IMPROVING SOFTWARE QUALITY THROUGH DESIGN PATTERNS:

A CASE STUDY OF ADAPTIVE GAMES AND AUTO DYNAMIC DIFFICULTY
Muhammad Iftekher Chowdhury and Michael Katchabaw
Department of Computer Science
University of Western Ontario
London, Ontario,

Canada

E-mail: {mchowd2, katchab}@uwo.ca

KEYWORDS
Auto dynamic difficulty, game balancing, software design
patterns.

ABSTRACT

Auto dynamic difficulty (ADD) is the technique of
automatically changing the level of difficulty of a video
game in real time to match player expertise. Recreating an
ADD system on a game-by-game basis is both expensive
and time consuming, ultimately limiting its usefulness.
Thus, we leverage the benefits of software design patterns
to construct an ADD framework. In this paper, we discuss a
number of desirable software quality attributes that can be
achieved through the usage of these design patterns, based
on a case study of two video games.

INTRODUCTION

In the last 30 years, the scope of video games has expanded
considerably in terms of platforms, genres and size.
Unfortunately, we still struggle with keeping players
engaged in a game for a long period of time. According to a
recent article (Snow 2011), 90% of game players never
finish a game. One of the key engagement factors for a
video game is an appropriate level of difficulty, as games
become frustrating when they are too hard and boring when
they are too easy (Hao et al. 2010). From the point of view
of skill levels, reflex speeds, hand-eye coordination,
tolerance for frustration, and motivations, video game
players may vary drastically (Bailey and Katchabaw 2005).
These factors together make it very challenging for video
game designers to set an appropriate level of difficulty in a
video game. Traditional static difficulty levels (e.g., easy,
medium, hard) often fail in this context as they expect the
players to judge their ability themselves appropriately
before playing the game and also try to classify them in
broad clusters (e.g., what if easy is too easy and medium is
too difficult for a particular player?).

Auto dynamic difficulty (ADD), also known as dynamic
difficulty adjustment (DDA) or dynamic game balancing
(DGB), refers to the technique of automatically changing
the level of difficulty of a video game in real time, based on
the player’s ability (or, the effort s/he is currently spending)
in order to provide them with an “optimal experience”, also
sometimes referred to as “flow”. If the dynamically
adjusted difficulty level of a video game appropriately
matches the expertise of the current player, then it will not

only attract players of varying demographics but also enable
the same player to play the game repeatedly without being
bored. Popular games such as “Max Payne”, "Half-Life 2"
and “God Hand” use the concept of auto dynamic difficulty.
While others have studied ADD in games, this has been
done in an ad hoc fashion in terms of software design and is
therefore not reusable or applicable to other games.
Recreating an ADD system on a game-by-game basis is
both expensive and time consuming, ultimately limiting its
usefulness. For this reason, we leverage the benefits of
software design patterns (Gamma et al. 1995) to construct
an ADD framework and system that is reusable, portable,
flexible, and maintainable.

In (Chowdhury and Katchabaw 2012), we introduced a
collection of four design patterns originally from self-
adaptive system literature (Ramirez and Cheng 2010),
derived in the context of enabling auto dynamic difficulty in
video games. Unfortunately, to date, the literature on the
usage of software design patterns in developing video
games is relatively scarce. Work in this area is mostly
limited to using video games as a means for teaching
software design patterns in undergraduate computer science
courses (e.g., Gestwicki and Sun 2008; Antonio et al. 2009).
Very little, if any, motivation of using software design
patterns for implementing ADD is found in the video game
literature. Thus, in this paper, we discuss the improvements
to overall software quality that can be achieved through the
usage of these design patterns, based on empirical evidence
acquired through a case study involving implementation and
source code analysis of two proof-of-concept video games.

The rest of this paper is organized as follows. In the next
section, we overview key literature from the area. We then
describe our design patterns for enabling auto dynamic
difficulty in video games, as well as our case study. Finally,
in the remaining sections, we present the results from our
case study and conclude the paper.

RELATED WORK

Considering the variety of contexts and the focus of related
research, we divide our related work discussion into three
sub-sections. First we highlight the research that explores
the use of ADD in video games. Afterwards, we discuss the
literature on using software design patterns in video games.
Finally, we discuss the research gap and put our work in the
context of this other work.

© EUROSIS-ETI

Auto Dynamic Difficulty

In recent years, ADD has received notable attention from
numerous researchers. Some of this research is primarily
focused on knowledge seeking, whereas other works present
solutions such as frameworks and algorithms. Additionally,
in some research, new solutions are presented together with
empirical validations. Here, we review some of these works.

(Bailey and Katchabaw 2005) developed an experimental
testbed based on Epic’s Unreal engine that can be used to
implement and study ADD in games. It allows development
of new ADD algorithms as well. A number of mini-game
gameplay scenarios were developed in the test-bed and
these were used in preliminary validation experiments.

(Rani et al. 2005) suggested a method to use real time
feedback, by measuring the anxiety level of the player using
wearable biofeedback sensors, to modify game difficulty.
They conducted an experiment on a Pong-like game to
show that physiological feedback based difficulty levels
were more effective than performance feedback to provide
an appropriate level of challenge. Physiological signals data
were collected from 15 participants each spending 6 hours
in cognitive tasks (i.e., anagram and Pong tasks) and these
were analyzed offline to train the system.

(Hunicke 2005) used a probabilistic model to design ADD
in an experimental first person shooter (FPS) game based on
the Half-life SDK. They used the game in an experiment on
20 subjects and found that ADD increased the player’s
performance (i.e., the mean number of deaths decreased
from 6.4 to 4 in the first 15 minutes of play) and the players
did not notice the adjustments.

(Orvis et al. 2008), from an experiment involving 26
participants, found that across all difficulty levels,
completion of the game resulted in an improvement in
performance and motivation. Prior gaming experience was
found to be an important influence factor. Their findings
suggested that for inexperienced gamers, the method of
manipulating difficulty level would influence performance.

(Hao et al. 2010) proposed a Monte-Carlo Tree Search
(MCTS) based algorithm for ADD to generate intelligence
of non player characters. Because of the computational
intensiveness of the approach, they also provided an
alternative based on artificial neural networks (ANN)
created from the MCTS. They also tested the feasibility of
their approach using Pac-Man.

(Hocine and Gouaich 2011) described an ADD approach for
pointing tasks in therapeutic games. They introduced a
motivation model based on job satisfaction and activation
theory to adapt the task difficulty. They also conducted
preliminary validation through a control experiment on
eight healthy participants using a Wii balance board game.

Software Design Patterns in Video Games

In a number of works, video games have been proposed as a
tool to teach software engineering in general and design

patterns in particular. On the other hand, unfortunately,
work focusing on how game developers can benefit from
the usage of software design patterns is relatively rare. Here
we discuss examples of both types of research.

(Gestwicki and Sun 2008) presented a video game based
approach to teach software design patterns to computer
science students. They developed an arcade style game,
EEClone, which consists of six key design patterns and then
used these patterns in their case study. Student participants
analyzed the game to learn the usage of those patterns.

(Antonio et al. 2009) described their experience in teaching
software design patterns using a number of incremental
abstract strategy game design assignments. In their
approach, each assignment was completed by refactoring
and using design patterns on previous assignments.

(Narsoo et al. 2009) described the usage of software design
patterns to implement a single player Sudoku game for the
J2ME platform. They found that through the use of design
patterns, new requirements could be accommodated by
making changes to fewer classes than otherwise possible.

Research Gap

As we can see from above discussion, the work on ADD in
video games focuses on tool building (e.g., framework
(Bailey and Katchabaw 2005), algorithm (Hunicke 2005;
Hao et al. 2010) etc.) and empirical studies (e.g., Rani et al.
2005; Orvis et al. 2008 etc.), but they all use an ad-hoc
approach from a software design point view. On the other
hand, research on using software design patterns in video
games is mostly limited to using video games as a means
for teaching design patterns in undergraduate computer
science courses (e.g., Gestwicki and Sun 2008; Antonio et
al. 2009). In contrast, much work has been done towards
game design patterns, such as the foundational work of
(Bjork and Holopainen 2004) and many others, but the
focus there is game design and not software design, which
is a subtle, yet important distinction. Thus, in this paper, we
discuss the software quality attributes that can be achieved
through the usage of software design patterns in the context
of ADD, based on an empirical study.

DESIGN PATTERNS

In this section, we briefly discuss the four software design
patterns for enabling ADD in video games. For further
details, the reader is encouraged to refer to (Chowdhury and
Katchabaw 2012) for elaborated discussion and examples.

Sensor Factory

The sensor factory pattern is used to provide a systematic
way of collecting data while satisfying resource constraints,
and provide those data to the rest of the ADD system.
Sensor (please see Figure 1) is an abstract class that
encapsulates the periodical collection and notification
mechanism. A concrete sensor realizes the Sensor and
defines specific data collection and calculation. The
SensorFactory class uses the “factory method” pattern to

© EUROSIS-ETI

provide a unified way of creating any sensors. It takes the
sensorName and the object to be monitored as input and
creates the sensor. Before creating a sensor, the
SensorFactory checks in the Registry data structure to see
whether the sensor has already been created. If created, the
SensorFactory just returns that sensor instead of creating a
new one. Otherwise, it verifies with a ResourceManager
whether a new sensor can be created without violating any

resource constraints.
ResourceManager Registry

1 1

1 1

SensorFactory 1 |
|

Game

Figure 1: Sensor Factory Design Pattern
Adaptation Detector

With the help of the sensor factory pattern, the
AdaptationDetector (please see Figure 2) deploys a number
of sensors in the game and attaches observers to each
sensor. Observer encapsulates the data collected from
sensor, the unit of data (i.e., the degree of precision
necessary for each particular type of sensor data), and
whether the data is up-to-date or not. AdaptationDetector
periodically compares the updated values found from
Observers with specific Threshold values with the help of
the ThresholdAnalyzer. Each Threshold contains one or
more boundary values as well as the type of the boundary
(e.g., less than, greater than, not equal to, etc.). Once the
ThresholdAnalyzer indicates a situation when adaptation
might be needed, the AdaptationDetector creates a Trigger
with the information that the rest of the ADD process needs.

ThreshoIdAnaIyzer|~ —————— >| Threshold

1 *

*

Figure 2: Adaptation Detector Design Pattern

Case Based Reasoning

While the adaptation detector determines the situation when
a difficulty adjustment is required by creating a Trigger,
case based reasoning (please see Figure 3) formulates the
Decision that contains the adjustment plan. The
InferenceEngine has two data structures: the TriggerPool
and the FixedRules. FixedRules contains a number of Rules.
Each Rule is a combination of a Trigger and a Decision.
The Triggers created by the adaptation detector will be
stored in the TriggerPool. To address the triggers in the

sequence they were raised in, the 7riggerPool should be a
FIFO data structure. The FixedRules data structure should
support search functionality so that when the
InferenceEngine takes a Trigger from the TriggerPool, it
can scan through the Rules held by FixedRules and find a
Decision that appropriately responds to the Trigger.

InferenceEngine

| pecision .,
* 1 1 }
|
1Q Q1 1
| Rue | |
|
|
¥
I
|
I
1 1 !
<>l TriggerPool | | FixedRules | }
1 1 |
I
I
1 1 |
I
I
|
|
|

Figure 3: Case Based Reasoning Design Pattern
Game Reconfiguration

Once the ADD system detects that a difficulty adjustment is
necessary, and decides what and how to adjust the various
game components, it is the task of the game reconfiguration
pattern to facilitate smooth execution of the decision. The
AdaptationDriver receives a Decision selected by the
InferenceEngine (please see case based reasoning in previous
section) and executes it with the help of the Driver. Driver
implements the algorithm to make any attribute change in an
object that implements the State interface (i.e., that the object
can be in ACTIVE, BEING_ACTIVE, BEING INACTIVE or
INACTIVE states, and outside objects can request state
changes). As the name suggests, in the active state, the object
shows its usual behavior whereas in the inactive state, the
object stops its regular tasks and is open to changes. The
Driver takes the object to be reconfigured (default object used
if not specified), the attribute path (i.e., the attribute that needs
to be changed, specified according to a predefined protocol
such as object oriented dot notation) and the changed attribute
value as inputs. The Driver requests the object that needs to be
reconfigured to be inactive and waits for the inactivation.
When the object becomes inactive, it reconfigures the object as
specified. After that, it requests the object to be active and
informs the AdaptationDriver when the object becomes active.
The GameState maintains a RequestBuffer data structure to
temporarily store the inputs received during the inactive state
of the game. (If the reconfiguration is done efficiently,
however, it should be completed within a single tick of the
main game loop, and this buffering should be largely
unnecessary.) The GameState overrides Game’s event handling
methods and game loop to implement the State interface.

—

Game

AN

«interface»
State

&

I GameState |< —————— ~| Driver |

Figure 4: Game Reconfiguration Design Pattern

© EUROSIS-ETI

Integration of ADD Design Patterns

In this Section, we briefly re-discuss how the four design
patterns discussed in previous sub-sections work together to
create a complete ADD system (please see Figure 5). The
sensor factory pattern uses Sensors to collect data from the
game so that the player’s perceived level of difficulty can be
measured. The adaptation detector pattern observes Sensor
data using Observers. When the adaptation detector finds
situations where difficulty needs to be adjusted, it creates
Triggers with appropriate additional information. Case
based reasoning gets notified about required adjustments by
means of Triggers. It finds appropriate Decisions associated
with the Triggers and passes them to the adaptation driver.
The adaptation driver applies the changes specified by each
Decision to the game, to adjust the difficulty of the game
appropriately, with the help of the Driver. The adaptation
driver also makes sure that the change process is transparent
to the player. In this way, all four design patterns work
together to create a complete ADD system for a particular
game.

Tngger

Observer J L
Decision

Sensor
sensor factory game reconfiguration

Figure 5: Four Design Patterns Working Together in a
Game

(adaptatmn detectorﬁ /—case based reasonlnj

CASE STUDY

In this section, we describe the case study used to assess
software quality improvements achieved through our design
patterns for ADD. We begin with a brief description of
each of the two games that were used in the case study. We
then describe the case study methods and the quality metrics
that were collected from the case study.

Case Study Games

We used two arcade style single player games developed in
Java for the case study. The first game is a variant of Pac-
Man and will be referred to as Game-P from here onwards.
Game-P was developed for the purposes of this research.
The level structure and gameplay of the second game is
similar to the popular Super Mario game series and will be
referred to as Game-S from here onwards. Game-S is a
slightly modified version of a platform game described in
(Brackeen et al. 2004). In sub-sections below, we briefly
describe the game logic and ADD logic of these two games.

Game-P

In this game, the player controls Pac-Man in a maze (please
see Figure 6). There are pellets, power pellets, and 4 ghosts
in the maze. Pac-Man has 6 lives. Usually, ghosts are in a
predator mode and touching them will cause the loss of one
of Pac-Man’s lives. When Pac-Man eats a power-pellet, it
becomes the predator for a certain amount of time. When
Pac-Man is in this predator mode and eats a ghost, the ghost

will go back to the center of the maze and will stay there for
a certain amount of time. Eating pellets gives points to Pac-
Man. The player tries to eat all the pellets in the maze
without losing all of Pac-Man’s lives. The player is
motivated to chase the ghosts while in predator mode, as
that will help them by removing the ghosts from the maze
for a time, allowing Pac-Man to eat pellets more freely.
Ghosts only change direction when they reach intersections
in the maze, while Pac-Man can change direction at any
time. A ghost’s vision is limited to a certain number of cells
in the maze. Ghosts chase the player if they can see them. If
the ghosts do not see Pac-Man, they try to roam the cells
with pellets, as Pac-Man needs to eventually visit those
areas to collect the pellets. If the ghosts do not see either
Pac-Man or pellets, they move in a random fashion.

7 y
(&) |:1|E|i:h

&ﬂ Fﬂ
HE=

“D D

”, ’ , ’ . Score: 101

Figure 6: Screen Captured from Game-P

Usually, a Pac-Man game is multi-level, but our
implementation (i.e., Game-P) has only one level. The
maximum possible score is 300 in our case, so the player
will try to achieve the score of 300 without losing all of
Pac-Man’s lives. Our assumption is that if the player loses
all lives (i.e., 6) before finishing the game, then the average
score per life (i.e., total score / number of lives lost to
achieve the score) would be less than 50 and the game
would seem overly difficult to them. On the other hand, if
the player finishes the game losing half of the lives or less,
then the average score would be greater than or equal to
100, and the game would seem too easy to them. Thus, in
this case, the ADD system monitors the average-score-per-
life and changes game difficulty accordingly. It starts
increasing the game difficulty when the monitored value is
more than 50 and the game become most difficult when the
value is more than 100. (Corresponding logic decreases the
game difficulty when the average-score-per-life is less than
50.) The attributes of ghost speed, ghost vision length,
duration of Pac-Man’s predator mode, and the amount of
time that a ghost stays in the centre of the maze after being
eaten by Pac-Man in predator mode are increased or

© EUROSIS-ETI

decreased to change the game difficulty. Each of these
attributes has lower and upper limits, so that the game
includes the option of someone playing extremely well or
extremely poorly.

Game-S

In this game, the player controls the player character in a
platform world (please see Figure 7). There are three levels,
each having different tile based maps. There are power ups
and non-player characters (i.e., enemies) in each level.
There are three different types of power ups: basic power
ups, bonus power ups, and a goal power up. Basic power
ups and bonus power ups give certain points to the player.
In each level there is one goal power up that can be found at
the end of the level. The goal power up takes the player
from one level to another. There are two different types of
non-player characters: ants and flies. Ants and flies move
in one direction and change direction when blocked by the
platforms. The player character can run on and jump from
platforms. When the player character jumps on (i.e.,
collides from above) non-player characters, the non-player
character dies. If the player character collides with a non-
player character in any other direction, then the player
character dies instead. The player character has 6 lives.
When the player character dies, it loses one life and the
game restarts from the beginning of that level. The player
character and ants are affected by gravity; flies are only
affected by gravity when they die.

4&,

Score: 105 Life: 3

Figure 7: Screen Captured from Game-S

In this game, three map variants were created for each level.
For a particular level, the same objects were placed in the
map, but positioned slightly differently. One map variant
was the default version and other two were easier and
harder versions of the default map. The ADD system
monitors score-per-level and life-lost-per-level, and adapts
difficulty accordingly. One possible adaptation is the
modification of the speed of the non-player characters and
takes place during the game. Another adaptation is a
change in level structure (i.e., loading a different version of
the map) and takes place when the player character goes to
the next level or in the next loading of the same level (i.e.,
when the player character dies). The modifications are
minor and assumed to be transparent to the player, but
altogether alter the game difficulty. Apart from this, each
level is more difficult and lengthier than the previous level,

but has more points to give the player a sense of progress
and accomplishment. Similar to Game-P, modifications in
Game-S have lower and upper limits, so that the game
includes the option of someone playing extremely well or
extremely poorly.

Case Study Method

Here we briefly discuss the steps that were taken during the
course of the case study. Firstly, Game-P was developed
without our pattern-based ADD system. Our ADD system
was then developed and integrated with Game-P. The
source code for the ADD system was then refactored within
the scope of the design patterns. We manually tested
Game-P separately and with the ADD system. A player
simulation (i.e., a simple artificial intelligence playing the
game itself using heuristic functions) was also created to
test the game. Game-S was then chosen for study as it used
the same Java platform as Game-P, but substantially
differed in terms of gameplay, and was freely available and
well documented in a book (Brackeen et al. 2004). Two
default maps accompanied Game-S originally. We created
one more default map ourselves, as well as two different
variants of each map, as discussed earlier. There was no
scoring mechanism in Game-S as originally written, so we
developed scoring logic ourselves. After this, we took the
source code of our ADD system used with Game-P and
extended its abstract base classes (Sensor, and so on) to
adapt the system for Game-S. We manually tested Game-S
separately and with the ADD system. We then analyzed
and compared the source code of the ADD systems of
Game-P and Game-S to assess software quality according to
a few key software metrics, as discussed in the next sub-
section.

Analysis Tool and Metric

During the development of the ADD system for Game-P,
we realized that much of its source code would be reusable
across various games. During the extension of the ADD
system for Game-S, we did not need to make modifications
to many of the classes from the system for Game-P. To
assess this quantitatively, we selected a metric and a tool.
As a metric, we used Source Lines of Code (SLOC), as it is
a widely accepted software metric and helps in estimating
the development effort of a software product. For a tool, we
used Unified Code Count (UCC) developed by the
University of Southern California Center for Systems and
Software Engineering. Features of UCC include both
counting SLOC and comparing two versions of source code.
UCC counts both the logical and physical SLOC. As seen
from the two examples in Table 1, since logical SLOC
disregards code formatting, it is more representative of the
size of the software, and so we used logical SLOC as our
metric in this study.

Table 1: Difference Between Physical and Logical SLOC

Example Physical vs. Logical SLOC

if(a==0) foo(); [Physical SLOC = 1,Logical SLOC =2

if(a==0)
Physical SLOC = 4,Logical SLOC =2
foo();

}

© EUROSIS-ETI

SOFTWARE QUALITY ASPECTS

In this section, we describe how different desirable software
quality attributes can be achieved through using the design
patterns described earlier in this paper. For this discussion,
we refer to case study results and observations.

Reusability

Reusability refers to the degree to which existing
applications can be reused in new applications. Reusability
of source code reduces implementation time and increases
the probability that prior testing has eliminated defects.

In Table 2, we show our reusability analysis of the source
code of the ADD systems of Game-P and Game-S. In the
first column, we show the class name or pattern name. In
the next four columns we show information related to
Game-P. In the first Game-P column we show the number
of classes in each category (i.e., specified in column 1). In
the second column we show the corresponding total logical
SLOC in Game-P. In the third column we show the
reusable Logical SLOC (i.e., code that remained unchanged
in Game-S) and the associated percentage. In the fourth
column we show the game specific Logical SLOC (i.e.,
specific to Game-P and cannot be reused) and the associated
percentage. The remaining columns report similar data, this
time from the perspective of Game-S. For clarity, we
combined 100% reusable classes within a particular pattern.
After all the rows of a particular pattern we show the
summary of that pattern. The last row of the table is the
summary across all the patterns.

We can see from Table 2 that SemsorFactory, Sensor,
Registry and ResourceManager classes in the sensor factory
design pattern are completely reusable. Similarly, classes
required to implement the Observer, Trigger, Threshold and
ThresholdAnalyzer in the adaptation detector pattern are
completely reusable. Three classes (i.e., Rule, FixedRules
and Decision) in the case based reasoning pattern, and three

classes (i.e., Driver, AdaptationDriver and State) in the
game reconfiguration pattern are also completely reusable.
Furthermore, the classes required to implement
AdaptationDetector, InferenceEngine and GameState are
partially reusable. Only the concrete sensors (6 classes in
Game-P and 3 classes in Game-S) and the concrete
decisions (2 classes in Game-P and 5 classes in Game-S) are
specific to the game and not reusable.

As we can see from the last row in Table 2, the ADD
system in Game-P contains 27 classes comprised of 774
logical SLOC. Similarly, the ADD system in Game-S
contains 753 logical SLOC in 27 classes. Between these
two systems, 600 logical SLOC (77.52% in Game-P;
79.68% in Game-S) are exactly the same and thus are
considered reusable. Only 174 (22.48%) logical SLOC in
Game-P and 153 (20.32%) logical SLOC in Game-S are
specific to the games. Overall, more than three fourths
(75%) of the logical SLOC required to implement the ADD
systems are considered reusable.

Integrability

Integrability refers to the ability to make the separately
developed components of the system work correctly
together. As we can see in Figure 5, the integration points
among the design patterns and with the game are clearly
defined. Observers, Triggers and Decisions are the
integration points between the four design patterns. Sensors
and Drivers are the integration points between a game and
the ADD system. Sensors function as accessors to the game
whereas Drivers function as mutators to the game. Because
of these clearly defined integration points, the four design
patterns can be integrated with each other and a game
easily. One of the games in the case study (Game-S) was
already developed without any prior consideration of these
design patterns or even any ADD system. Regardless, we
easily managed to extend and add our ADD system to that
game using our design patterns, which demonstrates the
integrability of the patterns (and also Game-S).

Table 2: Reusability Analysis of the Source Code of ADD Systems in Game-P and Game-S

Game-P Game-S
Class/ Pattern Name #of | Logical SLOC #of | Logical SLOC
Classes Total Reusable(%)| Specific(%) |Classes| Total |Reusable(%)| Specific(%)
SensorFactory, Sensor,
Registry, Resource Manager 4 218 218(100) 0(0) 4 218 218(100) 0(0),
ConcreteSensors 6 68 0(0) 68(100) 3 44 0 (0) 44(100)
Sensor Factory 10 | 286 | 218(76.22) | 68(23.78) 7 262 | 218 (83.21) | 44(16.79)
Observer, Trigger, Threshold,
ThresholdAnalyzer 5 97 97(100) 0(0) 5 97 97(100) 0(0),
|AdaptationDetector 1| 68 21(30.88)] 47(69.12) 1 65 21(32.31)] 44(67.69)
Adaptation Detector 6 165 | 118(71.52) | 47(28.48) 6 162 | 118(72.84) | 44(27.16)
Rule, Decision, FixedRules 33 75 75(100) 0(0) 3 75 75(100) 0(0),
InferenceEngine 2 50 46(92) 4(8) 2 51 46(90.20) 5(9.80)
ConcreteDecisions 2 29 0(0) 29(100) 5 30 0(0) 30(100)
Case-based Reasoning 7 154 | 121(78.57) | 33(21.43) 10 156 | 121(77.56) | 35(22.44)
Driver, AdaptationDriver,
State 3 99 99(100) 0(0) 3 99 99(100) 0(0),
GameState 1| 70 44(62.86) 26(37.14) 1 74 44(59.46), 30(40.54)
Game Reconfiguration 4 169 | 143(84.62) | 26(15.38) 4 173 | 143(82.66) | 30(17.34)
Grand Total 27 | 774 | 600(77.52) | 174(22.48) | 27 | 753 | 600(79.68) | 153(20.32)

© EUROSIS-ETI

Portability

Portability is the ability of a system to run under different
computing environments. A framework- or middleware-
based approach for creating a self-adaptive system (such as
ADD in video games) is usually specific to a particular
programming language and or platform, whereas a design
pattern-based approach is highly portable across different
platforms and programming languages (Ramirez and Cheng
2010). These design patterns were derived from the self-
adaptive system literature in the context of ADD in video
games. This indicates the portability of these design
patterns across domains. Also, in our case study, we
managed to port them (as a solution) from one game to
another within the platform (Java). This indicates
portability across systems on the same platform. In the
future, we plan to examine the portability of these design
patterns across platforms as well.

Maintainability

Maintainability refers to the ease of the future maintenance
of the system. As discussed earlier, different parts of the
design patterns have specific concerns (e.g., Sensors will
collect data, Drivers will make changes to the game, etc.),
and so the resulting source code will have high traceability
and maintainability. Furthermore, as the use of these design
patterns provides source code reusability (please see Table
2), this will increase the probability that prior testing has
eliminated defects when being used in a new game.

CONCLUDING REMARKS

Design patterns are a formal approach of describing
reusable solutions for a design problem. To date, the
literature on the usage of software design patterns in video
games is relatively scarce. Little or no motivation of using
software design patterns for implementing ADD is found in
video game literature. Thus, in this paper, we presented a
case study involving implementation and source code
analysis of two proof-of-concept video games. We
discussed how desirable software quality attributes such as
reusability, integrability, portability, and maintainability can
be achieved through the usage of these design patterns. Our
case study results and methods have implications on both
research and practice, giving practitioners motivation to use
these design patterns for implementing ADD systems. Our
analysis technique (i.e., a source code analysis to compare
games) can be used in further research. Even though our
context of discussion was ADD, these patterns can be used
in any situation where a game needs to be adaptive and
reconfigures itself based on monitoring.

REFERENCES
Antonio, M.; Jiménez-Diaz, G.; and Arroyo, J. 2009. “Teaching

Design Patterns Using a Family of Games”. In Proceedings of

the 14th Annual ACM SIGCSE Conference on Innovation and
Technology in Computer Science (Paris, France, Jul. 6-9). 268-
272.

Bailey, C.; and Katchabaw, M. 2005. “An Experimental Testbed to
Enable Auto-Dynamic Difficulty in Modern Video Games”. In

Proceedings of the 2005 North American Game-On
Conference (Montreal, Canada, Aug. 22-23). 18-22.

Bjork, S., Holopainen, J. 2004. Patterns in Game Design. Charles
River Media, Inc. Massachusetts, USA.

Brackeen, D.; Barker, B.; and Vanhelsuwé, L. 2004. Developing
Games in Java. New Riders.

Chowdhury, M. L.; and Katchabaw, M. 2012. “Software Design
Patterns for Enabling Auto Dynamic Difficulty in Video
Games”. In Proceedings of the 17th Intl. Conf. on Computer
Games (Louisville, Kentucky, USA, Jul. 30 - Aug. 1). 76 - 80.

Gamma, E.; Helm, R.; Johnson, R.; and Vissides, J. 1995. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison - Wesley.

Gestwicki, P.; Sun, F. 2008. “Teaching Design Patterns Through
Computer Game Development”. Journal on Educational
Resource in Computing 8, No. 1 (Mar), 1 -22.

Hao, Y.; He, S.; Wang, J.; Liu, X.; Yang, J.; and Huang, W. 2010.
“Dynamic Difficulty Adjustment of Game Al by MCTS for
the Game Pac-Man”. In Proceedings of the Sixth International
Conference on Natural Computation (Yantai, China, Aug. 10-
12). 3918-3922.

Hocine, N.; and Gouaich, A. 2011. “Therapeutic Games' Difficulty
Adaptation: An Approach Based on Player's Ability and
Motivation”. In Proceedings of the 16th Intl.Conf. on
Computer Games (Louisville, Kentucky, USA, Jul. 27-30).
257 - 261.

Hunicke, R. 2005. “The Case for Dynamic Difficulty Adjustment
in Games”. In Proceedings of the 2005 ACM SIGCHI
International Conf. on Advances in Computer Entertainment
Technology (Valencia, Spain, Jun. 15-17). 429-433.

Narsoo, J.; Sunhaloo, M. S.; and Thomas, R. 2009. “The
Application of Design Patterns to Develop Games for Mobile
Devices using Java 2 Micro Edition”. Journal of Object
Technology 8, No. 5 (Jul.,Aug.), 153 - 175.

Orvis, K. A.; Horn, D. B.; and Belanich, J. 2008. “The Roles of
Task Difficulty and Prior Videogame Experience on
Performance and Motivation in Instructional Videogames”.
Computers in Human Behavior 24, No.5 (Sep), 2415 -2433.

Ramirez, A. J.; and Cheng, B. H. C. 2010. “Design Patterns for
Developing Dynamically Adaptive Systems”. In Proceeding of
the 2010 ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems (Cape Town, South
Africa, May. 3-4). 49 - 58.

Rani, P.; Sarkar, N.; and Liu, C. 2005. “Maintaining Optimal
Challenge in Computer Games Through Real-time
Physiological Feedback”. In Proceedings of the 11th Intl
Conf. on Human-Computer Interaction (Las Vegas, USA,
July. 22-27). 184-192.

Snow, B. 2011. “Why Most People Don't Finish Video Games”
Online publication in CNN, August 17, 2011. Retrieved from:
http://www.cnn.com/2011/TECH/gaming.gadgets/08/17/finish
ing.videogames.snow/. Last accessed: July 04, 2012.

BIOGRAPHY

MUHAMMAD IFTEKHER CHOWDHURY is a PhD
candidate working in the area of game design at the
University of Western Ontario. He completed his Masters in
software engineering from the same university.

MICHAEL KATCHABAW is an Associate Professor at
the University of Western Ontario. His research interests
include game design and development. He co-founded the
Digital Recreation, Entertainment, Art, and Media
(DREAM) research group at Western.

© EUROSIS-ETI

