

Abstract -- Context-aware applications are able to use context,
which refers to information about the surrounding environment,
to provide relevant information and/or services to the user. A
context-aware application may need to make use of existing
services (e.g., a print service). There may be several possible
choices of services. The context–aware application should be able
to discover and select a service that considers context (e.g.,
current user location). Existing architectures and protocols for
service discovery, however, are not suitable for doing so.
Contextual information, by its very nature, is dynamic, reflecting
the current state and conditions of the application, its user, or its
operating environment. Existing architectures and protocols for
service discovery, however, tend to assume the world is static,
with attributes describing services offered never changing. If
attributes are allowed to change, the approaches do not provide
the architectural mechanisms required to update them; dynamic
attributes with no means of updating are static for all intents and
purposes. To support context-aware service discovery and
selection, a better approach is required. This paper discusses one
possible approach that is based on existing techniques.
Index Terms: Service discovery, monitoring, service selection,
context-aware applications.

I. INTRODUCTION

The increase in usage of wireless networks and mobile

devices implies that devices and services are entering and
leaving the network with increased frequency. This results in
a more dynamic computing environment and increases the
need to allow a client device or service (hence referred to as
client) to discover other devices and services in the network.
This is referred to as service discovery. Devices are hardware
that typically provide a service. For example, a printer is a
hardware device that provides a print service. In this case, a
printer is both a device and a service. Not all services are
devices, however. For example, a service may be software
running on a server that has many other services running
on it e.g., address book. In this paper, the terms device and

This work was supported in part by the National Science and Engineering

Research Council of Canada (NSERC).
S. Cuddy recently completed his MSc degree at the University of Western

Ontario
H.Lutfiyya is with the Department of Computer Science at the University

of Western Ontario, London, Ontario Canada N6H 5C9 (phone: 519-661-
2111; fax: 519-661-3515; e-mail:hanan@csd.uwo.ca).

M. Katchabaw is with the Department of Computer Science at the
University of Western Ontario, London, Ontario Canada N6H 5C9 (phone:
519-661-2111; fax: 519-661-3515; e-mail:katchab@csd.uwo.ca).

service are used interchangeably. As can be seen from this
discussion, the definition of a service is not rigid. Essentially
a service is a facility or software available to users or to
applications. Examples of service discovery protocols (SDPs1)
include Bluetooth [1], Jini [22], Universal Plug and Play
(UPnP) [25], Service Location Protocol (SLP)[6], and
Salutation [14].

Consider the following example illustrating the usefulness
of service discovery protocols. The user is at an unfamiliar
location. Assume there is an SDP environment at this location
that allows for discovery of a printer. The client is able to
request a printer using the SDP environment and receive
information on one or more available printers. The advantage
of the SDP environment is that the client does not need to
know the name of the printer, the IP address, and in some
SDPs, does not need to install drivers, knowledge on how to
install it using a wizard, etc. This is handled by the SDP.

A service type refers to a category of services or devices. A
service type specifies attributes that are used to characterize
the category of services or devices that the service type is
associated with. Examples of attributes for a printer service
type include pages per time unit, mode (duplex or single), and
an attribute representing if color is supported. SDPs provide
facilities for finding services by specifying conditions on
attribute values or providing facilities to allow a client
application to ask a device for information on attribute values.

SDPs essentially assume that the attributes used to
characterize a service type are static. The values of static
attributes are assigned when the service is first deployed. This
limits the support of context-aware applications. A context-
aware application uses information about the circumstances
that the application is running in (i.e, context), to provide
relevant information and/or services to the user. In the printer
example, several printers satisfying the user’s requirements of
the printer being laser, color and duplex may be discovered.
The user may also want a printer that has the fewest print jobs
and is on the same floor as the user. Since a user’s location
changes, the printers on the same floor as the user may also
change. In addition, the number of print jobs at any printer
dynamically changes. The set of printers on the same floor as
a user and the number of print jobs associated with a printer

1 Throughout this paper, the term SDP refers to a generic service discovery
protocol. It should not be confused with the Bluetooth SDP.

Context-Aware Service Selection Based on
Dynamic and Static Service Attributes

Steve Cuddy, Michael Katchabaw, and Hanan Lutfiyya

are represented by dynamic attributes. The value of a dynamic
attribute changes after the service has been deployed. Since
existing SDPs assume that characterization of services is
based on static attributes, the existing SDPs do not provide
adequate support for context-aware applications.

Although SDPs allow the definition of attributes that are
dynamic, none of the SDPs provide facilities to monitor the
dynamic attributes (hence the reason why SDPs are considered
to support only static attributes). This work addresses this by
developing an approach that allows for the use of dynamic
attributes in the presence of existing SDPs. This allows for the
discovery and return of a service to a requesting application
based on contextual information as defined by dynamic
attributes. The use of existing SDPs allows current
deployments of SDPs to remain in place.

This work considers that the importance of a specific
dynamic attribute varies among users. In the printer example,
some users will prefer to use the printer with the fewest
number of jobs waiting to be processed while other users will
prefer to use the nearest printer. A user’s preference is not
necessarily static.

This paper presents an architecture and implementation of
this architecture that provides services to support service
selection based on information that is not necessarily static
and allows user preferences to be taken into account. An
important aspect of this work is to be able to use, as much as
possible, existing monitoring tools and SDPs. The paper is
organized as follows: Section II briefly describes existing
SDPs, Section III describes related work on service selection,
Section IV describes the architecture, Section V describes the
prototype implementation and its application to two service
types, Section VI provides a discussion and Section VII
provides a conclusion and future work.

II. BRIEF DESCRIPTION OF SERVICE DISCOVERY PROTOCOLS
The need to be able to discover devices has driven the

development of service discovery protocols. These are briefly
described in this section.

The Service Location Protocol (SLP) was developed by an
IETF working group [3] with the intention that it could be
used for large enterprise networks that use TCP/IP. There are
three different entities that can be present in an SLP
environment. These are the user agent (UA), service agent
(SA), and directory agent (DA). The DA is optional. The UA
initiates service discovery on behalf of a client. A query for a
specific service type is sent to SAs through multicasting or to
a DA via unicast. An SA is associated with a service or
device that is advertising itself to be discovered. A DA is a
centralized information repository that makes itself known by
multicasting a message about its presence. A DA accepts
service registrations from an SA and responds to UA queries.
When an SA registers, it provides values of attributes

associated with its service type. When a UA sends a request to
a DA, the DA checks its database for matching entries and
returns a URL for each service found. DAs are not used in
smaller SLP environments. The use of a DA is for scalability.
This allows the UA to find services by sending its request to
the DA directly via unicast, otherwise the UA multicasts its
request on the network so that all available SAs can receive
the request. Requests sent to the DA or SAs can be matched
on the required attribute values requested by the UA. These
attribute values can be combined into Boolean expressions
using AND operators, OR operators, common comparators {=,
>, <, >=, <=} and substring matching.

Universal Plug and Play (UPnP) [13],[17], developed by
Microsoft, provides for service discovery in small to medium
size networks. On a periodic basis, devices advertise
themselves. Clients that need to discover a service run a
control point that waits for advertisements from devices or the
control point can actively multicast a message specifying the
desired service type. Devices that receive this message
respond by sending a unicast service advertisement. A client
can retrieve an XML description of the device that includes
the attribute values of the associated service. Thus, a client can
filter out devices.

Sun Microsystems’ Jini Technology [23] has a lookup
service that stores information about the services available in
the Jini community. It stores attribute descriptions for the
services. Jini services must register with a lookup service on
the network if they wish to join the community. When a client
needs a service, it sends a query to the lookup service.
Searching based on specific values of attributes is possible. If
a client requires additional software to be installed to make
use of the service, Jini uses RMI. This allows the additional
software, typically device drivers, to be downloaded via object
code from the service and then, in turn, be executed on the
client. Jini requires that each client has a JVM.

Salutation has an entity called the Salutation Manager
(SLM) [14],[18],[19]. An SLM provides a service similar to
the lookup directory of Jini or the DA in SLP. Although the
SLM does not store service attribute data, attribute-based
searching is possible in a very limited sense by allowing the
client application to query the service directly. For example,
when searching for a printer with capabilities of printing in
color, a minimum of 10 pages per minute, and with duplex
capability, the client retrieves a list of print services from the
SLM. It can then query each of the returned print services to
see if they have the desired values.

Bluetooth [1] is for ad-hoc, short-range, wireless networks.
The Bluetooth wireless technology “is designed to replace
cables between cell phones, laptops, and other computing and
communication devices within a 10-meter range” [1]. For
example, Bluetooth could be used to discover a local printer
wirelessly. Bluetooth has the ability to search for specific

service types, and on a very limited basis, to search based on
service attributes.

Web service architectures use service directories specified
using UDDI [24] that are registries of service descriptions.
Services discovery is based on static parameters.

Each of the SDPs can either filter based on conditions on
attribute values or allow clients to filter using the facilities
provided by the SDP to query services for more information.
Although it is possible to define dynamic attributes, none of
the SDPs provide mechanisms to monitor the values of these
attributes, nor do they automatically choose a service [26].

III. RELATED WORK
The previous section briefly described existing and

commercially available service discovery protocols and
concluded that none of these provide support for dynamic
attributes. These service discovery protocols provide
information about services either using a centralized directory
that stores information about services or by having services
broadcast information about their services. These approaches
do not work in an ad-hoc network. There is work that is
context-aware that is used to determine the services available
in an ad-hoc network (e.g., [10]). The work in this paper is
different in that the emphasis is on selecting a service from a
set of services that satisfy the constraints placed on the static
attributes considering context. The work in this paper can
assume that services are discovered using techniques such as
that described in [10]). There is work that uses context in a
limited sense. For example, the work in [16] uses physical
location. The work in this paper potentially can deal with any
context and is based on an existing protocol.

 The closest related work is presented in [8]. This work
discusses an approach to choosing the service best service
based on a weighting system. A Service Discovery Model
(SDM) was created to allow for comparison of the service
discovery protocols. Their approach requires a modification
of the SLP environment. In SLP, a directory agent (DA)
collects information advertised by services and stores that
information in a repository. The work in [8] modifies the DA
so that it ranks the services. Information about the service
with the highest ranking is returned to the requestor. The
work in this paper is different in that it does not modify
existing SDPs. The advantage of this includes the ease of
portability to other architectures. The work in [8] does not
discuss the issues needed to maintain information that
dynamically changes e.g., printer queue size.

The work in [12] also introduces the use of dynamic
attributes to service discovery protocols. The paper describes
the interface that an object representing a dynamic attribute
must present. This interface includes methods that return a
value and the time that the value is considered valid to the
requesting entity. This is incorporated into a three-tier

service discovery architecture. The work described in this
paper differs in that the use of existing SDPs and monitoring
facilities is assumed.

Another closely related work is described in [5]. This work
provides facilities to allow for user annotation of services and
usage history. However, this work developed a new system to
do so. This work presented in this paper is able to interact
with existing systems.

The Cooltown project [2] is able to take context into
account, but in a limited sense. For example, a hotel may have
two printers in the same wireless network, but each of the
printers is in a different room. Policies are needed to
determine which printer a guest may actually have access to.
Thus, Cooltown can take context into account by considering
the location of the user. It does not take into account the
context associated with a service. There are also examples of
work e.g., [4] that describe a model for context information
and efficient searching of context information.

IV. ARCHITECTURE
This section describes the architectural design. This

discussion focuses on components and their interactions. It is
assumed that the installation of additional components (e.g., a
print service requires printer drivers to work properly) is
handled by the SDP or some other mechanism. The goals of
the architecture design were the following: (i) Existing SDPs
should not be changed; (ii) The design should not be limited
to a particular service; (iii) The design of the architecture
should be able to allow selection based on attributes whose
values dynamically change e.g., the size of the print queue or
the load of the machine that a service may be located on; (iv)
The architecture should allow for service selection to be as
automated as desired by the user which may mean that it is
completely automated without user intervention; (v) Different
users should be able to place different emphasis on criteria
used in selecting a service; (vi) The interface to the user
should be friendly, simple and elegant.

A. Dynamic Service Attributes
The dynamic service attributes are those characteristics of a

service whose values change over time. Dynamic service
attributes are used to characterize context. Otherwise the
attribute is said to be static. An example of a static attribute
for a printer is the number of pages that it can print per
minute. An example of a dynamic attribute for a printer is the
number of prints jobs in the print queue. This is essentially a
measurement of the load of the printer. Although SDPs allow
for attributes that represent a dynamic attribute, the SDPs do
not handle the monitoring of these attributes. Thus, this work
assumes that only static attributes are to be defined within
SDPs. The architectural components associated with the
service selection will focus on dynamic attributes. Dynamic
attributes used to select a service can be associated with the

service to be discovered or with the client. Dynamic attributes
can be calculated from other attributes. For example, a client
may be specifically interested in the nearest service. The
nearest service depends on the location of the client (which
changes if the client is mobile) and the location of the service.
A dynamic attribute representing the distance from the client’s
location to the service location is calculated from the client’s
and the service’s current locations.

B. Weight Vectors
The importance of a dynamic attribute for a specific service

may differ for different clients. For example, one client may
place a high importance on speed, while another client may
place a higher importance on the location of the service.
Assume that for a specific service type i and a client that is
identified by j that Wij = (wij1, wij2, … wijn), where wij1 + wij2
+… +wijn =1 is the set of weights associated with service type
i for client j. The weight wijk is the weight that client j assigns
to service i for the kth attribute. In the printer example,
assume that the dynamic attributes are the size of the print
queue and the distance between the client and the service. For
client j, Wprinter,,j= (0.50, 0.50). There is a weight of 0.50
associated with the print queue and 0.50 is associated with the
distance. This suggests that equal priority is given to the two
attributes. The weight vector Wprinter,,j= (0.90, 0.10) suggests
that a much higher priority is to be placed on the size of the
print queue. The next section will describe how weight
vectors are used.

C. Architectural Components
The architecture (in Figure 1) shows a service discovery

protocol environment that includes the enhancements provided
by service selection. The boxes in Figure 1 represent service
entities and the arrows show data flow.

D. Client Device
The client can be any device looking for a service on the

network. It is a consumer of services provided by others.
Functionality is required to allow participation in the service
discovery protocol environment. The client requires
components that encapsulate this additional functionality.
The client must be able to initiate the discovery process of
services in a service discovery protocol (SDP) environment.
This is encapsulated in the Service Discovery Enabling
Component. When the client requires the use of a new
service, it makes a request for that specific service. If the
client receives more than one service in response to its request,
it initiates the service selection process. This is encapsulated
as the Service Selection Enabling Component. The service
selection process finds a Management Console Service (MCS)
on the network. As an option, the client can send its weight
vector for the service type to MCS. If there is no weight
vector, a default vector is used. The MCS selects a service
based on the weight vector and returns this to the client.

Figure 1. Architectural Components

The separation of the Service Discovery Enabling
Component and the Service Selection Enabling Component
allows for different SDPs to be used. The client application
initiates service discovery as before. If the client is expected
to do its own filtering based on the values of the static
attributes (as must be done in UPnP), it does so before sending
services to the Service Selection Enabling Component.

E. Management Console Service
The Management Console Service handles the decision

making process of service selection for the client. The
Service Discovery Enabling Component is used to advertise
the availability of the MCS on the network. It is a service that
is to be discovered by the client. It is assumed that this
component can be implemented to support multiple SDPs.
Once the client has established communication, it receives a
list of services from the client and optionally the client’s
weight vector. If the client does not send a weight vector, the
MCS uses a weight vector that it retrieves from the Table of
Weights (TOW) Service. The MCS discovers this service
using a SDP. This discovery is encapsulated in the Service
Discovery Enabling Component.

The MCS makes a selection decision based, among other
things, on the values of the dynamic service attributes. Values
of dynamic attribute information are collected from
monitoring tools. This is handled by the Data Collection
Component. The decision making process is encapsulated in
the Service Selection Enabling Component.

Based on the values for dynamic service attributes gathered,
a weight vector, and policies, a service can be selected from

Client Device

Service Discovery Enabling
Component

Service Selection Enabling
Component

Table of Weights Service

Service Discovery Enabling
Component

Service Selection Enabling
Component

Management Console

Service Discovery Enabling
Component

Service Selection Enabling
Component

Data Collection Component

Device/Service

Service Discovery Enabling
Component

Management Instrumentation

Device/Service

Service Discovery Enabling
Component

Management Instrumentation

Monitoring Module

Data Collection Component

Monitoring Module

Data Collection Component

the multiple devices and sent back to the client. This
component first computes a ranking of services. Ranking is
based on the computation of a score for a service. For each
service type i and client identified by j, the score is computed
as follows: ΣDSAijk * wijk * fijk . where DSAijk represents the
monitored value that the Data Collection Component returned
for attribute DSAk when client j needed that information for
service type i, wijk is the weight that client j assigns to service
type i for the jth attribute. The value of fijk is either -1 or 1.
This means that the product of DSAijk * wijk can be added or
subtracted from the total score.

The service with the lowest score is not necessarily the
service that should be sent back to the requesting client device.
Consider that the scores assigned to printers P1,P2,P3 results in
this ranking of the printers: P2,P1,P3 . The administrator may
have a limit on the number of print jobs allowed. If the
addition of the print job from the requesting client would
exceed this limit, then P1 should be selected. This is regulated
by policies [21]. A policy is a rule that is generally of the form
of an if-then statement. These rules are not hard-coded in the
MCS. Rather, they may be retrieved from a management
agent. This allows for the MCS to be adaptable.

F. Table of Weights Service (TOW)
This component maintains a default weight vector for each

service type. There are two components that make up the
TOW service. As with any service in a SDP environment,
there is the component that allows its participation in this
environment. This is the Service Discovery Enabling
Component. The Service Selection Component receives a
request for a default weight vector for a specific service type,
e.g., print service, from the Management Console Service.
Once the TOW service has determined the correct weight
vector, it sends this vector to the MCS.

G. Monitoring Modules
For each of the services listed in the table of weights

service, the ability to dynamically monitor the services must
be present. This is required so that once the weights for each
of the dynamic service attributes have been received from the
TOW service, the actual values for those dynamic service
attributes can be gathered, and then used in service selection.

A monitoring module is specific to a service type. When a
service type is added, it is registered with the MCS. The
registration includes a list of attributes that are monitored and
a handle that is used by the MCS to communicate with a
process that belongs to the monitoring module that coordinates
the monitoring. For example, a set of printers may be
monitored using SNMP. A process is contacted by the MCS
that then can use SNMP to collect information from a printer,
yet also make use of existing monitoring approaches and tools.
This design allows for the use of a standard interface to the

process that coordinates the monitoring. The MCS sends the
names of the dynamic attributes and service instantiation that
it is interested in, and the coordinator returns the value of the
dynamic attributes. The coordinating process hides whether
or not the monitored dynamic attributes are monitored using a
push or pull mechanism and the monitoring protocols.

H. Interactions
This section describes the general selection process when

there are multiple services discovered which meet the static
service selection attributes. The general process is briefly
described as follows:
• An application on the client device determines the need for

a specific service with values for specific attributes. A
request is made to an SDP.

• The SDP returns a set of services that satisfy the request.
If necessary, the application on the client device filters the
services based on values of the static attributes. This is
necessary for those SDP environments that do not provide
facilities for filtering.

• If there are multiple services to choose from, the client
application can either select a service randomly or initiate a
service selection process, which uses more information, by
discovering a Management Console Service. If multiple
MCSs are discovered, the client application randomly
selects a MCS.

• The client sends the MCS service the service type, a list of
discovered services that it requires service selection to be
performed on, and perhaps a default weight vector.

• If the MCS does not receive a default weight vector then it
requests one from the TOW service. The MCS discovers
a TOW service. If multiple TOWs are discovered, then
MCS randomly selects a TOW service.

• The MCS requests monitored information for the dynamic
service attributes.

• The MCS now has all the information required to perform
service selection on the services as requested by the client.
Using this information, the MCS determines the best
service and returns this to the client device’s application.

V. PROTOTYPE AND EXPERIMENTS
This section discusses the implementation of the

architecture discussed in Section IV.
SLP was chosen as the service discovery protocol to use for

the prototype environment based on these factors: (i) SLP is
considered the most mature of the SDP technologies; (ii)
There is an open-source implementation available which is
well documented; and (iii) There are numerous examples of
SLP code that exist. The open-source implementation of SLP
selected for use in the prototype was OpenSLP, developed by
OpenSLP.org, Caldera Systems Inc., and independent
contributors via SourceForge [15].

The experimental environment in this work is our research
lab, consisting of a variety of Solaris, Linux, and Microsoft
Windows workstations. The various elements of our
architecture, as well as the requisite SLP components were
deployed throughout this environment.

A. MCS and TOW Implementation
The MCS and TOW are written in C, compiled and

executed on a Solaris system. The initialization process of
SLP requires that it register with an SA. Both wait for
incoming client connections. Each listens on a TCP/IP port
specified via the command line when executing the MCS.

B. Services Implemented
Two service types were considered. One is used to

represent printers and the other is used to represent
workstations. These services were chosen since they have
dynamic attributes associated with them, there are already
existing monitoring tools for many of these dynamic attributes
and the potential usefulness of using these service types
(Students often comment on how useful it would be to know
where the nearest free workstations are). Both of these
service types have been used in context-aware applications.
The purpose of using two services is to illustrate that the
architecture is not limited to a specific service or a specific
monitoring approach.

1) Print Service
The print service implemented for this work is a simulated

print service. There are two parts to each simulated print
service. The SLP-enabling component allows the print service
to respond to the multicast requests from the client. The print
service initializes by registering itself with a Service Agent.
The second component allows the print service to respond to
queries about dynamic attribute information. The simulated
print service was deployed on multiple Solaris workstations
during experimentation.

The monitoring of these dynamic attributes was done
through SNMP. SNMP (Simple Network Management
Protocol) is a popular network management protocol. The
product selected for use in the development of the prototype
was Net-SNMP v5.1.1 [11] NET-SNMP is an open source
implementation of the SNMP protocol. Many printers,
network devices and host machines come with an SNMP
agent. To enable the print services to work with SNMP, we
used a greatly simplified version of the standard printer SNMP
MIB (Management Information Base2). The dynamic
attributes whose values are monitored using SNMP are the
following: print queue length, toner remaining, and paper
remaining. SNMP get queries are made only at the time the
MCS needs to calculate which service to select based on a

2 A MIB is a data file containing a collection of all objects managed in a
network. Objects are variables containing the state of processes running on a
device. They may also contain text information about the device, such as a
name and description.

client’s request – there is no polling of the services. A
location process provides information on the location of a
user. This information is retrieved from a table. Future work
will have this process collect location information from a
location system.

2) Workstation Service
The purpose of the workstation service is to locate

workstations that are available for use. A small monitoring
agent is deployed on each Solaris, Linux, and Windows
workstation to record its availability and number of users to a
web service, composed of an Apache web server and MySQL
database. A separate SLP proxy periodically queries the web
service using HTTP and SQL requests to determine which
workstations are available, as well as their static attributes
(including their name, address, operating system, and
location), and registers this information with a Service Agent.
One registration is made for each workstation found so that
multiple workstation services can be located with each SLP
query.

Dynamic attribute information is collected on demand by
the MCS through additional HTTP and SQL queries to the
web service tracking the workstations. The attribute in
question here is currently only the number of users on the
workstation, but this can be easily expanded in the future to
include a variety of resource utilization metrics.

C. Client Implementation
The client in the prototype was built with the purpose of

simulating an application that is SLP-enabled and that requires
the use of a print or workstation services. The client is on one
of the Solaris systems. The client implementation is platform
independent, with versions available for multiple flavors of
Unix (Solaris and Linux), with ports in progress to Windows,
PocketPC, and other portable environments. Unix was chosen
as the initial client platform because of the ability to quickly
develop and test a prototype in this environment. The
software functionality does not change for different versions
created for different operating systems.

D. Experimentation
Experimentation consisted of running the test client

multiple times to generate service discovery requests for our
provided services with various weight vectors and attribute
filters. In all cases, the selected service was chosen
appropriately based on the parameters provided by the client.
This verified that our prototype system behaved correctly.

Experiments showed that service selection took almost as
long as service discovery. The dominant cost in service
selection is discovering MCS and TOW services. Section VI
discusses changes in the architecture that can reduce this cost.

VI. DISCUSSION
This section briefly discusses the observations of the

architecture and working with the prototype.
Improved Support for Context-Aware Applications. This
prototype extends support for context-aware application by
handling context that is defined by dynamic attributes: user
location information and dynamic information that
characterizes load of printers and workstations. Although
some of this information was emulated (e.g., location) we
were able to illustrate the feasibility of the proposed
architecture. We showed that a coordinating process that
collects monitored information can be used to hide from the
MCS the details on how the information is collected (e.g., is it
being collected using SNMP or a location system). We
showed that this information can be used to select a service.
Architecture Variations. The work presented in this paper
showed the SDPs returning services to the client application.
The client application could be one that is executing on a
resource-constrained mobile unit that conceivably could be
overwhelmed with the number of services returned. The
architecture easily allows for a proxy for the client to be used
that is executing on a more powerful machine.

As discussed in Section V, experimental results show that
the service selection takes almost as much time as the initial
service discovery. There are variations on the architecture that
can be used to reduce the amount of time that service selection
takes. Section V suggests that the MCS be discovered by the
client and that the TOW be discovered by the MCS using an
SDP. SDPs return a communications handle for further
communication. The MCS can cache the handle for the TOW.
If the handle becomes invalid, then the MCS can use an SDP
to discover a new TOW service. If it is assumed that the MCS
and TOW do not often change their locations, then this would
reduce the amount of time for service discovery. It is also
possible for the client to cache the handle of the MCS. The
client would cache a handle for a specific environment e.g.,
there may be a handle cached for each organization. There is
most likely limited space for storing handles and thus the
client would have a limited number of entries. A least
recently used algorithm can be used to replace entries with
newer entries.

Currently the architecture has a set of services returned to
the client from a SDP. The client then sends the returned
services to MCS for selection based on dynamic attributes.
The reason for using this approach is that it made it easier to
use an existing SDP. An alternative approach would be for
the client to send a service discovery request to the MCS. The
MCS would use an existing SDP to find a set of services based
on static attributes. It would then proceed to select from this
set of services based on dynamic attributes.

Another architectural variation is that the functionality
implemented by the MCS is moved to the client device. This

would mean that the client would contact the monitoring
services to get values of dynamic attributes. The disadvantage
of this approach is that the client device would have to either
discover the monitoring services (which does have overhead)
or already know where to retrieve the monitored values of the
dynamic attributes. The other disadvantage is that it would
not be possible to support administrator policies (this was
discussed in Section IV.E).
Reliability. Two new services were added: MCS and TOW.
It is possible to replicate these services and thus since these
can be discovered by an existing SDP a certain amount of fault
tolerance can be provided.
Use of Multiple SDPs. The architecture supports the
simultaneous use of different SDPs. This is possible by
implementing the MCS and TOW services so that the Service
Discovery Enabling Component has code needed for the
different service discovery protocols. Thus the same MCS
can be used for different clients using different SDPs. It
should also be relatively easy to add or change the SDPs being
used by the MCS and TOW services without having to change
the software for actual selection.
Adaptability. The architecture is designed for adaptability.
For example, although discussion focused on returning a
single service to the client application, the architecture allows
for dynamic attributes to be returned for each service. This
would allow each service to be annotated with information.
The client can then make the final selection decision. This
sort of annotation has been shown to be useful in [5].

The architecture is not limited to using dynamic attributes
when selecting a service. A combination of both static and
dynamic attributes can be used with weights assigned to static
as well as dynamic attributes. This allows for more flexibility
in service selection.
Weight Vectors. Currently, the work assumes that different
users will have different weight vectors to take into account
their preferences. It should also be possible to consider that a
user’s preference changes over time or is different depending
on the time of day e.g., sometimes proximity is more
important than printer load and at other times the reverse is
true. A user’s preferences may depend on the domain that
they are in. Future work should take this into account.
Adding New Service Types. A new service type is easily
added by registering with the MCS. This registration includes
names of dynamic attributes. The implication is that not all
dynamic attributes have to be known at startup. This was
validated by first providing a print service and then adding a
service for finding free workstations. It should be possible to
provide a web service [9] associated with each service type
that provides operations for monitoring. This allows the MCS
to assume a standard approach for requesting information
without being concerned on how that data is actually
collected. Our experience the printer and workstation types

showed that this was possible since for both these types the
monitoring was done independently of this work. The
workstation monitoring was done without knowledge of the
work described in this paper.
Efficiencies in Monitoring. Currently, the architecture
assumes the MCS requests values of dynamic attributes from
the coordinating monitoring process for the requested specific
type. The architecture can be modified to allow not only
values of dynamic attributes to be returned but also the
amount of time these values can be considered to be valid.
This allows the MCS to cache these values for the valid time
period, which results in fewer queries for monitored
information.
Personalization. The architecture provides personalization by
allowing a client to maintain information about a weight
vector for each service type. It is possible to maintain
information about a weight vector for each service type for
each organization, a weight vector to be applied to all
environments or no weight vector. Currently, the architecture
maintains a weight vector to be used as the default for all
requesting clients. It should be possible for the TOW or some
other management service to keep track of selections made by
clients. Thus, the next time the client requests a service of the
same type it may be able to look at the history of selections
and make a selection based on that history.

VII. CONCLUSIONS AND FUTURE WORK
This paper presented an architecture for service selection

based on the use of an existing SDP which selects based on
static attributes and dynamic attributes, and taking into
account preferences. This improves the suitability of using
SDPs for context-aware applications. It was demonstrated that
several management components could be added and used
with an existing SDP. Initial results are promising since the
overhead associated with service select does not dominate.

 Future work includes the following: 1) Further study of
architecture variations such as those described in Section VI
with an emphasis on proxies. As part of this research, we will
measure the performance impact that a proxy has when the
client is a mobile unit. We will also examine the use of
caching as an approach to reducing the time it takes to carry
out service selection. 2) Expand the prototype to a larger
environment. Currently, we are investigating using two
campus buildings for the prototype. We are currently
implementing a location system to be used in conjunction with
this prototype. This location system becomes another
monitoring module. This expansion will be used to enhance
the user interface and provide more input into personalization.
3) This work currently assumes that the services to be
discovered are not in a mobile ad-hoc network. The client
device may be mobile but the services are not. Future work
will examine the discovery of services in ad-hoc networks.

VIII. REFERENCES
[1] Pravin Bhagwat. “Bluetooth: Technology for Short Range Wireless

Apps”, IEEE Internet Computing. Volume 5, No. 3, May/June 2001.
[2] Tim Kindberg et al, “People, Places, Things: Web Presence for the

Read World”, Technical Report HPL 2000-216 Internet and Mobile
Systems Laboratory, HP Laboratories Palo Alto, February 2000.

[3] Caldera Systems Inc. “An Introduction to SLP”, Whitepaper (Draft).
[4] Christos Doulkeridis, Efstratios Valavanis and Michalis Vazirgiannis.

“Towards a Context-Aware Service Directory”, Technologies for E-
Services, Lectures Notes in Computer Science, volume 2819,
September 2003, pp. 54-65.

[5] A. Friday, N. Davies, N. Wallbank, E. Catterall and S. Pink. “Supporting
Service Discovery, Querying and Interaction in Ubiquitous Computing
Environments”, ACM Baltzer Wireless Networks (WINET) Special
Issue, 10(6), 2004.

[6] E. Guttman, C. Perkins, J. Veizades, and M. Day. “Service Location
Protocol, Version 2”, Request for Comments (RFC) 2608, June 1999.

[7] C. Hertel. “Understanding the Network Neighborhood”, Linux
Magazine, May 2001.

[8] E. Hughes, D. McCormack, M. Barbeau and F. Bourdeleau. “Service
Recommendation using SLP”, IEEE International Conference on
Telecommunications(ICT), Bucharest, June 2001.

[9] Kerry Jean, Alex Galis and Alvin Tan, “Context-Aware GRID Services:
Issues and Approaches”, First International Workshop on Active and
Programmable Grids Architecture and Components, Lecture Notes in
Computer Science 3038, 2004, pp. 166-173.

[10] M. Kheder and A. Karmouch, “Enhancing Service Discovery with
Context Information”, ITS’02, Brazil, September 2002.

[11] The NET-SNMP Home Page. Last access Sept. 2004. Available at
http://www.net-snmp.org/.

[12] C. Lee and S. Helal. “A Multi-Tier Ubiquitous Service Discovery
Protocol for Mobile Clients”, First ACM Conference on Mobile Systems
and Applications, May 2003.

[13] Microsoft Technet, “Universal Plug and Play in Windows XP.”
Technical Document, August 2001, available at
http://www.microsoft.com/technet/prodtechnol/winxppro/evaluate/upnp
xp.mspx.

[14] B. Miller and R. Pascoe, “Salutation Service Discovery in Pervasive
Computing Environments”, Technical Report, IBM White Paper,
February 2000.

[15] OpenSLP web site. Last Accessed Sept. 2004. Available at
http://www.openslp.org/#Credits.

[16] Peter Orbaek, “The OpenLSD Framework: Location-based Service
Discovery”, Department of Computer Science, University of Aarhus,
2003.

[17] Karen Reff (kreff@vtm-inc.com), UPnP(TM) Forum Administrator and
Toby Nixon (tnixon@windows.microsoft.com), Technical Support.
Private Correspondence.

[18] The Salutation Consortium, “Salutation Architecture Specification,
Version 2.0c”, June 1999, available at http://www.salutation.com.

[19] The Salutation Consortium, “Salutation Architecture: An Overview”,
Presentation, last accessed September 2004, available at
http://www.salutation.org/tour/index.html.

[20] The Salutation Consortium, “Frequently Asked Questions,” Last
Accessed September 2004,
http://www.salutation.org/faqs.htm#General%20Questions.

[21] N. Dulay, E. Lupu, M. Sloman and N. Damianou, “A Policy
Deployment Language for the Ponder Language”, Proceedings of the 7th
IFIP/IEEE Symposium on Integrated Network Management (IM 2001),
May 2001.

[22] Sun Microsystems, “Jini Architecture Specification, Revision 1.0,”
October 2000, available at http://www.sun.com/jini.

[23] Sun Microsystems: Jini Network Technology. “Jini Technology
Architectural Overview.” January 1999, available at
http://wwws.sun.com/software/jini/whitepapers/architecture.html.

[24] UDDI . “The UDDI Technical White Paper”, http://www.uddi.org
[25] UPnP Forum. “UPnP Device Architecture 1.0, v1.0.1.” December

2003, available at http://www.upnp.org/resources/documents/
CleanUPnPDA101-20031202s.pdf.

[26] Feng Zhu, Matt Mutka, Lionel Ni, “Classification of Service Discovery
Protocols in Pervasive Computing Environments”, MSU-CSE 02-24,
Michigan State University, East Lansing, 2002.

