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Abstract: In the past, numerous attempts at providing 
widespread Quality of Service (QoS) have failed.  The 
two most popular architectures proposed, Integrated 
Services and Differentiated Services, suffer from 
scalability and flexibility concerns respectively.  
Newer QoS-enabling technologies such as MPLS have 
emerged, and look very promising in providing 
widespread QoS support.  To provide a more general 
and multi-purpose QoS signaling protocol, the Next 
Steps in Signaling Working Group was formed 
recently.  This paper will provide a broad overview of 
previous and more currently proposed architectures, 
along with a brief discussion of the future direction of 
QoS. 
 
1. Introduction 
 
Originally designed as a best-effort service, the 
Internet has grown significantly, and so have its needs.  
Today, many applications require a service level better 
than best-effort can offer.  QoS can provide these 
enhanced services. 
  QoS is an expression used to depict the overall 
experience a user or application receives over a 
network [1].  Since the inception of computer 
networks, numerous approaches have been attempted 
to provide improved QoS to end users.  Over the 
Internet, QoS is typically measured in terms of 
bandwidth, loss, delay, jitter, and availability. 
  The traffic flowing through today’s networks is 
extremely diverse, with each type requiring differing 
levels of QoS.  The diversity of such data flows are the 
result of numerous data networks which have migrated 
to IP for transport over the past decade.  The IP 
protocol, which now encompasses the majority of data 
flows, has since conquered reliability issues, but it was 
not originally designed for the strict requirements 
needed by some applications today.  Little 
consideration has been placed to account for delay and 
bandwidth requirements of these applications.  The 
connectionless properties of IP networks result in 
unpredictable best-effort services, causing significant 
problems with new QoS sensitive applications such as 
teleconferencing and IP telephony.  QoS models strive 
to address these issues, taking a best-effort network 
and transforming it into one which can provide 
bandwidth and delay assurances to its applications. 
  Since IP does not intrinsically support any 
preferential treatment of traffic, the onus has been 
placed on service providers and network managers to 
make their components QoS-aware.  Large intranets 

are often subject to the same policies and consequently 
the QoS procedures are easier to deploy.  While it may 
be relatively easier compared to the Internet, the 
installation of such infrastructures are currently not 
practical in a large number of cases due to the high 
costs associated with specialty routers and the capable 
network engineers to manage them.  Many current 
networks are simply pushing for greater network 
capacity to alleviate congestion problems.  While this 
option is currently cheaper than deploying a QoS 
infrastructure, it does not allow any prioritization of 
flows.  Allowing traffic to be treated equally is not 
desirable since the unpredictable nature of network 
traffic will usually not yield QoS requirements 
regardless of the available bandwidth; unless of course 
the network has infinite resources.  Throwing more 
bandwidth at the problem is merely a short term fix, 
and will not address any long term issues. 
  The Internet, on the other hand, originally designed 
for a best-effort service, has made little progress in 
respect to providing QoS because of its heterogeneity.  
Most current and emerging standards are still in their 
early stages, but soon the rising need for QoS will 
propel them to the forefront. 
  There have been several fields of thought on 
providing QoS to the end users.  By far, the two most 
popular and accepted philosophies are the Integrated 
Services Model (IntServ) and Differentiated Services 
Model (DiffServ).  More recently, a QoS-enabling 
technology named Multi Protocol Label Switching 
(MPLS) has emerged and looks very promising.  
Section two, three, and four will examine each of these 
models in detail.  Section five will introduce several 
relatively newer models which have attempted to 
alleviate the problems these models have.  Finally, the 
last section will discuss future work in the area of 
QoS; in particular the Next Steps in Signaling 
Working Group. 
 
2. Integrated Services 
 
The Integrated Services model [2] is primarily 
differentiated from others through the use of resource 
reservation.  Deployment of QoS is done on a per-flow 
basis, with applications performing the reservation 
requests.  The Integrated Services Working Group has 
defined several different service classes that can 
commit an arbitrary QoS level to a uniquely identified 
session of packets; also referred to as a data flow. 
  Since reservations are made on a per-flow basis, 
there is a need for per-flow state to be installed in 
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routers participating in the reservation.  Along the 
control plane, there is need for per-flow signaling.  On 
the data plane, there is a need for per-flow identifiers 
and scheduling algorithm parameters. 
  To implement the IntServ model a signaling protocol 
is needed, along with a traffic controller.  The traffic 
controller is comprised of an admission control 
routine, classifier, and packet scheduler.  The 
following subsections will provide details of each, 
with a discussion concerning flow descriptors included 
in-between. 
 
2.1 Signaling Protocol 
 
In order to facilitate a reserved flow, a signaling 
protocol must be used to contact participating nodes 
for admission control, allocation and de-allocation of 
resources, and in the case of a soft-state protocol, to 
refresh the flow periodically.  The IntServ model 
provides thorough constraints on how this should take 
place, but intentionally does not specify which method 
to use, or how the flows are to be identified.  A 
signaling protocol does not perform any resource 
reservation itself, but rather is used as a means of 
carrying the information needed to do so.  While more 
basic approaches simply utilize network management 
procedures such as SNMP or manual configuration of 
the routers, there have been numerous more flexible 
protocols developed.  Currently, the most commonly 
recognized and only IETF standardized reservation 
protocol for IP networks is the Resource Reservation 
Protocol (RSVP).  Citing the complexity and 
scalability concerns of RSVP, several other 
lightweight approaches have been developed. 
  Short descriptions and comparative analysis of 
existing end-to-end signaling protocol solutions 
follow.  Table 1 can be found at the end of the section 
summarizing several key aspects of each protocol.  
 
2.1.1 ST-II/+ 
 
As early as 1979, with the development of the ST 
Stream Protocol [3], thought has been put into 
providing guaranteed services over IP networks.  Over 
a decade later in 1990, the second version, ST-II [4], 
was being developed.  ST-II is a simplex, 
homogeneous, sender-initiated resource reservation 
system which uses distribution trees for 
multicasting[5].  In 1995, a new specification, referred 
to as ST-II+ [6], was released that has further 

extensions such as allowing either sender or receiver 
reservations.  Unlike the other protocols to be 
discussed, it is a fully functional inter-networking 
protocol meant to replace IP.  The simplex properties 
allow it to only reserve resources in one direction; that 
is, there is a distinct sender and receiver.  To provide a 
reserved bidirectional flow, two separate reservations 
must be made.  It is a connection-oriented protocol, 
requiring state information for each connection to be 
held in participating nodes with no timeout period, 
also referred to as a hard-state connection.  Reliability 
is accomplished through hop-by-hop 
acknowledgements, and the ability to retransmit any 
lost control messages.  

 
Operation 
To make a reservation, a Connect message containing 
the set of recipients and flow descriptor, detailing QoS 
requirements, is sent out.  Each intermediary node 
receiving this Connect message determines via its 
routing protocol the next node(s), records this 
forwarding state, and attempts to make the resource 
reservation.  Each node, including the receiver, can 
reduce the flow specification if it can not allocate the 
requested resources. 
  After receiving a Connect message, each receiver 
returns either an Accept or Refuse message.  When an 
Accept message is traversing backwards through the 
network towards the sender, if the flow specifications 
have since been reduced, the node changes the 
resource allocation accordingly.  The initial sender 
waits for this reply (or several replies if multicasting) 
before sending any data.  When received, if the Accept 
message contains reduced flow specifications, the 
sender can either continue, or send a Disconnect 
message to the receiver; thus, ending the flow. 
  When multicasting, the membership of receivers can 
be dynamically changed if hosts need to be included or 
removed.  A host wishing to join a multicasting group 
is typically required to send an unspecified message 
type to the sender, informing them to send a Connect 
message.  Similar to the initial setup, the sender must 
take a look at the Accept message and decide to accept 
or reject it.  The resources allocated for the stream 
must remain homogeneous. 
  To be removed from a multicast or unicast session, 
the source will either send a disconnect message that 
specifies the individual receivers, or will set a tear 
down flag to end the entire flow.  Individual receivers 
may opt to remove themselves by sending a Refuse 
message 



 4 

Advantages 
Since ST-II is a functional inter-networking protocol, 
the added complexity of being able to handle both data 
and control messages allows it to combine the 
knowledge of resource reservation with routing 
information.  Thus, it can make routing decisions 
based on resource availability in neighbouring nodes 
[7].  This property, combined with its hard-state, can 
allow guaranteed QoS even in the case of route 
changes.  Due to its hard-state, there is also less 
network overhead required. 
 
Disadvantages  
While a functional inter-networking protocol provides 
far more complex operations, a tradeoff exists, in that 
it is less modular and cannot be used with different 
routing and transmission protocols [7].  Its incapability 
to use different transmission and routing protocols 
severely limits its ability to become widely accepted 
due to its inflexibility, and incredible complexity since 
it is responsible for reliably maintaining router state.  
In addition, costly mechanisms must be present to 
handle errors due to its hard-state. 
  The homogeneous nature of ST-II does not allow 
custom resource reservations made per sender receiver 
pair.  This nature makes the assumption that all 
receivers and links have the same capability, which is 
far from true in the majority of cases.  Respectively, 
receivers and links have differing abilities and 
capacities for processing data.  Further reducing 
flexibility is the fact that differing end points often 
require, or request, distinct QoS levels. 
  In the case of multiple senders, separate reservations 
are needed.  This results in resources being reserved 
along multiple trees, even when many branches share 
common links.  In some cases, such as distributed 
voice conversations when there is typically only one 
speaker at a time, this can lead to a significant waste of 
resources.  In general, ST-II has been designed for a 
small number of members when multicasting, and has 
been shown to not scale well in large groups [5]. 
 
2.1.2 Resource Reservation Protocol 
 
In 1993, the Resource Reservation Protocol (RSVP) 
was introduced [8].  It is currently the only IETF 
standardized resource reservation signaling protocol.  
It is similar to ST-II in that it is a simplex protocol and 
contains mechanisms to provide robustness to 
changing network dynamics.  RSVP distinguishes 

itself from other protocols by allowing more flexibility 
and scalability when dealing with multicasting.  
Unlike the sender-initiated ST-II, RSVP achieves this 
scalability through its receiver oriented design.  The 
receiver is responsible to provide the flow 
specifications, and is also responsible for periodically 
refreshing the soft-state reservation to keep it active.  
Alternatively, ST-II does not require refreshing, but 
instead moves this complexity into the network itself 
resulting in a much more complex protocol. 
  One common misconception is that RSVP is a 
routing protocol.  Rather than replicating complex and 
costly functions, RSVP processes consult local 
existing routing protocol(s).  It has also been designed 
to handle future unicast and multicast routing 
protocols as well.  Due to the reliance on other routing 
protocols, it is known that routes will sporadically 
change for a number of reasons.  RSVP has been 
designed to automatically refresh reservations in these 
cases provided that the resources are available on the 
new path. 
  When multicasting, RSVP has been designed to 
allow the end users to specify custom QoS needs.  By 
doing so, the reserved aggregate resources can 
accurately reflect the resources actually needed, 
resulting in less waste.  The joining of a multicast 
group is done through out-of-band messages; normally 
through the Internet Group Management Protocol 
(IGMP). 
  RSVP is unique in its support of channel changing 
for multicasting sessions.  This feature reduces waste 
(and perhaps bandwidth charges) by allowing 
receivers to specify what particular data they wish to 
be delivered.  These parameters are left at the nodes, 
where the upstream filtering occurs.  Quite often 
during a multicasting session there are times when a 
receiver doesn’t wish to receive all the data, such as 
choosing individual audio streams from a larger feed.  
This finer grained control is met with much greater 
complexity in the networks. 

 
Operation 
To make a reservation, it is assumed that a sender has 
first sent the receiver a PATH message.  The PATH 
message traverses down the data path, and at each 
node sets up the path state including the address of the 
last hop.  As mentioned previously, RSVP has a soft-
state, so periodic refreshes are required from the end 
systems to keep the state fresh.  Without a refresh, the 
state in RSVP nodes will time out and be removed. 
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Upon receiving a PATH message, the reservation 
request is made and sent from the receiver to the 
sender in the form of a RESV message.  Using the path 
state stored in the routers, this reservation message 
travels back through the reverse path.  At each node, 
two actions are taken; first, the reservation request is 
put through admission and policy control.  If either 
fails, an appropriate error message is returned to the 
receiver.  Upon success, the flow specifications are 
extracted from the message and the resources are then 
allocated.  The reservation request is then forwarded 
further upstream to the next hop.  When multicasting, 
reservations being sent to the same sender are merged 
as they travel upstream, by only forwarding the largest 
resource reservation.  Receivers who wish a 
confirmation may do so, but must also realize that the 
receipt of such a confirmation is not guaranteed. 
 
Reservation Styles 
To dictate how resource reservation requests from 
heterogeneous receivers in a multicast group should be 
aggregated in the network efficiently, RSVP 
introduces reservation styles. There are two attributes 
which specify the reservation style; the sharing 
attribute and sender selection attribute. 
  The sharing attribute chooses whether the resource 
reservation will be shared among the receivers, or if 
there will be distinct reservations.  Shared reservations 
are useful in audio conferencing where there will 
normally be one person speaking at a time. 
  The sender selection attribute determines how the 
senders are selected.  With explicit, a filter spec is used 
to determine a set of senders.  With wildcard, there is 
no filter spec, and the whole set is used. 
  Names are given to each filter type; Fixed Filter 
(distinct, explicit), Shared Explicit (shared, explicit), 
and Wildcard Filter (shared, wildcard). 
 
Advantages 
The design of RSVP is to modularize as much as 
possible; therefore, it only transmits control messages 
containing resource reservation information, and not 
the data itself (as would ST-II in comparison).  By 
doing so, RSVP can be used in conjunction with many 
different routing and data transfer protocols [7]. 
  A receiver oriented soft-state design allows 
heterogeneity in the data flows, such as the capability 
to reserve differing amounts of resources per receiver.  
It also allows hosts to receive differing data streams 
sent to the same multicast group, and the ability to 

change streams without having to change its 
reservation [8].  Each receiver will make its own 
reservation with RSVP resolving any differences.  If 
multiple receivers opt for differing levels of QoS, 
RSVP will merge these requests by taking the 
maximum value.  To achieve better use of network 
resources, there are also different reservation styles 
that permit applications in the same multicast group to 
stipulate how the flows should be aggregated.  These 
are discussed shortly. 
  Soft-state also provides better dynamic adaptability 
and robustness, such as the automatic adaptation of 
routing changes and the ability for on-the-fly 
membership changes in large multicast groups to take 
place seamlessly; unlike ST-II, which was designed 
for much smaller multicasting groups.  It has also been 
shown that this receiver oriented design and the 
merging capabilities in RSVP reduce load as one gets 
closer to the source, limits interactions between end 
points, and generally reduces network protocol 
overhead [5]. 
  The scalability in allowing large multicast groups is 
due to the receiver initiated approach, which does not 
require resource reservation requests to progress all 
the way to the source; only to join as they reach a 
branch in the multicast tree. 
 
Disadvantages 
As mentioned previously, RSVP has been designed to 
run independent from routing protocols, using any 
protocol available.  The drawback to such 
modularization is that separating the knowledge of 
resource reservation from the routing information, 
results in the inability to make routing decisions based 
on the resource availability in neighbouring nodes [7].   
  That aside, there are two major problems: complexity 
and scalability.  The complexity of the protocol results 
in large overhead when processing messages, while 
the lack of general scalability results in too much 
bandwidth and storage being consumed as the number 
of flows increase.  Both of these limitations result in 
serious problems for the IntServ model, since RSVP is 
the standardized signaling protocol. 
 
2.1.3 Yet Another Sender Session Internet 
Reservation Protocol 
 
In 1998, the YEt another Sender Session Internet 
Reservation protocol (YESSIR) [9] was developed to 
simplify the complexity RSVP, yet still keeping many 



 6 

of its features.  It is a sender initiated, simplex, soft-
state protocol that is run over an in-band protocol, the 
Real Time Control Protocol (RTCP).  It was noted by 
the designers that a large chunk of applications 
requiring QoS were multimedia oriented using the 
Real-time Transport Protocol (RTP), and thus decided 
to extend this increasingly popular protocol with QoS 
support.   
  RTP is used for actual data transport, while RTCP is 
the control protocol for RTP sessions.  RTCP is also 
used periodically for sender and receiver reports, 
indicating session characteristics such as packets 
transmitted, packet loss, delay, etc.  While RTP alone 
does not include any resource reservation abilities, 
YESSIR embeds these abilities by taking advantage of 
the periodic RTCP sender reports. 
  It has been shown that YESSIR resource reservation 
is three times faster, and the processing overhead on 
refreshes are half that of RSVP [10].  Bandwidth 
consumption is also lower, since YESSIR does not 
require additional IP or transport headers. 
 
Operation 
Reservation requests from the sender are sent through 
RTCP messages, and arrive at routers through the use 
of the router alert option.  YESSIR-aware routers, and 
those that support the router alert option, process the 
message, otherwise ignore and forward them.  The 
resource reservations are made through the use of a 
flow descriptor, existing RTCP information, or a 
combination of both. 
  If a reservation cannot be made, the reason for failure 
is optionally attached to the sender report.  Upon 
receipt of the sender report, the receiver attaches any 
failure messages to the receiver report.  Upon 
receiving a report with errors, the sender can stop the 
session, continue the session if using partial 
reservations (discussed shortly), or transmit and 
request less bandwidth. 
  Like RSVP, the soft-state of YESSIR requires 
periodic refreshes of sender reports to keep 
reservations from being deleted and to adapt to routing 
changes.  To teardown a resource reservation properly, 
an RTCP BYE message is used, releasing the 
reservation and any state associated with it. 

 
Advantages 
YESSIR messages are periodically transported by 
RTCP through the use of the router alert option.  By 
doing so, YESSIR does not require a new protocol to 
be developed by taking advantage of piggybacking on 

existing messages.  This technique has been shown to 
reduce both processing and protocol overhead costs at 
the router [9]. 
  One distinct advantage YESSIR has over other 
signaling protocols is the option to allow partial 
reservations.  In other reservation systems, requests 
are either accepted or refused.  Upon refusal end hosts 
will typically resend the same request (or one with 
lesser QoS requirements) quite often resulting in 
added network cost.  If specified, YESSIR does not 
require all nodes to accept a reservation.  Nodes which 
cannot make the reservation will classify the flow as 
best effort, and forward the request without any error.  
During periodic refreshes, these nodes will again have 
the opportunity to make the resource reservation.  
With this approach, a partial reservation can be made 
with the hopes that more nodes will be added, and a 
full reservation will eventually be the end result. 
  Routers often use the added YESSIR flow descriptor 
to make a reservation, but can also make a reservation 
without it.  In measurement mode, routers can use the 
typical data commonly found in the RTCP sender 
reports, including transmission statistics such as byte 
counts and timestamps, to make a reservation.  Since 
RTCP already includes these details, there is no 
burden on the router to estimate rates through counting 
packets, as other measurement based admission 
controls do. 
  Alternatively, it has been suggested that RTP packets 
be periodically marked with the router alert option, so 
as to extract payload identification to make the 
appropriate reservations. 
  While not providing all the reservation styles RSVP 
is capable of, YESSIR uses a simplified approach, 
using only individual and shared styles and controlling 
them from the sender side rather than receiver.  
Individual style requires each sender to make its own 
reservation, while shared style allows the senders in an 
RTP session to share the reservation. 
 
Disadvantages 
The most obvious disadvantage to YESSIR is that it 
can only be used with RTP sessions.  While 
multimedia applications using RTP are becoming 
increasingly more popular, other QoS sensitive 
applications would not be able to take advantage of 
this protocol.  Additionally, there is extra support 
required in the applications. 
  Although partial reservations are a handy for some 
applications, they can also lead to potential problems.  
It is possible that multiple reservations being made at 
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the same time will result in each being given only 
partial reservations.  This is referred to as 
fragmentation and can result with many reservations 
being given undesirable quality.  This issue is 
currently being investigated.  Additionally, when using 
partial reservations an advantage is given to hosts with 
higher bandwidth, since they can more frequently send 
their RTCP requests.  This results in certain hosts 
being able to claim new resources faster as they 
become available. 
  The sender initiated property of YESSIR does not 
allow receivers from choosing their own QoS level, 
and does not allow channel switching or multiple 
reservation styles.  The lack of error mechanisms also 
slows down any recoveries due to a route change. 
 
2.1.4 The Ticket Signaling Protocol 
 
The Ticket Signaling Protocol (TSP) [11] is a 
lightweight, simplex, sender initiated resource 
reservation protocol developed in 1998.  Citing the 
scalability issues of connection oriented reservation 
protocols, TSP allows resources to be reserved without 
the need for connection states in the network, only 
requiring link states.  This results in a highly scalable 
connectionless protocol. 
  All information required for resource reservations are 
stored at the end hosts, with it being delivered to 
intermediate nodes through the signaling protocol.  
There is no need to store any per-flow state in the 
routers, only to process it.  It is currently at the 
prototype level. 
 
Operation 
To make a reservation, a request is sent containing a 
traffic contract; or also known as a flow descriptor.  
Included in this contract are the source, destination, 
priority, bandwidth, and timing specifics for the 
requested reservation.  This request is then sent using 
existing routing protocols to the destination, with each 
node performing admission control along the way.  If 
at any point admission control fails, the request is 
dropped.  Upon the request reaching the receiver, an 
acknowledgement (containing the request) is returned 
to the access router; that is, the sender’s edge router.  
The access router then creates a ticket containing the 
contract information, and is then sent to the source. 
  Reservations are made on a time slot basis, which is 
included in the original request.  Tickets are then 
placed inside the data flow once per time slot, not 

requiring nodes to store any connection state, to 
confirm the reservation.  To end a reservation, a 
release message can be sent, having nodes de-allocate 
any reserved resources. 
  Policing is conducted at the access router to insure 
proper use by adding digital signatures to insure 
tickets cannot be modified, and that old tickets are 
useless due to expiration dates. 
  If a ticket is lost, there is an ability to send the 
previous ticket as a NACK ticket, indicating that there 
was a problem receiving the expected ticket.  If two 
tickets are lost in a row, the resources are released, and 
the reservation ends. 
 
Advantages 
The greatest advantage TSP has over other protocols is 
the lack of connection state needed in the nodes, 
leading to scalability and low complexity overall.   
 
Disadvantages 
Since no connection state is maintained in the routers, 
there is no multicasting support with this protocol.  
Also, additional mechanisms are required in the 
routers to prevent the immediate rerouting of traffic 
with reserved resources.  Complex switch-over state 
tables are needed within the routers to prevent tickets 
from changing routes, causing over provisioning and 
other failures.  Upon a route change, flows with 
resource reservations would fall into a best effort 
category, and would require another request to regain 
its reservation. 
  Access routers have the option to use connection 
state for security and policing, but do not require so.  
Either way, the access routers provide a single point of 
policy failure if they misbehave or are compromised.  
Bad tickets can also have dire consequences. 
 
2.1.5 The Dynamic Reservation Protocol 
 
The Dynamic Reservation Protocol (DRP) [12] is a 
sender-initiated, soft-state, simplex, reservation 
protocol designed for multicasting, which was 
developed in 1998.  It has been modeled after RSVP 
providing several distinct differences. 
 
Operation 
To make a reservation, no prior setup is required.  
Reservations are created on-the-fly by sending 
reservation (RES) messages ahead of the data.  After 
the RES message has been sent, data can follow 



 8 

immediately.  If the resources cannot be reserved, the 
routers will reserve as much as possible; thus, 
allowing partial reservations.  Included in the RES 
message is the sender’s ceiling reservation type (CRT) 
which specifies the greatest QoS level it is willing to 
transmit. 
  Return (RTN) packets carrying path and feedback 
information from the receiver are sent back, with 
routers processing the data.  Similar to RSVP’s RESV 
message, RTN messages are also merged, allowing for 
greater scalability in large multicasting groups.  Also 
included is a receiver ceiling reservation type (CRTr) 
which is similar to the CRT, specifying the greatest 
QoS level the receiver is willing to take.  The sender 
can then address heterogeneity by using the minimum 
QoS level specified in the CRT and CRTr fields.  A 
receiver can change its CRTr by sending a RTN 
packet containing the new value. 
 
Advantages 
Not requiring reservation setup allows applications to 
gain instant QoS, (given they pass admission control) 
along with the ability to modify flows instantaneously.  
This is also helpful for applications with on/off traffic 
by letting them free resources during times of 
inactivity, and immediately regaining their reservation 
when needed. 
  DRP also allows heterogeneity of receivers in the 
same multicast group, requiring little complexity on 
the receiver’s part.  The ability to merge RTN 
messages also allows for better multicasting 
scalability, especially in large groups. 
 
Disadvantages 
While DRP has several unique abilities that RSVP 
does not, generally speaking it has the same problems, 
such as overall scalability concerns and unattractive 
unicast delivery. 
 
2.1.6 Boomerang 
 
The complexity of RSVP has resulted in a poorly 
scalable protocol when deployed across large networks 
with numerous data flows.  The aim of the Boomerang 
protocol [13] is to provide a much simpler solution, 
and consequently provide a more scalable one at the 
same time.  Boomerang does not aim at replacing 
RSVP all together, only providing a much simpler 
alternative to a subset of potential uses; particularly 

the unicast flows.  Multicast resource reservations are 
best left to RSVP. 
  Questions have been raised recently as to the 
soundness of multicast reservation systems due to their 
complexity, and more importantly that the needs for 
unicast reservations (such as VoIP) are becoming 
increasingly more popular.  Boomerang, developed in 
1999, is a non-simplex, soft state resource reservation 
system that is geared to these unicast reservations.  It 
is the only non-simplex lightweight signaling protocol, 
which allows reservations to be made in both 
directions.   
  Tests conducted have shown that Linux-based 
Boomerang routers are able to handle upwards of 
120,000 concurrent reservations, and up to 6800 
requests per second without any noticeable impact on 
performance [13]. 
 
Operation 
Since resource reservations using Boomerang are bi-
directional, the end nodes are not labeled as sender or 
receiver.  To make a reservation, the initiating node 
(IN) sends the resource reservation request through the 
network to the far end node (FEN).  These requests 
include both the forward and reverse flow descriptor, 
and follow standard routing protocols.  The resource 
reservation is done on a per-hop basis at Boomerang-
aware nodes, with the caveat that all non-aware nodes 
are able to blindly pass the request through.  This 
request is then bounced back from the FEN to the IN.  
As the request traverses the loop, each node examines 
the flow descriptor and compares it to available 
resources.  If the resource reservation cannot be made, 
the flow descriptor is updated to the lower of these 
two, with the first node rejecting the reservation 
setting the NACK flag.  While traversing, if the 
refresh interval requested is too high, the field is 
updated to the minimum acceptable. 
  Upon the request making a full loop, the IN checks 
the NACK flag to see if the reservation was 
successful, and the refresh interval to see if it needs 
changing.  If the NACK flag is set, the request has 
been denied.  The IN can then re-request with the 
same levels, or with the new specification attained. 
  After establishing a resource reservation, the IN is 
responsible for maintaining this reservation through 
periodic refreshes.  Similar to RSVP, if not refreshed, 
the reservations are removed.  This allows routing 
changes on the fly with only temporary effects. 
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Advantages 
Boomerang’s current prototype uses ICMP echo 
messages to carry reservation requests.  Deployment 
for such an approach is desirable since non-
Boomerang nodes are still able to forward requests.  
Additionally, since the FEN is only required to bounce 
a request back, no alterations are needed except for the 
ability to respond to echo requests.   
  All complexity is performed within the IN, which is 
responsible for the creation and maintenance of the 
reservations.  Consequently, Boomerang does not 
require any significant participation from the FEN, 
only requiring it to bounce the request back.  As 
mentioned above, this can be done trivially with ICMP 
echoes.  The far end host does not need to be 
modified.   
  Unlike RSVP, where reservation and path messages 
are separated, Boomerang uses one message resulting 
in short reservation setup times.  When establishing bi-
directional flows, it has been shown that in cases 
where available resources are in demand, Boomerang 
has a much lower blocking probability than RSVP 
[14].  Due to the use of a single message, the return 
path also need not be the same. 
  Unlike RSVP and ST-II, both senders and receivers 
can act as the IN and make the reservations.  By using 
the sender as the IN, greater control can be kept over 
policy and billing issues, while allowing the receiver 
to act as the IN allows greater flexibility on the 
receiver’s part. 
  Boomerang also has the ability for the looped 
messages, in case of failure, to act as a query returning 
with the minimum available resources. 
 
Disadvantages 
Boomerang only has support for one-to-many 
multicasting, and several drawbacks.  These include 
the sender oriented design drawbacks discussed with 
the ST-II protocol earlier, such as the lack of custom 
reservations and channel switching.   
  The current use of ICMP echo messages is not 
necessarily meant as a permanent transport.  While 

 
 
 
 
 
 
 
 
 
advantages are gained initially, a more traditional 
approach would be required eventually by either 
defining a new ICMP message, or a completely new 
protocol.  Similar to other signaling protocols, this 
would require changes to infrastructure. 
  Unlike RSVP, rejected reservation requests are not 
immediately returned to the IN, and must follow the 
full loop before returning, creating added network 
traffic.  The designers have opted to keep this issue in 
return for a simple protocol and no need for active 
nodes.  There are currently no security mechanisms in 
place, and problems will arise by firewalls blocking 
ICMP messages.  Generally speaking, there is a lack 
of functionality. 
 
2.2 Flow Descriptor 
 
While the signaling protocol can be considered a 
vessel, the flow descriptor can be considered the cargo 
carried within.  The descriptor has been defined by the 
IntServ model, and is broken into two parts; the 
flowspec and the filterspec. 
  The flowspec describes the requested level of QoS, 
and provides other vital information needed for a 
resource reservation to be completed.  The IntServ 
model has set out guidelines for what a possible 
flowspec format would look like.   This includes both 
a service class and two other parameters: an Rspec and 
Tspec.  An Rspec defines the desired QoS, while a 
Tspec describes the data flow, such as traffic flow and 
patterns. 
  The filterspec, coupled with a session specification, 
is used to define the subset of data packets which will 
receive the requested QoS found in the flowspec.  The 
flowspecs could be defined as senders themselves (i.e. 
addresses and ports), protocols, or any fields contained 
within protocol headers. 
 
 
 
 

Table 1. Signaling Protocol Comparisons 

 RSVP ST-II/+ YESSIR TSP DRP Boomerang 
Year 1993 1990/95 1998 1998 1998 1998 
Reservation Initiation Receiver Sender Sender Sender Sender - 
Reservation State Soft Hard Soft Hard Soft Soft 
Direction Simplex Simplex Simplex Simplex Simplex Non-Simplex 
Reservation Types Hetero Homo Hetero - Hetero Homo 
Signaling Band O-Band O-Band O-Band O-Band O-Band O-Band 
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2.3 Traffic Control 
 
QoS provided for each data flow is done so through 
traffic control, which is comprised of three parts; 
admission control, a packet classifier, and a packet 
scheduler.  Since the focus of this paper is primarily 
on the mechanisms, architectures, and protocols used 
to provide QoS, traffic control will only be discussed 
at an introductory level. 
 
Admission Control 
Admission control is used to determine whether or not 
a new resource reservation can be granted [15].  The 
admission control in each router is independent, and as 
such, no particular algorithm needs to be used in every 
router.  Each node will apply this decision procedure 
to the request, and will return an error if admission 
fails.  Upon a successful admission, the flow 
descriptor contained within the request is forwarded to 
the packet classifier and scheduler. 
 
Packet Classifier 
Using filterspecs, the classifier maps all packets into 
some class, with each of these classes receiving the 
same QoS level.  The class of a packet is typically 
determined through either a classification number, or 
from the data contained within the headers.  The use of 
classification numbers typically takes the approach in 
replace IP with a virtual circuit, and using circuit 
identifiers.  This is the approach taken with ATM, and 
protocols such as ST-II [4].  Along somewhat similar 
lines, MPLS (which will be discussed in section four) 
encapsulates messages with a label, and uses these for 
classification.  When using a connectionless approach, 
data such as the source address, protocol numbers, port 
numbers, or even application layer information can be 
used to classify.  Consequently, classifier 
implementations are very complex since there is much 
processing required. 
 
Packet Scheduler 
When incoming data packets reach a node capable of 
resource reservation, the class (if any) is determined 
by the classifier, and then sent to the packet scheduler 
to be queued appropriately [16].  Using queues and 
timers, the packet scheduler controls the forwarding of 
data streams.  A more generic description would be 
that its function is to reorder the output queue.  
Packets which do not fit into any special service class 
are automatically handled as best-effort.  Several 

different techniques have been developed such as 
priority queues, round-robin variants, or Weighted Fair 
Queuing which can splice bandwidth into specific 
shares.  The dropping of packets is also an important 
aspect, since careful consideration must be taken.  The 
Integrated Services model has proposed a preemptable 
packet dropping service, where hosts can willfully 
mark their packets as droppable if delay bounds can 
not be met.  Typically this includes delay sensitive 
data, and can potentially help alleviate congestion. 
 
2.4 Service Classes 
 
The IntServ model has prepared several services 
classes to meet the needs of applications.  Each will be 
discussed briefly. 
 
Guaranteed Service 
Guaranteed Service [17] is one in which provides solid 
bounds to delay and bandwidth on a network flow.  
Guaranteed Service flows can expect all packets to be 
transported and delivered within the predetermined 
bounds with no loss, given the path does not change.   
  Packet delay over the Internet is comprised of two 
parts.  The first factor is the fixed delay which 
primarily comes from transmission delays, and as a 
result is uncontrollable.  Fixed delays are related to the 
chosen path, which is a result of the setup mechanism, 
not the Guaranteed Service.  The second factor is 
queuing delay which can be controlled by Guaranteed 
Service.   Guaranteed Service is not concerned with 
the median or minimal delay of packets, only the 
maximum delay. 
 
Predictive Service 
Predictive Service [18] (also known as Controlled 
Load Service) is one in which provides low loss and a 
fairly reliable probabilistic delay bound.  Flows that 
use this service can expect that the majority of packets 
to be transported will be delivered within the requested 
delay bound, and reserved flow rates will be mostly 
honoured.  This service is primarily used for 
applications which require an upper bound on delay 
for performance, but can still function properly with 
the odd late or lost packet. 
  Increased use of Predictive Service will permit more 
reserved flows since the relaxed commitments allow 
higher utilization of network resources.  Since delay 
bounds will be broken infrequently, there is no attempt 
in providing jitter control.  These services are provided 
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assuming no failures in the network infrastructure or 
routing changes. 
  Similar to Guaranteed Services, Predictive Services 
must use admission control and deny any flows which 
will cause any hindrance to the current flows.   
 
Controlled Delay Service 
Controlled Delay Service [19] is comparable to 
Predictive Service, with the primary difference being 
that Controlled Delay does not offer any bounds on 
delay.  Similar to Predictive Services, it does not 
provide any jitter guarantees.  This service is primarily 
designed for applications that are delay sensitive, yet 
are still able to adapt to delay levels through other 
application specific means, or are willing to upgrade to 
a higher level service. 
  Similar to Guaranteed Services and Predictive 
Services, Controlled Delay Services must use 
admission control. 
 
Best Effort Service 
Best effort service encompasses all other traffic which 
does not belong to the above service classes.  No 
admission control is required.  There are no 
bandwidth, delay, or jitter guarantees. 
 
2.5 IntServ Advantages 
 
While models such as IntServ would require massive 
restructuring of Internet infrastructure for widespread 
use, it can still provide benefits when partially 
deployed, particularly in intranets or ISP backbones.  
Stateful solutions are able to provide better assurance 
levels, and flexibility.  IntServ can provide per-flow 
guarantees with firm bounds on bandwidth and delay. 
 
2.6 IntServ Disadvantages 
 
The amount of state required, particularly in core 
routers, increases with the number of flows.  Since 
router performance is linked with its ability to 
maintain these flows, and the Internet is still growing 
at a phenomenal rate, there are serious scalability 
concerns with the IntServ model.  With the advent of 
lightweight signaling protocols, scaling concerns have 
been partially alleviated, but unfortunately are still 
unable to address large multicasting groups 
effectively.  Regardless of signaling protocols, the 
router requirements are extremely high due to the 
complex nature of the IntServ model. 

  With few predefined services classes, IntServ is not 
flexible as some would like.  It would also require 
ubiquitous deployment to reach home users.  There is 
also a lack of policy control mechanisms. 
 
3. Differentiated Services 
 
Differentiated Services (DiffServ) [20] is a model 
which provides QoS through a relative priority 
scheme, with network devices handling traffic at 
aggregate levels rather than the IntServ approach of 
handling individual flows.  Most complexity has been 
pushed out to the edge routers, with core routers 
simply forwarding and scheduling the already 
classified data.  Traffic is classified into behaviour 
aggregates (BA) as it enters the network, with routers 
treating each aggregate in a unique manner.  No 
connection setup is needed. 
 
Classifying aggregates is not done at the end host, but 
is rather done through the use of Service Level 
Agreements (SLA).  They are used to provide 
differentiated services between a user and a provider, 
and contain the rules for packet classification and 
conditioning.  The following sections will discuss 
some key aspects of the DiffServ architecture. 
 
3.1 Per-Hop Behaviours 
 
Aggregates are grouped into per-hop behaviours 
(PHBs), which are marked in the DiffServ code point 
(DSCP).  The DSCP is located in the first six bits of 
the IP Type of Service field.  There have been several 
PHB’s proposed, but two have gained much attention; 
Expedited Forwarding, and Assured Forwarding. 
 
Expedited Forwarding PHB 
Expedited Forwarding (EF) [21], also known as 
premium service, is primarily for applications which 
produce fixed rate traffic, requiring an assured (but not 
guaranteed) bound on delay and jitter. 
  EF does not deal with individual user flows, but 
rather the aggregates of them.  Therefore, no bounds 
are placed on individual flows.  The aggregate 
receives its predetermined rate regardless of any other 
traffic on the node, with any EF traffic exceeding the 
set rate being discarded. 
  To achieve this service, the departure rate of the 
aggregate on each outgoing link must be greater than 
or equal to the sum of maximum arrival rates on 
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incoming links.  In the time it takes to send a 
maximum MTU packet at each outgoing link, the 
overall outgoing service rate should average, or 
exceed, the predetermined rate.  There are a number of 
queuing methods which can be applied, including 
simple priority queues (PQ), weighted round robin 
queue scheduling (WRR), and class based queues 
(CBQ). 
  An SLA is used when classifying packets into the 
aggregate, and is typically meant for long term 
provisioning, not on-demand connections.  The 
aggregate is expected to use only a small share of 
bandwidth, and operates as a Virtual Leased Line 
(VLL).  When not using its predetermined rate, excess 
bandwidth is used by other PHBs.  Admission control 
is frequently conducted offline, with less emphasis, if 
any, put on signaling protocols. 
 
Assured Forwarding PHB 
Assured Forwarding (AF) [22] is primarily for 
applications which require reliability better than best-
effort service.  From the SLA, profiles for aggregates 
are derived with predefined rates.  Each aggregate is 
given a high probability of timely delivery as long as it 
does not exceed the predetermined rate.  Packets 
which conform to this rate are called in-profile.  It is 
also possible to send at a rate beyond the defined rate 
in the profile; these packets are called out-of-profile, 
and it is understood that this traffic will not be given 
as high priority as in-profile packets would.  
Regardless, neither type of packet will be reordered. 
  There are four Assured Forwarding classes defined, 
with each class receiving differing amounts of 
resources.  Each class is further marked with three 
drop precedence values, where in the case of 
congestion, these values determine which packet will 
be dropped based on significance.  In-profile packets 
will typically be marked at low drop precedence, while 
others will be marked at the other two levels.   
  QoS for each AF class is determined by the resources 
allocated for the class, current load of the class, and 
drop precedence of each packet.  To achieve this 
service, assured queues (AQ) are used and managed 
through Random Early Discard with In and Out (RIO). 
 
3.2 Differentiated Services Components 
 
From the SLA, a Traffic Conditioning Agreement 
(TCA) is derived.  To adhere to this agreement, both 
classifiers and conditioners are needed.  BA classifiers 

are used to sort packets into their PHB class using the 
DSCP, while Multi-Field (MF) classifiers can also use 
any other header information including interface 
information. 
  Conditioners are the control functions applied to each 
of these classes to make them perform appropriately.  
Conditioners are typically comprised of metering, 
policing, shaping, and packet marking functions.   
  Metering is used to measure the temporal attributes 
of classes, compare them to the TCA, and determine 
whether packets are in or out of profile. 
  Markers are used to set the DSCP and add the packet 
to an aggregate, based on the TCA.  The meter may 
affect which aggregate it is added to, through 
remarking, depending on the packet profile it derived. 
  Shapers are used to smooth traffic to a configured 
rate based on the traffic profile.  Packets will be 
dropped if the finite buffer is overrun. 
  Policing is done to restrict classes of traffic to certain 
rates so out-of-profile packets can be remarked or 
dropped. 
 
3.3 DiffServ Proposals 
 
Generally speaking, there have been two fields of 
thought in deploying DiffServ. Performing admission 
control and policing at the edges only, requiring no 
control in the core network, is the easiest.  Such 
approaches [23, 24] require no state in the core 
network, but require substantial bandwidth in the core 
to prevent unfair degradation of individual flows from 
the aggregated class. 
  Other proposals [25] suggest the placement of 
moderate controls within the core to provide 
proportional fair sharing and flow protection.  
Unfortunately, scalability concerns arise due to the 
added complexity and state. 
  There have been several different pricing and 
increased functionality proposals put forward.  By far 
the simplest pricing scheme proposed is Paris Metro 
Pricing [26], which proposes to separate the network 
into a number of equal logical channels.  Each channel 
is assigned a different price, assuming that higher 
priced channels will naturally be less congested than 
others.   
  The Proportional Differentiation Model [27] is a way 
to improve DiffServ by allowing operators to fine tune 
quality spacing between aggregate classes, 
independent of class loads.  Thus, the quality of each 
class differs under load, but the quality ratio between 
classes remains static.  Alternatively, research [28] in 
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providing relative proportional DiffServ uses feedback 
from a metering component to dynamically adjust 
traffic conditioning. 
 
3.4 DiffServ Advantages 
 
The differentiated services model is intended to 
address several problems that have plagued the 
Integrated Services model, including scalability and 
complexity.  By not requiring per-flow state to be 
stored in the routers, and no complex signaling 
protocols, DiffServ is highly scalable and relatively 
less complex. 
  DiffServ also aims to provide qualitative and flexible 
service classes, where classes can be relative to one 
another; i.e. Platinum, Gold, Silver, and Bronze.  In 
some cases, this is preferred over quantitative 
approaches. 
 
3.5 DiffServ Disadvantages 
 
Since DiffServ treats packets in the same class 
identically, it is difficult to provide quantitative QoS to 
individual flows.  It is strong on simplicity, but weak 
on guarantees.  It is primarily designed for and used by 
ISPs, and is not too useful (or even intended) for end 
users.  Additionally, network management techniques 
such as bandwidth brokers must be in place to provide 
resource control.   
  While the aggregation of smaller flows suits the 
model well, other flows such as elongated or 
bandwidth intensive flows often require per-flow 
guarantees.  If routes change, existing guarantees can 
change, leading to a degradation of service. 
  While SLAs can be dynamic, they are typically 
designed to be long term, yet both network traffic and 
topology are dynamic in nature.  Lastly, DiffServ does 
not offer any receiver control. 
 
4. Multiprotocol Label Switching 
 
The original purpose of Multiprotocol Label Switching 
(MPLS) [29] was to provide high speed Layer 2 
switching at Layer 3 through the creation of switched 
paths which use labels for routing decisions, rather 
than having to use complex route lookup mechanisms. 
  Since the advancement of high speed Layer 3 
switching technology, the performance gain has since 
lost standing for the motivation of MPLS.  Due to the 
connection oriented design, Traffic Engineering (TE) 

is possible, and has since become the most important 
motivation behind MPLS deployment.  Another 
important motivation is that paths have the ability to 
cross many different Layer 2 transports, such as 
Ethernet, ATM, and Frame Relay, without the need for 
any other mechanisms present.  TE enables many 
other abilities in the network, including the capability 
to provide various routing procedures for load 
balancing and congestion avoidance.  It is also 
possible to assure differing levels of service to each 
path, or to create virtual tunnels for VPNs.   
  When packets enter an MPLS domain, a label edge 
router (LER) assigns each a short fixed-length label.  
The packets are then forwarded through a series of 
label switched routers (LSR), the entire path being 
referred to as a label switched path (LSP).  The group 
of packets that use the same LSP and receive equal 
forwarding treatment is referred to as a Forward 
Equivalency Class (FEC).  Data packets entering a 
LSR are forwarded based on their label.  Once a label 
has been used to make a routing decision, it is then 
replaced with another label to be used at the next hop.   
  Labels are comprised of four fields, totaling 32 bits, 
and are inserted between the Layer 2 and Layer 3 
header.  The 20-bit label field contains the actual 
MPLS label value, while the 3-bit Class of Service 
(CoS) field is used for providing differing levels of 
service.  A single bit Stack field is used to support a 
hierarchical label stack, and an 8-bit Time to Live 
(TTL) field provides conventional TTL functionality.   
 
4.1 Label Distribution 
 
A labeled switched path is created through the use of a 
label distribution protocol, which establishes paths 
through an MPLS network by distributing the 
appropriate labels, and reserving appropriate resources 
if requested.  They are also required to provide a 
mechanism for the discovery of other LSRs. 
  To setup LSPs using existing IP routing information, 
the Label Distribution Protocol (LDP) can be used.  
There are, however, more complex protocols required 
to bypass existing routing protocols, or to provide 
resource reservations.  There are two proposed LDPs 
for these which incorporate traffic engineering and 
reservation abilities; CR-LDP and RSVP-TE. 
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Constraint-based Routing over Label 
Distribution Protocol 
CR-LDP was created through the modification of the 
Label Distribution Protocol (LDP), by adding traffic 
engineering capabilities.  CR-LDP is a hard state 
protocol, requiring no periodic refreshes, and is 
transported by TCP sessions between LSRs.  
Reservations are requested by the sender. 
  To generate a new LSP, a LABEL_REQUEST is sent 
from the ingress to egress LER through either 
traditional routing protocols, explicitly stating the 
path, or a partial path.  Included in the request is an 
optional flow descriptor if a reservation is required.  
At the ingress LER, and each intermediate LSR, the 
resource reservation is made before forwarding the 
request.  After the resource reservation is made at the 
egress LER, a LABEL_MAPPING message is sent 
back towards the ingress LER containing a new LSP 
label and information regarding the reservation just 
made.  At intermediate LSRs, any pending reservation 
is finalized, a new LSP label is created, and the 
forwarding table is updated for the new LSP. 
 
Resource Reservation Protocol with Tunneling 
Extensions 
RSVP-TE is an extension to RSVP that includes 
mechanisms for MPLS traffic engineering.  Since it 
runs over a raw IP transport, it has mechanisms 
present to account for message loss.  Additionally, its 
soft state nature requires periodic refreshes to keep 
reservations from being removed.  Similar to RSVP, 
reservations requests are receiver oriented. 
  To make a new LSP, a PATH message is sent from 
the ingress to egress LER similar to that of CR-LDP.  
The PATH message is traversed through all 
intermediate nodes using existing routing protocols, 
explicitly specified paths, or partial paths.  Upon 
reaching the egress LER, a RESV message is 
formulated containing a flow descriptor describing the 
requested reservation.  After making its own 
reservation, a new LSP label is attached to the RESV 
message and returned back through the reverse path.  
Intermediate LSRs will attempt to make any 
reservations, update the forwarding table with the label 
received, and attach a new LSP label.  The ingress 
LER will do the same, without the need to attach a 
new label. 
  Table 2 provides a comparative look at CR-LDP and 
RSVP-TE. 
 

 

Table 2. CR-LDP and RSVP-TE Comparison 

 CR-LDP RSVP-TE 
Transport Mechanism TCP Raw IP 
State Management Hard Soft 
LSP Refresh No Yes 
Resource Request Sender Receiver 
Strict Routing Yes Yes 
Loose Routing Yes Yes 
Shared Reservations No Yes 

 
4.2 QoS 
 
One of the largest misconceptions is that MPLS is a 
QoS technology in itself.  Rather, it introduces a 
networking environment that is capable of transporting 
different traffic over a common infrastructure, while 
being able to enable QoS effectively.  Thus, it is a 
QoS-enabling technology, and provides a flexible 
solution for QoS deployment and management [30]. 
 
MPLS with DiffServ 
The abilities of MPLS to force packets to specific 
paths and to guarantee bandwidth to forward 
equivalency classes, combined with the ability of 
DiffServ to specify differentiated treatment of 
aggregates, results in QoS. 
  To support this, two types of LSPs are defined.  E-
LSP use labels as FEC destinations, and the CoS field 
to carry the class of the flow.  By preserving labels, 
and using the CoS field for DiffServ, E-LSPs are 
easier to manage and far more scalable.  Alternatively, 
they do not carry scheduling information, so there is 
the possibility bandwidth will be lacking in the queue 
it is placed in. 
  L-LSP uses labels as both the FEC destination and 
scheduling priority, with the CoS field used for drop 
priority.  They are harder to manage, but there is no 
concern over bandwidth since scheduling information 
is included. 
  The merging of MPLS and DiffServ is more scalable 
than IntServ alone since routers require no per-flow 
state, only aggregate information.  While LSPs can be 
dedicated to one flow, many flows can also aggregate 
into one, requiring less signaling.   
  Thus, MPLS technology forces application flows into 
connection-oriented paths, providing bandwidth 
guarantees to the flows.  The addition of DiffServ 
provides additional service to these flows, including 
class based admission, differentiated queue servicing, 
preemption priority.  Depending on which type of LSP 
is being used, scheduling information can be included 
to provide firmer QoS bounds. 
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MPLS Extensions 
 
There has been numerous extension proposals 
intended to add further functionality to MPLS.  While 
not directly affecting any QoS mechanisms, the 
increased functionality makes it a more attractive 
overall solution.  Some proposed extensions have 
included modifying the RSVP-TE and LDP signaling 
protocols to support enhanced multicasting 
functionality [31] and fast reroute abilities [32], as 
well as modifying ICMP to allow LSRs to append 
MPLS information for greater messaging flexibility 
[33]. 
 
5. Other Architectures 
 
Since neither IntServ nor DiffServ have gained far 
spread acceptance due to scalability and inflexibility 
concerns respectively, several new architectural 
models have been proposed which promise to remove 
these hindrances causing them from being deployed.  
The two most common approaches to accomplish this 
are to make both IntServ and DiffServ interoperable, 
or simplifying the signaling protocol.  Some of these 
approaches will be discussed, with an architectural 
comparison table (Table 3) found at the end of the 
section.  
 
5.1 Scalable Resource Reservation Protocol 
 
The Scalable Resource Reservation Protocol (SRP) 
[34], introduced in 1998, is one which aggregates 
flows on links in the network, without the need for a 
signaling protocol.  It requires no per-flow state in the 
routers, only at the network edge.  The only additional 
overhead required in this architecture is the addition of 
two bits in each packet.  These represent the values 
reserved, requested, and best effort. 
  SRP provides a service similar to IntServ’s 
Controlled Load service, and cannot provide any 
bounds on delay or jitter, only bandwidth. 
 
Operation 
To make a resource reservation, an application does 
not require any previous signaling.  Instead, the 
application starts sending data packets to the receiver 
with a request flag set.  These packets are subjected to 
admission control in each intermediate node, with 
those accepted being forwarded with no changes.  
Rejected packets will have their flags changed to best-

effort before being forwarded.  Routers which have 
accepted these request packets will then reserve 
appropriate resources, simply through the additive 
properties of the aggregate reservation. 
  The receiver, after a short period of time, can then 
estimate the rate of the reservation which has been 
accepted.  This value is then returned to the sender 
through the use of a feedback protocol.  Based on the 
feedback, the sender can then transmit packets at the 
reserved rate marked with a reserved flag.  These 
marked packets are treated as part of the reserved 
aggregate in the routers, receiving the equivalent of a 
Controlled Load service.  The sender can maintain its 
reservation as long as there is some level of activity, 
with the reservation being removed after a certain 
period of inactivity.  All other traffic is by default 
marked as best-effort. 
 
Estimator 
To maintain reservations, an estimator is needed in 
several areas to calculate the aggregate reservation 
required.  This is done by measuring the number of 
packets currently marked as requested or reserved.  
Estimators are used by senders, receivers, and 
intermediate routers. 
  Senders can make optimistic predictions as to the 
reservation a network will allow.  By default it 
assumes all requests are accepted.  Routers use 
estimators for admission control, and receivers can 
generate conservative predictions for feedback.  
Sources use both the optimistic and conservative 
estimations to generate their output rate. 
  The specific implementation of estimators has been 
left independent, as several algorithms exist, and are 
still the focus of continuing work. 
 
Advantages 
SRP, while being highly scalable from lack of per-
flow state, can be transparently tunneled through non-
aware routers.  If these routers are not susceptible to 
congestion, no service degradation will occur. 
  In addition, the protocol processing required is overly 
simplified by attaching necessary control information 
to data packets themselves instead of using a separate 
signaling protocol. 
  SRP also allows extensions to provide limited 
multicasting abilities. 
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Disadvantages 
To implement SRP, routers must trust end hosts with 
traffic control decisions, such as not to exceed their 
allocated reservation.  To circumvent this, complex 
mechanisms must be present to meter and police at the 
network edges.  It is also suggested to handle 
reservations in the kernel to keep applications from 
misbehaving.   
  As with other protocols that allow partial 
reservations, there is the potential for resource 
starvation when multiple sources attempt to make 
reservations simultaneously.  The negative feedback 
properties of this can potentially lead to devastating 
results. 
  Route changes in the network can also cause serious 
issues, since it can lead to overloading of reserved 
packets on the rerouted link, leading to degradation of 
service.  Route pinning, which is the ability to force 
flows to follow a certain path, has been suggested, but 
still cannot account for router and link failures. 
 
5.2 Flow Initiation and Reservation Tree 
Protocol 
 
The Flow Initiation and ReServation Tree (FIRST) 
[35] protocol, introduced in 1999, is similar to RSVP 
in that it is geared towards multicasting and is receiver 
oriented.  Its aim is to provide all the advantages of 
RSVP, ST-II+, and YESSIR.  It does however require 
that routes do not change and keeps hard state in the 
routers, requiring no refresh messages.  A reservation 
setup is similar to RSVP in that PATH and RESV 
messages are sent.  Similarly, it can allow 
heterogeneous receivers who can request differing 
reservations.   
  Similar to SRP discussed above, FIRST reserves 
resources based on aggregates.  It is assumed that 
intermediate nodes receiving reservation requests will 
be able to decide if the flow can be admitted or not 
using the same methods as SRP, namely estimators. 
  Each router contains flow and routing tables.  Flow 
tables are used to maintain flow information, contain 
source and destination pairs, forward and reverse data 
paths, and the service level.  The forward and reverse 
data is derived from reservation messages, and is used 
to pin the routes.  A flow session is represented by the 
source and destination pair.  Forward and reverse path 
values cannot change during the flow session. 
  Routing tables contain the same fields as flow tables, 
with the exception that the service level is always best 

effort.  This routing table maintains normal routing 
data, and updates accordingly as routes change.  This 
table is meant for best effort traffic which does not 
require any route pinning. 
  A termination message is required to teardown a 
reservation.  Work on the protocol has ceased, with no 
analysis having been conducted.  
 
Advantages 
Since FIRST aggregates flows into several different 
service levels, a scalable architecture is the result.  
Being receiver oriented, it is also able to handle 
heterogeneous receivers and aggregate flows as it 
traverses up multicasting trees.  It also can handle 
large multicasting groups in a scalable manner by 
merging reservation requests. 
 
Disadvantages 
Since work on the protocol has stopped, there has been 
little quantitative test results.  The hard-state attributes 
result in poor robustness in the case of failure.  
Documentation is scarce, and there are many areas 
which need further explanation. 
 
5.3 IntServ over DiffServ Networks 
 
Seeing IntServ and DiffServ as complementary 
models, IntServ over DiffServ [36], introduced in 
2000, attempts to overcome the limitations in both 
models by placing IntServ at the edge of the network, 
and DiffServ in the core.  This requires no per-flow 
state to be stored in core routers, with only the edge 
routers being responsible for the interface between the 
domains.  To IntServ capable nodes, DiffServ domains 
are seen as “virtual links” which connect them.  Since 
no state is required in core routers, this approach is 
highly scalable. 
  While other signaling protocols may be used over the 
IntServ domain, current work being done uses RSVP.  
To create a per-flow guarantee, an RSVP PATH 
message is sent from the host.  Upon reaching the 
ingress edge router, the message is packaged and 
shipped transparently across the DiffServ domain, 
being unpacked at the egress edge router.  From there, 
the PATH message is delivered to the intended 
recipient, with a RESV message being returned.  As 
with the PATH message, it is transported transparently 
across the DiffServ domain.  Upon the egress edge 
router receiving a successful RESV message, it 
performs admission control to the DiffServ domain.  If 
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this is successful, the RESV message is allowed to 
continue to the receiver.  If not, a RSVP error message 
is sent. 
  An alternative exists to the above example by 
allowing nodes within the DiffServ domain to be 
IntServ aware.  That is, additional per-flow 
information can be used during DiffServ admission 
control, and during packet scheduling. 
 
Service Mapping 
Services provided by IntServ must be mapped into the 
DiffServ domain to keep end-to-end QoS from being 
broken.  This is done by selecting one or more 
appropriate PHBs depending on the resource request, 
and by performing policing at the edge.  There are two 
types of mapping.  Default mapping encompasses all 
well-known IntServ to DSCP mappings.  In network 
driven mapping, RSVP capable routers in the DiffServ 
domain can remark the DSCPs. 
 
Resource Management in DiffServ Domains 
There are several ways to provision resources in the 
DiffServ domains.  The simplest, but least flexible, is 
statically allocating resources based on SLAs, or the 
use of bandwidth brokers.  The most flexible option is 
to dynamically adjust them through the use of a 
signaling protocol such as RSVP. 
 
Advantages 
The use of DiffServ in core routers allows greater 
scalability, while the use of IntServ at the edges allows 
better flexibility, particularly with per-flow control.  It 
is possible to allocate resources to certain applications, 
rather than large aggregates. 
 
Disadvantages 
One of the largest challenges to this architecture is 
resource management.  When statically allocating 
resources within the DiffServ domain, or using other 
long term approaches such as bandwidth brokers, it is 
difficult to notify edge routers of the traffic load 
within the DiffServ domain.  Using a dynamic 
approach such as RSVP signaling inside the DiffServ 
domain can adequately address this issue, but reverts 
to an unscalable model with the need for per-flow state 
in core routers.  As well, the need for the service 
mapping ability in edge routers results in further added 
complexity.   
  Another large challenge is deployment.  With neither 
IntServ nor DiffServ having any large scale 

deployment as it stands, IntServ over DiffServ would 
suffer just as much, if not more, difficulty. 
  Since DiffServ networks cannot provide firm bounds 
on delay, this architecture cannot deliver the IntServ 
Guaranteed Services class; only predictive and 
controlled delay classes, along with DiffServ PHBs. 
 
5.4 Edge-assisted Quality of Service 
 
The Edge-assisted Quality of Service (EQOS) [37] 
architecture, developed in 2000, requires only edge 
routers of a domain to be modified, with core routers 
requiring no changes.  It is interoperable with both 
DiffServ and IntServ networks, and is comprised of a 
signaling protocol, a distributed admission control 
mechanism, and route pinning mechanism. 
  EQOS allows two types of flows; reserved and best 
effort.  Reserved flows can provide bandwidth 
guarantees, but are unable to provide bounds on either 
delay or jitter. 
  Reservations are made through both a signaling 
protocol, and a token passing mechanism that 
maintains reservation consistency around the edge 
routers. 
 
Signaling Protocol 
EQOS uses RSVP for signaling, but does not use it in 
the traditional manner.   PATH messages are 
transparently sent through the domain with only edge 
routers stamping their addresses and updating per-flow 
path states.  RESV messages are also transparently 
transported back over the EQOS domain through the 
use of a route pinning mechanism, with only the two 
edge routers examining and making the reservation.  
Thus, no core routers are required to be RSVP-aware. 
  EQOS also takes advantage of the soft-state 
properties of RSVP to make sure flows which do not 
end properly are removed. 
 
Distributed Admission Control 
The EQOS architecture uses a distributed system 
which assumes the admission control responsibility of 
the entire domain.  This is done at the flow’s ingress 
edge router.  To perform an admission decision for the 
entire domain, a single control token is circulated 
among the edge routers, which contains bandwidth 
information for all the links in the domain.  Using 
information contained within this control packet, and 
network topology information, a reservation route is 
selected.  While numerous algorithms can be used, the 
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“shortest wide-enough” path is the most popular, 
which selects the shortest reservable route.  Tokens are 
circulated dynamically by the shortest path, with links 
preempting the processing of other packets when a 
control token arrives to minimize circulation time. 
  Upon a successful reservation the route is pinned, 
and information contained within the control token is 
updated and forwarded to the next edge router.  The 
reservation is not final until this control token has 
made one full circulation.  This is done for two 
reasons; to keep edge routers from over provisioning a 
link, and to allow edge routers to potentially reduce 
best effort rates using the same links. 
  Information regarding best effort flows must be 
maintained as well, since there is no way within the 
domain to distinguish them from the reserved flows.  
Thus, the rate of the best effort flows must be limited 
at the edge routers using a system of fair queuing 
schedulers. 
  Route pinning can be done through either MPLS, or 
IP source routing.  Since MPLS requires all routers in 
the domain to be MPLS-aware, IP source routing 
would be the most popular approach.  Transparently, 
ingress edge routers insert the routing information 
with egress edge routers removing it. 
  To combat lost tokens, it has been suggested to have 
one router as a token monitor which keeps a copy of 
the token, releasing it only when the real token does 
not return after a timeout period.  This replacement 
will be noticed by other edge routers, who will then 
reissue reservations or update appropriate flow counts. 
  If a link or router within the domain fails, the token is 
updated from an edge router who will receive the new 
link state through updates.  After one full circulation, 
all edge routers will have the new topology 
information. 
Advantages 
The largest advantage to EQOS is the ease of 
deployment and low cost, due to the core routers not 
requiring any modifications.  This architecture 
provides excellent scalability as well. 
 
Disadvantages 
Unfortunately, EQOS cannot provide true Guaranteed 
Services to reserved traffic since there is no means to 
provide bounds on delay or jitter.  Thus, it would act 
similarly to the Controlled Load class of the IntServ 
model.   
  Additionally, both reserved and best effort flows 
require route pinning, which leads to lack of 
robustness and added overhead.  While there are 

mechanisms in place to account for link and router 
failures, the temporary disorder can cause overloading 
of links resulting in packet loss.  
  Since a fair queuing scheduler is required for every 
edge to edge route, if the number of active reservations 
between two edge routers is large, there will be large 
computational demand on the router. 
 
5.5 Endpoint Admission Control 
 
Since attempts at deploying real time services have 
been hindered in the past, primarily due to scalability 
concerns and the massive restructuring and 
standardization needed, Endpoint Admission Control 
(EAC) [38] examines whether or not it is possible to 
provide such services with little support from core 
routers. 
  With this infrastructure, end hosts make their own 
admission control decisions by sending probe packets 
at the rate to be reserved into the network used to 
report back bandwidth, delay, and loss results.  Since 
no participation is required from the network, this 
architecture can be run over DiffServ networks.  A 
signaling protocol such as RSVP is not required.  
Based on the probe results, the decision to admit the 
flow is made.  Since the results are not capable of 
providing exact numbers, the Guaranteed Services 
class can not be duplicated.  Endpoint Admission 
Control aims at providing Controlled Load services, 
where strict guarantees are not made. 
  Packet loss is typically the measurement from which 
an admission decision is made.  To prevent starvation 
while probing a network, probing must be done 
incrementally.  During a given time period, if the 
packet loss exceeds the point where the total packet 
loss goes over the acceptable threshold, the probing is 
stopped. 
 
Advantages 
The lack of participation from the core routers makes 
this solution scalable, and cheaper to deploy.  
 
Disadvantages 
Besides the fairly high bandwidth wastage of probing, 
which takes anywhere between two to five seconds, it 
also causes a substantial delay which is not appropriate 
for most real time applications.  It is also assumed that 
end users will cooperate, sending only if the resources 
are available.  Since admission control is done at the 
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end hosts, this is very difficult to police, leading to 
lack of verifiability. 
  Changes in routes will also cause congestion, as there 
is no mechanism to provide route pinning. 
 
5.6 Stateless Core 
 
To provide the flexibility of IntServ while achieving 
high scalability, the Stateless Core architecture 
(SCORE) [39] was introduced in 2000.  It combines 
both service differentiation from DiffServ and 
guaranteed services from IntServ into one scalable 
package. 
  Since scalability concerns arise from flow state being 
stored in the network, SCORE remedies this through 
the removal of state from core routers; thus, only 
requiring it in the edge routers.  Information required 
by routers can be found within the packets themselves.  
A specific signaling protocol has not suggested, as has 
been left independent of the SCORE architecture.   
  SCORE aims to push complexity out to the network 
edge, resulting in the need for edge routers to perform 
special operations.  To operate, a transparent SCORE 
domain is needed. 
  To achieve a stateless core, both the stateful data path 
and stateful control path need to be redesigned.  Along 
the data path, a mechanism must be present to provide 
bounds on delay and jitter without the need for state.  
Along the control path, a mechanism must also be 
present to allow admission control without the need 
for state.   
 
Dynamic Packet State 
Dynamic Packet State (DPS) is the fundamental 
technique used to implement the SCORE architecture.  
By using DPS, flow state is carried in the packet, 
rather than stored in the router.  DPS is inserted into 
each packet at ingress routers and removed at egress 
routers, with intermediate nodes updating appropriate 
fields.  This results in a transparent operation.  Since 
edge routers handle less traffic and typically operate at 
lower speeds, scalability is the result. 
 
Core-Jitter Virtual Clock 
To provide delay bounds in the data path without the 
need for per-flow state, an extension to the Jitter 
Virtual Clock (JVC) is introduced, called Core-Jitter 
Virtual Clock (CJVC). 
 

In a stateful network, JVC guarantees that no packet 
will miss its deadline.  In it, each packet is assigned an 
eligible time and deadline.  Packets are not released 
until it becomes eligible, with packets being sent out in 
order of their deadlines.  To assign the eligible time of 
a packet, the maximum value of the following 
properties is taken: 
 

� The arrival time of the packet 
� The packets deadline at the previous node plus 

propagation delay 
� The previous packets deadline at the current 

node 
 

The deadline is computed as: 
 

� Eligible Time + Packet Length / Reserved 
Rate 

 
When assigning an eligible time, having to look at the 
deadline of the previous per-flow packet requires state.  
Thus, the concept of CJVC has been proposed to 
eliminate this dependence.  A slack variable is 
computed at the ingress router based on the lengths of 
current and previous packets, the slack variable of the 
previous packet, and the number of hops.  The variable 
is then sent with the packets, and is computed such 
that the eligible times and deadlines at the last router 
are the same as they would be if JVC were being used.  
Thus, CJVC can provide the same bounds as JVC can 
without the need for state in intermediate routers. 
  Collectively, three variables are carried with each 
packet using the DPS approach mentioned above; the 
slack variable, the reserved rate for the flow, and an 
ahead of schedule variable which identifies how far 
ahead of the deadline the packet was sent.  Therefore, 
the new eligible times and deadlines are computed 
without the need for state as follows: 
 
� Eligible Time = Arrival Time + Ahead of 

Schedule + Slack Variable 
� Deadline = Eligible Time + Packet Length / 

Reserved Rate 
 
As such, state is been removed from the data path and 
placed in the packets, requiring no per-flow storage in 
the routers. 
 
Admission Control 
Current admission control techniques are broken into 
two classes; distributed and centralized.  Distributed 



 20 

approaches through protocols such as RSVP can 
provide short lived per-flow reservations, but lack 
scalability.  Centralized approaches using bandwidth 
brokers are simple to implement, but are not 
appropriate for per-flow reservations.  The SCORE 
architecture uses a distributed approach, but removes 
all per-flow state, thus making it scalable. 
  Admission control measures requested reservation 
rates against current aggregate rates to make a 
decision.  Due to packet loss, partial reservation 
failures, and under utilization of reservations, 
maintaining a proper reservation aggregate for each 
outgoing link without per-flow state is very difficult.  
In the absence of these issues, the reservation 
aggregate could simply be measured by current 
outgoing rates. 
  Since under utilization of reservations happens 
frequently, a virtual length is assigned to each packet.  
This value is set so that if the packet length were equal 
to its virtual length, the flow would send at its reserved 
rate.  From this the value of the unused reservation 
rate (since the last packet) can be made.  These values 
are calculated and inserted by the ingress router, and 
used by core routers to estimate reservation 
aggregates.  These estimations are then used for 
admission control. 
 
Flow Protection 
In the Internet, there is a reliance on self imposed 
congestion control; the most popular example being 
the Transmission Control Protocol (TCP).  Since this 
relies on participation from the end hosts, there is no 
way to trust everyone to impose this type of control. 
  Flow protection is used to shelter well-behaved 
traffic from ill-behaved, by using fair bandwidth 
allocation in the routers.  Typically, fair bandwidth 
allocation requires state to perform per-flow 
management.  The SCORE architecture uses DPS to 
achieve this, giving it the name Core-Stateless Fair 
Queuing (CSFQ).  Edge routers estimate the incoming 
flow rate and attach this value the packet using DPS.  
When received by core routers, the probability of the 
packet being dropped is calculated as a function of the 
rate carried within the packet, and the fair share at the 
router.  If packet dropping occurs, the rate is updated 
to reflect this.  Thus, no per-flow state is needed in the 
core routers. 
 
Advantages 
The primary advantage of SCORE is the stateless 
properties which make it scalable.  Consequently, this 

statelessness also results in better robustness in the 
case of physical link failures, since there is no 
replicated or inconsistent state to deal with.  SCORE is 
also able to provide both Guaranteed Services from 
IntServ and service differentiation from DiffServ. 
  DPS packets can be used to find misbehaving 
elements in the network, by using a “verify and 
protect” approach, in which routers statistically verify 
packet state. 
  RSVP and other stateful solutions allow route 
pinning, which is typically done for traffic 
engineering, and is often required to provide 
Guaranteed Services.  To provide this in a stateless 
network, SCORE labels a path using router 
identification numbers by simply XOR’ing them 
together.  The ingress router keeps these labels, and 
attaches them through DPS as packets leave.  At each 
intermediate node, the label is updated by XOR’ing it 
with its own identification number.  The new label is 
then used to forward the packet to the appropriate 
router. 
 
Disadvantages 
While SCORE can provide IntServ Guaranteed 
Services, limitations presented by a stateless solution 
do not allow predictive load and controlled delay 
services. 
  SCORE does not handle partial reservation failures 
well, and in a worse case scenario, it can affect an 
entire domain.  The verify-and-protect approach has 
been suggested, but comes at the cost of added 
complexity.  Even without this, packet processing in a 
SCORE domain is very complex (especially in the 
case of Guaranteed Services) and results in a great 
deal of processing overhead being required. 
  By pushing complexity to the network edge where 
there are typically less flows and lower speeds, the 
architecture is scalable.  Since routers must be aware 
of the architecture, it can not be deployed 
incrementally, only on a domain by domain basis.  If 
domain edges touch core routers during deployment, 
scalability is lost for flows traversing through that 
edge. 
  Since state has effectively been moved from being 
stored in the routers to being stored within packets 
themselves, there would naturally be additional 
processing overhead in the routers.  It has not been 
addressed whether scalability concerns could 
potentially arise under high router load. 
  Little work has been accomplished in providing 
multicasting support. 
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5.7 Aggregate RSVP 
 
More currently in 2001, RSVP extensions [40] have 
been developed to allow a hierarchical reservation 
scheme to combat scalability concerns, which are due 
to the lack of ability to aggregate small flows.  This 
extension would allow many smaller flows to be 
aggregated in a few larger flows similar to a virtual 
pipe, reducing per-flow state in the routers and 
signaling overhead.  Classification of these larger 
flows would be done through DiffServ. 
  An aggregation region is defined, with end-to-end 
flows that cross into this region being aggregated and 
deaggregated as they enter and leave respectively.  
This region must have a contiguous set of RSVP-
aware routers that can perform aggregation and 
deaggregation along all possible routes between.  End-
to-end reservation messages are hidden from the 
aggregation region, to prevent wasted resources.  This 
is done by having routers at the border of the domain 
change the IP protocol number of certain RSVP 
messages to a special ignore case, and restoring it 
upon leaving the domain. 
  The flow descriptors of many individual flows are 
summed at the aggregator, and used to generate an 
aggregate reservation request to the corresponding 
deaggregator on the other side of the domain.  With 
this approach, the number of RSVP reservations 
within a network will significantly decrease, but it all 
depends on how many aggregation regions are 
defined, and their sizes. 
 
Advantages 
The ability to make guaranteed reservations for large 
aggregates in the core network results in the reduction 
of reservation state.  Routers in the aggregation region 
only need to keep reservation state for the aggregates.  
By offering few QoS classes, packet scheduling is kept 
simple. 
  The virtual pipes in an aggregated region are 
dynamic.  They can grow and shrink depending on the 
particular demand, and cease to exist when there are 
no flows.  This leads to greater scalability. 
 
Disadvantages 
When classifying packets into large aggregates, there 
is still a need for fine granularity.  Aggregators must 
dig into the headers to extract specific source and 
destination values, which are then compared to a list of 
reservations.  Additionally, since the virtual pipes are 

not end-to-end, heterogeneity cannot be supported in 
the aggregating region. 
 
5.8 Simplified Guaranteed Service 
 
Introduced in 2003 [41] and using ideas from FIRST 
[35], this design provides a simple QoS architecture 
that can dynamically provide IntServ classes in a 
scalable fashion, with one exception; the Guaranteed 
Services class cannot provide any delay bounds, only 
rate guarantees.  Thus, it would act similar to the 
Controlled Load service class.  
  For each link on the router, there are four local 
variables stored in the routers for each service type; 
the capacity, requested rate, confirmed rate, and 
refreshed capacity.  These variables are dynamic and 
are modified through the use of a signaling protocol.  
The flow descriptor contained within reservation 
requests is by far simpler than conventional 
descriptors, requiring only a peak rate.   
  Although work is being done to provide multicasting, 
this architecture is currently for unicast sessions only. 
 
Signaling Protocol 
While it may be possible that other more common 
signaling protocols could be used, a new sender 
initiated, simplex, lightweight protocol has been 
proposed, called Sender Oriented Signaling (SOS).  
There are four types of messages required for this 
architecture; reservation, confirmation, refresh, and 
teardown messages.  While the protocol has been 
established, current work is being done on how and 
where to store the flow descriptor within the IP header. 
  The architecture specifies that all signaling messages 
are considered part of the Guaranteed Service flow, 
and are thus immune to congestion and purposeful 
packet dropping. 

 
Operation 
To make a resource reservation, a uniquely identified 
reservation message is sent to the receiver, with a 
timer started.  If the timer timeouts, it is assumed the 
reservation was lost, and a new reservation request can 
be issued.  If a reservation fails, the request is dropped.  
If the reservation is accepted, the rate contained in the 
flow descriptor is then added to the requested rate field 
on the appropriate link in the router. 
  When a request reaches its destination, an 
acknowledgement message is then returned.  This is 
also done in the form of a reservation message, with  
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the same identifier as the request, and the rate set to 
zero.  Resource reservation requests are typically sent 
repeatedly until either an acknowledgment is returned, 
or the sender chooses to stop.  If by some chance a 
reservation request is delayed in the network, and a 
second request is made, the oldest acknowledgement 
will be ignored by the sender, with core routers 
cleaning it up during garbage collection (discussed in 
the next section). 
  Upon receipt of the acknowledgement, a 
confirmation message containing the same requested 
rate is sent back towards the receiver.  Once the 
confirmation is sent, data can start to be sent at the 
newly reserved rate.  As routers encounter the 
confirmation message, the rate is then added to the 
confirmed rate field.  Finally, a second 
acknowledgement is sent to acknowledge the 
confirmation message. 
  Periodic refreshes are required to be sent once per 
cycle during the session.  Within the network, they are 
not taken as per-flow refreshes, but rather per-class 
refreshes.  The refreshed rate field is updated 
appropriately as refreshes are passed through the 
nodes.  
  A teardown message, once again containing the 
reserved rate, is sent to end the reservation.  The rate is 
subtracted from both the requested and confirmed rate 
fields in the routers. 
 
Garbage Collection 
There are two types of garbage collection; short and 
long term.  In short term garbage collection, if a 
reservation request is rejected while traversing nodes, 
any reservations upstream will not receive notice.  
These upstream nodes will still be expecting 
confirmations, even though the reservation has been 
rejected.  It is necessary to perform garbage collection 
to restore proper rate levels in the routers.  
 
 
 

 
 
 
 
 
 
 
 
 
 
To conserve resources, garbage collection happens 
only when the requested resources reach the particular 
service limit.  Any unused reservation space during a 
timed period is then freed up. 
  In long term garbage collection, the results of 
abnormal failures such as link or bit errors are fixed.  
At the end of each cycle, the refreshed field is 
compared with the reserved field, with any difference 
being subtracted from the reserved field.   

 
Advantages 
The largest advantages to the Simplified Guaranteed 
Service architecture are that no per-flow state is 
required.  It also allows for simplified flow descriptors 
to be used in a simplified signaling protocol, and it is 
still able to provide some form of Guaranteed Service. 

  
Disadvantages 
Currently, there has been little work done to support 
multicasting for this architecture, and little 
consideration has been put towards security.  
Additionally, there has been little experimentation in 
real networks, relying only on network simulators. 
  While the additional resources and complexity 
needed by routers to maintain per-flow state have been 
removed, there has been the need to introduce other 
complex features.   Two separate garbage collection 
schemes are needed, as well as the requirement for a 
router to re-mark packets in the case of a routing 
change for a particular time period. 
  Since no delay bounds are possible, a true 
Guaranteed Services class is not achievable.  It would 
provide a service similar to the Controlled Load class. 
 
6. Future Work 
 
Though many solutions have been proposed to provide 
end-to-end QoS, one has yet to be embraced by the 
Internet community.  There are several reasons why 
this is the case.  First and foremost, there have been 

Table 3. Architectural Comparisons 

 SRP FIRST IOD EQOS EAC SCORE A-RSVP SGS 
Year 1998 1999 2000 2000 2000 2000 2001 2003 
Reservation Initiation Sender Receiver Receiver Receiver - Either Receiver Sender 
Reservation State Soft Hard Soft Soft - Hard Soft Soft 
Data Path Fixed Fixed Dynamic Fixed Fixed Fixed Dynamic Dynamic 
Reservation Types Homo Hetero Either - - - Either - 
Signaling Band - O-Band O-Band O-Band - O-Band O-Band O-Band 
Multicasting Limited Yes Limited No No No Limited No 
Services CL/BE CL/BE CL/BE CL/BE CL/BE GS/BE GS/CL/BE CL/BE 
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serious performance problems with most of the 
proposed solutions.  Due to these problems, there has 
yet to be a commonly agreed upon architecture or 
signaling protocol which can address resource 
reservation across differing network environments.  
Even the only standardized signaling protocol, RSVP, 
has serious scalability concerns.  Technical issues 
aside, business models are lacking which would be 
required to generate the revenue required for 
deployment. 
 
6.1 Next Steps in Signaling 
 
Originally started in 2001, the Next Steps in Signaling 
Working Group (NSIS) is currently working on 
standardizing a next generation multipurpose signaling 
protocol [42].  While primarily geared towards 
providing QoS to data flows, it is also meant for non-
QoS applications as well.  Design issues such as 
performance, flexibility, mobility, interoperability, and 
security will be addressed.  The intent of the new 
signaling protocol, in which some are coining RSVP 
v2, is to reuse the valuable parts of RSVP, and form a 
much simpler and modular signaling model. 
  Currently work is still in the requirements phase, and 
no solution has been proposed yet. 
 
Two Layered Signaling Protocol 
To modularize, the signaling protocol will be broken 
into two layers; one for common lower layer transport 
functions, and the other for upper layer application 
specific signaling functions.  These are referred to as 
the NSIS Transport Layer Protocol (NTLP) and NSIS 
Signaling Layer Protocol (NSLP) respectively.  
NSLPs provide custom services for applications, and 
take advantage of the common NTLP service.  The 
two layered approach allows a simplified design for 
new signaling applications, and independent 
development of signaling applications and transport 
methods.  It is also aimed at providing non-QoS 
signaling capabilities, such as network property 
discovery and management, and firewall/NAT 
configuration.  Multiple components can be combined 
in the NSLP layer, such as providing both QoS and 
Firewall parameters in one set of messages. 
 
Design Goals 
The signaling protocol designed by NSIS is intended 
to be general, and not focused on a single application; 
it should be useful for all QoS applications and 

technologies.  There should be a distinct separation of 
the signaling protocol and any control information for 
extensibility.  Similarly, there should also be a 
separation between signaling and actual QoS 
provisioning.  Generally speaking, it should be 
comparable to the modular design of RSVP in most 
aspects, allowing greater flexibility with other 
protocols.  It should be scalable, offer quick setup 
times, and provide low bandwidth solutions when 
signaling.  Flow aggregations are a must, along with 
the provisions to allow both unidirectional, and 
bidirectional flows.  There is no specific requirement 
for multicast, since it will increase complexity and the 
resources needed. 
  While there many other design goals listed by NSIS, 
meeting each one is not necessarily attractive due to 
the complexity needed.   There is currently discussion 
regarding the importance of many of the design 
features. 
 
Signaling and Control  
The signaling protocol will allow greater flexibility by 
allowing multiple end-points, and usable in different 
areas of the Internet without the need to establish 
complete end-to-end solutions.  It should be able to 
travel end-to-end, end-to-edge, or edge-to-edge.  The 
ability to allow tunneling and hierarchical reservations 
similar to aggregated RSVP should be permitted as 
well. 
  Control messages should use as little resources as 
possible.  Both the reservation identifier and flow 
identifier should remain independent to support 
mobility, and a set of flows should also be able to 
group their control signaling messages to save on 
messaging overhead. 
 
6.2 Conclusion 
 
There have been many lessons learned over the past 
decade with regards to QoS.  With the need for QoS 
ever growing, the next few years will present newly 
standardized protocols which will address the issues 
that have hindered current architectures. 
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