
WLocator: An Indoor Positioning System
Shaun Phillips, Michael Katchabaw, Hanan Lutfiyya

Department of Computer Science
The University of Western Ontario

London, Ontario Canada
Email: sphill8,katchab,hanan@csd.uwo.ca

Abstract— There exists a multitude of location-sensing
systems utilizing wireless technology, though varying
in cost, coverage and accuracy. In this paper we will
introduce WLocator, a system that aims to strike a balance
between these areas. WLocator will provide location infor-
mation relative to symbolic, user-created “landmarks”.
These landmarks are easily created and maintained,
thus reducing short and long term costs. Additionally,
the unique matching algorithm invoked by WLocator
attempts to offer a relatively high level of accuracy, given
the low cost of implementing the system.
Keywords: Indoor positioning systems, WiFi

I. INTRODUCTION

A location positioning system provides position in-
formation about an entity that is not dependent on any
application. Applications that use the location position
information are called location-aware applications. An
example of a location-aware application is one that
uses location information to provide directions to the
user.

A key weakness of early work (e.g., [6], [7], [14])
in indoor location positioning systems is that special-
ized hardware needs to be installed in environments.
Although the hardware itself may not always be ex-
pensive, these systems can be costly to deploy and
maintain. As a result, many organizations would not
be able to afford this type of solution.

The widespread adoption of WiFi in indoor envi-
ronments provides an opportunity to develop low-cost,
indoor positioning systems. Examples of positioning
systems are found in [1], [8], [9], [19], [17], [20].
Several of these systems provide high granularity (i.e.,
locations that are close to each other can be distin-
guished) but often incur a high cost of deployment
since a thorough mapping of the environment is re-
quired in advance. This mapping involves the collec-
tion of signal strengths from multiple preselected po-
sitions to create a radio map. Signal strengths from an
unknown position are compared to the signal strengths
of the preselected locations (found in the radio map) to
determine the location of the unknown position. Thus
a change in the set of access points requires that the
radio map be re-created. Signal strengths measured
from a location often vary since the propagation of
these signals is affected by reflection, defraction and
scattering of radio waves caused by frequent movement
of objects, people and interference from competing
signals. Several of the positioning systems handle this
by taking multiple samples and applying functions. The

problem with much of this work is that it makes the
off-line analysis time consuming and does not address
temporal variations of signal strengths. The samples
are often taken within a short period time e.g., over
a five minute period, or at two different times of the
day. The amount of variation is reported to be around
10 dBM in the literature, while our own site surveys
[13] taken over multiple days at various building at
the University of Western Ontario suggests a mean
fluctuation of 21 dBM.

These weaknesses led to other systems [5], [15] that
provide lower granularity but do not have a high cost
of deployment. The Herecast [15] location positioning
system shows that even with the lower granularity that
there are still interesting location-aware applications
that can be developed.

This paper describes an indoor positioning system
that is simply called Western Locator or WLocator
that is primarily based on WiFi and addresses some
of the weaknesses found in the existing work. This
includes fluctuating signal strengths and the ability to
deal with changes in the set of access points without
the work and costs associated with other systems.
Furthermore, the WLocator system is able to support
the use of other devices that emit detectable signals
e.g., Bluetooth, RFID tags. Although neither of these
types of devices are commonplace today, their usage is
definitely increasing. Locator’s support of these devices
will be illustrated through the use of Bluetooth devices.

The outline of this paper is as follows. Section
II describes related work. Section III describes the
algorithms developed for for location purposes within
the WLocator system. These algorithms accommodate
signal strength fluctuations and changes to the set of
access points. Section IV describes a design separating
location determination from application logic, provid-
ing an application programming interface that allows
any application to access and use location information,
which is a critical need of any location positioning
system. Section V describes a location-aware applica-
tion that makes use of the API described in Section
IV. Section VI describes experimental results. Section
VII concludes with a discussion of the experience with
WLocator obtained through using the application and
future work.



II. RELATED WORK

Two categories of work have been identified in
location-based positioning systems that use WiFi ac-
cess points [17]. The first category of location po-
sitioning systems models the propagation of radio
signals (e.g., [8], [9], [16]). The work in [8] describes
calibration-free location estimation techniques. This
requires a location server from which the client de-
vice requests location information. The location server
requires that the client device measures and reports
signal strengths from all access points that have been
detected. The location server uses these measurements
to generate multiple distance mapping curves for each
detected access point. The curves map an signal
strength value to distance. Location estimation is based
on triangulation. Essentially this technique makes use
of a mathematical model of propagation. Other work
using mathematical models of propagation includes
[9], [16]. Most of the models developed assume ideal-
ized conditions (e.g., fluctuating signal strengths) that
are rarely satisfied in practice.

The second category uses empirical data to approx-
imate the location (e.g., [1], [2], [17], [19], [20]). An
early example of a location positioning system that
uses empirical data is RADAR [2]. In RADAR, an area
is divided into a 1×1 meter grid, with signal strength
measurements of access points taken at each intersec-
tion. The mean of these measurements is recorded with
a timestamp using a driver on a mobile host which
extracts the signal strength from the network interface
card. This recording is referred to as a signal strength
tuple. This is used to create a radio map which is a
set of signal strength tuples. The creation of the radio
map takes place in an off-line analysis phase. This
map is used for on-line analysis where observed signal
strengths are compared with entries in the radio map to
determine the location whose associated signal strength
best matches the observed signal strengths. The K-
nearest neighbor approach is used to find the best
match. Privacy is an issue since the location of a user
is always known to the location system infrastructure.

The Horus system [19] is similar to RADAR in that
it uses sampled signal strengths from various locations.
However, instead of using a mean of signal strength
values, a signal strength probability function is created
i.e., a function that calculates the probability of the
signal strength of a access point at location (x,y). The
radio map stores the distribution of signal strength
received from each access point for each sampled
position. An algorithm is presented that takes as input
a sequence of observations from each access point.
The sequence is ordered by signal strengths. For the
first access point the probability of each location in the
radio map set being the correct location is calculated
based on the first access point. This provides a set of
possible locations based on this access point. If the
probability of a location is considered high enough
then this is the chosen location. A extension of Horus

can be found in [17].
RADAR and Horus are limited in that the user’s

location can only be mapped to one of the locations
defined in the radio map. The work in [1], [20] attempt
to address this issue using interpolation techniques for
location estimation.

Results vary with the latest results reported in [17]
of being able to distinguish locations just over four
meters apart. The Horus system [19] is suppose to be
able to distinguish locations about 1.4 meters apart
with 90%. On the other hand, [1] reports that in
a performance comparison Horus has 40% accuracy
while Radar has 15% accuracy. Generally we found
that comparisons are difficult since different systems
are tested in different environments.

As stated in Section I, signal strengths measured
from a location often vary. Several of the positioning
systems handle this by taking multiple samples and ap-
plying functions. The problem with much of this work
is that it does not fully handle temporal variations.

Recently two location positioning systems [5], [15]
using an empirical approach were developed that do
not require initial calibration and changes in the set
of access points do not have the maintenance costs
associated with many of the systems discussed ear-
lier in this section. Placelab [5] and Herecast [15]
allow a WiFi-enabled client device to automatically
determine its location by listening for signals from
known 802.11 access points in the environment. Access
points are known since an access point broadcasts
its MAC address. Placelab stores the MAC address,
latitude and longitude of each access point in the
client device before the client device is used. For
each access point that the client device receives a
signal for, the location is calculated as the average of
retrieved latitudes and longitudes. Herecast stores the
access points and the symbolic name of the location
associated with the access point. The location of the
client device is the one associated with the access
point with the strongest signal strength. Access points
with weaker signal strengths have almost no impact on
the determination of the location unless these access
points are the only ones detected. An access point
that is removed will not generate an access point
and thus does not factor into any calculations of
location. Fluctuating signals in Herecast imply that
different access points may have the strongest signal
strength measured by the client device at different
points of time. However, experiments show that these
access points are often close to each other and thus
the inferred location is usually reasonable. PlaceLab
computes location based on latitude and longitude.
Fluctuations in signal strength may result in access
points that are far away from the client device to not be
considered in the average. Additional access points are
handled by periodically downloading an updated list of
access point information (e.g., latitude, longitude).

Placelab is intended for primarily outdoor use where



there is a high density of WiFi access points as the
result of buildings being close to each other. Herecast
is intended for indoor use. The closest access point
approach of Herecast, and the triangulation techniques
of Placelab offer accuracies in the range of 20-25
meters. In both cases the accuracy depends on the
density of access points. This level of accuracy limits
possible applications. If an application requires a finer
granularity than Herecast and PlaceLab can provide,
then a different approach must be used.

Our work is empirical, based on our earlier work
with Herecast, except that new algorithms and func-
tions have been developed to deal with a change to
access points by applying functions in the on-line
analysis phase. This work also shows that other devices
can be used.

III. ALGORITHMS

The location positioning system introduced in this
paper functions by mapping fingerprints of received
signals at a given location to fingerprints for known lo-
cations or landmarks within the environment. To more
precisely explain this, we introduce the following nota-
tion and algorithms. Let L = {l0, l1, .., ln−1} represent
preselected positions. It is assumed that each position,
li is chosen to represent a landmark i.e., a location that
is easily identifiable using symbolic names. Let A =
{a0, a1, .., an−1} represent the wireless access points
in a building. Let B = {b0, b1, .., bm−1} represent
the set of Bluetooth devices. For any location, li, the
set {ri0, ri1, ...rin−1} is the set of signal strengths
observed for each device in A. A similar set can be
defined for Bluetooth devices except that instead of
recording signal strengths, one value is assigned for
those access points that have been detected and another
value is assigned for those access points that have not
been detected (more on this later in this section).

A fingerprint is collected for each preselected po-
sition in L and stored. For an unknown position, x,
the fingerprint from a preselected position that best
matches the fingerprint taken for x determines the
location. (Note that in the rest of the paper li is being
used to denote a fingerprint associated with a specific
preselected position, i.)

This remainder of this section describes algorithms
for the following: (i) Finding the best match between
the fingerprint taken at the current position as measured
by the client device and the set of fingerprints asso-
ciated with the preselected locations (section III.A);
(ii) Algorithms for updating fingerprints of preselected
locations (section III.B).

A. Matching Algorithm

This work describes an algorithm that finds the best
match between the fingerprint taken of the current
position as measured by the client device with the
signal sets associated with the predetermined locations.
The matching algorithm takes as input a fingerprint of
the current location of the client device, x, and for

each fingerprint in L computes a similarity measure
that is used to compare x with the fingerprints of
predetermined positions represented in L. A device not
detected is represented by the constant Low. The value
of Low is a low negative number since the range of
values for WiFi access point signal strengths includes
negative numbers.

Input: L: Set of fingerprints for predetermined
positions

Input: x: Fingerprint associated with current
unknown position

Input: D: Set of WIFI and Bluetooth devices
Output: SimilarityMeasures: Set of similarity

measures for each l ∈ L
sumx = 01

foreach d ∈ D do2

if rxd > Low then3

sumx = sumx + score(rxd)4

end5

end6

foreach l ∈ L do7

foreach d ∈ D do8

if rld > Low then9

t1 = score(rld)10

t2 = adjust(rxd, rld)*t111

suml = suml + t212

end13

ratiol = suml/sumx14

similarityl = (similarityp
l
∗weight+ratiol)

(weight+1)15

Add similarityl to16

SimilarityMeasures
end17

end18
Algorithm 1: Matching Algorithm

Lines 1-4 of the algorithm show the computation
of the sum of signal strengths after the score function
has been applied for fingerprint x resulting in sumx. A
similar computation, with adjustment made for signal
fluctuations (using the adjust function), is done for
each l ∈ L (Lines 8-13) resulting in suml. The
upper bound of this value is sumx. Higher values
of suml/sumx indicate better matches (Lines 12-15).
This is referred to as the similarity measure. The
similarity measure needs to compensate for fluctuat-
ing signal strengths, added/dropped access points and
Bluetooth devices. The two functions, score and adjust
are used for this purpose.

The following is a description of how score and
adjust behave when the device is a WiFi access point.
This will be followed by a brief discussion of how
these functions behave when the device is a Bluetooth
device. The score function is linear as graphically
depicted in Figure 1. This function is applied to the
signal strength measured for each detected access point
(line 10). The higher the signal strength of an access
point the higher the value returned by score to be



Fig. 1. The Score Function

associated with that access point. For a position, an
access point with a weak signal at time t may not
be detected at time t′. This should have less impact
in determining the location. This is illustrated with
the following example. Assume that x and x′ are two
different fingerprints of the same unknown position
taken at different points of time (x is taken before
x′) and that x reflects that it detects a signal strength
from WiFi access point k not detected by x′ i.e., rxk

is greater than Low but rx′k is Low suggesting that
k is a relatively far away access point. score(rxk)
results in a low number since the signal is weak while
score(ryk) is zero. score(rxk) is not much larger than
score(ryk) and thus has relatively little impact on
the value of suml. The similarity measures computed
will not change very much implying that the location
computed will be the same for x and x′ unless two
preselected locations have similar fingerprints. In this
case, the access point with the weak signal may be the
deciding factor.

Not all signal strength fluctuations are associated
with access points with weak signal strengths. In
addressing the issue of fluctuating signal strengths, the
matching algorithm uses the adjust method. Similar
to score, adjust is modelled as graphically depicted in
Figure 2. For a range of differences in signal strength to
a point, adjust function returns 100%. This is referred
to as the fluctuation threshold point. It then decreases
linearly.

The difference in signal strength for a WiFi access
point is calculated as the difference in dBm between an
access point that is common between the fingerprints
being compared. The function returns the percentage
by which to adjust the value given by the score function
(lines 10, 11). Given that signal strength fluctuations
are commonplace, the adjust function accounts for this
by disregarding fluctuations within a certain range.

Fig. 2. The Adjust Function

Thus, any difference in signal strength that is within
the range of possible fluctuations implies that the
score function is applied fully. As an example, data
collected from a random sampling of fingerprints in
the Middlesex College building at Western has shown
the mean fluctuation of received signal strengths to
be roughly 21dBm in this area. This suggests that for
any unknown position different fingerprints taken over-
time may show great variation in the signal strengths
measured for access points. This suggests that if the
difference between the recorded signal strength for a
particular access point for x and for a fingerprint of
a pre-determined position is less than or equal to a
threshold value, then the value returned by score for the
access point is unaffected. However, differences greater
than the threshold value will progressively diminish the
value of the access point, as these may indicate that
the fingerprints being compared represent are unique
locations.

As noted earlier Bluetooth devices are either de-
tected or not detected since current technology does
not easily allow for signal strength measurement as
can be done for WiFi access points. For Bluetooth
devices using Boolean values, zero (indicating that a
device has not bee detected) and one (indicating that a
device has been detected), cannot be used since a value
of one would not contribute greatly to the sum being
computed and hence would make it more difficult to
distinguish fingerprints. Thus for a Bluetooth device
if a device is not detected then it is assigned the
value Low otherwise it is assigned a fixed number as
the signal strength. The score function is applied to
these values. The adjust function returns an adjustment
percentage of 100% if the device is detected otherwise
it returns zero. It is assumed that the score and adjust
functions know the device type (e.g., Bluetooth or WiFi
access point) that the function is being applied to.



The final calculation takes place in line 15. For every
comparison of an unknown position a similarity mea-
sure is computed for each preselected location, li. The
last similarity measure is denoted by similarityp

l . The
weight indicates the emphasis that should be placed on
the current measurement. For example, a weight of two
will place 50%, a weight of four will place 25%, etc. A
low weight forces fingerprint values to change quickly
as more emphasis is placed on the current measurement
as opposed to previous measurements. A high weight
causes fingerprint values to to change more slowly as
more emphasis is placed on the previous measurement
as opposed to the current measurement. The reason for
this step is to deal with variations of signal strength
caused by small user movement of the client device.

B. Updating Fingerprints of Predetermined Locations

The addition and deletion of access points or Blue-
tooth devices requires the use of new fingerprints for
preselected positions.

For a preselected position let l be the current fin-
gerprint and l′ represents the new fingerprint. For each
d ∈ D the value of l′d is computed as follows:

l′d = (ld∗weight+ld)
(weight+1)

If the added device is a WiFi access point then the
added access point’s RSSI is averaged with the mini-
mum RSSI of the client device since it did not exist in
l. Weights are used in the same fashion as discussed in
the previous subsection. The following example is used
to illustrate how fingerprints of preselected locations
are updated. Assume that D = {b0, b1, b2} where b2

represents the latest access point to be added. Let l
= {12,20}. Let weight be equal to 0.25. The signal
strength of the added access point is averaged with the
client device’s minimum RSSI value. This means that
l′ = {12,20,-18}. Deletion of access points also uses
this technique. However, upon a second reading if an
access point no longer exists then it is taken out of the
fingerprint. This allows applications to recalibrate the
system without having to update all the fingerprints
at once. Thus on-line analysis can still take place
(with perhaps lower accuracy) while recalibration takes
place.

Since Bluetooth devices do not have fluctuating
signal strengths newly added Bluetooth device results
in a variable in the fingerprint whose value reflects that
a new Bluetooth device has been detected.

IV. DESIGN

This section briefly describes the design of the
WLocator system. More details of the API and design
can be found in [13].

A. Scanner

An object of the Scanner class is responsible for
monitoring wireless signals. Only one such object is
allowed within an application. The Scanner object
coordinates objects of other classes (helpers) where

a class provides the functionality needed to monitor
a specific type of device e.g., wireless access point,
Bluetooth devices. Each helper class maintains a list
of the detected devices and the signal strengths of
each of the detected devices. These lists can be pro-
vided to requesting classes. This work used two helper
classes: (i) The WiFiScanner class is used for wireless
access points; (ii) The BluetoothScanner class is used
for Bluetooth devices. Currently detected devices are
maintained in a list that is returned to the Scanner when
requested by the Scanner.

Only Bluetooth devices that would be considered
to be stationary are tracked, as including potentially
mobile devices would be detrimental to accuracy. For
example, if a fingerprint can reflect the use of a
cellular phone then the created fingerprint will consist
of data that is almost certainly unreliable since cellular
phones are mobile and the device will unlikely be in
the fingerprint at subsequent readings. Keyboards, and
mice are examples of relatively stationary Bluetooth
devices.

After a Scanner object is created the developer
has the option of creating fingerprints using the
getFingerprint method. After receiving a re-
quest for a fingerprint using the getFingerprint
method, the Scanner obtains a listing of currently
detected Bluetooth devices and wireless access points
from the helper classes. This is done through the
use of two methods that each helper class has. The
BeginScan method starts a scan of the environment
that the client device is in for signals for the devices
that it is associated with. The EndScan method termi-
nates the scanning initiated by a call to BeginScan.
The last signals detected for the WiFi and Bluetooh
devices are provided to the Scanner object and are
maintained until the Scanner object is destroyed.

B. Fingerprint

The WLocator system associates a symbolic name
with each fingerprint (similar to that found in [15]).
Symbolic names have more meaning and are more
readily identifiable than their numerical counterparts.
For example, an application would be more engaging
to a user if the user was informed that the location
is “Bill’s cubicle” rather than “-100.345, 32.871.” A
class is used to encapsulate the storage and retrieval
of fingerprints and symbolic names.

C. Manager

The Manager class provides facilities for developers
to perform various actions on fingerprints. Over the
lifetime of a location-aware application, potentially
thousands of fingerprints can be created and used.

The application has a choice when creating a Man-
ager object on providing a file name with fingerprint
data. This data represents the fingerprints of predeter-
mined locations. The WriteData method can be used
by a location-aware application to write fingerprint



information to a file. There is a corresponding method
for reading fingerprint data.

The Manager class is able to compare fingerprints
by computing a similarity number. This functionality
is used to determine which stored fingerprint most
accurately describes the current location. This was
described in the previous section. A method of the
Manager class, getTopFingerprints, is used by
location-aware applications to get the symbolic names
of the fingerprints of preselected positions that most
closely match (using the algorithm in III.A) the finger-
print of the current location. The number of symbolic
names to be returned is given as input.

Another method of the Manager class is the merge
method. This implements the algorithm described in
Section III.B. The inputs are the fingerprint of the
current location measured by the client device and the
index of the fingerprint in storage to be updated.

The updateLocations method takes as input
the fingerprint of the current position measured by the
client device and determines the location based on the
algorithm described in III.A. Each preselected position
is assigned a new similarity measure.

V. IMPLEMENTATION

The client software is written in embedded Visual
C++ for Windows Mobile/PocketPC environments.
This was put on an HP iPAQ 5500. The file that
fingerprint data is written out to is textual and local
to the PDA. The WiFi Scanner open source software
[18] is used to the interface to the embedded network
card to discover access points.

The WiFiScanner object maintains a list of all de-
tected wireless access points and their signal strengths.
The WiFiScanner class provides a method to retrieve
the list of detected wireless access. Fingerprints are
created by using the signal strengths of devices de-
tected in the list of all detected wireless access points
while all other access points have Low recorded as the
signal strength.

This raises the question of how long an access point
should remain in the list of detected wireless access
points. WLocator allows for 10 seconds of not detect-
ing a signal from an access point before it is purged
from the list. Certainly, a lower threshold would allow
the system to be more responsive to change, however,
testing has shown that a period of 10-15 seconds
provides an ideal mix of responsiveness and reliability.
That is, a weak access point will occasionally not be
on the list of detected access points and a grace period
of at least 10 seconds ensures that the access point
remains in the list of detected access points when the
user’s location is stable.

Scanning for Bluetooth devices is similar to scan-
ning for wireless access points. However, difficulties
arise because there exists several implementations of
the Bluetooth protocol stack. For example, both Broad-
com (formally WIDCOMM) and Microsoft offer dif-
ferent implementations, and there are at least two more

Fig. 3. Fingerprint Management

for the Linux platform. As a consequence, code is not
portable between devices that use different Bluetooth
stacks. This work used the Broadcom stack.

Our experiments on campus suggested that even
though it is possible for there to be a fluctuation of
21dBm this is too large for a fluctuation threshold since
this does not occur often. Observed signal strength
fluctuations are the result of several factors including
hardware of the source device, interfering objects and
signals, and radio wave propagation. Consequently, the
level of fluctuation is dependent on the environment.
Thus, the threshold should be set to a value that will
be applicable to as many environments as possible in
which the system will be used. By default, WLocator
initializes the threshold value to 5dBm. The API pro-
vides a method that allows this value to be adjusted by
the user or developer.

VI. LOCATION APPLICATION

This section describes a sample application created
using the implementation based on the design and algo-
rithms defined in Sections III and IV. This application
creates and manages fingerprints. It was used for the
experiments described in Section VII.

The start of the program causes the creation and ini-
tialization of a Scanner object allowing the application
to create fingerprints using the GetFingerprint
method (see Figure 3).

Created and stored fingerprints may be displayed at
any time by clicking on the names in the list shown in
Figure 4. A separate dialog is opened and the selected
fingerprint is displayed along with what is currently
detected by the system. This is shown in Figure 5.

Using a timer, the application uses continuous
calls to updateLocations to determine the lo-
cation of the current position by comparing it with
the fingerprints of the preselected position. The
GetTopFingerprints methods returns the finger-
prints with the highest similarities to be displayed. This
is graphically depicted in Figure 5.



Fig. 4. Display of fingerprints

Fig. 5. Display of fingerprints

The development of this application does not require
the developer to know how to scan for fingerprints or
how location is actually determined. The developer was
able to focus on the development of the GUI. This
suggests that the design and its interface does allow for
the separation of location determination from using the
location information, which is a key benefit to using
WLocator.

VII. EXPERIMENTAL EVALUATION

This section describes the evaluation of the system.
Sections A-D focus on the results of experiments
where it was assumed that only WiFi access points
are used, while Section E discusses experiences from
experiments involving the use of Bluetooth devices as
well.

A. Experimental Testbeds

Experimentation took place in three different
testbeds. The first testbed is in the basement, second
and third floors of the Middlesex College building.
The second testbed is the first and second floor of

Fig. 6. Western Science

the Western Science building (graphically depicted in
Figure 6). The third testbed is the ground floor of
the Taylor library in the Natural Sciences building
(graphically depicted in Figure 7). All three buildings
are at the University of Western Ontario. The buildings
vary in terms of the size, density of access points and
number of walls. We do not have control over the
placement or number of access points. This approach to
choosing testbeds reflects a realistic environment that
lessens the likelihood that adjustments to parameters
or algorithms are the result of the characteristics of
a very specific environment. The Middlesex College
building and Western Science buildings have 11 access
points each. However, the Western Science building
is a smaller building and thus has a higher density
of access points. The typical number of WiFi access
points that could be seen from a location ranged from
three to seven.

B. Data Collection

For each building fingerprints were created three,
five and ten meters apart. Between 20 and 30 finger-
prints of predetermined locations were taken on each
floor. The preselected positions were primarily in the
corridors and computer laboratories since we do not
have access to most offices.

C. Summary of Performance Results

Analysis of the experimental results shows that the
WLocator system had a granularity of 5-10 meters.
The system could differentiate between locations 5
meters apart 65-75% of the time. Locations that were
10 meters apart were correctly identified 85-95% of
the time. More results can be found in [13].

D. Analysis of Results

The variation of success of WLocator is the result
of several factors. One factor is the density of access



Fig. 7. Taylor Library

points within an area. If only a small number of
access points service an area, it is difficult to accurately
identify locations. For example, the western-most wing
of the ground floor in Middlesex College is serviced by
two access points. If the fingerprints are relatively close
together (within, say, 20 meters), then it is difficult
to identify a Fingerprint as the actual location with
any certainty. Regular signal strengths fluctuations and
the uniformity of the fingerprints makes determining
location in under these circumstances difficult.

Accuracy is increased when fingerprints have a
degree of uniqueness and there is variety amongst the
fingerprints in an area. This occurs when an environ-
ment has many WiFi access points that can be detected
at any position. The first floor of the Western Science
building is an example of an environment where this
situation occurs. Fingerprints in this area show that at
least 10 wireless access points with signal strengths
can be detected. This allows the algorithm defined in
III.A a good deal of data to make comparison. This is
seen in the results which show the highest accuracies.

Another factor are the obstacles to radio wave
propagation. We observed that its presence can aid
in determining location. We have discussed the ex-
treme scenarios where environments have either very
few devices, or an abundance of devices. Usually the
number of WiFi access points varied from three to
seven. It was found that two fingerprints taken five
meters apart with nothing to separate the fingerprints
are difficult to distinguish. If a wall is added between
them, a fingerprint may lose sight of an access point
which has a weaker signal. The matching algorithm
can better distinguish the fingerprints since there is
now a weaker signal. This phenomena was observed
in buildings that had many corridors and offices that
were compacted together in a small space–such as the
first floor of the Western Science Center (see figure 6).

Conversely, the wide open spaces of the ground floor
of Taylor library (see figure 7) ensured that fingerprints
remained relatively similar and difficult to distinguish.

E. Use of Bluetooth Devices

Experimentation was limited due to a lack of Blue-
tooth devices. However, from what was observed, the
use of Bluetooth devices could potentially be very
useful. Bluetooth devices in the environment proved to
be particularly beneficial to the accuracy of the system.
High-powered Bluetooth devices, which can broadcast
their signals up to 100 meters, generally act as an extra
wireless access point (and more is always better for
location determination). However, the most useful and
common devices are low-powered and transmit their
signal up to ten meters. When this is the case there are
relatively few fingerprints that show that this device
has been detected. If there was only one fingerprint that
saw the Bluetooth device then the accuracy of results
was close to 100%. Having Bluetooth devices show
up as detected in only one fingerprint is more likely to
be found in an environment such as the Western Sci-
ence building. The presence of low-powered Bluetooth
devices adds greater variety to fingerprints in a close
range. If a low-powered Bluetooth device is typically
seen by only a single fingerprint then the matching
algorithm can easily identify the fingerprint by the
detection of the Bluetooth device. In our experiments
the accuracy was increased by 10%.

VIII. CONCLUSIONS

This work described the WLocator indoor posi-
tioning system. This system is different from others
proposed in the literature in several ways as discussed
below. This section briefly describes observations and
future work.
Distinction between Off-line and On-line Phases.
Most of the systems described in Section II that use
empirical data have distinct off-line and on-line phases.
The off-line phase is used to build a radio map that can
be used in the on-line phase to determine the location
of an unknown position. These phases do not overlap.
On the other hand, WLocator allows for these phases
to overlap as described in section III.B. This makes the
task of recalibration easier.
Dealing with Fluctuations. The score and adjust func-
tions, defined in Section III.A, deal with fluctuations
by addressing the causes of fluctuations. One source of
fluctuations are access points that are far away and thus
cannot be detected or provide weak signals. The score
function ensures that these do not contribute heavily
to determining the location of the unknown position.
The adjust deal with the random fluctuations that often
occur even when the access point may be close by.
Although there exists some functionality in other sys-
tems to deal with fluctuations we chose to develop and
experiment with simpler functions. The reason is that
the functions used in other work are used in an off-line
phase. We need functions that work well in an on-line



phase and thus must not be computationally intense.
Future work will look at different implementations of
the score and adjust functions. For example, the adjust
function currently uses a constant and then linearly
decreases. A step function may be more appropriate.
Changing Set of Devices. Section III.B shows a
technique for updating fingerprints when the set of
access points are updated. Most of the other location
positioning systems do not address this problem.
Device Changes. A problem with other systems is that
a change in devices distorts the results. The approach
used in this paper is more resilient to differences
between devices.
Fingerprint Management. The set of fingerprints of
preselected positions is stored in a file. This file can
be downloaded by a location-aware application. The
location-aware application can use the API to create
a Manager object which has passed to it the name of
the file. The Manager object uses this as the set of
fingerprints of preselected positions.
Propagating Changes of Fingerprints of Preselected
Positions. There has been little discussion about how
client devices get fingerprints of preselected positions.
Clients can download a file with fingerprints of these
positions. Updates of this file can be done periodically
based. There are a couple of approaches that can be
used to update this file. One approach would have
an administrator update the file when an access point
is added. Alternatively there could be a community
driven effort for recording fingerprints which would
be similar to Herecast [15]. This will be incorporated
into future versions of WLocator.
Location-Aware Application Development. The ap-
plication developed was intended for experimental pur-
poses. It was found relatively easy to develop in that
its development did not require knowledge of location
determination. However, more experience is needed in
the development of applications to determine if the API
is sufficient or if additional methods are needed.
Lightweight. The software was placed on a HP PDA.
This is unlike much of the other work in this area that
did testing and experimentation on laptops. This work
uses a PDA illustrating that it is lightweight. Future
work will deploy the software to a WiFi-enabled cell
phone.
Performance. In general, it is difficult to estimate the
performance of WLocator in a new environment. The
network topology and building layout greatly effect the
granularity of the system. The testing completed at the
University demonstrates how these factors ultimately
aid or hinder the system’s accuracy. However, across
all test environments, the system could reliably identify
locations that were five to ten meters apart. The degree
of certainty varied slightly, and was often the result
of the aforementioned factors. In particular, a large
pool of devices that allowed for unique fingerprints,
and building layouts that provided obstacles to radio
wave propagation created environments where WLoca-

tor achieved its sought granularity. We plan to continue
deploying WLocator to other buildings on campus and
increase our usage of Bluetooth devices.

REFERENCES

[1] A. Agiwal, P. Khandpur and H. Saran, “Locator: Location
Estimation System for Wireless LANs,” Proceedings of the 2nd
ACM International Workshop on Wireless Mobile Applications
and Services on WLAN Hotspots, 2004, pp. 102-109.

[2] P. Bahl and V. Padmanabhan, “Radar: An in-building RF-based
user location and tracking system”, IEEE Infocomm 2000, vol.
2, pp. 775-784.

[3] Joe Bardwell, “Converting Signal Strength Percentage to dBm
Values,” 2002.

[4] Mike Hazas, James Scott, and John Krumm, “Location-Aware
Computing Comes of Age,” IEEE Computer, Vol. 37, No. 2.

[5] Gaetano Borriello, Matthew Chalmers, Anthony LaMarca, and
Paddy Nixon, “Delivering Real-World Ubiquitous Location Sys-
tems,” Communications of the ACM.

[6] A. Harter and A. Hopper, “A Distributed Location System for
the Active Office,”, IEEE Network Special Issue on Distributed
Systems for Telecommunications, vol. 8, no 1, 1994, pp. 62-70.

[7] A. Hopper, P. Steggles, A. Ward, P. Webster, “The Anatomy of a
Context-Aware Application”, Proceedings of the 5th ACM/IEEE
International Conference on Mobile Computing and Networking
(Mobicom ’99), 1999.

[8] Y. Gwon, R. Jain, “Error Characteristics and Calibration-
Free Techniques for Wireless LAN-based Location Estimation,”
ACM Proceedings of the Second International Workshop Mo-
bility Management and Wireless Access Protocols, 2004, pp.
2-9.

[9] P. Krishnan, A. Krishnakumar, H. Ju, W. Ju, C. Mallows, and S.
Ganu, “A System for Lease: Location Estimation by Stationary
Emitters for Indoor RF Wireless Networks”, INFOCOM 2004.

[10] R. Jarvensivu, R. Pitkanen and T. Mikkonen, ”Object-Oriented
Middleware for Location-Aware Systems,”, ACM Proceedings
of Applied Computing, 2004, pp. 1184-1190.

[11] Jeffrey Hightower, Sunny Consolvo, Anthony LaMarca, Ian
Smith, and Jeff Hughes, “Learning and Recognizing the Places
We Go,” In Proceedings of Ubicomp, 2005, Tokyo, Japan.
September 2005.

[12] J. Hightower, G. Borriello, “Location Systems for Ubiquitous
Computing,” IEEE Computer, 2001, pp. 57-66.

[13] S. Phillips, “Locater: An Indoor Positioning System”, Under-
graduate thesis report, 2007.

[14] N. Priyantha, A. Chand and Y. Lee, “The Cricket Support
System,” MOBICOM, 2000, pp. 32-43.

[15] Mark Paciga, “Herecast: An Open Infrastructure for Location-
Based Services using Wi-Fi,” M.S. thesis, University of Western
Ontario, London, ON, Canada, 2004.

[16] A. Smailagic, D. Siewiorek, J. Analt, D. Kogan, and Y. Wang,
“Location Sensing and Privacy in a Context Aware Computing
Environment,” Pervasive Computing, 2001.

[17] J. Wierenga, P. Komisarczuk,“SIMPLE-Developing a LBS Po-
sitioning Systems,” ACM Proceedings of the 4th International
Conference on Mobile and Ubiquitous Multimedia, 2005, pp.
48-55.

[18] “WiFiScanner: A New 892.11b Scanner,”
http://wifiscanner.sourceforge.net

[19] M. Youssef, A. Agrawala and U. Shankar,“WLAN Location
Determination via Clustering and Probability Distributions,”
IEEE PerCom 2003.

[20] Z. Xiang, S. Song, J. Chen, H. Wang, J. Huang and X. Gao,
“A Wireless LAN-Based Indorr Positioning Technology,” IBM
Journal of Research and Development 48, 5-6, 2006, pp. 617-
626.


