

Internet QoS: Past, Present, and Future

Daniel Reid and Michael Katchabaw
Department of Computer Science

University of Western Ontario
London, Ontario, N6A 5B7, Canada

Email: dreid28@csd.uwo.ca, katchab@csd.uwo.ca

Technical Report
Department of Computer Science,
The University of Western Ontario

June 2004

 - 1 -

Table of Contents

1. Introduction 2

2. Integrated Services 2

2.1 Signaling Protocol 3
2.1.1 ST-II 3
2.1.2 Resource Reservation Protocol 4
2.1.3 Yet Another Sender Session Internet Reservation Protocol 5
2.1.4 The Ticket Signaling Protocol 7
2.1.5 The Dynamic Reservation Protocol 7
2.1.6 Boomerang 8

2.2 Flow Descriptor 9
2.3 Traffic Control 10
2.4 Service Classes 10
2.5 IntServ Advantages 11
2.6 IntServ Disadvantages 11

3. Differentiated Services 11

3.1 Per-Hop Behaviours 11
3.2 Differentiated Services Components 12
3.3 DiffServ Proposals 12
3.4 DiffServ Advantages 13
3.5 DiffServ Disadvantages 13

4. MPLS 13

4.1 Label Distribution 13
4.2 QoS 14

5. Other Architectures 15

5.1 Scalable Resource Reservation Protocol 15
5.2 Flow Initiation and Reservation Tree Protocol 16
5.3 IntServ over DiffServ Networks 16
5.4 Edge-assisted Quality of Service 17
5.5 Endpoint Admission Control 18
5.6 Stateless Core 19
5.7 Aggregate RSVP 21
5.8 Simplified Guaranteed Service 21

6. Future Work 22

6.1 Next Steps in Signaling 23
6.2 Conclusion 23

 2

Abstract: In the past, numerous attempts at providing
widespread Quality of Service (QoS) have failed. The
two most popular architectures proposed, Integrated
Services and Differentiated Services, suffer from
scalability and flexibility concerns respectively.
Newer QoS-enabling technologies such as MPLS have
emerged, and look very promising in providing
widespread QoS support. To provide a more general
and multi-purpose QoS signaling protocol, the Next
Steps in Signaling Working Group was formed
recently. This paper will provide a broad overview of
previous and more currently proposed architectures,
along with a brief discussion of the future direction of
QoS.

1. Introduction

Originally designed as a best-effort service, the
Internet has grown significantly, and so have its needs.
Today, many applications require a service level better
than best-effort can offer. QoS can provide these
enhanced services.
 QoS is an expression used to depict the overall
experience a user or application receives over a
network [1]. Since the inception of computer
networks, numerous approaches have been attempted
to provide improved QoS to end users. Over the
Internet, QoS is typically measured in terms of
bandwidth, loss, delay, jitter, and availability.
 The traffic flowing through today’s networks is
extremely diverse, with each type requiring differing
levels of QoS. The diversity of such data flows are the
result of numerous data networks which have migrated
to IP for transport over the past decade. The IP
protocol, which now encompasses the majority of data
flows, has since conquered reliability issues, but it was
not originally designed for the strict requirements
needed by some applications today. Little
consideration has been placed to account for delay and
bandwidth requirements of these applications. The
connectionless properties of IP networks result in
unpredictable best-effort services, causing significant
problems with new QoS sensitive applications such as
teleconferencing and IP telephony. QoS models strive
to address these issues, taking a best-effort network
and transforming it into one which can provide
bandwidth and delay assurances to its applications.
 Since IP does not intrinsically support any
preferential treatment of traffic, the onus has been
placed on service providers and network managers to
make their components QoS-aware. Large intranets

are often subject to the same policies and consequently
the QoS procedures are easier to deploy. While it may
be relatively easier compared to the Internet, the
installation of such infrastructures are currently not
practical in a large number of cases due to the high
costs associated with specialty routers and the capable
network engineers to manage them. Many current
networks are simply pushing for greater network
capacity to alleviate congestion problems. While this
option is currently cheaper than deploying a QoS
infrastructure, it does not allow any prioritization of
flows. Allowing traffic to be treated equally is not
desirable since the unpredictable nature of network
traffic will usually not yield QoS requirements
regardless of the available bandwidth; unless of course
the network has infinite resources. Throwing more
bandwidth at the problem is merely a short term fix,
and will not address any long term issues.
 The Internet, on the other hand, originally designed
for a best-effort service, has made little progress in
respect to providing QoS because of its heterogeneity.
Most current and emerging standards are still in their
early stages, but soon the rising need for QoS will
propel them to the forefront.
 There have been several fields of thought on
providing QoS to the end users. By far, the two most
popular and accepted philosophies are the Integrated
Services Model (IntServ) and Differentiated Services
Model (DiffServ). More recently, a QoS-enabling
technology named Multi Protocol Label Switching
(MPLS) has emerged and looks very promising.
Section two, three, and four will examine each of these
models in detail. Section five will introduce several
relatively newer models which have attempted to
alleviate the problems these models have. Finally, the
last section will discuss future work in the area of
QoS; in particular the Next Steps in Signaling
Working Group.

2. Integrated Services

The Integrated Services model [2] is primarily
differentiated from others through the use of resource
reservation. Deployment of QoS is done on a per-flow
basis, with applications performing the reservation
requests. The Integrated Services Working Group has
defined several different service classes that can
commit an arbitrary QoS level to a uniquely identified
session of packets; also referred to as a data flow.
 Since reservations are made on a per-flow basis,
there is a need for per-flow state to be installed in

 3

routers participating in the reservation. Along the
control plane, there is need for per-flow signaling. On
the data plane, there is a need for per-flow identifiers
and scheduling algorithm parameters.
 To implement the IntServ model a signaling protocol
is needed, along with a traffic controller. The traffic
controller is comprised of an admission control
routine, classifier, and packet scheduler. The
following subsections will provide details of each,
with a discussion concerning flow descriptors included
in-between.

2.1 Signaling Protocol

In order to facilitate a reserved flow, a signaling
protocol must be used to contact participating nodes
for admission control, allocation and de-allocation of
resources, and in the case of a soft-state protocol, to
refresh the flow periodically. The IntServ model
provides thorough constraints on how this should take
place, but intentionally does not specify which method
to use, or how the flows are to be identified. A
signaling protocol does not perform any resource
reservation itself, but rather is used as a means of
carrying the information needed to do so. While more
basic approaches simply utilize network management
procedures such as SNMP or manual configuration of
the routers, there have been numerous more flexible
protocols developed. Currently, the most commonly
recognized and only IETF standardized reservation
protocol for IP networks is the Resource Reservation
Protocol (RSVP). Citing the complexity and
scalability concerns of RSVP, several other
lightweight approaches have been developed.
 Short descriptions and comparative analysis of
existing end-to-end signaling protocol solutions
follow. Table 1 can be found at the end of the section
summarizing several key aspects of each protocol.

2.1.1 ST-II/+

As early as 1979, with the development of the ST
Stream Protocol [3], thought has been put into
providing guaranteed services over IP networks. Over
a decade later in 1990, the second version, ST-II [4],
was being developed. ST-II is a simplex,
homogeneous, sender-initiated resource reservation
system which uses distribution trees for
multicasting[5]. In 1995, a new specification, referred
to as ST-II+ [6], was released that has further

extensions such as allowing either sender or receiver
reservations. Unlike the other protocols to be
discussed, it is a fully functional inter-networking
protocol meant to replace IP. The simplex properties
allow it to only reserve resources in one direction; that
is, there is a distinct sender and receiver. To provide a
reserved bidirectional flow, two separate reservations
must be made. It is a connection-oriented protocol,
requiring state information for each connection to be
held in participating nodes with no timeout period,
also referred to as a hard-state connection. Reliability
is accomplished through hop-by-hop
acknowledgements, and the ability to retransmit any
lost control messages.

Operation
To make a reservation, a Connect message containing
the set of recipients and flow descriptor, detailing QoS
requirements, is sent out. Each intermediary node
receiving this Connect message determines via its
routing protocol the next node(s), records this
forwarding state, and attempts to make the resource
reservation. Each node, including the receiver, can
reduce the flow specification if it can not allocate the
requested resources.
 After receiving a Connect message, each receiver
returns either an Accept or Refuse message. When an
Accept message is traversing backwards through the
network towards the sender, if the flow specifications
have since been reduced, the node changes the
resource allocation accordingly. The initial sender
waits for this reply (or several replies if multicasting)
before sending any data. When received, if the Accept
message contains reduced flow specifications, the
sender can either continue, or send a Disconnect
message to the receiver; thus, ending the flow.
 When multicasting, the membership of receivers can
be dynamically changed if hosts need to be included or
removed. A host wishing to join a multicasting group
is typically required to send an unspecified message
type to the sender, informing them to send a Connect
message. Similar to the initial setup, the sender must
take a look at the Accept message and decide to accept
or reject it. The resources allocated for the stream
must remain homogeneous.
 To be removed from a multicast or unicast session,
the source will either send a disconnect message that
specifies the individual receivers, or will set a tear
down flag to end the entire flow. Individual receivers
may opt to remove themselves by sending a Refuse
message

 4

Advantages
Since ST-II is a functional inter-networking protocol,
the added complexity of being able to handle both data
and control messages allows it to combine the
knowledge of resource reservation with routing
information. Thus, it can make routing decisions
based on resource availability in neighbouring nodes
[7]. This property, combined with its hard-state, can
allow guaranteed QoS even in the case of route
changes. Due to its hard-state, there is also less
network overhead required.

Disadvantages
While a functional inter-networking protocol provides
far more complex operations, a tradeoff exists, in that
it is less modular and cannot be used with different
routing and transmission protocols [7]. Its incapability
to use different transmission and routing protocols
severely limits its ability to become widely accepted
due to its inflexibility, and incredible complexity since
it is responsible for reliably maintaining router state.
In addition, costly mechanisms must be present to
handle errors due to its hard-state.
 The homogeneous nature of ST-II does not allow
custom resource reservations made per sender receiver
pair. This nature makes the assumption that all
receivers and links have the same capability, which is
far from true in the majority of cases. Respectively,
receivers and links have differing abilities and
capacities for processing data. Further reducing
flexibility is the fact that differing end points often
require, or request, distinct QoS levels.
 In the case of multiple senders, separate reservations
are needed. This results in resources being reserved
along multiple trees, even when many branches share
common links. In some cases, such as distributed
voice conversations when there is typically only one
speaker at a time, this can lead to a significant waste of
resources. In general, ST-II has been designed for a
small number of members when multicasting, and has
been shown to not scale well in large groups [5].

2.1.2 Resource Reservation Protocol

In 1993, the Resource Reservation Protocol (RSVP)
was introduced [8]. It is currently the only IETF
standardized resource reservation signaling protocol.
It is similar to ST-II in that it is a simplex protocol and
contains mechanisms to provide robustness to
changing network dynamics. RSVP distinguishes

itself from other protocols by allowing more flexibility
and scalability when dealing with multicasting.
Unlike the sender-initiated ST-II, RSVP achieves this
scalability through its receiver oriented design. The
receiver is responsible to provide the flow
specifications, and is also responsible for periodically
refreshing the soft-state reservation to keep it active.
Alternatively, ST-II does not require refreshing, but
instead moves this complexity into the network itself
resulting in a much more complex protocol.
 One common misconception is that RSVP is a
routing protocol. Rather than replicating complex and
costly functions, RSVP processes consult local
existing routing protocol(s). It has also been designed
to handle future unicast and multicast routing
protocols as well. Due to the reliance on other routing
protocols, it is known that routes will sporadically
change for a number of reasons. RSVP has been
designed to automatically refresh reservations in these
cases provided that the resources are available on the
new path.
 When multicasting, RSVP has been designed to
allow the end users to specify custom QoS needs. By
doing so, the reserved aggregate resources can
accurately reflect the resources actually needed,
resulting in less waste. The joining of a multicast
group is done through out-of-band messages; normally
through the Internet Group Management Protocol
(IGMP).
 RSVP is unique in its support of channel changing
for multicasting sessions. This feature reduces waste
(and perhaps bandwidth charges) by allowing
receivers to specify what particular data they wish to
be delivered. These parameters are left at the nodes,
where the upstream filtering occurs. Quite often
during a multicasting session there are times when a
receiver doesn’t wish to receive all the data, such as
choosing individual audio streams from a larger feed.
This finer grained control is met with much greater
complexity in the networks.

Operation
To make a reservation, it is assumed that a sender has
first sent the receiver a PATH message. The PATH
message traverses down the data path, and at each
node sets up the path state including the address of the
last hop. As mentioned previously, RSVP has a soft-
state, so periodic refreshes are required from the end
systems to keep the state fresh. Without a refresh, the
state in RSVP nodes will time out and be removed.

 5

Upon receiving a PATH message, the reservation
request is made and sent from the receiver to the
sender in the form of a RESV message. Using the path
state stored in the routers, this reservation message
travels back through the reverse path. At each node,
two actions are taken; first, the reservation request is
put through admission and policy control. If either
fails, an appropriate error message is returned to the
receiver. Upon success, the flow specifications are
extracted from the message and the resources are then
allocated. The reservation request is then forwarded
further upstream to the next hop. When multicasting,
reservations being sent to the same sender are merged
as they travel upstream, by only forwarding the largest
resource reservation. Receivers who wish a
confirmation may do so, but must also realize that the
receipt of such a confirmation is not guaranteed.

Reservation Styles
To dictate how resource reservation requests from
heterogeneous receivers in a multicast group should be
aggregated in the network efficiently, RSVP
introduces reservation styles. There are two attributes
which specify the reservation style; the sharing
attribute and sender selection attribute.
 The sharing attribute chooses whether the resource
reservation will be shared among the receivers, or if
there will be distinct reservations. Shared reservations
are useful in audio conferencing where there will
normally be one person speaking at a time.
 The sender selection attribute determines how the
senders are selected. With explicit, a filter spec is used
to determine a set of senders. With wildcard, there is
no filter spec, and the whole set is used.
 Names are given to each filter type; Fixed Filter
(distinct, explicit), Shared Explicit (shared, explicit),
and Wildcard Filter (shared, wildcard).

Advantages
The design of RSVP is to modularize as much as
possible; therefore, it only transmits control messages
containing resource reservation information, and not
the data itself (as would ST-II in comparison). By
doing so, RSVP can be used in conjunction with many
different routing and data transfer protocols [7].
 A receiver oriented soft-state design allows
heterogeneity in the data flows, such as the capability
to reserve differing amounts of resources per receiver.
It also allows hosts to receive differing data streams
sent to the same multicast group, and the ability to

change streams without having to change its
reservation [8]. Each receiver will make its own
reservation with RSVP resolving any differences. If
multiple receivers opt for differing levels of QoS,
RSVP will merge these requests by taking the
maximum value. To achieve better use of network
resources, there are also different reservation styles
that permit applications in the same multicast group to
stipulate how the flows should be aggregated. These
are discussed shortly.
 Soft-state also provides better dynamic adaptability
and robustness, such as the automatic adaptation of
routing changes and the ability for on-the-fly
membership changes in large multicast groups to take
place seamlessly; unlike ST-II, which was designed
for much smaller multicasting groups. It has also been
shown that this receiver oriented design and the
merging capabilities in RSVP reduce load as one gets
closer to the source, limits interactions between end
points, and generally reduces network protocol
overhead [5].
 The scalability in allowing large multicast groups is
due to the receiver initiated approach, which does not
require resource reservation requests to progress all
the way to the source; only to join as they reach a
branch in the multicast tree.

Disadvantages
As mentioned previously, RSVP has been designed to
run independent from routing protocols, using any
protocol available. The drawback to such
modularization is that separating the knowledge of
resource reservation from the routing information,
results in the inability to make routing decisions based
on the resource availability in neighbouring nodes [7].
 That aside, there are two major problems: complexity
and scalability. The complexity of the protocol results
in large overhead when processing messages, while
the lack of general scalability results in too much
bandwidth and storage being consumed as the number
of flows increase. Both of these limitations result in
serious problems for the IntServ model, since RSVP is
the standardized signaling protocol.

2.1.3 Yet Another Sender Session Internet
Reservation Protocol

In 1998, the YEt another Sender Session Internet
Reservation protocol (YESSIR) [9] was developed to
simplify the complexity RSVP, yet still keeping many

 6

of its features. It is a sender initiated, simplex, soft-
state protocol that is run over an in-band protocol, the
Real Time Control Protocol (RTCP). It was noted by
the designers that a large chunk of applications
requiring QoS were multimedia oriented using the
Real-time Transport Protocol (RTP), and thus decided
to extend this increasingly popular protocol with QoS
support.
 RTP is used for actual data transport, while RTCP is
the control protocol for RTP sessions. RTCP is also
used periodically for sender and receiver reports,
indicating session characteristics such as packets
transmitted, packet loss, delay, etc. While RTP alone
does not include any resource reservation abilities,
YESSIR embeds these abilities by taking advantage of
the periodic RTCP sender reports.
 It has been shown that YESSIR resource reservation
is three times faster, and the processing overhead on
refreshes are half that of RSVP [10]. Bandwidth
consumption is also lower, since YESSIR does not
require additional IP or transport headers.

Operation
Reservation requests from the sender are sent through
RTCP messages, and arrive at routers through the use
of the router alert option. YESSIR-aware routers, and
those that support the router alert option, process the
message, otherwise ignore and forward them. The
resource reservations are made through the use of a
flow descriptor, existing RTCP information, or a
combination of both.
 If a reservation cannot be made, the reason for failure
is optionally attached to the sender report. Upon
receipt of the sender report, the receiver attaches any
failure messages to the receiver report. Upon
receiving a report with errors, the sender can stop the
session, continue the session if using partial
reservations (discussed shortly), or transmit and
request less bandwidth.
 Like RSVP, the soft-state of YESSIR requires
periodic refreshes of sender reports to keep
reservations from being deleted and to adapt to routing
changes. To teardown a resource reservation properly,
an RTCP BYE message is used, releasing the
reservation and any state associated with it.

Advantages
YESSIR messages are periodically transported by
RTCP through the use of the router alert option. By
doing so, YESSIR does not require a new protocol to
be developed by taking advantage of piggybacking on

existing messages. This technique has been shown to
reduce both processing and protocol overhead costs at
the router [9].
 One distinct advantage YESSIR has over other
signaling protocols is the option to allow partial
reservations. In other reservation systems, requests
are either accepted or refused. Upon refusal end hosts
will typically resend the same request (or one with
lesser QoS requirements) quite often resulting in
added network cost. If specified, YESSIR does not
require all nodes to accept a reservation. Nodes which
cannot make the reservation will classify the flow as
best effort, and forward the request without any error.
During periodic refreshes, these nodes will again have
the opportunity to make the resource reservation.
With this approach, a partial reservation can be made
with the hopes that more nodes will be added, and a
full reservation will eventually be the end result.
 Routers often use the added YESSIR flow descriptor
to make a reservation, but can also make a reservation
without it. In measurement mode, routers can use the
typical data commonly found in the RTCP sender
reports, including transmission statistics such as byte
counts and timestamps, to make a reservation. Since
RTCP already includes these details, there is no
burden on the router to estimate rates through counting
packets, as other measurement based admission
controls do.
 Alternatively, it has been suggested that RTP packets
be periodically marked with the router alert option, so
as to extract payload identification to make the
appropriate reservations.
 While not providing all the reservation styles RSVP
is capable of, YESSIR uses a simplified approach,
using only individual and shared styles and controlling
them from the sender side rather than receiver.
Individual style requires each sender to make its own
reservation, while shared style allows the senders in an
RTP session to share the reservation.

Disadvantages
The most obvious disadvantage to YESSIR is that it
can only be used with RTP sessions. While
multimedia applications using RTP are becoming
increasingly more popular, other QoS sensitive
applications would not be able to take advantage of
this protocol. Additionally, there is extra support
required in the applications.
 Although partial reservations are a handy for some
applications, they can also lead to potential problems.
It is possible that multiple reservations being made at

 7

the same time will result in each being given only
partial reservations. This is referred to as
fragmentation and can result with many reservations
being given undesirable quality. This issue is
currently being investigated. Additionally, when using
partial reservations an advantage is given to hosts with
higher bandwidth, since they can more frequently send
their RTCP requests. This results in certain hosts
being able to claim new resources faster as they
become available.
 The sender initiated property of YESSIR does not
allow receivers from choosing their own QoS level,
and does not allow channel switching or multiple
reservation styles. The lack of error mechanisms also
slows down any recoveries due to a route change.

2.1.4 The Ticket Signaling Protocol

The Ticket Signaling Protocol (TSP) [11] is a
lightweight, simplex, sender initiated resource
reservation protocol developed in 1998. Citing the
scalability issues of connection oriented reservation
protocols, TSP allows resources to be reserved without
the need for connection states in the network, only
requiring link states. This results in a highly scalable
connectionless protocol.
 All information required for resource reservations are
stored at the end hosts, with it being delivered to
intermediate nodes through the signaling protocol.
There is no need to store any per-flow state in the
routers, only to process it. It is currently at the
prototype level.

Operation
To make a reservation, a request is sent containing a
traffic contract; or also known as a flow descriptor.
Included in this contract are the source, destination,
priority, bandwidth, and timing specifics for the
requested reservation. This request is then sent using
existing routing protocols to the destination, with each
node performing admission control along the way. If
at any point admission control fails, the request is
dropped. Upon the request reaching the receiver, an
acknowledgement (containing the request) is returned
to the access router; that is, the sender’s edge router.
The access router then creates a ticket containing the
contract information, and is then sent to the source.
 Reservations are made on a time slot basis, which is
included in the original request. Tickets are then
placed inside the data flow once per time slot, not

requiring nodes to store any connection state, to
confirm the reservation. To end a reservation, a
release message can be sent, having nodes de-allocate
any reserved resources.
 Policing is conducted at the access router to insure
proper use by adding digital signatures to insure
tickets cannot be modified, and that old tickets are
useless due to expiration dates.
 If a ticket is lost, there is an ability to send the
previous ticket as a NACK ticket, indicating that there
was a problem receiving the expected ticket. If two
tickets are lost in a row, the resources are released, and
the reservation ends.

Advantages
The greatest advantage TSP has over other protocols is
the lack of connection state needed in the nodes,
leading to scalability and low complexity overall.

Disadvantages
Since no connection state is maintained in the routers,
there is no multicasting support with this protocol.
Also, additional mechanisms are required in the
routers to prevent the immediate rerouting of traffic
with reserved resources. Complex switch-over state
tables are needed within the routers to prevent tickets
from changing routes, causing over provisioning and
other failures. Upon a route change, flows with
resource reservations would fall into a best effort
category, and would require another request to regain
its reservation.
 Access routers have the option to use connection
state for security and policing, but do not require so.
Either way, the access routers provide a single point of
policy failure if they misbehave or are compromised.
Bad tickets can also have dire consequences.

2.1.5 The Dynamic Reservation Protocol

The Dynamic Reservation Protocol (DRP) [12] is a
sender-initiated, soft-state, simplex, reservation
protocol designed for multicasting, which was
developed in 1998. It has been modeled after RSVP
providing several distinct differences.

Operation
To make a reservation, no prior setup is required.
Reservations are created on-the-fly by sending
reservation (RES) messages ahead of the data. After
the RES message has been sent, data can follow

 8

immediately. If the resources cannot be reserved, the
routers will reserve as much as possible; thus,
allowing partial reservations. Included in the RES
message is the sender’s ceiling reservation type (CRT)
which specifies the greatest QoS level it is willing to
transmit.
 Return (RTN) packets carrying path and feedback
information from the receiver are sent back, with
routers processing the data. Similar to RSVP’s RESV
message, RTN messages are also merged, allowing for
greater scalability in large multicasting groups. Also
included is a receiver ceiling reservation type (CRTr)
which is similar to the CRT, specifying the greatest
QoS level the receiver is willing to take. The sender
can then address heterogeneity by using the minimum
QoS level specified in the CRT and CRTr fields. A
receiver can change its CRTr by sending a RTN
packet containing the new value.

Advantages
Not requiring reservation setup allows applications to
gain instant QoS, (given they pass admission control)
along with the ability to modify flows instantaneously.
This is also helpful for applications with on/off traffic
by letting them free resources during times of
inactivity, and immediately regaining their reservation
when needed.
 DRP also allows heterogeneity of receivers in the
same multicast group, requiring little complexity on
the receiver’s part. The ability to merge RTN
messages also allows for better multicasting
scalability, especially in large groups.

Disadvantages
While DRP has several unique abilities that RSVP
does not, generally speaking it has the same problems,
such as overall scalability concerns and unattractive
unicast delivery.

2.1.6 Boomerang

The complexity of RSVP has resulted in a poorly
scalable protocol when deployed across large networks
with numerous data flows. The aim of the Boomerang
protocol [13] is to provide a much simpler solution,
and consequently provide a more scalable one at the
same time. Boomerang does not aim at replacing
RSVP all together, only providing a much simpler
alternative to a subset of potential uses; particularly

the unicast flows. Multicast resource reservations are
best left to RSVP.
 Questions have been raised recently as to the
soundness of multicast reservation systems due to their
complexity, and more importantly that the needs for
unicast reservations (such as VoIP) are becoming
increasingly more popular. Boomerang, developed in
1999, is a non-simplex, soft state resource reservation
system that is geared to these unicast reservations. It
is the only non-simplex lightweight signaling protocol,
which allows reservations to be made in both
directions.
 Tests conducted have shown that Linux-based
Boomerang routers are able to handle upwards of
120,000 concurrent reservations, and up to 6800
requests per second without any noticeable impact on
performance [13].

Operation
Since resource reservations using Boomerang are bi-
directional, the end nodes are not labeled as sender or
receiver. To make a reservation, the initiating node
(IN) sends the resource reservation request through the
network to the far end node (FEN). These requests
include both the forward and reverse flow descriptor,
and follow standard routing protocols. The resource
reservation is done on a per-hop basis at Boomerang-
aware nodes, with the caveat that all non-aware nodes
are able to blindly pass the request through. This
request is then bounced back from the FEN to the IN.
As the request traverses the loop, each node examines
the flow descriptor and compares it to available
resources. If the resource reservation cannot be made,
the flow descriptor is updated to the lower of these
two, with the first node rejecting the reservation
setting the NACK flag. While traversing, if the
refresh interval requested is too high, the field is
updated to the minimum acceptable.
 Upon the request making a full loop, the IN checks
the NACK flag to see if the reservation was
successful, and the refresh interval to see if it needs
changing. If the NACK flag is set, the request has
been denied. The IN can then re-request with the
same levels, or with the new specification attained.
 After establishing a resource reservation, the IN is
responsible for maintaining this reservation through
periodic refreshes. Similar to RSVP, if not refreshed,
the reservations are removed. This allows routing
changes on the fly with only temporary effects.

 9

Advantages
Boomerang’s current prototype uses ICMP echo
messages to carry reservation requests. Deployment
for such an approach is desirable since non-
Boomerang nodes are still able to forward requests.
Additionally, since the FEN is only required to bounce
a request back, no alterations are needed except for the
ability to respond to echo requests.
 All complexity is performed within the IN, which is
responsible for the creation and maintenance of the
reservations. Consequently, Boomerang does not
require any significant participation from the FEN,
only requiring it to bounce the request back. As
mentioned above, this can be done trivially with ICMP
echoes. The far end host does not need to be
modified.
 Unlike RSVP, where reservation and path messages
are separated, Boomerang uses one message resulting
in short reservation setup times. When establishing bi-
directional flows, it has been shown that in cases
where available resources are in demand, Boomerang
has a much lower blocking probability than RSVP
[14]. Due to the use of a single message, the return
path also need not be the same.
 Unlike RSVP and ST-II, both senders and receivers
can act as the IN and make the reservations. By using
the sender as the IN, greater control can be kept over
policy and billing issues, while allowing the receiver
to act as the IN allows greater flexibility on the
receiver’s part.
 Boomerang also has the ability for the looped
messages, in case of failure, to act as a query returning
with the minimum available resources.

Disadvantages
Boomerang only has support for one-to-many
multicasting, and several drawbacks. These include
the sender oriented design drawbacks discussed with
the ST-II protocol earlier, such as the lack of custom
reservations and channel switching.
 The current use of ICMP echo messages is not
necessarily meant as a permanent transport. While

advantages are gained initially, a more traditional
approach would be required eventually by either
defining a new ICMP message, or a completely new
protocol. Similar to other signaling protocols, this
would require changes to infrastructure.
 Unlike RSVP, rejected reservation requests are not
immediately returned to the IN, and must follow the
full loop before returning, creating added network
traffic. The designers have opted to keep this issue in
return for a simple protocol and no need for active
nodes. There are currently no security mechanisms in
place, and problems will arise by firewalls blocking
ICMP messages. Generally speaking, there is a lack
of functionality.

2.2 Flow Descriptor

While the signaling protocol can be considered a
vessel, the flow descriptor can be considered the cargo
carried within. The descriptor has been defined by the
IntServ model, and is broken into two parts; the
flowspec and the filterspec.
 The flowspec describes the requested level of QoS,
and provides other vital information needed for a
resource reservation to be completed. The IntServ
model has set out guidelines for what a possible
flowspec format would look like. This includes both
a service class and two other parameters: an Rspec and
Tspec. An Rspec defines the desired QoS, while a
Tspec describes the data flow, such as traffic flow and
patterns.
 The filterspec, coupled with a session specification,
is used to define the subset of data packets which will
receive the requested QoS found in the flowspec. The
flowspecs could be defined as senders themselves (i.e.
addresses and ports), protocols, or any fields contained
within protocol headers.

Table 1. Signaling Protocol Comparisons

 RSVP ST-II/+ YESSIR TSP DRP Boomerang
Year 1993 1990/95 1998 1998 1998 1998
Reservation Initiation Receiver Sender Sender Sender Sender -
Reservation State Soft Hard Soft Hard Soft Soft
Direction Simplex Simplex Simplex Simplex Simplex Non-Simplex
Reservation Types Hetero Homo Hetero - Hetero Homo
Signaling Band O-Band O-Band O-Band O-Band O-Band O-Band

 10

2.3 Traffic Control

QoS provided for each data flow is done so through
traffic control, which is comprised of three parts;
admission control, a packet classifier, and a packet
scheduler. Since the focus of this paper is primarily
on the mechanisms, architectures, and protocols used
to provide QoS, traffic control will only be discussed
at an introductory level.

Admission Control
Admission control is used to determine whether or not
a new resource reservation can be granted [15]. The
admission control in each router is independent, and as
such, no particular algorithm needs to be used in every
router. Each node will apply this decision procedure
to the request, and will return an error if admission
fails. Upon a successful admission, the flow
descriptor contained within the request is forwarded to
the packet classifier and scheduler.

Packet Classifier
Using filterspecs, the classifier maps all packets into
some class, with each of these classes receiving the
same QoS level. The class of a packet is typically
determined through either a classification number, or
from the data contained within the headers. The use of
classification numbers typically takes the approach in
replace IP with a virtual circuit, and using circuit
identifiers. This is the approach taken with ATM, and
protocols such as ST-II [4]. Along somewhat similar
lines, MPLS (which will be discussed in section four)
encapsulates messages with a label, and uses these for
classification. When using a connectionless approach,
data such as the source address, protocol numbers, port
numbers, or even application layer information can be
used to classify. Consequently, classifier
implementations are very complex since there is much
processing required.

Packet Scheduler
When incoming data packets reach a node capable of
resource reservation, the class (if any) is determined
by the classifier, and then sent to the packet scheduler
to be queued appropriately [16]. Using queues and
timers, the packet scheduler controls the forwarding of
data streams. A more generic description would be
that its function is to reorder the output queue.
Packets which do not fit into any special service class
are automatically handled as best-effort. Several

different techniques have been developed such as
priority queues, round-robin variants, or Weighted Fair
Queuing which can splice bandwidth into specific
shares. The dropping of packets is also an important
aspect, since careful consideration must be taken. The
Integrated Services model has proposed a preemptable
packet dropping service, where hosts can willfully
mark their packets as droppable if delay bounds can
not be met. Typically this includes delay sensitive
data, and can potentially help alleviate congestion.

2.4 Service Classes

The IntServ model has prepared several services
classes to meet the needs of applications. Each will be
discussed briefly.

Guaranteed Service
Guaranteed Service [17] is one in which provides solid
bounds to delay and bandwidth on a network flow.
Guaranteed Service flows can expect all packets to be
transported and delivered within the predetermined
bounds with no loss, given the path does not change.
 Packet delay over the Internet is comprised of two
parts. The first factor is the fixed delay which
primarily comes from transmission delays, and as a
result is uncontrollable. Fixed delays are related to the
chosen path, which is a result of the setup mechanism,
not the Guaranteed Service. The second factor is
queuing delay which can be controlled by Guaranteed
Service. Guaranteed Service is not concerned with
the median or minimal delay of packets, only the
maximum delay.

Predictive Service
Predictive Service [18] (also known as Controlled
Load Service) is one in which provides low loss and a
fairly reliable probabilistic delay bound. Flows that
use this service can expect that the majority of packets
to be transported will be delivered within the requested
delay bound, and reserved flow rates will be mostly
honoured. This service is primarily used for
applications which require an upper bound on delay
for performance, but can still function properly with
the odd late or lost packet.
 Increased use of Predictive Service will permit more
reserved flows since the relaxed commitments allow
higher utilization of network resources. Since delay
bounds will be broken infrequently, there is no attempt
in providing jitter control. These services are provided

 11

assuming no failures in the network infrastructure or
routing changes.
 Similar to Guaranteed Services, Predictive Services
must use admission control and deny any flows which
will cause any hindrance to the current flows.

Controlled Delay Service
Controlled Delay Service [19] is comparable to
Predictive Service, with the primary difference being
that Controlled Delay does not offer any bounds on
delay. Similar to Predictive Services, it does not
provide any jitter guarantees. This service is primarily
designed for applications that are delay sensitive, yet
are still able to adapt to delay levels through other
application specific means, or are willing to upgrade to
a higher level service.
 Similar to Guaranteed Services and Predictive
Services, Controlled Delay Services must use
admission control.

Best Effort Service
Best effort service encompasses all other traffic which
does not belong to the above service classes. No
admission control is required. There are no
bandwidth, delay, or jitter guarantees.

2.5 IntServ Advantages

While models such as IntServ would require massive
restructuring of Internet infrastructure for widespread
use, it can still provide benefits when partially
deployed, particularly in intranets or ISP backbones.
Stateful solutions are able to provide better assurance
levels, and flexibility. IntServ can provide per-flow
guarantees with firm bounds on bandwidth and delay.

2.6 IntServ Disadvantages

The amount of state required, particularly in core
routers, increases with the number of flows. Since
router performance is linked with its ability to
maintain these flows, and the Internet is still growing
at a phenomenal rate, there are serious scalability
concerns with the IntServ model. With the advent of
lightweight signaling protocols, scaling concerns have
been partially alleviated, but unfortunately are still
unable to address large multicasting groups
effectively. Regardless of signaling protocols, the
router requirements are extremely high due to the
complex nature of the IntServ model.

 With few predefined services classes, IntServ is not
flexible as some would like. It would also require
ubiquitous deployment to reach home users. There is
also a lack of policy control mechanisms.

3. Differentiated Services

Differentiated Services (DiffServ) [20] is a model
which provides QoS through a relative priority
scheme, with network devices handling traffic at
aggregate levels rather than the IntServ approach of
handling individual flows. Most complexity has been
pushed out to the edge routers, with core routers
simply forwarding and scheduling the already
classified data. Traffic is classified into behaviour
aggregates (BA) as it enters the network, with routers
treating each aggregate in a unique manner. No
connection setup is needed.

Classifying aggregates is not done at the end host, but
is rather done through the use of Service Level
Agreements (SLA). They are used to provide
differentiated services between a user and a provider,
and contain the rules for packet classification and
conditioning. The following sections will discuss
some key aspects of the DiffServ architecture.

3.1 Per-Hop Behaviours

Aggregates are grouped into per-hop behaviours
(PHBs), which are marked in the DiffServ code point
(DSCP). The DSCP is located in the first six bits of
the IP Type of Service field. There have been several
PHB’s proposed, but two have gained much attention;
Expedited Forwarding, and Assured Forwarding.

Expedited Forwarding PHB
Expedited Forwarding (EF) [21], also known as
premium service, is primarily for applications which
produce fixed rate traffic, requiring an assured (but not
guaranteed) bound on delay and jitter.
 EF does not deal with individual user flows, but
rather the aggregates of them. Therefore, no bounds
are placed on individual flows. The aggregate
receives its predetermined rate regardless of any other
traffic on the node, with any EF traffic exceeding the
set rate being discarded.
 To achieve this service, the departure rate of the
aggregate on each outgoing link must be greater than
or equal to the sum of maximum arrival rates on

 12

incoming links. In the time it takes to send a
maximum MTU packet at each outgoing link, the
overall outgoing service rate should average, or
exceed, the predetermined rate. There are a number of
queuing methods which can be applied, including
simple priority queues (PQ), weighted round robin
queue scheduling (WRR), and class based queues
(CBQ).
 An SLA is used when classifying packets into the
aggregate, and is typically meant for long term
provisioning, not on-demand connections. The
aggregate is expected to use only a small share of
bandwidth, and operates as a Virtual Leased Line
(VLL). When not using its predetermined rate, excess
bandwidth is used by other PHBs. Admission control
is frequently conducted offline, with less emphasis, if
any, put on signaling protocols.

Assured Forwarding PHB
Assured Forwarding (AF) [22] is primarily for
applications which require reliability better than best-
effort service. From the SLA, profiles for aggregates
are derived with predefined rates. Each aggregate is
given a high probability of timely delivery as long as it
does not exceed the predetermined rate. Packets
which conform to this rate are called in-profile. It is
also possible to send at a rate beyond the defined rate
in the profile; these packets are called out-of-profile,
and it is understood that this traffic will not be given
as high priority as in-profile packets would.
Regardless, neither type of packet will be reordered.
 There are four Assured Forwarding classes defined,
with each class receiving differing amounts of
resources. Each class is further marked with three
drop precedence values, where in the case of
congestion, these values determine which packet will
be dropped based on significance. In-profile packets
will typically be marked at low drop precedence, while
others will be marked at the other two levels.
 QoS for each AF class is determined by the resources
allocated for the class, current load of the class, and
drop precedence of each packet. To achieve this
service, assured queues (AQ) are used and managed
through Random Early Discard with In and Out (RIO).

3.2 Differentiated Services Components

From the SLA, a Traffic Conditioning Agreement
(TCA) is derived. To adhere to this agreement, both
classifiers and conditioners are needed. BA classifiers

are used to sort packets into their PHB class using the
DSCP, while Multi-Field (MF) classifiers can also use
any other header information including interface
information.
 Conditioners are the control functions applied to each
of these classes to make them perform appropriately.
Conditioners are typically comprised of metering,
policing, shaping, and packet marking functions.
 Metering is used to measure the temporal attributes
of classes, compare them to the TCA, and determine
whether packets are in or out of profile.
 Markers are used to set the DSCP and add the packet
to an aggregate, based on the TCA. The meter may
affect which aggregate it is added to, through
remarking, depending on the packet profile it derived.
 Shapers are used to smooth traffic to a configured
rate based on the traffic profile. Packets will be
dropped if the finite buffer is overrun.
 Policing is done to restrict classes of traffic to certain
rates so out-of-profile packets can be remarked or
dropped.

3.3 DiffServ Proposals

Generally speaking, there have been two fields of
thought in deploying DiffServ. Performing admission
control and policing at the edges only, requiring no
control in the core network, is the easiest. Such
approaches [23, 24] require no state in the core
network, but require substantial bandwidth in the core
to prevent unfair degradation of individual flows from
the aggregated class.
 Other proposals [25] suggest the placement of
moderate controls within the core to provide
proportional fair sharing and flow protection.
Unfortunately, scalability concerns arise due to the
added complexity and state.
 There have been several different pricing and
increased functionality proposals put forward. By far
the simplest pricing scheme proposed is Paris Metro
Pricing [26], which proposes to separate the network
into a number of equal logical channels. Each channel
is assigned a different price, assuming that higher
priced channels will naturally be less congested than
others.
 The Proportional Differentiation Model [27] is a way
to improve DiffServ by allowing operators to fine tune
quality spacing between aggregate classes,
independent of class loads. Thus, the quality of each
class differs under load, but the quality ratio between
classes remains static. Alternatively, research [28] in

 13

providing relative proportional DiffServ uses feedback
from a metering component to dynamically adjust
traffic conditioning.

3.4 DiffServ Advantages

The differentiated services model is intended to
address several problems that have plagued the
Integrated Services model, including scalability and
complexity. By not requiring per-flow state to be
stored in the routers, and no complex signaling
protocols, DiffServ is highly scalable and relatively
less complex.
 DiffServ also aims to provide qualitative and flexible
service classes, where classes can be relative to one
another; i.e. Platinum, Gold, Silver, and Bronze. In
some cases, this is preferred over quantitative
approaches.

3.5 DiffServ Disadvantages

Since DiffServ treats packets in the same class
identically, it is difficult to provide quantitative QoS to
individual flows. It is strong on simplicity, but weak
on guarantees. It is primarily designed for and used by
ISPs, and is not too useful (or even intended) for end
users. Additionally, network management techniques
such as bandwidth brokers must be in place to provide
resource control.
 While the aggregation of smaller flows suits the
model well, other flows such as elongated or
bandwidth intensive flows often require per-flow
guarantees. If routes change, existing guarantees can
change, leading to a degradation of service.
 While SLAs can be dynamic, they are typically
designed to be long term, yet both network traffic and
topology are dynamic in nature. Lastly, DiffServ does
not offer any receiver control.

4. Multiprotocol Label Switching

The original purpose of Multiprotocol Label Switching
(MPLS) [29] was to provide high speed Layer 2
switching at Layer 3 through the creation of switched
paths which use labels for routing decisions, rather
than having to use complex route lookup mechanisms.
 Since the advancement of high speed Layer 3
switching technology, the performance gain has since
lost standing for the motivation of MPLS. Due to the
connection oriented design, Traffic Engineering (TE)

is possible, and has since become the most important
motivation behind MPLS deployment. Another
important motivation is that paths have the ability to
cross many different Layer 2 transports, such as
Ethernet, ATM, and Frame Relay, without the need for
any other mechanisms present. TE enables many
other abilities in the network, including the capability
to provide various routing procedures for load
balancing and congestion avoidance. It is also
possible to assure differing levels of service to each
path, or to create virtual tunnels for VPNs.
 When packets enter an MPLS domain, a label edge
router (LER) assigns each a short fixed-length label.
The packets are then forwarded through a series of
label switched routers (LSR), the entire path being
referred to as a label switched path (LSP). The group
of packets that use the same LSP and receive equal
forwarding treatment is referred to as a Forward
Equivalency Class (FEC). Data packets entering a
LSR are forwarded based on their label. Once a label
has been used to make a routing decision, it is then
replaced with another label to be used at the next hop.
 Labels are comprised of four fields, totaling 32 bits,
and are inserted between the Layer 2 and Layer 3
header. The 20-bit label field contains the actual
MPLS label value, while the 3-bit Class of Service
(CoS) field is used for providing differing levels of
service. A single bit Stack field is used to support a
hierarchical label stack, and an 8-bit Time to Live
(TTL) field provides conventional TTL functionality.

4.1 Label Distribution

A labeled switched path is created through the use of a
label distribution protocol, which establishes paths
through an MPLS network by distributing the
appropriate labels, and reserving appropriate resources
if requested. They are also required to provide a
mechanism for the discovery of other LSRs.
 To setup LSPs using existing IP routing information,
the Label Distribution Protocol (LDP) can be used.
There are, however, more complex protocols required
to bypass existing routing protocols, or to provide
resource reservations. There are two proposed LDPs
for these which incorporate traffic engineering and
reservation abilities; CR-LDP and RSVP-TE.

 14

Constraint-based Routing over Label
Distribution Protocol
CR-LDP was created through the modification of the
Label Distribution Protocol (LDP), by adding traffic
engineering capabilities. CR-LDP is a hard state
protocol, requiring no periodic refreshes, and is
transported by TCP sessions between LSRs.
Reservations are requested by the sender.
 To generate a new LSP, a LABEL_REQUEST is sent
from the ingress to egress LER through either
traditional routing protocols, explicitly stating the
path, or a partial path. Included in the request is an
optional flow descriptor if a reservation is required.
At the ingress LER, and each intermediate LSR, the
resource reservation is made before forwarding the
request. After the resource reservation is made at the
egress LER, a LABEL_MAPPING message is sent
back towards the ingress LER containing a new LSP
label and information regarding the reservation just
made. At intermediate LSRs, any pending reservation
is finalized, a new LSP label is created, and the
forwarding table is updated for the new LSP.

Resource Reservation Protocol with Tunneling
Extensions
RSVP-TE is an extension to RSVP that includes
mechanisms for MPLS traffic engineering. Since it
runs over a raw IP transport, it has mechanisms
present to account for message loss. Additionally, its
soft state nature requires periodic refreshes to keep
reservations from being removed. Similar to RSVP,
reservations requests are receiver oriented.
 To make a new LSP, a PATH message is sent from
the ingress to egress LER similar to that of CR-LDP.
The PATH message is traversed through all
intermediate nodes using existing routing protocols,
explicitly specified paths, or partial paths. Upon
reaching the egress LER, a RESV message is
formulated containing a flow descriptor describing the
requested reservation. After making its own
reservation, a new LSP label is attached to the RESV
message and returned back through the reverse path.
Intermediate LSRs will attempt to make any
reservations, update the forwarding table with the label
received, and attach a new LSP label. The ingress
LER will do the same, without the need to attach a
new label.
 Table 2 provides a comparative look at CR-LDP and
RSVP-TE.

Table 2. CR-LDP and RSVP-TE Comparison

 CR-LDP RSVP-TE
Transport Mechanism TCP Raw IP
State Management Hard Soft
LSP Refresh No Yes
Resource Request Sender Receiver
Strict Routing Yes Yes
Loose Routing Yes Yes
Shared Reservations No Yes

4.2 QoS

One of the largest misconceptions is that MPLS is a
QoS technology in itself. Rather, it introduces a
networking environment that is capable of transporting
different traffic over a common infrastructure, while
being able to enable QoS effectively. Thus, it is a
QoS-enabling technology, and provides a flexible
solution for QoS deployment and management [30].

MPLS with DiffServ
The abilities of MPLS to force packets to specific
paths and to guarantee bandwidth to forward
equivalency classes, combined with the ability of
DiffServ to specify differentiated treatment of
aggregates, results in QoS.
 To support this, two types of LSPs are defined. E-
LSP use labels as FEC destinations, and the CoS field
to carry the class of the flow. By preserving labels,
and using the CoS field for DiffServ, E-LSPs are
easier to manage and far more scalable. Alternatively,
they do not carry scheduling information, so there is
the possibility bandwidth will be lacking in the queue
it is placed in.
 L-LSP uses labels as both the FEC destination and
scheduling priority, with the CoS field used for drop
priority. They are harder to manage, but there is no
concern over bandwidth since scheduling information
is included.
 The merging of MPLS and DiffServ is more scalable
than IntServ alone since routers require no per-flow
state, only aggregate information. While LSPs can be
dedicated to one flow, many flows can also aggregate
into one, requiring less signaling.
 Thus, MPLS technology forces application flows into
connection-oriented paths, providing bandwidth
guarantees to the flows. The addition of DiffServ
provides additional service to these flows, including
class based admission, differentiated queue servicing,
preemption priority. Depending on which type of LSP
is being used, scheduling information can be included
to provide firmer QoS bounds.

 15

MPLS Extensions

There has been numerous extension proposals
intended to add further functionality to MPLS. While
not directly affecting any QoS mechanisms, the
increased functionality makes it a more attractive
overall solution. Some proposed extensions have
included modifying the RSVP-TE and LDP signaling
protocols to support enhanced multicasting
functionality [31] and fast reroute abilities [32], as
well as modifying ICMP to allow LSRs to append
MPLS information for greater messaging flexibility
[33].

5. Other Architectures

Since neither IntServ nor DiffServ have gained far
spread acceptance due to scalability and inflexibility
concerns respectively, several new architectural
models have been proposed which promise to remove
these hindrances causing them from being deployed.
The two most common approaches to accomplish this
are to make both IntServ and DiffServ interoperable,
or simplifying the signaling protocol. Some of these
approaches will be discussed, with an architectural
comparison table (Table 3) found at the end of the
section.

5.1 Scalable Resource Reservation Protocol

The Scalable Resource Reservation Protocol (SRP)
[34], introduced in 1998, is one which aggregates
flows on links in the network, without the need for a
signaling protocol. It requires no per-flow state in the
routers, only at the network edge. The only additional
overhead required in this architecture is the addition of
two bits in each packet. These represent the values
reserved, requested, and best effort.
 SRP provides a service similar to IntServ’s
Controlled Load service, and cannot provide any
bounds on delay or jitter, only bandwidth.

Operation
To make a resource reservation, an application does
not require any previous signaling. Instead, the
application starts sending data packets to the receiver
with a request flag set. These packets are subjected to
admission control in each intermediate node, with
those accepted being forwarded with no changes.
Rejected packets will have their flags changed to best-

effort before being forwarded. Routers which have
accepted these request packets will then reserve
appropriate resources, simply through the additive
properties of the aggregate reservation.
 The receiver, after a short period of time, can then
estimate the rate of the reservation which has been
accepted. This value is then returned to the sender
through the use of a feedback protocol. Based on the
feedback, the sender can then transmit packets at the
reserved rate marked with a reserved flag. These
marked packets are treated as part of the reserved
aggregate in the routers, receiving the equivalent of a
Controlled Load service. The sender can maintain its
reservation as long as there is some level of activity,
with the reservation being removed after a certain
period of inactivity. All other traffic is by default
marked as best-effort.

Estimator
To maintain reservations, an estimator is needed in
several areas to calculate the aggregate reservation
required. This is done by measuring the number of
packets currently marked as requested or reserved.
Estimators are used by senders, receivers, and
intermediate routers.
 Senders can make optimistic predictions as to the
reservation a network will allow. By default it
assumes all requests are accepted. Routers use
estimators for admission control, and receivers can
generate conservative predictions for feedback.
Sources use both the optimistic and conservative
estimations to generate their output rate.
 The specific implementation of estimators has been
left independent, as several algorithms exist, and are
still the focus of continuing work.

Advantages
SRP, while being highly scalable from lack of per-
flow state, can be transparently tunneled through non-
aware routers. If these routers are not susceptible to
congestion, no service degradation will occur.
 In addition, the protocol processing required is overly
simplified by attaching necessary control information
to data packets themselves instead of using a separate
signaling protocol.
 SRP also allows extensions to provide limited
multicasting abilities.

 16

Disadvantages
To implement SRP, routers must trust end hosts with
traffic control decisions, such as not to exceed their
allocated reservation. To circumvent this, complex
mechanisms must be present to meter and police at the
network edges. It is also suggested to handle
reservations in the kernel to keep applications from
misbehaving.
 As with other protocols that allow partial
reservations, there is the potential for resource
starvation when multiple sources attempt to make
reservations simultaneously. The negative feedback
properties of this can potentially lead to devastating
results.
 Route changes in the network can also cause serious
issues, since it can lead to overloading of reserved
packets on the rerouted link, leading to degradation of
service. Route pinning, which is the ability to force
flows to follow a certain path, has been suggested, but
still cannot account for router and link failures.

5.2 Flow Initiation and Reservation Tree
Protocol

The Flow Initiation and ReServation Tree (FIRST)
[35] protocol, introduced in 1999, is similar to RSVP
in that it is geared towards multicasting and is receiver
oriented. Its aim is to provide all the advantages of
RSVP, ST-II+, and YESSIR. It does however require
that routes do not change and keeps hard state in the
routers, requiring no refresh messages. A reservation
setup is similar to RSVP in that PATH and RESV
messages are sent. Similarly, it can allow
heterogeneous receivers who can request differing
reservations.
 Similar to SRP discussed above, FIRST reserves
resources based on aggregates. It is assumed that
intermediate nodes receiving reservation requests will
be able to decide if the flow can be admitted or not
using the same methods as SRP, namely estimators.
 Each router contains flow and routing tables. Flow
tables are used to maintain flow information, contain
source and destination pairs, forward and reverse data
paths, and the service level. The forward and reverse
data is derived from reservation messages, and is used
to pin the routes. A flow session is represented by the
source and destination pair. Forward and reverse path
values cannot change during the flow session.
 Routing tables contain the same fields as flow tables,
with the exception that the service level is always best

effort. This routing table maintains normal routing
data, and updates accordingly as routes change. This
table is meant for best effort traffic which does not
require any route pinning.
 A termination message is required to teardown a
reservation. Work on the protocol has ceased, with no
analysis having been conducted.

Advantages
Since FIRST aggregates flows into several different
service levels, a scalable architecture is the result.
Being receiver oriented, it is also able to handle
heterogeneous receivers and aggregate flows as it
traverses up multicasting trees. It also can handle
large multicasting groups in a scalable manner by
merging reservation requests.

Disadvantages
Since work on the protocol has stopped, there has been
little quantitative test results. The hard-state attributes
result in poor robustness in the case of failure.
Documentation is scarce, and there are many areas
which need further explanation.

5.3 IntServ over DiffServ Networks

Seeing IntServ and DiffServ as complementary
models, IntServ over DiffServ [36], introduced in
2000, attempts to overcome the limitations in both
models by placing IntServ at the edge of the network,
and DiffServ in the core. This requires no per-flow
state to be stored in core routers, with only the edge
routers being responsible for the interface between the
domains. To IntServ capable nodes, DiffServ domains
are seen as “virtual links” which connect them. Since
no state is required in core routers, this approach is
highly scalable.
 While other signaling protocols may be used over the
IntServ domain, current work being done uses RSVP.
To create a per-flow guarantee, an RSVP PATH
message is sent from the host. Upon reaching the
ingress edge router, the message is packaged and
shipped transparently across the DiffServ domain,
being unpacked at the egress edge router. From there,
the PATH message is delivered to the intended
recipient, with a RESV message being returned. As
with the PATH message, it is transported transparently
across the DiffServ domain. Upon the egress edge
router receiving a successful RESV message, it
performs admission control to the DiffServ domain. If

 17

this is successful, the RESV message is allowed to
continue to the receiver. If not, a RSVP error message
is sent.
 An alternative exists to the above example by
allowing nodes within the DiffServ domain to be
IntServ aware. That is, additional per-flow
information can be used during DiffServ admission
control, and during packet scheduling.

Service Mapping
Services provided by IntServ must be mapped into the
DiffServ domain to keep end-to-end QoS from being
broken. This is done by selecting one or more
appropriate PHBs depending on the resource request,
and by performing policing at the edge. There are two
types of mapping. Default mapping encompasses all
well-known IntServ to DSCP mappings. In network
driven mapping, RSVP capable routers in the DiffServ
domain can remark the DSCPs.

Resource Management in DiffServ Domains
There are several ways to provision resources in the
DiffServ domains. The simplest, but least flexible, is
statically allocating resources based on SLAs, or the
use of bandwidth brokers. The most flexible option is
to dynamically adjust them through the use of a
signaling protocol such as RSVP.

Advantages
The use of DiffServ in core routers allows greater
scalability, while the use of IntServ at the edges allows
better flexibility, particularly with per-flow control. It
is possible to allocate resources to certain applications,
rather than large aggregates.

Disadvantages
One of the largest challenges to this architecture is
resource management. When statically allocating
resources within the DiffServ domain, or using other
long term approaches such as bandwidth brokers, it is
difficult to notify edge routers of the traffic load
within the DiffServ domain. Using a dynamic
approach such as RSVP signaling inside the DiffServ
domain can adequately address this issue, but reverts
to an unscalable model with the need for per-flow state
in core routers. As well, the need for the service
mapping ability in edge routers results in further added
complexity.
 Another large challenge is deployment. With neither
IntServ nor DiffServ having any large scale

deployment as it stands, IntServ over DiffServ would
suffer just as much, if not more, difficulty.
 Since DiffServ networks cannot provide firm bounds
on delay, this architecture cannot deliver the IntServ
Guaranteed Services class; only predictive and
controlled delay classes, along with DiffServ PHBs.

5.4 Edge-assisted Quality of Service

The Edge-assisted Quality of Service (EQOS) [37]
architecture, developed in 2000, requires only edge
routers of a domain to be modified, with core routers
requiring no changes. It is interoperable with both
DiffServ and IntServ networks, and is comprised of a
signaling protocol, a distributed admission control
mechanism, and route pinning mechanism.
 EQOS allows two types of flows; reserved and best
effort. Reserved flows can provide bandwidth
guarantees, but are unable to provide bounds on either
delay or jitter.
 Reservations are made through both a signaling
protocol, and a token passing mechanism that
maintains reservation consistency around the edge
routers.

Signaling Protocol
EQOS uses RSVP for signaling, but does not use it in
the traditional manner. PATH messages are
transparently sent through the domain with only edge
routers stamping their addresses and updating per-flow
path states. RESV messages are also transparently
transported back over the EQOS domain through the
use of a route pinning mechanism, with only the two
edge routers examining and making the reservation.
Thus, no core routers are required to be RSVP-aware.
 EQOS also takes advantage of the soft-state
properties of RSVP to make sure flows which do not
end properly are removed.

Distributed Admission Control
The EQOS architecture uses a distributed system
which assumes the admission control responsibility of
the entire domain. This is done at the flow’s ingress
edge router. To perform an admission decision for the
entire domain, a single control token is circulated
among the edge routers, which contains bandwidth
information for all the links in the domain. Using
information contained within this control packet, and
network topology information, a reservation route is
selected. While numerous algorithms can be used, the

 18

“shortest wide-enough” path is the most popular,
which selects the shortest reservable route. Tokens are
circulated dynamically by the shortest path, with links
preempting the processing of other packets when a
control token arrives to minimize circulation time.
 Upon a successful reservation the route is pinned,
and information contained within the control token is
updated and forwarded to the next edge router. The
reservation is not final until this control token has
made one full circulation. This is done for two
reasons; to keep edge routers from over provisioning a
link, and to allow edge routers to potentially reduce
best effort rates using the same links.
 Information regarding best effort flows must be
maintained as well, since there is no way within the
domain to distinguish them from the reserved flows.
Thus, the rate of the best effort flows must be limited
at the edge routers using a system of fair queuing
schedulers.
 Route pinning can be done through either MPLS, or
IP source routing. Since MPLS requires all routers in
the domain to be MPLS-aware, IP source routing
would be the most popular approach. Transparently,
ingress edge routers insert the routing information
with egress edge routers removing it.
 To combat lost tokens, it has been suggested to have
one router as a token monitor which keeps a copy of
the token, releasing it only when the real token does
not return after a timeout period. This replacement
will be noticed by other edge routers, who will then
reissue reservations or update appropriate flow counts.
 If a link or router within the domain fails, the token is
updated from an edge router who will receive the new
link state through updates. After one full circulation,
all edge routers will have the new topology
information.
Advantages
The largest advantage to EQOS is the ease of
deployment and low cost, due to the core routers not
requiring any modifications. This architecture
provides excellent scalability as well.

Disadvantages
Unfortunately, EQOS cannot provide true Guaranteed
Services to reserved traffic since there is no means to
provide bounds on delay or jitter. Thus, it would act
similarly to the Controlled Load class of the IntServ
model.
 Additionally, both reserved and best effort flows
require route pinning, which leads to lack of
robustness and added overhead. While there are

mechanisms in place to account for link and router
failures, the temporary disorder can cause overloading
of links resulting in packet loss.
 Since a fair queuing scheduler is required for every
edge to edge route, if the number of active reservations
between two edge routers is large, there will be large
computational demand on the router.

5.5 Endpoint Admission Control

Since attempts at deploying real time services have
been hindered in the past, primarily due to scalability
concerns and the massive restructuring and
standardization needed, Endpoint Admission Control
(EAC) [38] examines whether or not it is possible to
provide such services with little support from core
routers.
 With this infrastructure, end hosts make their own
admission control decisions by sending probe packets
at the rate to be reserved into the network used to
report back bandwidth, delay, and loss results. Since
no participation is required from the network, this
architecture can be run over DiffServ networks. A
signaling protocol such as RSVP is not required.
Based on the probe results, the decision to admit the
flow is made. Since the results are not capable of
providing exact numbers, the Guaranteed Services
class can not be duplicated. Endpoint Admission
Control aims at providing Controlled Load services,
where strict guarantees are not made.
 Packet loss is typically the measurement from which
an admission decision is made. To prevent starvation
while probing a network, probing must be done
incrementally. During a given time period, if the
packet loss exceeds the point where the total packet
loss goes over the acceptable threshold, the probing is
stopped.

Advantages
The lack of participation from the core routers makes
this solution scalable, and cheaper to deploy.

Disadvantages
Besides the fairly high bandwidth wastage of probing,
which takes anywhere between two to five seconds, it
also causes a substantial delay which is not appropriate
for most real time applications. It is also assumed that
end users will cooperate, sending only if the resources
are available. Since admission control is done at the

 19

end hosts, this is very difficult to police, leading to
lack of verifiability.
 Changes in routes will also cause congestion, as there
is no mechanism to provide route pinning.

5.6 Stateless Core

To provide the flexibility of IntServ while achieving
high scalability, the Stateless Core architecture
(SCORE) [39] was introduced in 2000. It combines
both service differentiation from DiffServ and
guaranteed services from IntServ into one scalable
package.
 Since scalability concerns arise from flow state being
stored in the network, SCORE remedies this through
the removal of state from core routers; thus, only
requiring it in the edge routers. Information required
by routers can be found within the packets themselves.
A specific signaling protocol has not suggested, as has
been left independent of the SCORE architecture.
 SCORE aims to push complexity out to the network
edge, resulting in the need for edge routers to perform
special operations. To operate, a transparent SCORE
domain is needed.
 To achieve a stateless core, both the stateful data path
and stateful control path need to be redesigned. Along
the data path, a mechanism must be present to provide
bounds on delay and jitter without the need for state.
Along the control path, a mechanism must also be
present to allow admission control without the need
for state.

Dynamic Packet State
Dynamic Packet State (DPS) is the fundamental
technique used to implement the SCORE architecture.
By using DPS, flow state is carried in the packet,
rather than stored in the router. DPS is inserted into
each packet at ingress routers and removed at egress
routers, with intermediate nodes updating appropriate
fields. This results in a transparent operation. Since
edge routers handle less traffic and typically operate at
lower speeds, scalability is the result.

Core-Jitter Virtual Clock
To provide delay bounds in the data path without the
need for per-flow state, an extension to the Jitter
Virtual Clock (JVC) is introduced, called Core-Jitter
Virtual Clock (CJVC).

In a stateful network, JVC guarantees that no packet
will miss its deadline. In it, each packet is assigned an
eligible time and deadline. Packets are not released
until it becomes eligible, with packets being sent out in
order of their deadlines. To assign the eligible time of
a packet, the maximum value of the following
properties is taken:

� The arrival time of the packet
� The packets deadline at the previous node plus

propagation delay
� The previous packets deadline at the current

node

The deadline is computed as:

� Eligible Time + Packet Length / Reserved
Rate

When assigning an eligible time, having to look at the
deadline of the previous per-flow packet requires state.
Thus, the concept of CJVC has been proposed to
eliminate this dependence. A slack variable is
computed at the ingress router based on the lengths of
current and previous packets, the slack variable of the
previous packet, and the number of hops. The variable
is then sent with the packets, and is computed such
that the eligible times and deadlines at the last router
are the same as they would be if JVC were being used.
Thus, CJVC can provide the same bounds as JVC can
without the need for state in intermediate routers.
 Collectively, three variables are carried with each
packet using the DPS approach mentioned above; the
slack variable, the reserved rate for the flow, and an
ahead of schedule variable which identifies how far
ahead of the deadline the packet was sent. Therefore,
the new eligible times and deadlines are computed
without the need for state as follows:

� Eligible Time = Arrival Time + Ahead of

Schedule + Slack Variable
� Deadline = Eligible Time + Packet Length /

Reserved Rate

As such, state is been removed from the data path and
placed in the packets, requiring no per-flow storage in
the routers.

Admission Control
Current admission control techniques are broken into
two classes; distributed and centralized. Distributed

 20

approaches through protocols such as RSVP can
provide short lived per-flow reservations, but lack
scalability. Centralized approaches using bandwidth
brokers are simple to implement, but are not
appropriate for per-flow reservations. The SCORE
architecture uses a distributed approach, but removes
all per-flow state, thus making it scalable.
 Admission control measures requested reservation
rates against current aggregate rates to make a
decision. Due to packet loss, partial reservation
failures, and under utilization of reservations,
maintaining a proper reservation aggregate for each
outgoing link without per-flow state is very difficult.
In the absence of these issues, the reservation
aggregate could simply be measured by current
outgoing rates.
 Since under utilization of reservations happens
frequently, a virtual length is assigned to each packet.
This value is set so that if the packet length were equal
to its virtual length, the flow would send at its reserved
rate. From this the value of the unused reservation
rate (since the last packet) can be made. These values
are calculated and inserted by the ingress router, and
used by core routers to estimate reservation
aggregates. These estimations are then used for
admission control.

Flow Protection
In the Internet, there is a reliance on self imposed
congestion control; the most popular example being
the Transmission Control Protocol (TCP). Since this
relies on participation from the end hosts, there is no
way to trust everyone to impose this type of control.
 Flow protection is used to shelter well-behaved
traffic from ill-behaved, by using fair bandwidth
allocation in the routers. Typically, fair bandwidth
allocation requires state to perform per-flow
management. The SCORE architecture uses DPS to
achieve this, giving it the name Core-Stateless Fair
Queuing (CSFQ). Edge routers estimate the incoming
flow rate and attach this value the packet using DPS.
When received by core routers, the probability of the
packet being dropped is calculated as a function of the
rate carried within the packet, and the fair share at the
router. If packet dropping occurs, the rate is updated
to reflect this. Thus, no per-flow state is needed in the
core routers.

Advantages
The primary advantage of SCORE is the stateless
properties which make it scalable. Consequently, this

statelessness also results in better robustness in the
case of physical link failures, since there is no
replicated or inconsistent state to deal with. SCORE is
also able to provide both Guaranteed Services from
IntServ and service differentiation from DiffServ.
 DPS packets can be used to find misbehaving
elements in the network, by using a “verify and
protect” approach, in which routers statistically verify
packet state.
 RSVP and other stateful solutions allow route
pinning, which is typically done for traffic
engineering, and is often required to provide
Guaranteed Services. To provide this in a stateless
network, SCORE labels a path using router
identification numbers by simply XOR’ing them
together. The ingress router keeps these labels, and
attaches them through DPS as packets leave. At each
intermediate node, the label is updated by XOR’ing it
with its own identification number. The new label is
then used to forward the packet to the appropriate
router.

Disadvantages
While SCORE can provide IntServ Guaranteed
Services, limitations presented by a stateless solution
do not allow predictive load and controlled delay
services.
 SCORE does not handle partial reservation failures
well, and in a worse case scenario, it can affect an
entire domain. The verify-and-protect approach has
been suggested, but comes at the cost of added
complexity. Even without this, packet processing in a
SCORE domain is very complex (especially in the
case of Guaranteed Services) and results in a great
deal of processing overhead being required.
 By pushing complexity to the network edge where
there are typically less flows and lower speeds, the
architecture is scalable. Since routers must be aware
of the architecture, it can not be deployed
incrementally, only on a domain by domain basis. If
domain edges touch core routers during deployment,
scalability is lost for flows traversing through that
edge.
 Since state has effectively been moved from being
stored in the routers to being stored within packets
themselves, there would naturally be additional
processing overhead in the routers. It has not been
addressed whether scalability concerns could
potentially arise under high router load.
 Little work has been accomplished in providing
multicasting support.

 21

5.7 Aggregate RSVP

More currently in 2001, RSVP extensions [40] have
been developed to allow a hierarchical reservation
scheme to combat scalability concerns, which are due
to the lack of ability to aggregate small flows. This
extension would allow many smaller flows to be
aggregated in a few larger flows similar to a virtual
pipe, reducing per-flow state in the routers and
signaling overhead. Classification of these larger
flows would be done through DiffServ.
 An aggregation region is defined, with end-to-end
flows that cross into this region being aggregated and
deaggregated as they enter and leave respectively.
This region must have a contiguous set of RSVP-
aware routers that can perform aggregation and
deaggregation along all possible routes between. End-
to-end reservation messages are hidden from the
aggregation region, to prevent wasted resources. This
is done by having routers at the border of the domain
change the IP protocol number of certain RSVP
messages to a special ignore case, and restoring it
upon leaving the domain.
 The flow descriptors of many individual flows are
summed at the aggregator, and used to generate an
aggregate reservation request to the corresponding
deaggregator on the other side of the domain. With
this approach, the number of RSVP reservations
within a network will significantly decrease, but it all
depends on how many aggregation regions are
defined, and their sizes.

Advantages
The ability to make guaranteed reservations for large
aggregates in the core network results in the reduction
of reservation state. Routers in the aggregation region
only need to keep reservation state for the aggregates.
By offering few QoS classes, packet scheduling is kept
simple.
 The virtual pipes in an aggregated region are
dynamic. They can grow and shrink depending on the
particular demand, and cease to exist when there are
no flows. This leads to greater scalability.

Disadvantages
When classifying packets into large aggregates, there
is still a need for fine granularity. Aggregators must
dig into the headers to extract specific source and
destination values, which are then compared to a list of
reservations. Additionally, since the virtual pipes are

not end-to-end, heterogeneity cannot be supported in
the aggregating region.

5.8 Simplified Guaranteed Service

Introduced in 2003 [41] and using ideas from FIRST
[35], this design provides a simple QoS architecture
that can dynamically provide IntServ classes in a
scalable fashion, with one exception; the Guaranteed
Services class cannot provide any delay bounds, only
rate guarantees. Thus, it would act similar to the
Controlled Load service class.
 For each link on the router, there are four local
variables stored in the routers for each service type;
the capacity, requested rate, confirmed rate, and
refreshed capacity. These variables are dynamic and
are modified through the use of a signaling protocol.
The flow descriptor contained within reservation
requests is by far simpler than conventional
descriptors, requiring only a peak rate.
 Although work is being done to provide multicasting,
this architecture is currently for unicast sessions only.

Signaling Protocol
While it may be possible that other more common
signaling protocols could be used, a new sender
initiated, simplex, lightweight protocol has been
proposed, called Sender Oriented Signaling (SOS).
There are four types of messages required for this
architecture; reservation, confirmation, refresh, and
teardown messages. While the protocol has been
established, current work is being done on how and
where to store the flow descriptor within the IP header.
 The architecture specifies that all signaling messages
are considered part of the Guaranteed Service flow,
and are thus immune to congestion and purposeful
packet dropping.

Operation
To make a resource reservation, a uniquely identified
reservation message is sent to the receiver, with a
timer started. If the timer timeouts, it is assumed the
reservation was lost, and a new reservation request can
be issued. If a reservation fails, the request is dropped.
If the reservation is accepted, the rate contained in the
flow descriptor is then added to the requested rate field
on the appropriate link in the router.
 When a request reaches its destination, an
acknowledgement message is then returned. This is
also done in the form of a reservation message, with

 22

the same identifier as the request, and the rate set to
zero. Resource reservation requests are typically sent
repeatedly until either an acknowledgment is returned,
or the sender chooses to stop. If by some chance a
reservation request is delayed in the network, and a
second request is made, the oldest acknowledgement
will be ignored by the sender, with core routers
cleaning it up during garbage collection (discussed in
the next section).
 Upon receipt of the acknowledgement, a
confirmation message containing the same requested
rate is sent back towards the receiver. Once the
confirmation is sent, data can start to be sent at the
newly reserved rate. As routers encounter the
confirmation message, the rate is then added to the
confirmed rate field. Finally, a second
acknowledgement is sent to acknowledge the
confirmation message.
 Periodic refreshes are required to be sent once per
cycle during the session. Within the network, they are
not taken as per-flow refreshes, but rather per-class
refreshes. The refreshed rate field is updated
appropriately as refreshes are passed through the
nodes.
 A teardown message, once again containing the
reserved rate, is sent to end the reservation. The rate is
subtracted from both the requested and confirmed rate
fields in the routers.

Garbage Collection
There are two types of garbage collection; short and
long term. In short term garbage collection, if a
reservation request is rejected while traversing nodes,
any reservations upstream will not receive notice.
These upstream nodes will still be expecting
confirmations, even though the reservation has been
rejected. It is necessary to perform garbage collection
to restore proper rate levels in the routers.

To conserve resources, garbage collection happens
only when the requested resources reach the particular
service limit. Any unused reservation space during a
timed period is then freed up.
 In long term garbage collection, the results of
abnormal failures such as link or bit errors are fixed.
At the end of each cycle, the refreshed field is
compared with the reserved field, with any difference
being subtracted from the reserved field.

Advantages
The largest advantages to the Simplified Guaranteed
Service architecture are that no per-flow state is
required. It also allows for simplified flow descriptors
to be used in a simplified signaling protocol, and it is
still able to provide some form of Guaranteed Service.

Disadvantages
Currently, there has been little work done to support
multicasting for this architecture, and little
consideration has been put towards security.
Additionally, there has been little experimentation in
real networks, relying only on network simulators.
 While the additional resources and complexity
needed by routers to maintain per-flow state have been
removed, there has been the need to introduce other
complex features. Two separate garbage collection
schemes are needed, as well as the requirement for a
router to re-mark packets in the case of a routing
change for a particular time period.
 Since no delay bounds are possible, a true
Guaranteed Services class is not achievable. It would
provide a service similar to the Controlled Load class.

6. Future Work

Though many solutions have been proposed to provide
end-to-end QoS, one has yet to be embraced by the
Internet community. There are several reasons why
this is the case. First and foremost, there have been

Table 3. Architectural Comparisons

 SRP FIRST IOD EQOS EAC SCORE A-RSVP SGS
Year 1998 1999 2000 2000 2000 2000 2001 2003
Reservation Initiation Sender Receiver Receiver Receiver - Either Receiver Sender
Reservation State Soft Hard Soft Soft - Hard Soft Soft
Data Path Fixed Fixed Dynamic Fixed Fixed Fixed Dynamic Dynamic
Reservation Types Homo Hetero Either - - - Either -
Signaling Band - O-Band O-Band O-Band - O-Band O-Band O-Band
Multicasting Limited Yes Limited No No No Limited No
Services CL/BE CL/BE CL/BE CL/BE CL/BE GS/BE GS/CL/BE CL/BE

 23

serious performance problems with most of the
proposed solutions. Due to these problems, there has
yet to be a commonly agreed upon architecture or
signaling protocol which can address resource
reservation across differing network environments.
Even the only standardized signaling protocol, RSVP,
has serious scalability concerns. Technical issues
aside, business models are lacking which would be
required to generate the revenue required for
deployment.

6.1 Next Steps in Signaling

Originally started in 2001, the Next Steps in Signaling
Working Group (NSIS) is currently working on
standardizing a next generation multipurpose signaling
protocol [42]. While primarily geared towards
providing QoS to data flows, it is also meant for non-
QoS applications as well. Design issues such as
performance, flexibility, mobility, interoperability, and
security will be addressed. The intent of the new
signaling protocol, in which some are coining RSVP
v2, is to reuse the valuable parts of RSVP, and form a
much simpler and modular signaling model.
 Currently work is still in the requirements phase, and
no solution has been proposed yet.

Two Layered Signaling Protocol
To modularize, the signaling protocol will be broken
into two layers; one for common lower layer transport
functions, and the other for upper layer application
specific signaling functions. These are referred to as
the NSIS Transport Layer Protocol (NTLP) and NSIS
Signaling Layer Protocol (NSLP) respectively.
NSLPs provide custom services for applications, and
take advantage of the common NTLP service. The
two layered approach allows a simplified design for
new signaling applications, and independent
development of signaling applications and transport
methods. It is also aimed at providing non-QoS
signaling capabilities, such as network property
discovery and management, and firewall/NAT
configuration. Multiple components can be combined
in the NSLP layer, such as providing both QoS and
Firewall parameters in one set of messages.

Design Goals
The signaling protocol designed by NSIS is intended
to be general, and not focused on a single application;
it should be useful for all QoS applications and

technologies. There should be a distinct separation of
the signaling protocol and any control information for
extensibility. Similarly, there should also be a
separation between signaling and actual QoS
provisioning. Generally speaking, it should be
comparable to the modular design of RSVP in most
aspects, allowing greater flexibility with other
protocols. It should be scalable, offer quick setup
times, and provide low bandwidth solutions when
signaling. Flow aggregations are a must, along with
the provisions to allow both unidirectional, and
bidirectional flows. There is no specific requirement
for multicast, since it will increase complexity and the
resources needed.
 While there many other design goals listed by NSIS,
meeting each one is not necessarily attractive due to
the complexity needed. There is currently discussion
regarding the importance of many of the design
features.

Signaling and Control
The signaling protocol will allow greater flexibility by
allowing multiple end-points, and usable in different
areas of the Internet without the need to establish
complete end-to-end solutions. It should be able to
travel end-to-end, end-to-edge, or edge-to-edge. The
ability to allow tunneling and hierarchical reservations
similar to aggregated RSVP should be permitted as
well.
 Control messages should use as little resources as
possible. Both the reservation identifier and flow
identifier should remain independent to support
mobility, and a set of flows should also be able to
group their control signaling messages to save on
messaging overhead.

6.2 Conclusion

There have been many lessons learned over the past
decade with regards to QoS. With the need for QoS
ever growing, the next few years will present newly
standardized protocols which will address the issues
that have hindered current architectures.

References

[1] “Introduction to Quality of Service,” White Paper,
Nortel Networks.
[2] R. Braden, D. Clark, S. Shenker, “Integrated
Services in the Internet Architecture: an Overview,”
RFC 1633, June 1994.

 24

[3] J. Forgie, “ST - A Proposed Internet Stream
Protocol," Internet Experimental Notes IEN-119,
September 1979.
[4] C. Topolcic, “Experimental Internet Stream
Protocol: Version 2 (ST-II)," Internet RFC 1190,
October 1990.
[5] D. J. Mitzel, D. Estrin, S. Shenker, L. Zhang, “An
architectural comparison of ST-II and RSVP,” Proc. of
IEEE Infocom '94, June 1994, Toronto, Canada.
[6] L. Delgrossi, L. Berger, “Internet Stream Protocol
Version 2 (ST2) Protocol Specification – Version
ST2+,” Internet RFC 1819, August 1995.
[7] D. Luca, R. G. Herrtwich, C. Vogt, L. C. Wolf,
“Reservation Protocols for Internetworks: A
Comparison of ST-II and RSVP,” In 4th Int.
Workshop on Networks and Operating System
Support for Digital Audio and Video, October 1993.
[8] D. Estrin, S. Shenker, L. Zhang, S. Deering, D.
Zappala, “RSVP: A New Resource ReSerVation
Protocol,” In IEEE Network, pages 8-18. IEEE,
September 1993.
[9] P. Pan, H. Schulzrinne, “Yessir: A Simple
Reservation Mechanism for the Internet,” Proc 8th
International Workshop on Network and Operating
Systems Support for Digital Audio and Video,
Cambridge, United Kingdom, July 1998.
[10] P. Pan, H. Schulzrinne, “Lightweight Resource
Reservation Signaling: Design, Performance and
Implementation,” Bell Labs Technical Memorandum
10009669-03, July 2000.
[11] A. Eriksson, C. Gehrmann, “Robust and secure
lightweight resource reservation for unicast IP traffic,”
Proc International WS on QoS'98, May 1998.
[12] P. White, J. Crowcroft, “A Dynamic Sender-
Initiated Reservation Protocol for the Internet,” 8th
IFIP Conference on High Performance Networking,
Vienna, September 1998.
[13] G. Fehér, K. Németh et al., “Boomerang: A
Simple Protocol for Resource Reservation in IP
Networks,” IEEE Workshop on QoS Support for Real-
Time Internet Applications, Vancouver, Canada, June
1999.
[14] S. Littlejohns, “Performance Comparison of the
RSVP and Boomerang IP Resource Reservation
Protocols”, University of Wales, Swansea.
[15] C. Vogt, “Admission Control and Resource
Reservation on the Internet,” ACM SIGSOFT, 2002
[16] N. Alborz, B. Chen, L. Trajkovic, “Modeling
Packet Scheduling Algorithms in IP Routers,” Simon
Frasier University, 2001.

[17] S. Shenker, C. Partridge, R. Guerin,
“Specification of Guaranteed Quality of Service,”
RFC 2212, September 1997.
[18] S. Shenker, C. Partridge, “Specification of
Predictive Quality of Service,” Internet Draft, March
1995.
[19] S. Shenker, C. Partridge, J. Wroclawski,
“Specification of Controlled Delay Quality of
Service,” IETF Draft, 1995.
[20] S. Blake, D. Black, M. Carlson, E. Davies, Z.
Wang, W. Weiss, “An Architecture for Differentiated
Services,” RFC 2475, December 1998.
[21] V. Jacobson, K. Nichols, K. Poduri, “An
Expedited Forwarding PHB,” RFC 2598, June 1999.
[22] J. Heinanen, F. Baker, W. Weiss, J. Wroclawski,
“Assured Forwarding PHB Group,” RFC 2597, June
1999.
[23] D. Clark, W. Fang, “Explicit Allocation of Best
Effort Packet Delivery Service,” Internet Draft, 1998.
[24] K. Nichols, V. Jacobson, L. Zhang, “A Two-bit
Differentiated Services Architecture for the Internet,”
Internet Draft, 1997.
[25] Z. Wang, “User-Share Differentiation: Scalable
Bandwidth Allocation for the Internet,” In Proc.
HPN’98, September 1998.
[26] A. Odlyzko, “Paris Metro Pricing: The
Minimalist Differentiated Services Solution,” Proc. of
the IEEE/IFIP International Workshop on Quality of
Service - IWQoS'99, June 1999.
[27] C. Dovrolis, P. Ramanathan, “A Case for Relative
Differentiated Services and the Proportional
Differentiation Model,” IEEE Network, vol. 13, no. 5,
September/October 1999.
[28] M. A. Bauer, H. A. Akhand, “Managing Quality
of Service in Internet Applications Using
Differentiated Services,” JNSM: Vol. 10, No. 1, 2002
[29] E. Rosen, A. Viswanathan, R. Callon,
“Multiprotocol Label Switching Architecture,” RFC
3031, January 2001.
[30] V. Fineberg, “QoS Support in MPLS Networks,”
May 2003.
[31] J. Chung, M. A Benito, G. Y. Cho, P. Rasiah, H.
Chhabra, H. M. Soo, “Extensions to MPLS
Networking for Enhanced Multiplatform Multicasting
Services,” International Journal of Electronics and
Communications, vol. 58, pp. 41-50, Jan. 2004.
[32] P. Pan, “Fast Reroute Extensions to RSVP-TE for
LSP Tunnels,” Internet Draft, 2002.
[33] R. Bonica, D. Tappan, D. Gan, “ICMP Extensions
for Multiprotocol Label Switching,” Internet Draft,
1999.

 25

[34] W. Almesberger, T. Ferrari, J. Y. Le Boudec,
“SRP: a Scalable Resource Reservation Protocol for
the Internet,” March 1998.
[35] T. W. K. Chung, H.C.B. Chan and V.C.M. Leung,
“Flow Initiation and ReServation Tree (FIRST): A
New Internet Resource Reservation Protocol," in Proc.
IEEE 1999 Pacific Rim Conf. on Communications,
Computers and Signal Processing, Victoria, B.C, pp.
361-364.
[36] Y. Bernet, P. Ford, R. Yavatkar, F. Baker, L.
Zhang, M. Speer, R. Braden, B. Davie, J. Wroclawski,
E. Felstaine, “A Framework for Integrated Services
Operation over DiffServ Networks,” RFC 2998,
November 2000.
[37] S. Bhatnagar, B. J. Vickers, “Providing Quality of
Service Guarantees Using Only Edge Routers,” In
Proceedings of IEEE Globecom, San Antonio,
November 2001.
[38] L. Breslau, E. Knightly, S. Shenker, I. Stoica, H.
Zhang, “Endpoint Admission Control: Architectural
Issues and Performance,” In Proceedings of ACM
Sigcomm 2000, Stockholm, Sweden, September 2000.
[39] I. Stoica, “Stateless Core: A Scalable Approach
for Quality of Service in the Internet,” 2000
[40] F. Baker, C. Iturralde, F. Le Faucheur, B. Davie,
“Aggregation of RSVP for IPv4 and IPv6
Reservations,” RFC 3175, September 2001.
[41] E. Ossipov, G. Karlsson, “SOS: Sender Oriented
Signaling for a Simplified Guaranteed Service,” In
Proc. of Third International Workshop on Quality of
Future Internet Services, pp. 100 – 114, 2002.
[42] R. Hancock, I. Freytsis, G. Karagiannis, J.
Loughney, S. Van den Bosch, “Next Steps in
Signaling: Framework,” Internet Draft, October 2003.

