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Abstract - Linux-based clusters have become prevalent as a 
foundation for High Performance Computing (HPC) 
systems.  As these clusters become more affordable and 
available, and with the emergence of high speed networks, it 
is becoming more feasible to create HPC grids consisting of 
multiple clusters.  One of the attractions of such grids is the 
potential to scale applications across the various clusters.  
This creates a number of interesting opportunities as well as 
introduces a number of challenges.  A key question is the 
impact of the inter-cluster network on the overall 
performance of the computing environment.  In this paper, 
we report on recent experiments to evaluate such 
performance.  
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1. INTRODUCTION 
Being able to solve larger, more complex problems in a 
shorter period of time is a key motivator in building 
High Performance Computing (HPC) systems. Today’s 
computers are becoming more and more powerful and 
high-speed, low-latency networks are becoming 
increasingly available and affordable. It is now 
possible to build powerful HPC platforms from off-the-
shelf computers and networks. In particular, the Linux-
based commodity cluster constructed by general 
purpose computers is an increasingly popular model 
and seems to be a trend for future HPC [1].  

Commodity cluster computing can be characterized 
as cost effective, extensible, and easy to maintain. With 
off-the-shelf components and operating systems it 
becomes feasible to interconnect such systems over 
local and wide area networks, particularly, as the speed 
of commodity networks increase.  Such distributed 
HPC clusters, or HPC grids, offer the potential of large 
computational spaces when needed.  However, since 
these commodity clusters are built with a variety of 
computers and network devices, they do not 
necessarily guarantee high performance. The 
performance of a standalone computer depends on its 
operating system, CPU, memory speed, and a variety 
of other factors. For HPC clusters, network 
communication is another key factor in performance - 

communication bottleneck in an HPC cluster may lead 
to a significant loss of overall performance in the 
cluster. Inter-cluster performance is also critically 
dependent on network performance.  Detailed network 
performance analyses that identify these bottlenecks 
are capable of yielding insight that developers can use 
to build better applications and administrators can use 
to better configure, manage, and administer their 
clusters and grids.  

In this paper, we report on measurements of network 
performance within and between HPC clusters.  In 
Section 2 we provide a brief overview of previous 
work on network measurements and in Section 3 we 
provide an introduction to a tool for HPC 
environments. In Section 4, we describe our HPC grid 
and the clusters used for experimentation and report on 
experiments measuring UDP and TCP communication 
under a variety of parameters.  We conclude with some 
directions for future work. 

2. RELATED WORK 
To measure network performance, such as 

throughput and latency, two types of measurements are 
commonly used:  active and passive.  Active 
measurement introduces a workload into the network, 
usually through the execution of a special application. 
Typically, this is done in a client/server model, in 
which the client and server exchange probe packets 
across the network, with both the client and server 
collecting timing measurements[2]. These models 
assume that characteristics of each packet traveling a 
link are related to the bandwidth and network delay. 
This type of measurement is considered non-intrusive, 
since it does not significantly increase the network 
traffic during the testing. Examples of tools adopting 
these techniques include Pathchar [3] and Pathrate [4].  

Passive measurement, in contrast, probes existing 
network traffic to compute various network metrics. 
For example, in TCP the time interval between a SYN 
packet and the corresponding SYN/ACK packet can be 
used as a measure of the round trip time (RTT) 
between the two hosts involved.  Passive measurement 
does not create any additional network traffic, and 
consequently does not require the execution of traffic 



 

generating application processes on hosts in the 
network. A simple example of a passive measurement 
application is tcpdump[5].  People often use this tool to 
capture a selection of packets and analyze the 
appropriate header fields to help understand network 
usage and behaviour. Other passive measurement tools 
include ntop[6] and nettimer[7].  Generally, however, 
passive measurement is not used for network 
benchmarking as it is not flexible, is difficult to 
control, and is not repeatable.  

To study networks in HPC environments, it is 
preferable to use an active measurement model as it 
allows direct measurements of network performance 
and behavior. While this can cause disruptions during 
experimentation, this inconvenience is well worth the 
better quality results that can be obtained.  There are 
many existing tools available that involve active 
measurements, including Udpmon[8], Netperf[9], 
Iperf[10] and NetPIPE[11].  All of these tools were 
designed as general purpose network tools, and have 
limitations and restrictions that make them unsuitable 
for HPC environments. For example, none of the above 
tools test non-blocking communication and none 
specialize in high performance interconnects, nor are 
they capable of testing all three of the most common 
communication protocols in commodity clusters: UDP, 
TCP, and MPI.  In theory, it is possible to modify these 
tools, but, their implementations are quite complex and 
difficult to extend.  For example, the Netperf utility is 
comprised of more than 40,000 lines of C code. 

3. DESIGN of HPCBENCH 
With this in mind, we chose to implement our own 

benchmarking tool, Hpcbench, focusing specifically on 
HPC environments. Hpcbench was designed to 
measure the high-speed, low-latency communication 
networks in Linux-based HPC systems. The objectives 
of Hpcbench include: 1) High accuracy and efficiency; 
2) Support for UDP, TCP and MPI communications; 3) 
Tunable communication parameters of interest in an 
HPC environment; 4) Detailed recording of test results, 
communication settings, and system information.   
Hpcbench was written in C and uses BSD socket and 
MPI APIs. It has three independent sets of benchmarks 
measuring UDP, TCP, and MPI.  For UDP and TCP 
communication tests, we employ a client/server model 
that uses two channels during testing: a control channel 
and a test channel. The first is a reliable TCP 
connection for critical data communication for 
controlling the test run, while the second is used for 
carrying test data packets. This two-channel design 
makes it easier to control the tests and gather results. 
The control channel is used by Hpcbench solely for 
control of the tests and only involves data transfer 

before each test starts and after each test ends; thus, it 
does not introduce additional traffic or overhead during 
actual testing..  

Another reason for two communication channels in 
Hpcbench is for test configuration purposes. Hpcbench 
supports many test modes for various protocols, with 
numerous tunable parameters for each protocol; all of 
this must be configured for each test.  For example, 
some socket options, such as a socket’s buffer size, 
should be set before establishing a connection for test 
data packets. With only one communication channel 
between the client and server, the server process must 
be initialized with a long and cumbersome argument 
set according to the client’s test setting. For further 
details, the reader is urged to refer to [12]. 

4. NETWORK PERFORMANCE 
In this section, we present results of analyzing UDP 
and TCP throughput for inter-cluster and intra-cluster 
communication within SHARCNET [13], the Shared 
Hierarchical Academic Research Computing Network.  
SHARCNET is a multi-institutional HPC network 
distributed across 9 universities in Ontario. We look at 
network performance involving three clusters in 
SHARCNET: greatwhite (Western), deeppurple 
(Western), and hammerhead (Guelph). These are 
Linux clusters with 39, 12 and 28 Alpha ES40 4-cpu, 
833MHz processors, respectively, with 4Gb RAM per 
ES40 and Gigabit Ethernet and Quadrics QSW Elan3 
[14] interconnects; more details can be found in [12].  
   We focus on blocking, unidirectional stream 
experiments, because they more directly show the 
network behavior with less benchmark overhead. Our 
experiments include both intra-cluster and inter-cluster 
communications in our test-bed.  For inter-cluster tests, 
we examined the communication between greatwhite 
and deeppurple, which were connected via an optical 
fiber (1KM distance) and communication between 
greatwhite and hammerhead with a long distance fiber 
optic link (150KM). All three clusters use the same 
network devices (Alteon AceNIC, HP Passport 8600 
switch) and software (Linux 2.4.21).  

4.1 UDP Communication 
Table 1 summarizes the unidirectional tests using UDP.  
We make three observations based on the results.  First, 
the throughput increased when datagram size was 
increased from 1KB to 1460-bytes, but it dropped 
when the datagram size was increased from 1460-bytes 
to 4KB.  When datagram size increased to 40KB and 
the socket buffer size was relatively large (1MB and 
10MB), network throughput decreased drastically. 
Second, throughput increased when socket buffer size 
increased, but remained reasonably steady for larger 



 

socket buffer sizes. Finally, throughput varied slightly 
for different links, but not significantly. 
   To explain the first observation, we look at the packet 
size for the different datagrams.  The MTU size in our 
test-bed was 1500-bytes, implying a maximum 1472-
byte UDP payload for each packet.  When datagram 
size was increased from 1KB to 1460-bytes, fewer 
packets needed to be transmitted to transfer the same 
amount of data, and system overhead was reduced, 
resulting in a higher throughput. Throughput 
decreased, however, when datagram size was increased 
from 1460-bytes to 4KB.  This likely occurred because 
each 4KB datagram had to be fragmented into 3 
packets to fit the MTU size before transmission in the 
network, resulting in some smaller packets requiring 
transmission, and more overhead. 

Table 1: Intra/Inter-cluster UDP Throughput (Mbps) 
UDP throughput (Mbps) (mean of ten replications) 

 Socket buffer  Datagram  
(Bytes) 

Link 
10KB 100KB 1MB 10MB 

gw gw 165.11 485.22 575.30 574.79 
gw dp 162.27 471.38 556.33 559.54 

 
1024 

gw hh 162.31 459.07 557.15 568.03 
gw gw 177.75 557.43 649.83 647.75 
gw dp 177.68 541.88 628.19 630.91 

 
1460 

gw hh 177.59 539.45 636.77 638.83 
gw gw 147.64 549.46 586.02 583.32 
gw dp 146.55 540.11 539.13 541.22 

 
4KB 

gw hh 147.30 536.34 538.54 537.49 
gw gw --- 567.09 1.15 1.13 
gw dp --- 564.46 1.16 1.13 

 
40KB 

gw hh --- 565.78 1.15 1.14 

Further, an entire 4KB datagram would be discarded 
if there was a single packet lost.. When datagram size 
was increased to 40KB, this made the situation worse, 
since one datagram was segmented into at least 28 
packets, and the entire 40KB of data would be 
considered lost if any of these 28 packets were lost. 
When the socket buffer size was of a medium size, 
100KB in our experiments, the socket buffer was itself 
a bottleneck (the application was blocked from sending 
because the socket buffer was frequently full).  
Consequently, there was relatively little data loss 
during kernel processing, and network throughput was 
expectedly high.  However, when the socket buffer was 
made large enough, 1MB and 10MB in our case, the 
socket buffer limitation was eliminated, and UDP data 
was periodically dropped when the data transfer from 
the application exceeded the kernel’s (or network 
interface’s) capabilities. When data loss caused by the 

sender itself was considerable, few complete datagrams 
could be reassembled at the server. System log files 
collected by Hpcbench during these tests verified this.  

Without considering the effects of data loss, the 
kernel was able to process more packets in one 
transmission with larger socket buffers, so the overhead 
of the sending process was reduced, and the throughput 
could increase. When the maximum sustainable 
throughput was reached, larger socket buffers produced 
no further gains:  throughput increased dramatically 
when socket buffer size was increased from 10KB to 
100KB, but there was relatively little change when 
socket buffer size was increased from 100KB to 1MB, 
and from 1MB to 10MB.  

Table 1 shows that the maximum UDP throughput 
was approximately 630~650 Mbps for both intra-
cluster and inter-cluster communication, which was 
achieved with a relatively large socket buffer size 
(1MB and 10MB). Similar throughputs observed 
during both intra-cluster and inter-cluster UDP 
communications demonstrate that the fiber optic 
network was able to provide sufficient bandwidth for 
Gigabit Ethernet communications over a long distance.  

Table 2: Intra/Inter-cluster TCPThroughput (Mbps) 

TCP throughput tests (Mbps) (means of ten replications)  
 Socket buffer  Message 

Size 
Link 

10KB 100KB 1MB 10MB 
gw gw 108.34 513.86 568.13 587.71 
gw dp 88.79 495.32 565.79 572.33 

 
10K 

gw hh 12.30 152.04 527.51 535.40 
gw gw 119.85 515.47 574.22 589.43 
gw dp 98.41 504.30 570.44 573.27 

 
100K 

gw hh 13.82 157.65 541.89 549.20 
gw gw 117.27 510.82 573.15 590.54 
gw dp 98.22 504.41 567.08 567.18 

 
10MB 

gw hh 13.85 155.33 534.67 550.14 

4.2 TCP Communication 
For TCP throughput tests, we chose 10KB, 100KB, 
1MB, and 10MB socket buffer sizes with three 
different message sizes: 100KB, 1MB, and 10MB. 
Tests were conducted in the same way as the UDP 
tests.  Table 2 shows the unidirectional test results. 

In contrast to UDP, TCP throughput decreased 
significantly for cross-cluster communication when the 
socket buffer size was small, particularly in the long 
distance communication between greatwhite and 
hammerhead with a 10KB socket buffer.  UDP could 
achieve more than 140 Mbps throughput with any 
datagram size, while TCP throughput was less than 14 
Mbps for all message sizes. This is likely due to TCP’s 



 

transmission rate being controlled by the TCP sliding 
window.  To guarantee reliable delivery of data, the 
TCP active window shrinks during transmission, and 
no more data will be sent when the TCP window 
closes. The theoretical maximum throughput is 
window-size/RTT-time if there is sufficient bandwidth 
for the data transfer. In our example, the RTT time 
between greatwhite and hammerhead was measured to 
be about 2.9ms.  As a result, the maximum throughput 
for a 10KB socket buffer (with an actual usable buffer 
space of only 5KB in Linux) is about 5*1024*8/0.0029 
≈ 14.12 Mbps and for a 100KB socket buffer, this 
value is about 5*1024*1024*8/0.0029 ≈ 144.63, both 
very close to our test results. 

We also observe that message size had little impact 
on measured throughput since TCP is a byte-stream 
protocol.  The achievable maximum TCP throughput in 
our tests was about 590 Mbps on the cluster 
greatwhite, 570 Mbps between greatwhite and 
deeppurple, and 550 Mbps between greatwhite and 
hammerhead. 

5. CONCLUSION 
Given the emergence of high performance 

commodity clusters and the ability to connect them via 
high bandwidth networks, such as in SHARCNET’s 
case, the potential of large scale applications operating 
over HPC grids becomes a real possibility.  For 
consortia of institutions, this becomes a very viable 
approach to large scale HPC.  This approach is, 
however, not without challenges.  In particular, as with 
any cluster, network performance and tuning is crucial.   
In this paper, we looked at UDP and TCP 
communications within and between clusters.  We 
introduced and illustrated the use of a Linux-based 
network measurement toolset designed for high 
performance networks, to do these measurements.  
Some conclusions from this work include: 
• With appropriate settings and configuration, we can 
achieve about as high a throughput whether inside or 
between clusters for UDP and TCP communications. 
• The maximum UDP throughput was approximately 
630~650 Mbps (1 Gb connection) for both intra-cluster 
and inter-cluster communication.  This occurred with 
1460-byte datagrams and a relatively large socket 
buffer size (1MB and 10MB).  Larger datagrams, 
especially at 40KB, were extremely ineffective. 
• Hpcbench proved to be a useful tool in evaluating 
UDP, TCP, and MPI communication throughput and 
latency with a variety of configurable parameters. 

There are many interesting directions for our work to 
take.  While Hpcbench already supports a large number 

of variables and protocol options, there is always more 
that can be added, for example support for other MPI 
methods of communication besides point-to-point.   

Currently, tracing MAC layer statistics and other 
low-level network information is only possible with 
Gigabit Ethernet and other TCP/IP-based networks, but 
for proprietary technologies, such as Myrinet and 
QsNet, it is possible to trace this information with 
vendor-dependent APIs. Extensions to the tool to 
include this support would also be useful.  

A topic for future experimental study is the 
relationship between network performance and 
computational performance, e.g. different network 
interface cards can lead to different network throughput 
and latency [12]. How does the computational capacity 
of a HPC cluster change with different network 
behavior introduced by different configurations or 
underlying technologies?  Such experimentation is 
important for developing guidelines for building 
commodity clusters and grids in the future. 
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