
USING GENETIC ALGORITHMS TO EVOLVE CHARACTER
BEHAVIOURS IN MODERN VIDEO GAMES

T. Bullen and M. Katchabaw

Department of Computer Science
The University of Western Ontario

London, Ontario, Canada N6A 5B7
tbullen@uwo.ca, katchab@csd.uwo.ca

KEYWORDS

Artificial intelligence, bots, genetic algorithms, evolutionary
algorithms, computer and video games

ABSTRACT

 Artificial intelligence is an important aspect to nearly every
modern video game. Providing this, however, is all too often an
arduous task, even for the most expert developers. The
behaviours of non-player characters in a game are typically
defined and guided by a large collection of parameters; it is
usually quite difficult to determine the best values for these
parameters to achieve the desired behaviour considering the
state of the game and the player involved in playing it. Some
form of adaptation to adjust and tune these behavioural
parameters would be extremely useful in addressing this
problem.

 This paper examines the use of genetic algorithms to adapt
and refine character behaviours in video games. In doing so,
non-player characters can be evolved to a fitness level
appropriate to the game and its player, providing a more
enjoyable experience in the end. This paper discusses our
approach to using genetic algorithms, and describes a prototype
system built using the Unreal Engine that implements this
approach in its non-player characters. This paper also presents
experimental results from using this prototype system; to date,
these results have been quite positive, demonstrating great
promise for the future.

INTRODUCTION

 In recent years, artificial intelligence has increasingly become
one of the most critical factors in determining the success or
failure of a video game (Tozour 2002). This trend is expected to
continue, with some saying that the key to more entertaining,
enjoyable, and immersive games in the future lies in the
artificial intelligence contained within them (Bourg and
Seemann 2004).

 Unfortunately, developing the artificial intelligence for a game
is one of the most challenging tasks a programmer can
undertake (Rabin 2002). Indeed, creating non-player characters
that behave in a believable and realistic fashion, while working
in the game to provide an appropriate challenge to the player, is
incredibly difficult (Baillie-de Byl 2004). Such characters are

typically defined and guided by a large collection of behavioural
parameters whose interactions and dependencies can be
complex and difficult to predict (Laramée 2002; Sweetser 2004;
Thomas 2006). Configuring all of these parameters for game
characters manually is a tedious, expensive (in terms of time and
money), and potentially error prone process. Consequently, an
approach is necessary to automate behavioural parameter
configuration, to adapt and refine character behaviours as
necessary for a game.

 Our current work explores this problem through the use of
genetic algorithms to develop non-player characters. This is
done by using evolutionary processes to adapt behavioural
parameters of the characters to a level of fitness suitable for the
game context and player in question. Doing so has the potential
to provide the player with a more enjoyable and appropriately
challenging experience, without the problems and costs that are
usually associated with the manual tuning and configuration of
these behavioural parameters (Laramée 2002; Sweetser 2004;
Thomas 2006). With evolution and adaptation already
identified as highly important directions to the future of artificial
intelligence for non-player characters in video games (Bourg
and Seemann 2004), now is the time to study and explore this
area further.

 To this end, we have developed a mutator module for Epic’s
Unreal Engine (Epic Games 2005) that applies genetic
algorithms to its non-player characters, also known as bots.
This mutator enables Unreal bots to evolve as the game is
played to adapt to their surroundings, the rules of the game, and
the opponents they are facing. Our mutator module was then
used in a series of experiments conducted using Unreal
Tournament 2004 (Digital Extremes 2004) to investigate and
determine the effects of the genetic processes put in place within
the bots.

 This paper presents the results of our current and on-going
work in this area. We begin by providing background
information on genetic algorithms and evolutionary computing,
as well as a discussion of related work in this area. We then
describe our approach to genetic algorithms to evolve character
behaviours, and introduce our proof of concept system using the
Unreal Engine. We then present experimental results from
using this prototype to date, and discuss our experiences in
using it so far. We then conclude this paper with a summary
and a discussion of potential directions for continued research
and development in the future.

BACKGROUND AND RELATED WORK

 Genetic algorithms have been used in numerous contexts for
quite some time, including artificial intelligence, as discussed in
(Russell and Norvig 2003). Genetic algorithms have also been
examined in the particular context of artificial intelligence for
video games, including (Baillie-de Byl 2004; Bourg and
Seemann 2004; Buckland 2002; Laramée 2002; Sweetser 2004)
and several others, although much of this attention is relatively
recent.

A Brief Overview of Genetic Algorithms

 The essence of a genetic algorithm is much the same across
domains: computational problems are encoded in such a way
that natural evolutionary processes can be applied to them to
produce optimal or near-optimal solutions (Laramée 2002). The
general flow of the process is depicted in Figure 1, and
discussed in the sections that follow.

Population
Initialization

Evaluation

Selection

Evolution

Population
Replacement

Problem
Encoding

Figure 1: The Flow of a Genetic Algorithm

Problem Encoding

 To use genetic algorithms to solve a problem, we must think
of our problems from a genetics perspective. For our purposes,
genetics concentrates on the transmission of traits from parents
to offspring (Baillie-de Byl 2004). These traits are determined
by the genes present in the chromosomes of the entities in
question. In the end, these traits define the various
characteristics and capabilities of an individual.

 When dealing with genetic algorithms, we encode problems in
this fashion, defining the various traits of a problem and its
solutions through the use of genes. Typically, genes tend to be
data variables containing values representing the traits in
question, although it is possible for them to be elements of logic
or code instead (Laramée 2002).

Population Initialization

 To begin the process, we need a population of individuals,
with each individual a potential candidate for solving the
problem at hand. Each individual is defined by generating the
collection of genes that determine its various traits. This can be
done using some form of random process, or by some more
informed process that creates individuals that should be
inherently better suited to solving the problem at hand than a
randomly generated one.

 The latter of these options, however, must be used with care,
as it could create a population that lacks the genetic diversity to
contain the best solution to the problem, as sometimes the best
solution comes from the most unlikely of candidates. With care
though, a more informed population generation process can lead
to a more efficient execution overall, in some cases.

Evaluation

 The evaluation process determines which individuals in the
population are the most successful. Typically, this is done
through the application of a fitness function that assigns a score
to each individual in the population. The closer an individual is
to solving the problem, the higher its assigned fitness score.
Naturally, the fitness function is very problem specific, and the
overall success of the genetic algorithm is heavily dependent on
the selection of an appropriate fitness function (Sweetser 2004).

Selection

 After a fitness score has been assigned to each individual in
the population, a mechanism is needed to select which
individuals will become parents and reproduce to create
offspring for the next generation of the population. There are
many approaches to this selection process, as discussed in the
literature listed earlier in this section.

Evolution

 During reproduction, each parent transmits a portion of their
genetic material to their offspring. The process is not simply
one of copying, but usually involves other activities, most

importantly crossover and mutation (Laramée 2002). Crossover
involves mixing gene components from the chromosomes of
each parent so that the resulting offspring has a combination of
traits from the parents involved in its creation. Mutation is a
random change to a gene that creates variation in the offspring
so that, in some respects, the offspring can be unlike its parents.
This prevents stagnation and premature convergence in a
population, but care must also be taken to avoid too many
changes that make the genetic algorithm too random and too
inefficient (Sweetser 2004).

Population Replacement

 When a new generation of individuals has been created as
described above, they enter the population, potentially
displacing and replacing individuals from previous generations.
Depending on the genetic algorithm in question, this may be a
total replacement of all individuals, or some select individuals
from previous generations may be allowed to survive. Once the
new population has been assembled, the process repeats. After
sufficient repetitions, the population will evolve and a suitable
solution to the problem will hopefully be found amongst the
population during evaluation.

Related Work

 As mentioned earlier, genetic algorithms have been applied to
artificial intelligence for video games in the literature before,
including (Baillie-de Byl 2004; Bourg and Seemann 2004;
Buckland 2002; Laramée 2002; Sweetser 2004). While this
work has done an excellent job of introducing genetic
algorithms in this context, applications of genetic algorithms in
this work have been quite limited to rather simplistic characters
and scenarios, without examining games of a commercial scope
or magnitude. It is also unclear how much experimentation was
conducted in this work, as presentation of results was also rather
sparse for the most part.

 Further work in this area has examined more advanced genetic
algorithms for game artificial intelligence, including (Buckland
2004; Laramée 2004; Thomas 2004; Thomas 2006). While
presenting some rather interesting and practically useful
techniques, this work is again limited in terms of its proof of
concept and experimental results.

 More rigorous application of genetic algorithms to video
games is starting to appear in the literature, however, with
(Spronck and Ponsen 2008) being a notable example. This work
uses genetic algorithms to generate strategies for real-time
strategy games. While there are many caveats to this work, as
described in (Spronck and Ponsen 2008), the work is quite
promising and demonstrates the potential for using genetic
algorithms in this area.

 There has also been interesting applications of genetic
algorithms in commercial video games, as discussed in
(Sweetser 2004), including Cloak, Dagger, and DNA, the
Creature series, Return Fire II, and Sigma. Spore, developed by
Maxis for Electronic Arts and expected to be released in late
2008, also makes use of genetic algorithms and evolutionary

computing in a variety of ways. Unfortunately, the extent to
which these approaches have been used in these and other
commercial games, as well as their ultimate success, is unclear.

 Consequently, while there has been considerable discussion on
using genetic algorithms for artificial intelligence in video
games, there is also considerable room for additional research,
development, and experimentation to explore this area further.

OUR USE OF GENETIC ALGORITHMS

 In our current work, we are studying the use of genetic
algorithms to evolve character behaviours in video games.
Consequently, our population will consist of non-player
characters with their traits and characteristics encoded as the
genes used during evolution.

Using the Unreal Engine as a Research Platform

 Instead of creating our own simple game or game scenarios to
explore genetic algorithms in this way, we instead chose to use a
commercial game system as our research platform. This allows
us to focus on issues and experiments related to genetic
algorithms, as opposed to the construction of the game itself and
its characters. For this purpose, we chose to use Epic’s Unreal
Engine (Epic Games 2005). The Unreal Engine is a fairly
popular engine among developers and hobbyists, providing a
reasonably large collection of games suitable for study. This,
and our own prior experience with the Unreal Engine, made it
an ideal candidate for use in our current work.

 Since we were using the Unreal Engine in this work, our
system for genetic evolution was developed using UnrealScript.
While a C or C++ approach is preferable to provide support
across a variety of games and game engines in the long term,
most game engines used in industry do not provide code-level
access to their engines or only do so in a cost-prohibitive
fashion, including the Unreal Engine. UnrealScript fortunately
provided all the access that was required for our current work.

 Adding genetic evolution to the Unreal Engine involved
manipulations of its non-player characters, known as bots, as
well as its game rules, as shown in Figure 2. Each Unreal game
type has a Game Info object that defines the game in question.
Among other things, this object contains a collection of game
rules defining various aspects of how the game is played, and a
collection of mutators. Mutators, in essence, allow
modifications to a game and gameplay at run-time while
keeping the core elements and game rules intact.

 In our case, we developed a Genetic Evolution Mutator to
bootstrap the genetic evolution code within the Unreal Engine.
Upon loading, this mutator instantiates a collection of Evolution
Rules and adds them to the list of game rules in the engine to
control the evolutionary process depending on the configuration
of the mutator. This mutator also modifies the Pawn class from
which all Unreal bots are derived, to remove its reference to the
default artificial intelligence controller and replace it with one to
a new bot controller that contains a genetic algorithm. Making
this change forces all newly constructed Unreal bots to use the

new controller instead of the default one. This new controller
determines the behaviour of the bots making use of the
controller, and consults the Evolution Rules to control the
genetic evolution of the bots to refine and adapt their behaviour.
In doing things in this fashion, we do not need to make changes
to the core of the Unreal Engine code, and only need to deploy
our mutator to enable genetic evolution in the Unreal bots.

Using Genetic Algorithms in Unreal Tournament 2004

 In adding to and modifying the Unreal Engine as described in
the previous section, we can now use genetic algorithms in
Unreal-based games. The selection of chromosomes, genes,
fitness functions, selection criteria, and other elements of
genetic algorithms as discussed earlier in this paper, however, is
dependent on the particular game making use of this engine.

 For our purposes, we used Unreal Tournament 2004 (Digital
Extremes 2004), as it is one of the most popular Unreal-based
games, and it was readily available at our disposal. Unreal
Tournament 2004 is a first-person shooter game that supports a
wide variety of different game types and sets of game rules,
individual and team-based games, and single player,
multiplayer, and spectator modes of play. (In spectator mode,
games can be played with no human players, and the game’s
display is used to observe the game’s progress.) Consequently,
there are many gameplay options provided within this game,
enabling a wide variety of experimentation with genetic
algorithms using just this single package.

Problem Encoding

 Since Unreal Tournament 2004 is a first person shooter,
gameplay primarily revolves around killing other players (both

humans and bots) while trying to stay alive yourself.
Consequently, most player activity focuses around completing
these objectives, as well as collecting items that facilitate these
objectives (such as weapons, ammunition, health packs, armor,
and so on). Some game types supported by Unreal Tournament
2004 have additional objectives as well, such as capturing a flag
from your opponent’s base, controlling critical points in the
game world, and so on. These gameplay objectives represent
the problem that we are trying to solving using genetic
algorithms.

 The bots in the game form the population, and their various
characteristics and traits collectively form the chromosomes and
individually can be considered the genes for our genetic
algorithm. Since we are primarily interested in refining the
behaviour of these bots, we focus on traits that influence a bot’s
decision making processes and have an impact on the outcome
of the game, as opposed to traits that only affect their visual
appearance or voice within the game. As a result, we consider
the following traits of Unreal bots in the set of genes and
chromosomes within our genetic algorithm:

• Accuracy: Determines how good a bot is at hitting its

target when shooting at it.
• Alertness: Determines how aware a bot is of changes to

their surroundings.
• Aggression: Determines how engaged a bot is during

combat and how they react to combat.
• Jumpiness: Determines how much a bot will use jumping,

especially as an evasive maneuver.
• Strafe Ability: Determines how much a bot will use

strafing, especially as an evasive maneuver.
• Combat Style: Determines how a bot engages in combat,

either up close or far away, or somewhere in between.

Game Info

 Game Rules

 Mutators

Evolution
Rule

Genetic
Evolution
Mutator

Pawn

Controller
Reference

Default
Artificial Intelligence
Controller

Artificial Intelligence
Controller Containing
Genetic Algorithm

Figure 2: Additions and Modifications to the Unreal Engine to Support Genetic Algorithms

• Reaction Time: Determines how quickly a bot responds to
changes to their surroundings.

• Favourite Weapon: Determines which weapon a bot will
prefer to use, given the choice.

• Retreat Threshold: Determines how likely a bot is to
disengage from combat when facing a stronger opponent.

• Pickup Threshold: Determines how likely a bot is to seek
out a better weapon than the one it is currently using.

• Stakeout Threshold: Determines how long a bot will
continue to hunt for an opponent outside its field of vision.

 There are other traits that a bot possesses, but their effects are
not documented, and so they are currently being studied further
before inclusion within our genetic algorithm. Our mutator can
be configured at run-time to determine which traits to include or
exclude from evolution, as shown in Figure 3, providing a great
deal of flexibility and control over the process.

Population Initialization

 The initial population of bots to use in our genetic algorithm is
generated through a random selection from all of the available
bots within the game. This, of course, is a subset of all of the
bots that are possible through a completely random assignment
of all trait values.

 This population initialization decision was made as a great
number of the bots possible in the game are extremely
ineffective at playing the game well, and these bots needed to be
culled for efficiency reasons. Since additional arbitrary bots can
be easily added to the bot roster for the game, there can still be
as much diversity as needed in the initial population used by the
genetic algorithm.

Evaluation

 For evaluation purposes, we have defined a number of fitness
functions, primarily aimed at assessing a bot’s success in killing
its opponents and/or avoiding its own death. These include the
following:

• Gross Kills: Fitness is determined by the total number of

opponents killed during the game. This will favour bots
that tend to kill opponents, regardless of the consequences.

• Deaths: Fitness is determined by the number of times the
bot was killed during the game. This will favour bots that
are survivalists, regardless of how many opponents they kill
in the end.

• Net Kills: Fitness is determined by the total number of
opponents killed, minus the number of deaths incurred in
doing so. This will favour more balanced and cautious
bots.

• Kill/Death Ratio: Fitness is determined by a weighted ratio
of kills to deaths. This is calculated so as to favour killing
activity during the game, although this can be easily tuned.
This fitness function was introduced as an improvement
over the Net Kills fitness function, as this function would
rate a bot with 0 kills and 0 deaths the same as a bot with 10
kills and 10 deaths, even though the latter was more
actively participating in the game.

 It is not obvious which fitness function results in bots that
provide the most enjoyable experience to the player.
Furthermore, it is unclear how well these functions apply to
games with objectives beyond a simple kill-or-be-killed
deathmatch, or when team play is involved. Experimentation is
needed to study these issues and explore them further.

Figure 3: Configuration Screen for Genetic Evolution Mutator

Selection

 A number of methods, as described in (Baillie-de Byl 2004),
have been defined for selecting bots to be parents to generate
offspring in our genetic algorithm. Each of these selection
methods makes use of either the raw fitness score from the
evaluation process, or a fitness ratio, which is the individual’s
fitness divided by the population’s total fitness. These methods
include the following:

• Stochastic Roulette: Each potential parent from the

population is allocated a portion of a circular roulette
wheel, the size of which represents its fitness ratio. A parent
is selected for mating by conceptually spinning the wheel
and picking the parent on which the wheel stops. The fitter
parents have a bigger portion of the roulette wheel and so
have a better chance of being selected to produce offspring.

• Remainder Stochastic: A parent is selected for mating
based on its fitness ratio, converted to an integer on a scale
from 0 to 100. This value determines the number of times
the potential parent is allowed to mate.

• Ranking Mating: In this simple approach, potential parents
are ordered based on their fitness; parents near the top of
the order are selected to produce offspring more times than
those lower down. A cut-off point can be configured with
this method, below which bots are not allowed to mate due
to their poor performance during evaluation.

 As with traits and fitness functions, the selection method used
in our genetic algorithm can be adjusted by configuring our
mutator, as shown in Figure 3.

Evolution

 The genetic algorithm used in this work employs both
crossover and mutation in creating offspring from parents
selected using one of the above methods. Crossover is
accomplished by swapping segments of chromosomes from
parents using a random process when constructing offspring.
Mutations occur randomly in offspring, with the offspring
receiving traits that were not from one of their parents, but were
instead randomly generated. The probability of mutation
occurring is again a parameter configurable in our Unreal
mutator.

Population Replacement

 In our genetic algorithm, population replacement is again
configurable in our mutator. By default, the entire population is
replaced by offspring after evolution has occurred. Options
exist, however, to keep bots selected either by fitness or
randomly from one generation to the next.

EXPERIMENTAL RESULTS AND EXPERIENCES

 Using the Unreal-based prototype system described in the
previous section, a series of experiments was conducted to study
the use of genetic algorithms in evolving bot behaviour in
Unreal Tournament 2004. This section presents highlights of

results from this experimentation, and discusses some of the
observations made and insights gained in the process.

Experimental Environment

 Our experimental environment consisted of a lab of 20
workstations, allowing us to conduct multiple experiments in
parallel. Each test system in the lab was a dual-core 3.0GHz
Pentium D system, with 2GB RAM, a 250GB hard drive, and an
ATI X800 graphics accelerator card. The operating system in
this case was Microsoft Windows XP SP2. As such, the test
systems greatly exceeded the recommended system
requirements for Unreal Tournament 2004.

Deathmatch Experiments

 In this experimentation, we studied our prototype system with
bots playing a standard deathmatch game. The game was set in
one of the largest levels provided in Unreal Tournament 2004,
Tokara Forest, to allow the largest possible number of bots in
the game at once.

 In total, 32 bots were allowed in the game, split into two
groups of 16 bots each. The first group of bots made use of the
genetic algorithm as described in the previous section to evolve
over time. The second group of bots was a fixed control group
that did not evolve over time. Both groups were selected
randomly at the beginning of each repetition of the experiment;
there were five repetitions in total, providing five different
starting points for evolution against five different control
groups.

 All bots were configured to be of a “masterful skill” level.
The genetic algorithm was configured to allow all of the traits
discussed earlier to be affected by evolution, with a 0.2%
chance of mutation. Fitness was calculated using the Kill/Death
Ratio, and parent selection was done using the Stochastic
Roulette method.

 The game itself was configured to run until either 20 minutes
had elapsed, or a target kill level of 100 kills was achieved by
one of the bots. The experiment was then configured to repeat
through 25 generations of evolved bots, with evolution
occurring after each game was completed and before a new
game was started.

 Figure 4 presents results from this set of experiments, plotting
the fitness difference between the evolving bot population and
the control population through each generation of evolved bots.
This fitness difference was calculated as the mean evolved bot
fitness minus the mean control bot fitness across all replications
of the experiment. As the bots using the genetic algorithm
evolved, the fitness difference increased, indicating that the
evolved bots improved against the control group over time. To
make this trend easier to see, Figure 5 sums the fitness
differences from Figure 4 into fifths. (The first bar in the graph
in Figure 5 is the sum of the first five fitness differences from
Figure 4, and so on.) From Figure 5, an improvement in
evolved bot fitness is quite apparent over time.

-0.5

0

0.5

1

1.5

2

1 3 5 7 9 11 13 15 17 19 21 23 25

Generations (Games)

Fi
tn

es
s

D
iff

er
en

ce

Figure 4: Fitness Differences Between Evolved and Control

Bots in Deathmatch Play

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5

Generations (Games) Summed into Fifths

Fi
tn

es
s

Di
ffe

re
nc

e

Figure 5: Fitness Differences Between Evolved and Control

Bots in Deathmatch Play, Summed into Fifths

Team Deathmatch Experiments

 Following the success of the pure deathmatch experimentation
as described above, we conducted a similar set of experiments
except that the bots were organized into teams. While the best
overall team score determines the victor in this type of game,
the best strategy for success is to largely play the same as a pure
deathmatch, with a few exceptions (Suit et al. 2007).

 Consequently, our team deathmatch experiments were
conducted with the same configuration as our pure deathmatch
experiments, except that the evolved bots formed one team and
the control bots formed the other. The teams then competed
against one another following the same rules as before. Figure 6
presents the fitness differences measured in this case.

0
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6
1.8

1 3 5 7 9 11 13 15 17 19 21 23 25

Generations (Games)

Fi
tn

es
s

D
iff

er
en

ce

Figure 6: Fitness Differences Between Evolved and Control

Bots in Team Deathmatch Play

 Once again, the evolved bots demonstrated an improved
fitness over time compared to the control group. This trend is
readily apparent in Figure 7, which sums the fitness differences
from Figure 6 into fifths.

0

1

2

3

4

5

6

7

8

1 2 3 4 5

Generations (Games) Summed into Fifths

Fi
tn

es
s

Di
ffe

re
nc

e

Figure 7: Fitness Differences Between Evolved and Control

Bots in Team Deathmatch Play, Summed into Fifths

 As indicated in (Suit et al. 2007), taking the same strategy in
the team deathmatch as used in a pure deathmatch was a
reasonably successful approach. A more highly tuned fitness
function to take into consideration some of the exceptions to this
strategy in team play is under development, and might produce
even better results in the future.

Other Observations and Comments

 Experimentation in both of the above cases showed little
improvement in evolved bot performance past 25 or 30
generations. At that point in time there was simply not much
genetic diversity left in the population.

 To assess the general playing ability of the evolved bots once
evolution showed little additional improvement, we played
additional games with the fully evolved bots. In one scenario,
we pitted the fully evolved bots against the same control group
in a different Unreal Tournament 2004 level. In another
scenario, we pitted the fully evolved bots against an entirely
different control group in the same level in which evolution took
place. In both cases, there was still a difference in fitness
between the evolved and control groups, indicating that
evolution still retained some of its benefits, but the difference
was between 10 to 30% smaller than before, depending on the
scenario. This suggests that evolution in this case is at least
somewhat dependent on the context.

 So, while bots can be evolved during game production using
genetic algorithms for efficiency reasons, these bots will still
require further online adaptation to become better suited to the
individual player of the game. Improvements in fitness were
observed after 10 to 15 generations, which might be acceptable
to some players, but could be too long for others. As a result,
we may need to accelerate the evolution process, perhaps by
having multiple generations of bots in each game played, as
opposed to only one generation per game. This possibility
needs to be explored in further experimentation, as forcing
evolution prematurely might not result in the improvements in
bot performance desired.

 It was also observed during experimentation that evolved bots
almost universally maximized their accuracy trait. This makes
sense, since improved accuracy in shooting at opponents only
has benefits to the bots, without any negative consequences.
While this might challenge a player, it could do so in a way that
is rather frustrating, as a bot could succeed by making nearly
impossible shots in a super-human fashion, while a human
player could not possibly do the same regardless of their skill.
Consequently, we are currently conducting further experiments
that do not allow the accuracy trait to be adjusted, forcing bots
to improve in other ways that could produce more rewarding
gameplay to the player. Initial results are quite promising.

CONCLUDING REMARKS

 With artificial intelligence becoming increasingly critical to
the success of modern video games, it is important to study
methods of improving non-player character behaviour in games
to produce a more rewarding experience for the player. Our
current work represents an important step in this direction, using
genetic algorithms to evolve and adapt character behaviours.

 This paper presents the results from our work, describing an
Unreal-based prototype system for genetic evolution of Unreal
bots, and presenting experiments conducted using Unreal
Tournament 2004 to assess the suitability of genetic algorithms
to improve game artificial intelligence. Results to date have
been quite promising, encouraging further research in this area.

 There are several possible directions for continued research in
the future, including the following:

• Additional experimentation is clearly beneficial to further

research in this area. The experiments presented in this
paper only scratch the surface of what can be done using
our prototype system. There are still many configuration
options to be explored more fully, including the traits used
during evolution, the fitness functions used, and the method
used to select parents for generating offspring.

• User testing during experimentation is also important. So

far, the success of evolved bots has been measured only in
terms of their fitness. In the end, it is important to also
determine if the evolved bots deliver a more enjoyable and
satisfying experience to a human player.

• It is also important to study the use of our prototype system

in other Unreal-based games. This may include porting our
system to Epic’s Unreal Engine 3.0, the most recent version
of the engine in release.

• Applying our approach to games based on other game

engines would also be interesting, and would provide
additional platforms for further research, development, and
experimentation in this area.

REFERENCES

Baillie-de Byl, P. 2004. Programming Believable Characters

for Computer Games. Charles River Media.
Bourg, D. and Seemann, G. 2004, AI for Game Developers.

O’Reilly Media Inc.
Buckland, M. 2002. “Genetic Algorithms in Plain English”.

Available online at http://www.ai-junkie.com. Last accessed
June 2008.

Buckland, M. 2004. “Building Better Genetic Algorithms”.
Appeared in AI Game Programming Wisdom 2. Charles
River Media.

Digital Extremes. 2004. Unreal Tournament 2004 – Editor’s
Choice. (August).

Epic Games. 2005. Unreal Engine 2, Patch-level 3369.
(December).

Laramée, F. 2002. “Genetic Algorithms: Evolving the Perfect
Troll”. Appeared in AI Game Programming Wisdom.
Charles River Media.

Laramée, F. 2004. “Advanced Genetic Programming: New
Lessons from Biology”. Appeared in AI Game
Programming Wisdom 2. Charles River Media.

Rabin, S.. 2002. “Preface to AI Game Programming Wisdom”
Appeared in AI Game Programming Wisdom. Charles River
Media.

Russell, S. and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach. Second Edition. Pearson Education, Inc.

Spronck, P. and Ponsen, M. 2008. “Automatic Generation of
Strategies”. Appeared in AI Game Programming Wisdom 4.
Charles River Media.

Sweetser, P. 2004. “How to Build Evolutionary Algorithms for
Games”. Appeared in AI Game Programming Wisdom 2.
Charles River Media.

Suit, B. et al. 2007. “Unreal Tournament 2004/Team
Deathmatch”. Appears in Strategy Wiki: The Free Strategy
Guide and Walkthrough Wiki. Accessible online at:
http://strategywiki.org/wiki/Unreal_Tournament_2004/Team
_Deathmatch. Last accessed June 2008.

Thomas, D. 2004. “The Importance of Growth in Genetic
Algorithms”. Appeared in AI Game Programming Wisdom
2. Charles River Media.

Thomas, D. 2006. “Encoding Schemes and Fitness Functions
for Genetic Algorithms”. Appeared in AI Game
Programming Wisdom 3. Charles River Media.

Tozour, P. 2002. “The Evolution of Game AI.” Appeared in
AI Game Programming Wisdom. Charles River Media.

