over-allocated update cycles despite its
importance. Lastly, the factor p is a progress measure that
approaches 1.0 as the character approaches completion of
its task at hand, to allow scheduling to clear out near-
complete tasks from characters. All of factors i, s, rc, and p
are normalized to between 0 and 1.0.

 If desired, we can add a fifth factor to priority
calculations to reflect the amount of capability reduction
being applied to a particular non player character. Doing so
may be reasonable since a character with its capabilities
reduced by data or processing reductions will require fewer
computational resources and therefore can cope with its
schedule being reduced as well. Ordinarily, this would be
accomplished using the importance factor i, as a low
importance would trigger both capability and schedule
reduction simultaneously. If importance and capability
reduction were not so closely linked, a separate factor
indicating reduction would then be necessary. (This can
occur, for example, when there is a very large number of
non player characters needing to be managed; in such a
case, even the capabilities of fairly important characters
would need reduction despite their importance in order to
maintain game performance at an acceptable level.)

PROTOTYPE IMPLEMENTATION

 As a proof of concept, we started with the development of
a foundation framework for believable non player
characters. This foundation was designed to be extended
with modules for character scheduling and dispatching, as
well as capability scaling or reduction, as discussed earlier

in this paper. This prototype was developed for the various
Microsoft Windows platforms using a combination of
managed and unmanaged C++ using Microsoft Visual
Studio 2008 as a development environment.

 At the core of this prototype is a character system based
on the high-level decision making process shown in Figure
2. Character state is composed of a psychosocial model
integrating aspects of personality, emotions, relationships,
roles, beliefs, desires, intentions, and coping. The
personality model is derived from Reiss’ theory of basic
desires (Reiss 2004), as this approach presents personality
in a fashion well suited to goal selection and consequences
of actions. The emotion model selected is based on
Ekman’s universal emotion model (Ekman et al. 1972), a
veritable standard in this area. Roles were developed using
role theory from (Guye-Vuilleme and Thalmann 2001) as a
basis. Aspects of appraisal and coping were adapted from
(Gratch and Marsella 2004), while goal selection and
planning/action selection were driven by standard utility
based processes. A further discussion of the non player
character system used as a foundation in this work can be
found in (Acton 2009).

 A scheduler and dispatcher module was added to the
prototype to allocate computational resources to non player
characters from the character system. This was based on a
simple serial sort and search algorithm to determine the
next characters to run based on priorities as described in the
previous section. Capability scaling or reduction was
implemented with multiple levels of reduction. A character
running with full capabilities uses the complete character
system described above. The first level of reduction uses
rudimentary partial planning in which planning is carried
out over several update cycles, with actions selected from
partial plans in earlier update cycles while the current cycle
continues to refine the plan. The second level of reduction
uses full appraisal, coping, and goal selection capabilities,
but then uses default plans and actions associated with
goals selected, instead of carrying out a full planning/action
selection stage. Finally, the third level of reduction uses
randomization to select a goal and select a plan and actions
capable of achieving this goal. While this is not the most
realistic of approaches, it can still be appropriate for non
critical characters in the game.

 To assess the operation and performance of the prototype
system, detailed logs are collected. These logs show all
non player character state and activity at each tick of
simulated game time, and contain performance information
related to the scheduling and capability level of each
character in the system. These logs are valuable to
experimentation with the prototype system, as discussed at
length in the next section of this paper.

RESULTS AND EXPERIENCES TO DATE

 To assess the effectiveness of our approach to scalable
believable non player characters, we conducted a series of
experiments using our prototype system. In this section, we
discuss highlights of our results. A complete presentation
of experimental results and experiences can be found in
(Rankin 2009).

Experimental Environment and Configuration

 All experimentation was executed on an Intel Core 2 Duo
system with a clock speed of 2.0Ghz and 4.0GB of RAM.
The 64-bit variant of Windows Vista was used as the
system’s operating system. This configuration provided
more than enough power for the experimentation we
conducted.

 The prototype system was configured to use the
psychosocial model described in the previous section, with
characters having access to 4 roles, 5 goals, and 8 actions
during processing. While a typical game would have more
possibilities open to its characters, this configuration on its
own was sufficient to demonstrate the effectiveness of our
approach. Time in the system was simulated so that 4
characters could run each game tick, there were 30
milliseconds between game ticks, and each action
consumed one tick for execution. While actions would
ordinarily take longer and have varied lengths in reality,
this accelerated experiments and simplified analyses, as it
was easier to confirm that factors such as importance were
being properly handled by the system. Lastly, for
simplicity and balancing, all weights used in calculating
importance and priority were set to 1.0, except during
starvation experiments. It is possible that better (or worse)
results could be obtained through the fine-tuning of these
weights. Additional experiments are currently under way,
and others are planned to explore these and other issues
more fully in the future.

Initial Experiments

 Prior to more rigorous experimentation, initial testing was
conducted to assess the basic operation of our prototype
system. From this, we were able to verify:

• Equal fixed importance and priority resulted in an even

distribution of resources to characters and equal
opportunity for execution.

• Increased importance and priority translated into an

increase in resource allocations to characters and a
corresponding increase in execution time.

• Starvation of characters with low importance was

effectively prevented by our approach to scheduling, and
would be a serious issue if these measures were disabled
or not provided in the first place.

• Characters with reduced capabilities required fewer

resources to execute than characters with full capabilities
intact.

• The prototype system could handle several characters of

varying importance well, adjusting scheduling and
capabilities accordingly without difficulty.

 While these tests verified the correct operation of the
prototype system, we still needed to assess the improved
performance and scalability enabled by our approach. This
is accomplished through experimentation outlined in the
next section.

Stress Testing

 To assess performance and scaling improvements, we
used the prototype system to manage hundred of characters
simultaneously. In these experiments, we executed three
scenarios with 100, 200, and 800 characters respectively.
Each scenario was itself run three times, once with all
characters at full capability, once with all characters at the
second level of reduction (as described in the previous
section), and once with all characters at the third level of
reduction.

Figure 4: Character Stress Testing

 Results from this experimentation are shown in Figure 4,
measuring the time to completion of 200 game ticks in
seconds. With 100 characters executing, performance
under full capacity suffered greatly. There was a slight
improvement under the second reduction, but performance
was still unacceptable. (The small difference achieved with
this reduction is because even under full capacity, the
planner is somewhat primitive and incomplete. With a
complete planner, full capacity characters would suffer
worse, and there would be a bigger improvement achieved
through this reduction.) With the third reduction,
performance improvements were substantial. As the
number of characters increased, only the third reduction
characters were able to complete. While their time to
completion increased, performance was still improved
dramatically through this reduction.

 It is important to note that while full capacity and slightly
reduced characters had performance issues, the system
would never be expected to support this many at a time.
Through dynamic adjustments to capabilities, only a few
would run at these capability levels at a time, depending on
the game, with the others reduced further. This experiment
was to solely demonstrate performance improvements
through our approach.

 From these results, we can see great improvements in the
performance delivered by our approach to scalable
believable non player characters. We are able to deliver a
collection of characters that can adapt to various
computational requirements through proper scheduling and
capability adjustment.

0

20

40

60

80

100

120

140

160

180

200

100 200 800

Full Capacity

2nd Reduction

3rd Reduction

CONCLUSIONS AND FUTURE WORK

 This paper introduced a scalable approach to believable
non player characters in modern video games. Through a
combination of importance determination, prioritized
scheduling and dispatching, and capability scaling or
reduction, we can adjust the level of functioning of
characters to adhere to computational constraints while
maintaining believability. Experimental results with our
prototype system have been both positive and quite
promising.

 In the future, there are many avenues for continued work.
We plan to continue experimentation and further tune,
scale, and explore the capabilities of our approach. We will
continue the development of our prototype approach,
adding both more functionality to our characters and
additional capability reduction techniques. Lastly, we plan
to embed our approach within a complete game or game
engine to fully assess both its performance and its sustained
believability through extensive user testing.

REFERENCES

Acton, G. 2009. Playing the Role: Towards an Action Selection

Architecture for Believable Behaviour in Non Player
Characters and Interactive Agents. Masters Thesis,
Department of Computer Science, The University of Western
Ontario.

Bailey, C. and Katchabaw, M. 2008. “An Emergent Framework
For Realistic Psychosocial Behaviour In Non Player
Characters”. Proceedings of FuturePlay 2008. (Toronto,
Canada, November 2008.)

Baille-de Byl, P. 2004. Programming Believable Characters In
Games. Charles River Media.

Baker, A. 1998. “A Survey of Factory Control Algorithms that
Can Be Implemented in a Multi-agent Heterarchy:
Dispatching, Scheduling, and Pull”. Journal of
Manufacturing Systems, Volume 17, Number 4. Elsevier.

Cass, S. 2002. “Mind Games”. Appeared in IEEE Spectrum,
39(12).

Bates J., Loyall A., and Reilly W. 1994. “An Architecture for
Action, Emotion, and Social Behavior.” Lecture Notes in
Computer Science, 830:55-68.

Champandard, A. 2004. AI Game Development: Synthetic
Creatures with Learning and Reactive Behaviours. New
Riders.

Dias, J. and Paiva, A. 2005. “Feeling and Reasoning: A
Computational Model for Emotional Characters”. Lecture
Notes in Computer Science, 3808.

Ekman, P., Friesen, W., and Ellsworth, P. 1972. Emotion in the
Human Face: Guidelines for Research and an Integration of
Findings. Pergamon.

Funge, J.D. 2004. Artificial Intelligence For Computer Games. A
K Peters.

Gratch, J. and Marsella, S. 2004. “A Domain-Independent
Framework for Modeling Emotion”. Cognitive Systems
Research, 5(4). (December 2004).

Guye-Vuilleme, A., and Thalmann, D. 2001. “A High-level
Architecture For Believable Social Agents”. VR Journal, 5. 

Haupt, R. 1989. “A Survey of Priority Rule-based Scheduling”.
OR Spectrum, 11(1).

Holthaus, O. and Rajendran, C. 1997. “New Dispatching Rules
for Scheduling in a Job Shop - An Experimental Study”. The
International Journal of Advanced Manufacturing
Technology, 13(2).

Imbert, R., De Antonio, A., and De Informatica, F. 2005.
“COGNITIVA: A Context Independent Cognitive
Architecture for Agents Combining Rational and Emotional
Behaviours”. In 5th. WSEAS Int. Conf. on Multimedia,
Internet and Video Technologies. (Corfu, Greece, 2005.)

Lawson, G. 2003. “Stop Relying On Cognitive Science In Game
Design - Use Social Science”. Accessed June 2010 from
http://www.gamasutra.com/php-
bin/letter_display.php?letter_id=647.

Livingstone, D. 2006. “Turing's Test And Believable AI In
Games”. Computers in Entertainment (CIE), 4(1).

Loyall, A. 1997. Believable Agents: Building Interactive
Personalities. PhD Dissertation, Stanford University.

Orkin, J. 2004. “Symbolic Representation of Game World State:
Toward Real-Time Planning in Games”. In Proceedings of the
AAAI Workshop on Challenges in Game Artificial
Intelligence.

Pettré, J., de Heras Ciechomski, P., Maïm, J., Yersin, B.,
Laumond, J., and Thalmann, D. 2006. “Real-Time Navigating
Crowds: Scalable Simulation and Rendering”. Computer
Animation and Virtual World (CAVW) Journal - CASA 2006
Special Issue.

Prendinger, H., and Ishizuka, M. 2001. “Social Role Awareness In
Animated Agents”. Proceedings of the International
Conference on Autonomous Agents.

Ramamritham, K. and Stankovic, J. 1994. “Scheduling
Algorithms and Operating Systems Support for Real-time
Systems”. Proceedings of the IEEE, 82(1).

Rana, O. and Stout, K. 2000. “What is Scalability in Multi-agent
Systems?” Proceedings of the Fourth International
Conference on Autonomous Agents. (Catalonia, Spain, June
2000.)

Rankin, A. 2009. Scalability and Performance of Affective Multi-
Agent Systems. Masters Thesis, Department of Computer
Science, The University of Western Ontario. 

Reilly, W. and Bates, J. 1992. Building Emotional Agents.
Technical Report CMU-CS-92-143, School of Computer
Science, Carnegie Mellon University. (Pittsburgh, PA, May
1992.)

Reiss, S. 2004. “Multifaceted Nature of Intrinsic Motivation: The
Theory of 16 Basic Desires”. Review of General Psychology,
8(3).

Rizzo, P., Veloso, M., Miceli, M., and Cesta, A. 1997.
“Personality-driven Social Behavior In Believable Agents”.
Proceedings of the AAAI Fall Symposium on Socially
Intelligent Agents.

Roberts, D. and Isbell, C. 2007. “Desiderata For Managers Of
Interactive Experiences: A Survey Of Recent Advances In
Drama Management”. In the Proceedings of the First
Workshop on Agent-Based Systems for Human Learning and
Entertainment.

Sung, M., Gleicher, M., and Chenney, S. 2004. “Scalable
Behaviors for Crowd Simulation”. Computer Graphics
Forum, Vol. 23, No. 3.

Sweetser, P. 2008. Emergence in Games. Charles River Media,
Game Development Series.

Tanenbaum, A. 2008. Modern Operating Systems, Third Edition.
Prentice Hall.

Wright, I. and Marshall, J. 2000, “Egocentric AI Processing for
Computer Entertainment: A Real-time Process Manager for
Games”. Proceedings of the First International Conference on
Intelligent Games and Simulation (GAME-ON 2000).
(London, United Kingdom, November 2000.)

You J. and Katchabaw, M. “A Flexible Multi-Model Approach to
Psychosocial Integration in Non Player Characters in Modern
Video Games”. Proceedings of FuturePlay 2010.
(Vancouver, Canada, May 2010.)

