

INSTRUMENTATION OF VIDEO GAME SOFTWARE TO SUPPORT

AUTOMATED CONTENT ANALYSES

T. Bullen and M. Katchabaw
Department of Computer Science

The University of Western Ontario
London, Ontario, Canada

N6A 5B7
tbullen@uwo.ca, katchab@csd.uwo.ca

N. Dyer-Witheford
Faculty of Information and Media Studies

The University of Western Ontario
London, Ontario, Canada

N6A 5B7
ncdyerwi@uwo.ca

KEYWORDS

Content analysis, automated content analysis, software
instrumentation, Unreal Engine.

ABSTRACT

 Content analysis of video games is an important process
that supports many business, policy, social, and scholarly
activities related to the games industry. Unfortunately,
collecting the large quantity of data and statistics required
for content analyses tends to be an incredibly arduous task.
Supports are clearly necessary to facilitate content analysis
procedures for video games.

 This paper introduces an approach to automating content
analyses for video games through the use of software
instrumentation. By properly instrumenting video game
software, content analysis procedures can be either partially
or fully automated, depending on the game in question.
This paper discusses our overall approach to
instrumentation and automation, as well as our experiences
to date in instrumenting Epic’s Unreal Engine, providing
sample results from early experiments conducted to date.
Results have been quite positive, demonstrating great
promise for continued work in this area.

INTRODUCTION

 Content analyses of video games involve coding,
enumerating, and statistically analyzing various elements
and characteristics of games, including violence, offensive
language, sexual activity, gender and racial inclusiveness,
and so on. While content analysis has limitations, as
demonstrated in (Holsti 1969; Newman 2004), it is
invaluable in providing a quantitative assessment of games
to complement more qualitative analyses, as recently
suggested in (Bogost, 2006). As such, content analysis is
an important tool to scholars of game studies and other
media issues; policy makers dealing with issues of
regulation, ratings and censorship; psychologists dealing
with media effects; developers and publishers producing
games; and parents, educators and game players using these
games.

 Unfortunately, problems arise when one applies
traditional content analysis procedures, for example from
television or film, to video games. These procedures are

manual and tend to be time consuming and labour-
intensive, resulting in problems such as either limited play-
time, sometimes just the first level (Heintz-Knowles et al.
2001) or first few minutes (Brand and Knight 2003), or,
alternatively, playing very few games to have time for more
thorough examinations (Grimes 2003). Traditional
analyses often do not consider the effects of player
interactivity and non-linearity in games, which can limit
their accuracy unless these issues are explored more fully.
These issues are further compounded by the rapid rate at
which games are released and the medium evolves; it
becomes quite difficult to conduct thorough analyses of a
reasonable portion of games with the limited time and
resources typically available for doing so. A solution to
these problems is clearly needed.

 This paper introduces the concept of automating content
analysis of video games. This approach addresses the
above problems by taking advantage of the fact that, unlike
other forms of media, video games are ultimately software
executing on a computing device. Content analysis can be
partially automated by having other software on the
computing device monitor game execution and collect and
report the data traditionally collected using manual
procedures. Full automation may also be possible in some
cases by having software take the role of the player and
generate gameplay experiences without human
intervention. In providing these supports, automation
effectively reduces the time, labour, and resources required
to conduct a thorough content analysis. This allows longer
and more representative analyses of more games, and
allows analyses to be conducted more frequently.
Automation also permits broader studies of interactive and
non-linear play, with the potential for more data to be
collected than through manual processes alone.

 To automate content analysis, our current work uses a
framework of instrumentation to augment games in a
minimally invasive fashion to collect the necessary data and
exert control over the game to conduct a thorough analysis.
As proof of concept, we have used our framework to
instrument Epic’s Unreal Engine (Epic Games 2005), a
popular engine used in the development of numerous
games. Through instrumenting the engine, we are able to
automate the content analysis of any game developed for
the engine. In particular, this paper presents experiences
from content analysis experiments conducted on Unreal
Tournament 2004 (Digital Extremes 2004).

 The remainder of this paper is organized as follows. We
begin with a discussion of our approach to instrumentation
and automation for content analyses. We then describe our
implementation and proof of concept work with Epic’s
Unreal Engine. We then discuss our experiences in
conducting simple content analysis experiments on Unreal
Tournament 2004. Finally, we conclude this paper with a
summary and a discussion of directions for future work.

INSTRUMENTATION FOR CONTENT ANALYSES

 Software instrumentation is a concept new to video
games, but has been used for several years in other types of
software to enable the collection of data and the exertion of
control over the software. The basic premise is to embed
additional code into the execution stream of an application
to enable these data collection and control activities. The
approach taken in this work is derived from our earlier
work in the area (Katchabaw et al. 1999) with updates as
necessary to support the needs of video game software.

Instrumentation Architecture

 The instrumentation architecture used in our current work
is depicted in Figure 1, and discussed in detail in the
remainder of this section.

Game Application
Code

Game
Object 1

Game
Object 2

Game
Object 3

Game
Object n

Sensor 1

Sensor 2

Sensor n

Coordinator

Figure 1. Instrumentation for Content Analysis

Game Application Code
 Game application code refers to the original source code
from the game that is being instrumented. It is composed
of a collection of objects that work together to deliver the
functionality of the game. By gathering data and statistics
from the appropriate game objects at the right times, we can
conduct an effective quantitative content analysis of the
game as it is being played.

Sensors
 Sensors are instrumentation components that are used to
collect, maintain, and (perhaps) process information to be

used in content analyses. Sensors interface with objects in
the game application code through probes that are inserted
into the game. Such probes are typically macros, function
calls, or method invocations that are placed in the execution
stream of an object’s source code during development, or
are event listeners listening for events emitted by the object
as its code executes. Sensors typically reside in the same
address space as the game application code, perhaps
executing in separate threads. Depending on the game and
how it is constructed, however, sensors could theoretically
exist in separate processes.

 Sensors can be used to collect a wide variety of
measurements useful to a content analysis. This includes
instances of violence (type of violence, source and target of
violence, result of violence), offensive language (what was
said, source and target of the language), character
demographics (race, age, gender), and so on. Sensors can
also collect a variety of game and game world information,
including the game being played, the type of game, the
level of the game, the time played, and so on.

 For flexibility, sensors can also have their behaviours
tuned, in some cases at run time. This includes whether
they are active or not, what data is being collected, how
data is processed, how data is being reported, and so on.

Coordinator
 The coordinator is an instrumentation component that is
responsible for directing the content analysis activities
occurring within a game. This includes initializing and
configuring sensors, processing reports of collected data
and statistics from sensors, and handling clean-up activities
when the game terminates. The coordinator is also the
point of contact for tuning behaviour of sensors and other
aspects of content analysis at run-time. Like sensors, the
coordinator also typically resides in the same address space
as the game application code, but could be located in a
separate process, depending on the game in question.

Instrumentation Operation

 When a game instrumented for content analysis is
launched, one of its initialization activities before play
commences is to create a coordinator to initialize the
instrumentation. This, in turn, creates the required sensors,
and configures them to collect data as required for the
content analysis in question.

 As the game executes, probes for the sensors will gather
the information needed as they are either invoked in the
execution stream of the corresponding game objects, or in
response to events generated by the game objects,
depending on the structuring of the game application code
in question. This information is accumulated and processed
by the sensors and either reported to the coordinator as it is
collected or stored for further processing and reporting in
the future. Any such reports received by the coordinator
are logged to a file, or presented or recorded as deemed
necessary by whoever is conducting the content analysis.

 When the game is completed, or is otherwise terminated,
the coordinator flushes out any pending reports and

deactivates and destroys all sensors. At this point the
coordinator itself shuts down, and the game terminates.

PROTOTYPE IMPLEMENTATION

 As a proof of concept, we have used our instrumentation
framework to instrument Epic’s Unreal Engine (Epic
Games 2005) to enable content analyses. We chose to
instrument an engine because engine-level instrumentation
enables us to conduct content analyses of all games built on
top of that engine without requiring instrumentation on a
game-by-game basis. The Unreal Engine is also a popular
engine among developers and hobbyists, providing a good
collection of games for study in the future.

 Since we were targeting the Unreal Engine in this work,
our instrumentation was developed using UnrealScript.
While a C or C++ instrumentation library is preferable to
provide support across a variety of games and game
engines, most game engines used in industry do not provide
code-level access to their engines or only do so in a cost-
prohibitive fashion, including the Unreal Engine.
UnrealScript fortunately provided all the access that was
required for our content analysis instrumentation.

 Adding our instrumentation for content analysis to the
Unreal Engine was fairly straightforward, as shown in
Figure 2. Each Unreal game type has a Game Info object
that defines the game in question. Among other things, this
object contains a collection of game rules defining various
aspects of how the game is played, and a collection of
mutators. Mutators, in essence, allow modifications to a
game and gameplay while keeping the core elements and
game rules intact.

Figure 2. Instrumenting Epic’s Unreal Engine

 Our instrumentation is loaded into a game in the form of a
special content analysis mutator. This mutator contains the
instrumentation coordinator, as described in the previous
section. When loaded, the coordinator in this mutator
spawns an appropriate collection of sensors to gather the
information required for content analysis. Each sensor is
contained within a game rule that is appended to the list of
game rules contained within the Game Info object by the
instrumentation coordinator. In doing so, the sensors are

able to access the stream of events generated by the various
game objects in the game, and extract the required
information to conduct the content analysis.

 For example, suppose we were to conduct a content
analysis on a game and were interested in tracking the
deaths that occurred within the game. When the content
analysis mutator is loaded, the coordinator contained within
the mutator creates a new game rule containing a sensor
capable of measuring and tracking deaths in the game. This
rule is then appended to the list of rules for the game. As
the game executes, the sensor in the game rule waits for
events indicating that a death has occurred within the game.
When a death occurs, the sensor observes the event and
updates its internal statistics, perhaps by pulling additional
information in from other objects in the process.

 Data collected by sensors can either be reported as it is
collected, or in the form of summaries reported when the
game is completed or terminated. The method used
depends on the needs of the particular content analysis
taking place. Unfortunately, the Unreal Engine does not
provide a fully functional file access mechanism at the
UnrealScript level. However, the Unreal Engine does
provide several logging capabilities which are quite
sufficient for generating reports of game activities for
content analysis.

 The Unreal Engine allows mutators to be selected,
configured, and loaded by the user at run-time, which is a
very useful feature. This allows content analysis to be
enabled and disabled dynamically at run-time, and allows
the user to tailor and fine tune various elements of the
content analysis easily. For example, the user can choose
which types of data to collect and not collect, and can tailor
various elements of the collection and reporting processes.

 To date, sensors have been implemented to collect a
variety of information required for a thorough content
analysis. This includes death of game characters, use of
offensive language, gender and racial diversity in
characters, and a variety of game details such as time
played and so on. Sensors to collect other information are
currently under development.

EXPERIENCES AND DISCUSSION

 In this section, we describe our initial experiences in
using our Unreal-based prototype system for simple content
analysis experiments, and discuss observations made in
conducting these analyses.

Experiences with Unreal Tournament 2004

 To validate our prototype implementation, we needed an
Unreal-based game that would use our instrumented Unreal
Engine as its foundation. For our purposes, we used Unreal
Tournament 2004 (Digital Extremes 2004), as it is one of
the most popular Unreal-based games, and it was readily
available at our disposal. Unreal Tournament 2004 is a
first-person shooter game that supports a wide variety of

different game types and sets of game rules, individual and
team-based games, and single player, multiplayer, and
spectator modes of play. (In spectator mode, games can be
played with no human players, and the game’s display is
used to observe the game’s progress.) Consequently, there
are many gameplay options provided within this game.

 The test system used for experimentation was a dual-core
3.0GHz Pentium D system, with 2GB RAM, a 250GB hard
drive, and an ATI X1800 graphics accelerator card. The
operating system in this case was Microsoft Windows XP
SP2. As such, the test system exceeded the recommended
system requirements for Unreal Tournament 2004.

 With this experimental environment, we conducted
several content analysis experiments using a variety of
game configurations. This included the following:

• Standard deathmatch (single player and spectator)
• Team deathmatch (single player and spectator)
• Onslaught (single player and spectator)
• Capture the flag (single player and spectator)

 The standard deathmatch game is an individual game,
while the other modes were all team based games, with
artificial intelligence-controlled non-player characters
filling the rosters of teams. Levels played were chosen
randomly, and team size and other characteristics as
appropriate were set at the levels’ default values.

 Summary results from one experiment are provided in
Figure 3, showing that the content analysis instrumentation
works as expected, collecting all of the required data. As a
result, the instrumentation appeared to be quite effective in
facilitating quantitative content analysis procedures.
Furthermore, this instrumentation was able to provide all
required data and statistics with minimal additional work
required by the user. (All that was necessary was to
activate the content analysis mutator on its first use, and to
collect reports from the generated log file upon completion
of the game. After activating the content analysis mutator,
it remains active for every game until it is deactivated.)

Further Discussion

 Our initial testing and experimentation with our content
analysis instrumentation yielded several interesting
observations worthy of further discussion and examination.

Quality of Data
 While conducting experimentation with our content
analysis instrumentation, we felt it important to verify the
accuracy of collected data with more traditional manual
procedures using a human observer watching gameplay
sessions. In doing so, it was found that the statistics
computed by the instrumentation matched those computed
using the manual procedures.

 Interestingly enough, the statistics computed by the
instrumentation appeared to be more complete and more
accurate as the pace of the game and positioning of in-game
cameras at times made manual procedures error-prone and
frustrating. Instrumentation was also able to capture both

Figure 3. Sample Summary of Content Analysis Data from

an Unreal Tournament 2004 Game

on-screen and off-screen activities, and distinguish between
the two, which is difficult, if not impossible, to accomplish
using manual procedures alone.

Quantity of Data
 Another observation deals with the quantity of data
collected and how this data is reported. Increasing the
amount of data available to a content analysis has the
potential to increase its accuracy and the amount of insight
that can be obtained from the analysis. Our content
analysis instrumentation was found to be able to generate
reports with considerable detail, and the elimination of
manual collection procedures allows data to be collected
from more gameplay sessions than previously possible.

------------Level Info------------
Level Name: Rrajigar
Game Type: DeathMatch
Total Players: 14
AI Players: 13
Human Players: 1
Spectators: 0
Male Players: 13
Female Players: 1
Level Loaded: 0:26:45
Game Finished: 0:30:29
Gameplay Elapsed (Seconds): 240.88
AI Dialog: 28
Human Dialog: 27

----------All Player Stats--------
Total Deaths: 47
Total Suicides: 1
Total Kills: 46
Total AI Deaths: 46
Total Human Deaths: 1
Total Deaths Caused By AIs: 22
Total Deaths Caused By Humans: 25
Total Female Deaths: 12
Total Male Deaths: 35
Total Deaths Caused By Females: 6
Total Deaths Caused By Males: 41

--------Local Player Stats--------
Player Deaths: 1
Player Suicides: 0
Player Killed: 1
Deaths Caused By Player: 25
Player Killed By AI: 1
Player Killed By Human: 0
Player Killed By Male: 1
Player Killed By Female: 0
AI Deaths Caused By Player: 25
Human Deaths Caused By Player: 0
Female Deaths Caused By Player: 7
Male Deaths Caused By Player: 18
Deaths Witnessed By Player: 29

------------Team Info-------------
Not A Team Game

-------------Expletives-----------
ass: 2

 Unfortunately, increasing the quantity of data handled by
instrumentation has the potential to increase processing and
storage requirements, as this data must be collected, stored,
and reported for use in content analysis. As a result, there
is a risk of negative impacts on the performance of the
game if the quantity of data collected is too high, or if it is
reported so frequently that it interrupts the flow of the
game. While we could measure no change in performance
during our experimentation, this could be an issue in some
content analyses. For example, in our experiments, we
tracked violence in terms of character deaths. Instead of
this, suppose violence was tracked in terms of the number
of shots fired by weapons in the game or the number of
shots hitting a character. This would result in a much
higher quantity of data being collected, stored, and reported
at a faster rate, and this could have an impact on the
performance of the game.

 Consequently, one must be careful in tuning the quantity
of data collected for a content analysis. This issue requires
further study.

Partial versus Fully Automated Content Analyses
 Another interesting observation came when comparing
partially automated content analyses to fully automated
analyses. A partially automated analysis requires a human
player to drive the game while the embedded
instrumentation handles the data collection and reporting
activities, whereas a fully automated analysis requires no
human player, with the game essentially driving itself using
artificial intelligence-controlled non-player characters.

 Since Unreal Tournament 2004 supports a spectator mode
in its game sessions, it is possible to conduct a fully
automated content analysis on the game, simply by having
artificial intelligence-controlled non-player characters play
the game by themselves. Unfortunately, these games can
take significantly longer than games involving human
players, as the non-player characters tend to be less
effective at achieving victory than human players. Also,
since the skill level of non-player characters are more
balanced, the kills in a game can be more evenly distributed
in the absence of a dominant human player, requiring more
kills in total to end a game. For example, consider the
standard deathmatch game whose summary is shown in
Figure 3. The human player clearly dominated this game,
scoring more than half the total kills in the entire game, and
quickly bringing the game to an end in reaching the kill
limit set as a victory condition. When played in spectator
mode with the same number of non-player characters in the
same level, the game took nearly three times as long to
complete on average, and the average number of kills per
non-player character was over sixteen times higher. With
the human player no longer dominating, the game results
were substantially different.

 This indicates that the nature of data collected during a
partially automated content analysis might differ
significantly from a fully automated analysis. Since a
partially automated analysis involving a human player is
likely a more accurate reflection of an actual gameplay
experience than a fully automated analysis, this raises
questions about the suitability and validity of fully

automated analyses. However, since a fully automated
analysis removes the need for human interaction with the
game, this kind of analysis is still attractive as it is less
resource intensive, allows data to be collected from more
game sessions, and removes bias and unwanted effects
introduced by the human players of the game.
Consequently, this issue also requires further study.

CONCLUSIONS AND FUTURE WORK

 Content analysis plays several important roles to the
video games industry, but is unfortunately an arduous task
to complete in an accurate and thorough fashion. The
content analysis instrumentation introduced in this paper
has the potential to greatly facilitate content analyses of
video games through partially or fully automating the
process. A prototype implementation of this
instrumentation in Epic’s Unreal Engine has been
demonstrated through experimentation with Unreal
Tournament 2004 to effectively assist in content analyses,
and shows great promise for the future.

 There are many possible directions for future work in this
area. Based on the success of initial content analysis
experimentation, more thorough and detailed analyses
should now be conducted on Unreal Tournament 2004,
combining quantitative data collected through our
instrumented engine with more qualitative observations.
Experiments should also be expanded to include more
Unreal-based games, as well other game engines, to provide
further validation of our instrumentation. As mentioned in
the previous section, further study is required into tuning
content analysis instrumentation to maximize the quality,
accuracy, and thoroughness of results, while at the same
time minimizing the impact on game performance.
Additional testing and experimentation is also required to
study the advantages and disadvantages of partially
automated analyses compared to fully automated analyses.

REFERENCES

Bogost I. 2006. Unit Operations: An Approach to Videogame

Criticism. Cambridge, Mass.: MIT Press.
Brand J. and K. Knight. 2003. “The Diverse Worlds of Computer

Games: A Content Analysis of Spaces, Populations, Styles and
Narratives.” In the Proceedings of DiGRA 2003: Level Up.
Utrecht: University of Utrecht. (November).

Digital Extremes. 2004. Unreal Tournament 2004 – Editor’s
Choice. (August).

Epic Games. 2005. Unreal Engine 2, v. 3369. (December).
Grimes S. 2003. “You Shoot Like a Girl: The Female Protagonist

in Action-Adventure Games.” In the Proceedings of DiGRA
2003: Level Up. Utrecht: University of Utrecht. (November).

Heintz-Knowles K., J. Henderson, C. Glaubke, P. Miller, M.
Parker, and E. Espejo. 2001. Fair Play: Violence, Gender and
Race in Video Games. Oakland, California: Children Now.
(December).

Holsti O. 1969. Content Analysis for the Social Sciences and
Humanities. Reading: Addison-Wesley.

Katchabaw M., S. Howard, H. Lutfiyya, A. Marshall, M. Bauer.
1999. Making Distributed Applications Manageable Through
Instrumentation. Journal of Systems and Software, 45 (1999).

Newman J. 2004. Videogames. New York: Routledge.

