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ABSTRACT 
 
   Recognizing the importance of artificial intelligence to 
modern video games, considerable efforts have been 
directed towards creating more believable non player 
characters in games, complete with personalities, emotions, 
relationships, and other psychosocial elements. To date, 
research in the field has primarily focused on the quality of 
character behaviour, and not on aspects of performance and 
scalability.  This is increasingly a problem as we strive for 
more complex, dynamic, and realistic behaviour in an ever-
growing population of characters in a virtual game world. 
 
   In this paper, we explore the performance and scalability 
of believable non player characters in modern video games.  
We propose an approach to scalability that is able to 
improve performance and increase the ability to support a 
larger quantity of characters without sacrificing the 
believability or quality of behaviour.  We then discuss a 
prototype implementation of this approach, as well as 
experiences in experiments and simulations using this 
prototype.  Results to date have been quite positive, and 
show tremendous potential for continued work in the future. 
 
INTRODUCTION 
 
   Artificial intelligence is an increasingly important aspect 
of modern video games, and can be a determining factor in 
the overall success of a game (Cass 2002; Champandard 
2004; Orkin 2004; Roberts and Isbel 2007; Sweetser 2008).  
One of the more active areas of research in game artificial 
intelligence is making more believable characters, also 
known as non player characters (Baille-de Byl 2004; Funge 
2004;Guye-Vuilleme and Thalmann 2001; Lawson 2003; 
Predinger and Ishizuka 2001; Rizzo et al. 1997), as this can 
lead to games that are ultimately more immersive, 
engaging, and entertaining to the player (Dias and Paiva 
2005; Livingstone 2006; Sweetser 2008).  Doing so, 
however, requires developers to reach beyond traditional 
approaches to game artificial intelligence, including finite 
state machines, rule based systems, and static scripting 
(Bailey and Katchabaw 2009). 
 
   The requirements for character believability tend to be 
quite steep (Loyall 1997).  They include elements such as 

personality, emotion, self-motivation, social relationships, 
consistency, the ability to change, and the ability to 
maintain an “illusion of life”, through having goals, 
reacting and responding to external stimuli, and so on 
(Loyall 1997).   
 
   Computationally, these believable non player characters 
are orders of magnitude more complex than traditional 
approaches to character artificial intelligence, and so they 
introduce the potential for serious performance problems, 
especially when there are a great number of them inhabiting 
a game world (Bailey and Katchabaw 2009). This problem 
is only exacerbated by the computational needs of other 
game sub-systems, which together put an even larger strain 
on often limited and over-taxed system resources.  
Consequently, if we are to truly take advantage of 
believable characters in modern video games, we must take 
into consideration issues of performance and scaling with 
artificial intelligence as it has been done with other aspects 
of games, such as graphics (Rankin 2009). 
 
   To improve performance and scalability of games, 
techniques generally involve various different kinds of pre-
processing of game data and various types of run-time 
optimizations to reduce the processing load as the game 
runs.  From an artificial intelligence perspective, we can 
adopt both techniques as well, to optimize both the 
believable character models used prior to execution and 
their use in-game at run-time.    
 
   This paper introduces and examines a scalable approach 
to believable non player characters that utilizes several 
techniques to improve in-game performance.  These include 
dynamic importance calculation, capability scaling or 
reduction, and pre-emptive, priority-based character 
scheduling and dispatching.  Through utilizing these 
techniques, we can ensure that scarce computational 
resources are allocated to characters where they are most 
needed, and that characters are using the decision-making 
processes best suited to their current state and importance to 
the game, while still maintaining believability. 
 
   To take advantage of these performance and scalability 
optimizations, this paper also introduces a new approach to 
believable non player characters using utility based 
planning and action selection combined with dynamic, 
emergent behaviour.  To support believability, various 
psychosocial elements are captured in this approach, 
including personality, emotions, relationships, roles, 
beliefs, desires, intentions, and coping.  This extends our 



earlier work in (Bailey and Katchabaw 2008; You and 
Katchabaw 2010), enabling richer and more compelling 
non player character behaviour.   
 
   The remainder of this paper is organized as follows.  We 
begin by presenting and discussing related work in this 
area.  We then describe our approach to performance and 
scalability for believable characters, outlining the various 
optimization techniques and strategies used in our own 
work.  We then discuss our prototype system, including the 
implementation of both the non player characters and the 
various performance and scalability enhancements we 
employed.  We then present and discuss our experiences 
from using this in a variety of experimental scenarios.  
Finally, we conclude this paper with a summary and a 
discussion of directions for future work. 
 
RELATED WORK 
 
    To date, unfortunately, a literature survey reveals 
relatively little in performance and scalability specifically 
intended for affective artificial intelligence systems for 
games.  That said, there is important and relevant research 
to note, as discussed in this section below. 
 
   Affective approaches designed for improved believability, 
such as the work in (Bates et al. 1994; Gratch and Marsella 
2004; Imbert et al.  2005; Reilly and Bates 1992), 
unfortunately, make little mention of performance or 
scalability issues.  Most frequently, this work focuses on 
the creation and simulation of a single character without 
considering the issues that arise in placing this character 
within a living game world, with numerous other 
inhabitants.  While some work examines interacting 
characters, there are no measures of performance or 
scalability provided, and no mention of allocating 
computing resources to the characters (Rankin 2009). 
 
   Looking at other game artificial intelligence research, 
some attention has been given to issues of performance.  
The work in (Wright and Marshall 2000) is notable for 
providing a flexible general-purpose framework for 
artificial intelligence processing in games.  While taking an 
“egocentric” approach, this work, unfortunately, provides 
no specific insight or performance optimizations for 
characters with psychosocial systems for believable 
behaviour, as in our current work.  Work towards scalable 
crowd behaviour, such as (Pettré  et al. 2006; Sung et al. 
2004), is also relevant, but tends to focus on the believable 
simulation of groups, as opposed to the believable 
simulation of a large number of individuals, which can be 
very different problems. 
 
   We can also view believable non player characters as a 
form of agent, and games themselves to therefore be a kind 
of multi-agent system (Rankin 2009).  Performance and 
scaling in multi-agent systems is still not a thoroughly 
explored area of research, however, but there are works of 
interest that borrow heavily from such diverse areas as 
operations research (Baker 1998; Haupt 1989; Holthaus and 
Rajendran 1997), distributed computing (Rana and Stout 
2000), and operating system process scheduling 
(Ramamritham and Stankovic, 1994; Tanenbaum 2008).  

While not directly involving games, this work provides 
insight into the issues at hand, as well as potential solutions 
relevant to this problem domain. 
 
   While there is a lack of literature focused on performance 
and scalability in affective artificial intelligence for video 
games, there are tremendous opportunities for research in 
this area.  Fortunately, insight and experience is available to 
be borrowed from other aspects of gaming research, as well 
as other disciplines, and can applied to this problem in a 
rather unique and innovative fashion, as we have done as 
described in this paper. 
 
GENERAL APPROACH 
 
   As discussed earlier, we take advantage of several 
techniques in unison to improve performance and 
scalability of non player characters in video games.  In this 
section, we present these various techniques. 
 
Overview 
 
    We begin by recognizing that not every non player 
character in a game has equal importance to the player and 
the game at any point in time.  Some characters are the 
focus of attention, are engaged in significant activities, or 
are otherwise critical to what is unfolding in the game.  
Others are of less importance, and their activities will 
largely, if not completely, go unnoticed to the player.  As 
the player moves through the game world and plays the 
game, the importance of the various characters changes, 
with some becoming more important and others less so. 
 
    Furthermore, we note that characters that are not visible 
to the player, or otherwise not important to the player, do 
not need the same richness, detail, and fidelity in their 
behaviour as those that are the focus of attention, or are 
otherwise important, to maintain believability.  In those 
cases, a game can safely do less with those characters, in 
many cases significantly so, with no perceptible difference 
to the player’s experience.  For example, suppose we have 
two non player characters in a game that are hungry; one, 
Alice, is in the same room as the player, while the other, 
Bob, is in a different locale far across the game world, 
outside of the player’s ability to sense.  To maintain 
believability, Alice must recognize her hunger, formulate a 
plan to satisfy her hunger considering her current 
psychosocial and physiological state and surroundings, and 
then execute this plan.  After all, the player is in the same 
room and is able to see and hear everything she does; the 
slightest out of place action could sacrifice believability and 
adversely affect the player’s experience.  On the other hand, 
Bob would not need to do anything except simply continue 
to live to maintain believability.  In the player’s absence, it 
is likely reasonable to believe that he could provide himself 
with the necessities of life, without actually needing to do 
anything about it.  In fact, the game would not even need to 
track Bob’s hunger level to maintain the same level of 
believability.   (That said, Bob would still need to progress 
in his life in the absence of the player, as it is likewise 
unreasonable to believe that he would do absolutely nothing 
at all when the player is not around.  How this should be 
done to maintain believability is discussed below.) 



   With this in mind, we can safely scale or reduce the 
capabilities of a non player character according to their 
current visibility and importance to the player while still 
maintaining believability across all characters in the game, 
as shown in Figure 1.  In doing so, we can achieve 
tremendous performance savings in characters with reduced 
capabilities as they require significantly less processing and 
this processing is far less complicated than characters 
operating at full capacity.  This, in turn, allows the game to 
support a much larger number of characters without 
requiring additional resources to be dedicated to artificial 
intelligence processing. 
 

Figure 1:  Characters in the Game World 
 
  To support this approach, each non player character in a 
game is a separately schedulable and executable entity, 
enabling computational resources to be allocated by a 
scheduling and dispatching subsystem on a character-by-
character basis according to their importance.  Furthermore, 
each character has access to a range of decision-making and 
processing algorithms, allowing their capabilities to be 
scaled or reduced based on their importance.  Lastly, 
character importance is calculated and updated regularly 
based on a variety of factors to ensure that scheduling, 
dispatching, and capability adjustment are all carried out 
using the best available information.  Each of these 
activities is discussed in further detail in the sections that 
follow below. 
 
Scheduling and Dispatching of Characters 
 
   To allocate computational resources to non player 
characters in a game, a scheduling and dispatching 
subsystem is added to the game.  The goal of this 
subsystem is rather simple—choosing the most appropriate 
characters to run at each game tick or frame of game 
execution. 
 
   Producing an optimal schedule for each tick is itself a 
computationally expensive task, and so we take a simpler, 
more heuristic approach using a system of priorities 
assigned to each non player character in the game.  
(Priorities are derived from the perceived importance of the 
characters, as discussed earlier in the paper, and below in 
further detail.)   With this in mind, the most appropriate 
characters to execute in any tick are simply those with the 

highest priorities.  Resource starvation is averted in 
characters of low importance through an aging mechanism 
built into the calculation of priorities. 
 
   Each game tick, the x characters with highest priorities 
are selected to run, where x is a positive integer 
configurable and tunable at run-time, based on a number of 
factors including the number of available processor cores, 
the workload being generated by other game subsystems, 
and so on.  Each of the x selected characters is allocated one 
or more update cycles, depending on their relative 
importance.  Each update cycle allows a character to 
execute for a period of time.  This execution can be pre-
empted, and does not necessarily allow the character to 
complete the task on which it was working.  If the task is 
not completed when the character’s update cycle ends, the 
character is paused and its priority is adjusted to reflect the 
work in progress. 
 
   Depending on the number of characters in the game, the 
priority system could be realized as either a single list 
sorted by priority, or a series of priority queues.  While the 
mechanics of each approach is different, they can both 
deliver the same pre-emptive, priority-driven scheduling 
and dispatching of non player characters in a game. 
 
Capability Scaling or Reduction 
 
   As discussed earlier, not every non player character in a 
game needs the highest levels of richness, detail, and 
fidelity in their behaviour in order to be perceived by the 
player as believable.  Indeed, some characters could 
function believably with greatly reduced capabilities, 
depending on the state of the player, the game, and the 
various characters within it. 
 
   To better understand how capability scaling or reduction 
can be accomplished, we first outline how a believable non 
player character must function in the first place.  We 
assume at least a basic set of psychosocial/cognitive 
processing elements, as without some form of these 
elements, it is extremely difficult for a character to deliver 
behaviour that could be truly considered believable (Acton 
2009).  This results in the high level character decision-
making process shown in  Figure 2.  Each of the stages 
from this process is discussed below. 
 
• Event:  A notification of activity in the game world, 

whether it is from other characters, the world itself, or 
simply the passage of time.  
 

• Appraisal:  The event is examined to see if it is of 
interest to the character, and if so, does the event or its 
consequences have sufficient importance to the 
character to warrant further consideration.  Deadlines 
for action/reaction may also be set, depending on the 
event.  
 

• Coping:  The character reflects on the event and 
updates its internal psychosocial and physiological state 
based on the event.  This adjusts the character’s mood, 
emotional memory, and so on.  
 

Game World 

Player          Character        Reduced Character 

Player 
Focus 



 
 Figure 2:  High Level Character Decision-Making Process 
 
• Goal Selection:  Given the current state of the 

character, its surroundings, and recent events, the 
character determines the goals that it should be trying to 
meet.  Goals might be immediate, short-term, medium-
term, and long-term.  
 

• Planning/Action Selection:  Considering the goals in 
place, a plan is created to achieve the goals with the 
desired results and acceptable side effects and 
consequences.  If a plan already exists and is in process, 
it might be revised to reflect changes in goals, character 
state, and so on.  With the plan in mind, appropriate 
actions are selected to have the plan implemented.  Note 
that if events indicate a quick reaction is required, the 
current plan may be temporarily bypassed or abandoned 
to carry out alternate actions.  (This may be the case, for 
example, to ensure self-preservation.)  
 

• Output Events:  Based on the actions selected, new 
events are generated and propagated into the game 
accordingly. 

 
   When this approach to character decision-making is 
considered, scaling a non player character can be 
accomplished in several ways.  Generally, these methods 
can be grouped into either data reductions or processing 
reductions. 
 
   The purpose of data reductions is to limit the amount of 
information that is used in the various stages of the 
decision-making process.  When done properly, this can 
greatly collapse decision spaces into smaller problems, 
making them far more efficient and less costly to work 
with.  With care, these reductions can be carried out with 

little to no perceivable change in character believability.  
Data reductions can themselves take many forms.   
 
   One such form is a model or state reduction.  As 
discussed earlier, in our approach, every character has a 
psychosocial model associated with them, defining their 
personalities, emotions, relationships, roles, values, and so 
on.  A fully populated model could have a character’s state 
defined by dozens of traits, all of which need to be 
maintained, and all of which could affect decisions made by 
the character.  While rich, expressive, and useful during 
design to fully define a character, this can be very 
expensive computationally to use at run-time, as these 
factors must be consulted during appraisal, coping, goal 
selection, and planning/action selection.  A careful 
reduction of this design model to a few key traits can 
produce a run-time model that is orders of magnitude more 
efficient, and far less costly to use within a game.  This 
process is shown in Figure 3.   
 
   Another form of data reduction is event reduction.  In this 
case, the number of events used to trigger decision-making 
or provide information during decision-making is limited, 
by reducing the types of events of interest, the importance 
of the various events or their consequences, or the 
frequency of their reporting to the character.  This results in 
either fewer events reaching the character, fewer events 
moving past the appraisal stage (as the events are now 
deemed irrelevant, unimportant or inconsequential), or 
simpler decisions throughout the various stages of 
processing with fewer variables and factors to consider.  All 
of these alternatives have the potential to improve 
performance substantially. 
 
   Processing reductions, on the other hand, generally 
involve altering a character’s decision-making processes by 
changing algorithms or omitting aspects or complete stages 
of decision-making to improve performance.  Again, if 
done with care, these performance improvements can be 
achieved without sacrificing believability.  Possible 
processing reductions include the following. 

 
• Use of Defaults.  To accelerate the various stages of 

decision-making, default strategies can be used instead 
of analyzing and developing them dynamically on 
demand.  For coping, events could have default impacts 
on character state, instead of determining this impact 
from the current state and other factors.  For goal 
selection, characters could be assigned default goals to 
meet instead of developing them from scratch.  For 
planning and action selection, default plans could be 
provided for each possible goal, complete with 
prescribed actions so that they do not need to be 
developed at run-time.  While the defaults used will not 
do as well at reflecting the current state of characters or 
the game, the performance savings can be substantial 
even if this approach is used only for out of focus 
characters, or those that are unimportant.  
 
• Use of Randomization.  Much like through the use of 

defaults, randomization can be used to replace various 
aspects of behaviour, although doing so likely makes 

sense only with unimportant characters in the game.  It  
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Figure 3:  Character Model Reduction 

 
is likely also wise to constrain randomness to ensure 
that characters are still acting believably.  This can be 
accomplished in a variety of ways, such as constraining 
randomness to choose from a pre-defined set of 
defaults, or by permitting some level of initial 
processing develop sensible options that are chosen 
from randomly, instead of using a more expensive 
algorithm to make a more optimal choice.  
 

• Streamlining of Coping.  Integrating the impact of 
events into a character’s internal state can be expensive, 
especially with a complex psychosocial model in use.  
To improve performance we can perform coping only in 
response to a limited set of critical events when 
characters are outside of the focus of the player.  While 
this will result in characters whose moods and emotions 
change only in extreme circumstances, the player will 
be largely unaware of this.  
 

• Disabling of Goal Changing.  Whenever a character 
changes goals, any existing plan must be discarded and 
a new plan must be formulated, which can be quite 
expensive.  To improve performance, characters can be 
prevented from modifying their goals while a plan is 
executing to avoid re-planning, unless very exceptional 
circumstances arise.  While this will result in characters 
sticking with plans when they should likely be changed, 
this should not have too large an impact on their 
believability, provided that they are outside the focus of 
the player.   
 

• Automatic Achievement of Goals.  As mentioned 
above, planning and action selection can be 
computationally expensive tasks.  When a character is 
outside the focus of the player, these tasks can be 
avoided entirely by simply allowing the character’s 
goals to be achieved automatically.  After all, if a goal is 
achievable by the character, and the player is not present 
to witness the goal actually being achieved, planning 
and action selection and execution are not required for 
the player to believe what has happened.  It is important 
to ensure, however, that the goal is likely to be achieved 
by the character, and that the time required to meet the 
goal is properly taken into account; otherwise 

believability may be inadvertently sacrificed.   
 

• Disabling of All Processing.  If a character is relatively 
unimportant and is someone with whom the player has 
had no prior personal contact or knowledge thereof, it is 
possible to disable all, or nearly all, decision-making in 
the character.  After all, the player would have little to 
no expectation of the character’s mood, goals, or actions 
and so it is believable for the character to be in their 
initial state when first encountered by the player.  The 
player has no way of knowing that the character was 
largely inactive up until when they entered the focus of 
the player.  
 
This strategy might also be applicable to important 
characters or characters that have been previously 
encountered, provided that they are out of the player’s 
focus and will remain out of their focus until the next 
break in the game, such as a cut-scene, level transition, 
and so on.  If important events are recorded, their effects 
on the character, as well as the character’s goals, plans, 
and actions can all be simulated during the break, so 
that they are up-to-date when the player next encounters 
them.  

 
   When we combine the various forms of data and 
processing reductions together, we have great flexibility in 
the amount of capability scaling or reduction available to a 
game.   If taken too far, this can eventually impact the 
believability of the game, but if done with care in an 
intelligent fashion, we can achieve tremendous performance 
savings with little to no effect on the believability perceived 
by the player. 
 
 Character Importance and Priority Calculation   
 
   The process of scheduling and dispatching, as well as the 
process of capability scaling or reduction both use a 
measure of a non player character’s importance as a factor 
that ultimately affects both resource allocation and 
performance.  Capability scaling or reduction uses a 
measure of importance directly, adjusting the capabilities of 
a character accordingly.  Scheduling and dispatching use 
importance in the form of a priority in determining which 
characters are run in each game tick.  Below, we examine 
how each measure is computed. 
 
   The importance of a non player character is determined 
by a collection of factors, with one calculating the 
importance, i, of a character as: 
 

    i = (αf + βd + γr + δc) / 4 
 
where α, β, γ, and δ are weights between 0 and 1.0 to tune 
and balance the equation.  The factor f is a measure of 
player focus on the character, which takes into 
consideration the distance between the player and the 
character, whether the character is within range of the 
player’s senses, and the strength of relationships between 
the player and the character.  The factor d is a designer-
imposed measure of importance of the character, usually 
with respect to the story of the game.  The factor r is a 
measure of importance defined by the currently active roles 
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of the character in question, as some roles in the game are 
inherently more important than others.  Lastly, the factor c 
is a measure of importance that comes from character 
interactions.  If a given character is involved with other, 
more important characters, their own importance might 
require a boost to put the characters on more equal footing.  
(For example, if the two are fighting each other, an 
inherently more important character could enjoy an unfair 
advantage over less important characters because the 
seemingly more important character has more capabilities 
and better access to computational resources.)  The factors 
f, d, r, and c all range between 0 and 1.0 and so after 
scaling, the importance of a character also lies between 0 
and 1.0. 
 
    With this in mind, the priority, pri, of a non player 
character can be computed as follows: 
 
 pri = εi + ζs - ηrc + θp 
 
where ε, ζ, η, and θ are also weights between 0 and 1.0 to 
tune and balance the equation.  (Carefully setting of these 
weights can also result in various scheduling policies, such 
as fair, least-slack-time, and so on (Rankin, 2009).)  The 
factor i is the importance of the character as defined above.  
The factor s is a starvation factor that increases at a certain 
rate for each game tick that the character is not run; by 
doing this, even an unimportant character’s priority will 
eventually exceed the most important character, allowing 
the unimportant character to run and avoid starvation.  The 
factor rc is a run counter used to ensure that a single 
character is not over-allocated update cycles despite its 
importance.  Lastly, the factor p is a progress measure that 
approaches 1.0 as the character approaches completion of 
its task at hand, to allow scheduling to clear out near-
complete tasks from characters.  All of factors i, s, rc, and p 
are normalized to between 0 and 1.0.  
 
   If desired, we can add a fifth factor to priority 
calculations to reflect the amount of capability reduction 
being applied to a particular non player character.  Doing so 
may be reasonable since a character with its capabilities 
reduced by data or processing reductions will require fewer 
computational resources and therefore can cope with its 
schedule being reduced as well.  Ordinarily, this would be 
accomplished using the importance factor i, as a low 
importance would trigger both capability and schedule 
reduction simultaneously.  If importance and capability 
reduction were not so closely linked, a separate factor 
indicating reduction would then be necessary.  (This can 
occur, for example, when there is a very large number of 
non player characters needing to be managed; in such a 
case, even the capabilities of fairly important characters 
would need reduction despite their importance in order to 
maintain game performance at an acceptable level.) 
 
PROTOTYPE IMPLEMENTATION 
 
   As a proof of concept, we started with the development of 
a foundation framework for believable non player 
characters.  This foundation was designed to be extended 
with modules for character scheduling and dispatching, as 
well as capability scaling or reduction, as discussed earlier 

in this paper. This prototype was developed for the various 
Microsoft Windows platforms using a combination of 
managed and unmanaged C++ using Microsoft Visual 
Studio 2008 as a development environment. 
 
   At the core of this prototype is a character system based 
on the high-level decision making process shown in  Figure 
2.  Character state is composed of a psychosocial model 
integrating aspects of personality, emotions, relationships, 
roles, beliefs, desires, intentions, and coping.  The 
personality model is derived from Reiss’ theory of basic 
desires (Reiss 2004), as this approach presents personality 
in a fashion well suited to goal selection and consequences 
of actions.  The emotion model selected is based on 
Ekman’s universal emotion model (Ekman et al. 1972), a 
veritable standard in this area.  Roles were developed using 
role theory from (Guye-Vuilleme and Thalmann 2001) as a 
basis.  Aspects of appraisal and coping were adapted from 
(Gratch and Marsella 2004), while goal selection and 
planning/action selection were driven by standard utility 
based processes.  A further discussion of the non player 
character system used as a foundation in this work can be 
found in (Acton 2009). 
 
   A scheduler and dispatcher module was added to the 
prototype to allocate computational resources to non player 
characters from the character system.  This was based on a 
simple serial sort and search algorithm to determine the 
next characters to run based on priorities as described in the 
previous section.  Capability scaling or reduction was 
implemented with multiple levels of reduction.  A character 
running with full capabilities uses the complete character 
system described above.  The first level of reduction uses 
rudimentary partial planning in which planning is carried 
out over several update cycles, with actions selected from 
partial plans in earlier update cycles while the current cycle 
continues to refine the plan.  The second level of reduction 
uses full appraisal, coping, and goal selection capabilities, 
but then uses default plans and actions associated with 
goals selected, instead of carrying out a full planning/action 
selection stage.  Finally, the third level of reduction uses 
randomization to select a goal and select a plan and actions 
capable of achieving this goal.  While this is not the most 
realistic of approaches, it can still be appropriate for non 
critical characters in the game. 
 
   To assess the operation and performance of the prototype 
system, detailed logs are collected.  These logs show all 
non player character state and activity at each tick of 
simulated game time, and contain performance information 
related to the scheduling and capability level of each 
character in the system.  These logs are valuable to 
experimentation with the prototype system, as discussed at 
length in the next section of this paper. 
 
RESULTS AND EXPERIENCES TO DATE 
 
   To assess the effectiveness of our approach to scalable 
believable non player characters, we conducted a series of 
experiments using our prototype system.  In this section, we 
discuss highlights of our results.  A complete presentation 
of experimental results and experiences can be found in 
(Rankin 2009). 



Experimental Environment and Configuration 
 
   All experimentation was executed on an Intel Core 2 Duo 
system with a clock speed of 2.0Ghz and 4.0GB of RAM.  
The 64-bit variant of Windows Vista was used as the 
system’s operating system.  This configuration provided 
more than enough power for the experimentation we 
conducted. 
 
   The prototype system was configured to use the 
psychosocial model described in the previous section, with 
characters having access to 4 roles, 5 goals, and 8 actions 
during processing. While a typical game would have more 
possibilities open to its characters, this configuration on its 
own was sufficient to demonstrate the effectiveness of our 
approach.  Time in the system was simulated so that 4 
characters could run each game tick, there were 30 
milliseconds between game ticks, and each action 
consumed one tick for execution.  While actions would 
ordinarily take longer and have varied lengths in reality, 
this accelerated experiments and simplified analyses, as it 
was easier to confirm that factors such as importance were 
being properly handled by the system.  Lastly, for 
simplicity and balancing, all weights used in calculating 
importance and priority were set to 1.0, except during 
starvation experiments.  It is possible that better (or worse) 
results could be obtained through the fine-tuning of these 
weights.  Additional experiments are currently under way, 
and others are planned to explore these and other issues 
more fully in the future. 
 
Initial Experiments 
 
  Prior to more rigorous experimentation, initial testing was 
conducted to assess the basic operation of our prototype 
system.  From this, we were able to verify: 
 
• Equal fixed importance and priority resulted in an even 

distribution of resources to characters and equal 
opportunity for execution. 

 
• Increased importance and priority translated into an 

increase in resource allocations to characters and a 
corresponding increase in execution time. 

 
• Starvation of characters with low importance was 

effectively prevented by our approach to scheduling, and 
would be a serious issue if these measures were disabled 
or not provided in the first place. 

 
• Characters with reduced capabilities required fewer 

resources to execute than characters with full capabilities 
intact. 

 
• The prototype system could handle several characters of 

varying importance well, adjusting scheduling and 
capabilities accordingly without difficulty. 

 
   While these tests verified the correct operation of the 
prototype system, we still needed to assess the improved 
performance and scalability enabled by our approach.  This 
is accomplished through experimentation outlined in the 
next section. 

Stress Testing 
 
   To assess performance and scaling improvements, we 
used the prototype system to manage hundred of characters 
simultaneously.  In these experiments, we executed three 
scenarios with 100, 200, and 800 characters respectively.  
Each scenario was itself run three times, once with all 
characters at full capability, once with all characters at the 
second level of reduction (as described in the previous 
section), and once with all characters at the third level of 
reduction. 
 

 
Figure 4:  Character Stress Testing 

 
    Results from this experimentation are shown in Figure 4, 
measuring the time to completion of 200 game ticks in 
seconds.  With 100 characters executing, performance 
under full capacity suffered greatly.  There was a slight 
improvement under the second reduction, but performance 
was still unacceptable.  (The small difference achieved with 
this reduction is because even under full capacity, the 
planner is somewhat primitive and incomplete.  With a 
complete planner, full capacity characters would suffer 
worse, and there would be a bigger improvement achieved 
through this reduction.)  With the third reduction, 
performance improvements were substantial.  As the 
number of characters increased, only the third reduction 
characters were able to complete.  While their time to 
completion increased, performance was still improved 
dramatically through this reduction.   
 
   It is important to note that while full capacity and slightly 
reduced characters had performance issues, the system 
would never be expected to support this many at a time.  
Through dynamic adjustments to capabilities, only a few 
would run at these capability levels at a time, depending on 
the game, with the others reduced further.  This experiment 
was to solely demonstrate performance improvements 
through our approach. 
 
    From these results, we can see great improvements in the 
performance delivered by our approach to scalable 
believable non player characters.  We are able to deliver a 
collection of characters that can adapt to various 
computational requirements through proper scheduling and 
capability adjustment.   
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CONCLUSIONS AND FUTURE WORK 
 
   This paper introduced a scalable approach to believable 
non player characters in modern video games.  Through a 
combination of importance determination, prioritized 
scheduling and dispatching, and capability scaling or 
reduction, we can adjust the level of functioning of 
characters to adhere to computational constraints while 
maintaining believability.  Experimental results with our 
prototype system have been both positive and quite 
promising. 
 
   In the future, there are many avenues for continued work.  
We plan to continue experimentation and further tune, 
scale, and explore the capabilities of our approach.  We will 
continue the development of our prototype approach, 
adding both more functionality to our characters and 
additional capability reduction techniques.  Lastly, we plan 
to embed our approach within a complete game or game 
engine to fully assess both its performance and its sustained 
believability through extensive user testing. 
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