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ABSTRACT

In this paper we study a generalization of the classical notions of bordered and
unbordered words. A nonempty word is called bordered if it has a proper prefix which
is also a suffix of that word. A nonempty word is called unbordered if it is not bordered.
We extend the notion of bordered and unbordered words to incorporate the notion of an
involution function. (An involution function θ is such that θ2 is the identity function.)
We show that the set of all θ-bordered words is regular, when θ is an antimorphic
involution and the set of all θ-bordered words is context sensitive when θ is a morphic
involution. We study the properties of involution bordered and unbordered words and
also the relation between involution bordered and unbordered words and certain type of
involution codes. ∗
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1. Introduction

The study of combinatorial properties of strings of symbols from a finite alpha-
bet set is profoundly connected to numerous fields. In particular periodicity and
borderedness are two basic word properties that play a role in many areas including
string searching algorithms [5, 7, 8], data compression [9, 29] and in the study of
coding properties of sets of words [1, 28, 30] and sequence assembly [26] in compu-
tational biology. A word u is called bordered if it has a proper prefix which is also
its suffix. A word which is not bordered is called unbordered. Unbordered words
have also been called dipolar words in [27], non-overlapping words and d-primitive
words in [30] and d-minimal words in [31]. There are several classical results about
bordered words. Several properties of bordered and unbordered words have been
presented in [27, 30]. An authoritative text on the study of combinatorial properties
of strings would be [25]. The relationship between the length of a word and the
maximal length of its unbordered factors have been investigated in [12]. Factoriza-
tions of primitive words have been discussed in [17]. In [13], the authors define the
border correlation function, which specifies the bordered conjugates (u is a conju-
gate of w if uv = vw for some v ∈ Σ∗) of a given word w of length n and use it to
study the relationship between unbordered conjugates and critical points. In [14],
the authors
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Figure 1: The word is θ-bordered which forms a hairpin with no sticky ends.

estimate the number of words that have a unique border. In [6], the author
characterizes the biinfinite words in terms of their unbordered factors. A shorter
proof was presented in [16]. A proof of the extended version of the Duval-Conjecture
[10] which states that “Let u and v be words such that u 6= v, |u| = |v| = n and
u unbordered. Then uv contains an unbordered word of length atleast n + 1” was
given in [15]. The study of unbordered partial words was discussed in [2] and [3]. In
[4], the authors have discussed the equations on partial words. The relation between
monogenic expansion closed languages and unbordered words has been discussed in
[27].

The stimulus for recent work on combinatorics of finite words is the study of
molecules such as DNA that play a crucial role in molecular biology and biomolecu-
lar computation. Finding repeats or duplicated oligo nucleotides present as a string
within the genome is an active research area in genomics. In [11], the authors have
developed a computer program that identifies the periodic distribution of unique
words. In this paper we study a generalization of the classical notions of bordered
and unbordered words motivated by DNA based computing. We use an antimor-
phic involution map θ to formalize the notion of Watson-Crick complementarity of
the DNA strands. We extend the study of bordered and unbordered words to θ-
bordered and θ-unbordered words where θ is either a morphism or an antimorphism.
The study of θ-unbordered words was initiated in [19] and [21] for an involution map
θ. (An involution θ is such that θ2 is identity). A word u is called θ-bordered if v is
a proper prefix of u and θ(v) is a proper suffix of u. A word u is called θ-unbordered
if u is not θ-bordered. A particular type of θ-bordered word as described in Fig.1,
has non-overlapping θ-borders and such words form the well known hairpin struc-
ture. The words that avoid the hairpin structure were called θ-hairpin-free words
in [19]. Another type of θ-bordered word has overlapping θ-borders such that the
complement of a prefix of the word appears as a suffix of the word (See Fig.2).

In this paper we extend the properties of bordered and unbordered words [30]
to θ-bordered and θ-unbordered words for θ either a morphic or an antimorphic
involution. We begin the paper by reviewing basic concepts on words and intro-
ducing the definition of θ-bordered and θ-unbordered words. We define a relation
<θ

d such that v <θ
d u iff v is a θ-border of u and also show that for an antimorphic

involution the relation <θ
d is transitive. In Section 3, we give a characterization of

the set of all θ-bordered words when θ is an antimorphic involution and show that
the set of all θ-unbordered words is a dense set. We also provide necessary and
sufficient conditions for a word u to be θ-unbordered. In Section 4, we study the
closure property of the set of all θ-unbordered words with respect to the catenation
operation. In Section 5, we show that the set of all θ-bordered words is regular for
an antimorphic involution θ and the set of all θ-bordered words is context-sensitive
for a morphic involution θ. We discuss the relation between involution codes and
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Figure 2: The word u has v as its prefix and θ(v) = w as its suffix and they overlap
within u.

the sets of all θ-bordered and θ-unbordered words for a morphic or an antimorphic
involution θ in Section 6. (For more on involution codes we refer the reader to
[18, 19, 20, 21, 22].)

2. Basic concepts and properties

An alphabet Σ is a finite non-empty set of symbols. A word u over Σ is a finite
sequence of symbols in Σ. We denote by Σ∗ the set of all words over Σ, including
the empty word λ and by Σ+ the set of all non-empty words over Σ. We note that
with the concatenation operation on words, Σ∗ is the free monoid and Σ+ is the
free semigroup generated by Σ. For a word w ∈ Σ∗, the length of w is the number
of non empty symbols in w and is denoted by |w|. Throughout the paper we assume
that for an alphabet Σ, |Σ| ≥ 2. In the following we review some known concepts.
For a word w, the set of its proper prefixes, proper suffixes and proper subwords
are defined as follows.

PPref(w) = {u ∈ Σ+ | ∃v ∈ Σ+, uv = w}.
PSuff(w) = {u ∈ Σ+ | ∃v ∈ Σ+, vu = w}.
PSub(w) = {u ∈ Σ+ | ∃v1 , v2 ∈ Σ∗, v1 v2 6= λ, v1uv2 = w}.

Note that Pref(w) = {u ∈ Σ+|∃v ∈ Σ∗, w = uv} and Suff(w) = {u ∈ Σ+|∃v ∈
Σ∗, w = vu}.

We also recall some partial orders, the notion of bordered and unbordered words
and their relation to certain partial orders in the following. For more on these
relations and bordered words we refer the reader to [30].
Definition 1 1. (Prefix order). For v, w ∈ Σ∗, w ≤p v iff v ∈ wΣ∗.

2. (Suffix order). For v, w ∈ Σ∗, w ≤s v iff v ∈ Σ∗w.

3. (Division order). Define ≤d =≤p ∩ ≤s.

4. For u ∈ Σ∗, v ∈ Σ∗ is said to be a border of u if v ≤d u.

5. For w, v ∈ Σ∗, w <p v iff v ∈ wΣ+.

6. For w, v ∈ Σ∗, w <s v iff v ∈ Σ+w.

7. <d =<p ∩ <s.

8. For u ∈ Σ∗, v ∈ Σ∗ is said to be a proper border of u if v <d u.

9. For u ∈ Σ+, define Ld(u) = {v|v ∈ Σ∗, v <d u}.
10. ν(u) = |Ld(u)|.
11. D(i) = {u|u ∈ Σ+, ν(u) = i}.
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12. A word u ∈ Σ+ is bordered if there exists v ∈ Σ+ such that v <d u, i.e.,
u = vx = yv for some x, y ∈ Σ+.

13. A non-empty word which is not bordered is called unbordered.
Bordered words were initially called overlapped words and unbordered words were
called non-overlapping words. Note that D(1) is the set of all unbordered words.

Similar to the above definition, we define relations that involves either a morphic
or an antimorphic involution θ. For properties of bordered and unbordered words
we refer the reader to [30].
Definition 2 Let θ be either a morphic or antimorphic involution on Σ∗.

1. For v, w ∈ Σ∗, w ≤θ
p v iff v ∈ θ(w)Σ∗.

2. For v, w ∈ Σ∗, w ≤θ
s v iff v ∈ Σ∗θ(w).

3. ≤θ
d =≤p ∩ ≤θ

s.

4. For u ∈ Σ∗, v ∈ Σ∗ is said to be a θ-border of u if v ≤θ
d u, i.e., u = vx = yθ(v).

5. For w, v ∈ Σ∗, w <θ
p v iff v ∈ θ(w)Σ+.

6. For w, v ∈ Σ∗, w <θ
s v iff v ∈ Σ+θ(w).

7. <θ
d =<p ∩ <θ

s.

8. For u ∈ Σ∗, v ∈ Σ∗ is said to be a proper θ-border of u if v <θ
d u.

9. For u ∈ Σ+, define Lθ
d(u) = {v : v ∈ Σ∗, v <θ

d u}.
10. νθ(u) = |Lθ

d(u)|.
11. Dθ(i) = {u|u ∈ Σ+, νθ(u) = i}.
12. A word u ∈ Σ+ is said to be θ-bordered if there exists v ∈ Σ+ such that v <θ

d u,
i.e., u = vx = yθ(v) for some x, y ∈ Σ+.

13. A non-empty word which is not θ-bordered is called θ-unbordered.

Note that we call a word u to be θ-bordered if it has non empty θ-border .i.e., if it
has a proper θ-border. Also note that the empty word λ is a θ-border of any word
in Σ+.
Example 2.1 Let u = abababa be a word over the alphabet set {a, b} and let
θ be a morphic involution such that θ(a) = b and θ(b) = a. Then Lθ

d(u) =
{λ, ab, abab, ababab} and νθ(u) = 4, hence u ∈ Dθ(4).

Based on the above definition we have the following observations.
Lemma 1 Let θ be either morphic or an antimorphic involution.

1. Dθ(1) is the set of all θ-unbordered words.

2. A θ-bordered word x ∈ Σ+ has length greater than or equal to 2.

3. For all a ∈ Σ, a is θ-unbordered.

4. For all u ∈ Σ+ such that u 6= θ(u), Lθ
d(u) = {v|v ∈ Σ∗, v ≤θ

d u}.
5. For all a ∈ Σ such that a 6= θ(a), a+ ⊆ Dθ(1).

Recall that an involution is a map θ on Σ∗ such that θ2 is the identity map.
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Lemma 2 Let u ∈ Σ+. Then for a morphic involution θ, θ(Lθ
d(u)) = Lθ

d(θ(u)) and
when θ is an antimorphic involution we have, Lθ

d(u) = Lθ
d(θ(u)).

Proof. Let θ be a morphic involution and let v ∈ Lθ
d(u) which implies u = vx =

yθ(v) for some x, y ∈ Σ+ and hence θ(u) = θ(v)θ(x) = θ(y)θ(θ(v)) which implies
θ(v) ∈ Lθ

d(θ(u)). Thus θ(Lθ
d(u)) ⊆ Lθ

d(θ(u)). Similarly let v ∈ Lθ
d(θ(u)) which

implies θ(u) = vx = yθ(v) for some x, y ∈ Σ+ and u = θ(v)θ(x) = θ(y)v which
implies θ(v) ∈ Lθ

d(u) and hence v ∈ θ(Lθ
d(u)). Thus θ(Lθ

d(u)) = Lθ
d(θ(u)).

Let θ be an antimorphic involution and let v ∈ Lθ
d(u), then u = vx = yθ(v) for some

x, y ∈ Σ+ which imply that θ(u) = θ(x)θ(v) = vθ(y). Thus v ∈ Lθ
d(θ(u)). Similarly

we can show that Lθ
d(θ(u)) ⊆ Lθ

d(u). Hence Lθ
d(u) = Lθ

d(θ(u)). 2

Using the following lemma we show that the relation <θ
d is transitive for an

antimorphic involution θ.
Lemma 3 Let u ∈ Σ∗ and v, w ∈ Σ+ such that u <θ

d w and w <θ
d v. Then for a

morphic involution θ, we have u <d v and for an antimorphic involution θ, we have
u <θ

d v.
Proof. When θ is a morphic involution, u <θ

d w and w <θ
d v imply that w =

ux = yθ(u) and v = wα = βθ(w) for some x, y, α, β ∈ Σ+ which implies v = uxα =
βθ(yθ(u)) and hence v = uxα = βθ(y)u which implies u <d v.
When θ is an antimorphic involution, u <θ

d w and w <θ
d v imply that w = ux =

yθ(u) and v = wα = βθ(w) for some x, y, α, β ∈ Σ+ and hence v = uxα = βθ(ux)
which implies v = uxα = βθ(x)θ(u) implying that u <θ

d v. 2

Corollary 1 If θ is an antimorphic involution, the relation <θ
d is transitive.

Lemma 4 Let u, v, w be such that u, v ∈ Σ+, u 6= v and u <θ
d w, v <θ

d w. If θ is a
morphic involution, then either v <d u or u <d v. If θ is an antimorphic involution,
then either v <p u or u <p v.

Proof. Let θ be a morphic involution and u <θ
d w, v <θ

d w which imply that
w = ux = yθ(u) , w = vα = βθ(v) for some x, y, α, β ∈ Σ+. If |u| > |v|, then u = vp

and θ(u) = qθ(v) for some p, q ∈ Σ+. Thus u = θ(q)v implying that u = vp = θ(q)v
which implies v <d u. If |u| < |v| then v = up and θ(v) = qθ(u) for some p, q ∈ Σ+

which imply that v = θ(q)u. Therefore v = up = θ(q)u and hence u <d v.
Let θ be an antimorphic involution and u <θ

d w, v <θ
d w which imply that w =

ux = yθ(u) and w = vα = βθ(v) for some x, y, α, β ∈ Σ+. If |u| > |v| then u = vp

and θ(u) = qθ(v) for some p, q ∈ Σ+ and hence u = vθ(q) which implies v <p u.
Similarly if |v| > |u|, we can show that u <p v. 2

Corollary 2 Let u, v, w be such that u, v ∈ Σ+, u 6= v and u <θ
d w, v <θ

d w. Then
for an antimorphic involution θ, either θ(v) <s θ(u) or θ(u) <s θ(v).
Corollary 3 Let u ∈ Σ+. Then

1. For a morphic involution θ, Lθ
d(u) is a totally ordered set with <d.

2. For an antimorphic involution θ, Lθ
d(u) is a totally ordered set with <p and

θ(Lθ
d(u)) is a totally ordered set with <s.

Lemma 5 Let θ be a morphic involution. Then for all θ-unbordered words x, y

such that x 6= y, xy 6= θ(y)x.
Proof. Let x, y be two θ-unbordered words, i.e., x, y ∈ Dθ(1). Note that both
x and y are non empty as Dθ(i) ⊆ Σ+. Suppose xy = θ(y)x then we have the
following cases to consider. If |x| = |y| then x = θ(y) and y = x a contradiction to
our assumption that x 6= y. If |x| > |y| then there exists p ∈ Σ+ such that x = θ(y)p
and x = py which imply that x = θ(y)p = pθ(θ(y)) since θ is an involution, which
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is a contradiction since x is θ-unbordered. If |x| < |y| then there exists q ∈ Σ+ such
that θ(y) = xq and y = qx which imply that y = qx = θ(x)θ(q) since θ is a morphic
involution, which is a contradiction since y is θ-unbordered. Thus xy 6= θ(y)x. 2

3. θ-bordered words

In the next result we give a characterization of the set of all θ-bordered words
when θ is an antimorphic involution. We use this characterization to show several
properties of the set of all θ-bordered and θ-unbordered words for an antimorphic
involution θ.
Lemma 6 Let θ be an antimorphic involution. Then x ∈ Σ+ is θ-bordered iff
x = ayθ(a) for some a ∈ Σ and y ∈ Σ∗.
Proof. If x is θ-bordered then x = pα = βθ(p) for some p, α, β ∈ Σ+. Let p = ar

for some a ∈ Σ and r ∈ Σ∗. Then θ(p) = θ(r)θ(a) and since α ∈ Σ+, we have
α = sθ(a) for some s ∈ Σ∗. Thus there exists y ∈ Σ∗ such that x = ayθ(a). The
converse is obvious. 2

We recall that a language or a set X ⊆ Σ∗ is said to be dense if for all u ∈ Σ∗,
X ∩ Σ∗uΣ∗ 6= ∅. We use the above lemma to show that Dθ(1) is a dense set.
Corollary 4 Let θ be an antimorphic involution on Σ∗. Then

1. u ∈ Dθ(1) iff θ(u) ∈ Dθ(1).

2. If Σ is such that there exists a, b ∈ Σ with θ(a) 6= b then Dθ(1) is a dense set.

3. Let a, b ∈ Σ such that θ(a) = b then for all u ∈ Σ+ either ua is θ-unbordered
or ub is θ-unbordered.

4. If uwv ∈ Dθ(1) for some u, v ∈ Σ+ and w ∈ Σ∗ then uv ∈ Dθ(1).

5. For all a, b ∈ Σ such that a 6= θ(b), aΣ∗b ⊆ Dθ(1).

6. Let u ∈ Σ+ be θ-bordered and x be the shortest θ-border of u, then x is θ-
unbordered.

Proof. We only prove the first two statements. The rest of them follow from
Lemma 6. Let θ be an antimorphic involution on Σ∗.

1. Let u ∈ Dθ(1) and suppose θ(u) /∈ Dθ(1) then we have θ(u) = aαθ(a) for some
a ∈ Σ which imply that u = aθ(α)θ(a) and hence u /∈ Dθ(1) a contradiction.
The converse is similar.

2. Choose a, b ∈ Σ such that a 6= θ(b) then for all w ∈ Σ∗ there exists a, b ∈ Σ∗

such that awb ∈ Dθ(1) which implies that Dθ(1) is a dense set.

2

Statement 6 in the above corollary does not hold true when θ is a morphism.
For example let Σ = {a, b} and θ be a morphism such that θ(a) = b and θ(b) = a.
Take u = ababa. The shortest θ-border of u is x = ab. But x = ab = a.b = a.θ(a)
which is θ-bordered.

It was shown in [30] that when θ is identity and if x is the shortest border of u,
then for all other borders y 6= x of u, y is bordered. But this is not true when θ is
an antimorphism, as shown by the following example.
Example 3.1 Let Σ = {a, b, c} and θ be antimorphism that maps a 7→ b, b 7→ a

and c 7→ c. Then for u = acacb, we have x = a to be the shortest θ-border of u.
Also y = ac is a θ-border of u as θ(ac) = cb, but y is θ-unbordered.
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The following lemma relates the set of all prefixes and suffixes of a word with
the set of all prefixes and suffixes of the set of all words obtained by concatenating
the word with itself. We use the lemma to show some closure properties of the set
of all θ-bordered and θ-unbordered words.
Lemma 7 Let θ be a morphism or an antimorphism of Σ∗ and let u, v ∈ Σ∗. Then
θ(Pref(u)) ∩ Suff(v) = ∅ iff θ(Pref(u+)) ∩ Suff(v+) = ∅.
Proof. “⇒” Assume that θ(Pref(u)) ∩ Suff(v) = ∅ and we need to show that
θ(Pref(u+)) ∩ Suff(v+) = ∅. Suppose there exists x ∈ θ(Pref(u+)) ∩ Suff(v+)
then x = θ(uku1) = v2v

l where u1 ∈ Pref(u) and v2 ∈ Suff(v). When θ is a
morphism, we have x = θ(uk)θ(u1) = v2v

l which implies that either θ(u1) is a suffix
of v or θ(u1) = v′vr for some v′ ∈ Suff(v) which imply that θ(u′1) = v′ for some
u′1 ∈ Pref(u1). Both cases lead to a contradiction since θ(Pref(u))∩Suff(v) = ∅.
The converse is obvious.
The case when θ is an antimorphism can be proved similarly. 2

In the next lemma we give a necessary and sufficient condition for a word to be
θ-unbordered. Note that it is clear from Lemma 6 that a word u is θ-unbordered for
an antimorphic involution θ iff u = ayb such that a 6= θ(b). The following lemma
provides a much weaker characterization of θ-unbordered words. However this char-
acterization can be used in proving certain closure properties of θ-unbordered words.
Lemma 8 Let θ be an antimorphic involution on Σ∗. Then for all u ∈ Σ+ such
that |u| ≥ 2, u is θ-unbordered iff θ(Pref(u)) ∩ Suff(u) = ∅.
Proof. Let u be θ-unbordered. Suppose there exists x ∈ θ(Pref(u)) ∩ Suff(u)
then x = θ(u1) = u′′ for some u = u1u2 = u′u′′ which imply that u = u1u2 =
u′θ(u1). Then we have the following cases. If u2, u

′ ∈ Σ+ then u /∈ Dθ(1) which is a
contradiction since u is θ-unbordered. If u2 = u′ = λ then u = θ(u) and u = av for
some a ∈ Σ and v ∈ Σ+ since |u| ≥ 2 which imply that u = av = θ(v)θ(a) = θ(u)
which is a contradiction since u is θ-unbordered. Hence θ(Pref(u))∩Suff(u) = ∅.
Conversely assume that θ(Pref(u)) ∩ Suff(u) = ∅ and suppose u is θ-bordered
then there exists y ∈ Σ∗ and a ∈ Σ such that u = ayθ(a) which is a contradiction
since θ(a) ∈ θ(Pref(u)) ∩ Suff(u). 2

Corollary 5 Let θ be an antimorphic involution on Σ∗ and let u ∈ Σ+ such that
|u| ≥ 2. Then u is θ-unbordered iff u+ ⊆ Dθ(1).
Proof. Follows from Lemma 8 and Lemma 7. 2

Lemma 9 Let θ be a morphic involution on Σ∗. Then for all u ∈ Σ+ such that
|u| ≥ 2 and u 6= θ(u), u is θ-unbordered iff θ(Pref(u)) ∩ Suff(u) = ∅.
Proof. Let u ∈ Dθ(1) such that |u| ≥ 2 and u 6= θ(u). Suppose there exists
an x ∈ θ(Pref(u)) ∩ Suff(u) then we have the following cases. If x = θ(u) then
x = u ∈ Suff(u) which implies that u = θ(u) which is a contradiction. If x = θ(u1)
for some u1, u2 ∈ Σ+ such that u = u1u2 and u = u1u2 = u′θ(u1) since x ∈ Suff(u)
which is a contradiction since u is θ-unbordered. 2

Corollary 6 Let θ be a morphic involution on Σ∗ and let u ∈ Σ+ such that |u| ≥ 2
and u 6= θ(u). Then u is θ-unbordered iff u+ ⊆ Dθ(1).
Proof. Follows from Lemma 9 and 7. 2

In view of Lemma 8 and Lemma 9 we have the following observation. The proof
of the following lemma is similar to that of the above two lemmas and hence we
omit the proof.
Lemma 10 Let θ be either a morphic or an antimorphic involution. Then for
u ∈ Σ+ such that |u| ≥ 2, u is θ-unbordered iff θ(PPref(u)) ∩ PSuff(u) = ∅.
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4. Closure properties of the set of all θ-unbordered words

In the next proposition we give a necessary and sufficient condition for the set
of all θ-unbordered words to be closed under concatenation.
Proposition 1 Let θ be either a morphic or an antimorphic involution and let
u, v ∈ Σ+ be θ-unbordered. Then uv is θ-unbordered iff θ(Pref(u)) ∩ Suff(v) = ∅.
Proof. Assume that for u, v ∈ Σ+ such that |uv| ≥ 2, θ(Pref(u)) ∩ Suff(v) = ∅
and suppose uv is not θ-unbordered.
Then for an antimorphic involution θ, we have by Lemma 6, uv = ayθ(a) for some
a ∈ Σ and y ∈ Σ∗. Then a ∈ Pref(u) and θ(a) ∈ Suff(v) which implies that
θ(a) ∈ θ(Pref(u)) ∩ Suff(v) which is a contradiction. Hence uv is θ-unbordered.
When θ is a morphism, then there exists x ∈ Σ+ such that uv = xα = βθ(x) for
some α, β ∈ Σ+. We have the following cases:
(i) |x| ≤ |u| and |θ(x)| ≤ |v|
(ii) |x| ≤ |u| and |θ(x)| > |v|
(iii) |x| > |u| and |θ(x)| ≤ |v|
(iv) |x| > |u| and |θ(x)| > |v|

Note that case(i) implies that x ∈ Pref(u) and θ(x) ∈ Suff(v) which immediately
leads to a contradiction since x ∈ Pref(u) and θ(x) ∈ θ(Pref(u)) ∩ Suff(v).

Case(ii) implies that x ∈ Pref(u), θ(x) ∈ Suff(uv) and θ(x) /∈ Suff(u) and hence
x = u1 for some u1 ∈ Σ+ and u2 ∈ Σ∗ such that u = u1u2 and θ(x) ∈ Suff(v)
implies that θ(x) = u′′v for some u′ ∈ Σ+ and u′′ ∈ Σ∗ such that u = u′u′′. Thus
x = θ(u′′)θ(v) = u1 which imply that θ(u′′) ∈ Pref(u) and u = θ(u′′)y = u′u′′ with
y, u′ ∈ Σ+ since v ∈ Σ+, which is a contradiction since u is θ-unbordered.

Case(iii) implies that x ∈ Pref(uv), θ(x) ∈ Suff(v) and x /∈ Pref(u) and hence
x = uv1 for some v1 ∈ Σ+ and v = v1v2 with v2 ∈ Σ+ and θ(x) ∈ Suff(v) implies
that θ(x) = v′′ for some v′′ ∈ Σ+, v′ ∈ Σ∗ with v = v′v′′. Thus for x = uv1,
θ(x) = θ(u)θ(v1) = v′′ which implies that v = v1v2 = yθ(v1) with v2, y ∈ Σ+ since
u ∈ Σ+ which is a contradiction since v is θ-unbordered.

Case(iv) implies that x ∈ Pref(uv) and θ(x) ∈ Suff(uv) but none of the above
hold. x ∈ Pref(uv) implies that x = uv1 for some v1, v2 ∈ Σ+ with v = v1v2

and θ(x) ∈ Suff(uv) implies that θ(x) = u2v for some u1, u2 ∈ Σ+ with u =
u1u2. Thus for x = uv1, θ(x) = θ(u)θ(v1) = u2v. If u = u′u′′ then θ(u)θ(v1) =
θ(u′)θ(u′′)θ(v1) = u2v such that θ(u′) = u2 which imply that u = u′u′′ = u1θ(u′)
with u′, u′′, u1 ∈ Σ+ which is a contradiction since u is θ-unbordered. Hence uv is
θ-unbordered.

Conversely for u, v both θ-unbordered and |uv| ≥ 2, assume that uv is also
θ-unbordered. Suppose there exists x ∈ θ(Pref(u)) ∩ Suff(v) such that x =
θ(u1) = v2 for u = u1u2 and v = v1v2 with u1, v2 ∈ Σ+ and u2, v1 ∈ Σ∗. Then
uv = u1u2v1v2 = u1u2v1θ(u1) which is a contradiction since uv is θ-unbordered.
Hence θ(Pref(u)) ∩ Suff(v) = ∅. 2

Lemma 11 Let θ be either a morphic or an antimorphic involution on Σ∗ and let
u, v ∈ Σ+ with both u and v θ-unbordered and non θ(u) 6= u, θ(v) 6= v. Then the
following are equivalent.

1. uv is θ-unbordered.

2. The set of all words in u+v+ is θ-unbordered.

3. θ(Pref(u)) ∩ Suff(v) = ∅.
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4. For all x ∈ (uv)+, x is θ-unbordered.

Proof. Note that from Proposition 1 it is clear that 1 ⇔ 3. From Lemma 7
and Proposition 1 it is clear that 1 ⇔ 2. Note that from Lemma 8 uv ∈ Dθ(1) iff
θ(Pref(uv))∩ Suff(uv) = ∅. Also from Lemma 7 θ(Pref(uv))∩ Suff(uv) = ∅ iff
θ(Pref((uv)+)) ∩ Suff((uv)+) = ∅. Hence from Proposition 1 θ(Pref((uv)+)) ∩
Suff((uv)+) = ∅ iff (uv)+ ⊆ Dθ(1). Hence 1 ⇔ 4. 2

We use the following result from [23] to prove the next result.
Lemma 12 ([23]) Let u and w be such that uv = θ(v)w for some v ∈ Σ∗. Then
for a morphic involution θ there exists x, y ∈ Σ∗ such that u = xy and one of the
following hold

1. If |u| > |v| then w = yθ(x) and v = (θ(x)θ(y)xy)iθ(x) for i ≥ 0.

2. If |u| < |v| then w = θ(y)x and v = (θ(x)θ(y)xy)iθ(x)θ(y)x for i ≥ 0.

Proposition 2 Let x1, x2 ∈ Σ+ and θ be either a morphic or an antimorphic
involution. If x1x2 is θ-unbordered, then for any k > 1, x1x

k
2 is θ-unbordered.

Proof. We first consider the case when θ is an antimorphism. Suppose that, for
some k > 1, x1x

k
2 is θ-bordered, then from Lemma 6, there exists a ∈ Σ and y ∈ Σ∗,

x1x
k
2 = ayθ(a). Since both x1, x2 ∈ Σ+ we have x1x2 = axθ(a) for some x ∈ Σ∗

which is a contradiction since x1x2 is θ-unbordered. Hence x1x
k
2 is θ-unbordered.

We shall prove by induction on k the case when θ is morphism.
Base Case: Let k = 2. Suppose x1x

2
2 is θ-bordered. Then there exists x, y, u ∈ Σ+

such that x1x
2
2 = ux = yθ(u). We have several cases:

Case 1 Let |u| ≤ |x1| then we have x1 = uα for some α ∈ Σ∗.

• If |θ(u)| ≤ |x2| then x2 = βθ(u) for some β ∈ Σ∗ and x1x2 = uαβθ(u) with
u ∈ Σ+, which is a contradiction since x1x2 is θ-unbordered.

• If |x2| < |θ(u)| ≤ |x2
2| then θ(u) = β1x2 for some x2 = ββ1 with β1 ∈ Σ+.

Thus u = θ(β1)θ(x2) and x1x2 = uαx2 = uαββ1 = θ(β1)θ(x2)αββ1, which is
a contradiction since x1x2 is θ-unbordered.

• If |θ(u)| > |x2
2| then θ(u) = β1x

2
2 with x1 = ββ1 and β1 ∈ Σ+. Thus u =

θ(β1)θ(x2
2) and x1 = uα = ββ1 which implies that x1x2 = θ(β1)θ(x2

2)αx2 =
ββ1x2 which imply that x1x2 = θ(β1x2)θ(x2)αx2 = β(β1x2) which is a con-
tradiction since x1x2 is θ-unbordered.

Case 2 Let |x1| ≤ |u| ≤ |x1x2| then we have uα = x1x2 for some α ∈ Σ∗.

• If |θ(u)| ≤ |x2| then β1θ(u) = x2 which implies x1x2 = uα = x1β1θ(u) a
contradiction.

• If |x2| ≤ |θ(u)| ≤ |x2x2| then x1x2 = uα and θ(u) = β1x2 for x2 = ββ1. As θ

is a morphism, x1x2 = uα = θ(β1)θ(x2)α which imply that x1x2 = x1ββ1 =
θ(β1)θ(x2)α a contradiction.

• If |x2x2| ≤ |θ(u)| ≤ |x1x2x2|, then x1x2 = ua and θ(u) = s1x2x2 for x1 = ss1.
Then we have x1x2 = uα = θ(s1)θ(x2)θ(x2)α and hence x1x2 = ss1x2 =
θ(s1)θ(x2)θ(x2)α a contradiction.

Case 3 Let |x1x2| < |u| < |x1x2x2|. If |x2| ≤ |θ(u)| ≤ |x2x2| then we have u = x1x2β

with x2 = ββ1 and θ(u) = s1x2 for x2 = ss1. Then we have u = x1x2β = θ(s1)θ(x2).
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Note that |x1β| = |s1| hence θ(s1) = x1r, x2 = rp and θ(x2) = pβ which im-
plies x1x2β = θ(s1)pβ which imply that x1x2 = x1ss1 = θ(s1)p a contradic-
tion. If |x2x2| ≤ |θ(u)| ≤ |x1x2x2| then θ(u) = s1x2x2 and u = x1x2β for
x1 = ss1 and x2 = ββ1 with s, s1, β, β1 ∈ Σ+. Then u = x1x2β = θ(s1)θ(x2)θ(x2)
which implies that u = x1ββ1β = θ(s1)θ(x2)θ(x2) and by the length argument we
have θ(x2) = β1β and hence x2 = ββ1 = θ(β1)θ(β) or β1β = θ(β)θ(β1). Thus
x1β = θ(s1)θ(x2) which implies that x1x2 = ss1θ(β1)θ(β) = θ(s1)β1ββ1 which is a
contradiction since x1x2 is θ-unbordered. Hence we have x1x

2
2 ∈ Dθ(1).

Induction Step Assume x1x
k
2 ∈ Dθ(1). Suppose x1x

k+1
2 /∈ Dθ(1), then we have

x1x
k+1
2 = ux = yθ(u) for some x, y ∈ Σ+.

Case 1: Let u be such that |x1x
k
2 | < |θ(u)| < |x1x

k+1
2 | then θ(u) = α1x

k+1
2 for some

α1 ∈ Σ+ such that x1 = αα1. If |x1x
k
2 | < |u| < |x1x

k+1
2 |, then u = x1x

k
2β for some

β ∈ Σ+ such that x2 = ββ1. Hence u = θ(α1)θ(xk
2)θ(x2) = θ(α1)θ(xk

2)θ(β)θ(β1) =
x1x2ββ1β. Thus x1x

k−1
2 β = θ(α1)θ(xk

2) and hence x1x
k
2 = θ(α1)θ(xk

2)β1 = αα1x
k
2

which is a contradiction since x1x
k
2 is θ-unbordered. If |u| ≤ |x1x

k
2 | then u = x1x

i
2β

for some i < k and x2 = ββ1 for some β, β1 ∈ Σ∗. Thus u = θ(α1)θ(xk+1
2 ) which

implies that x1x
i
2β = θ(α1)θ(xk

2)θ(β)θ(β1) and hence x1x
i−1
2 β = θ(α1)θ(xk

2). There-
fore x1x

k
2 = θ(α1)θ(xk

2)β1x
k−i
2 = αα1x

k
2 a contradiction since x1x

k
2 is θ-unbordered.

Case 2: Let u be such that |θ(u)| ≤ |xk+1
2 |. Then θ(u) = β1x

i
2 with x2 = ββ1

and i ≤ k and β, β1 ∈ Σ∗. If |x1x
k
2 | < |u| < |x1x

k+1
2 | then u = x1x

k
2α with

x2 = αα1 and α1 ∈ Σ+. Hence u = θ(β1)θ(xi−1
2 )θ(x2) = x1x

k−1
2 αα1α which im-

plies that x1x
k−1
2 α = θ(β1)θ(xi−1

2 ). Therefore x1x
k
2 = θ(β1)θ(xi−1

2 )α1 = x1x
k−1
2 ββ1

a contradiction. If |u| ≤ |x1x
k
2 | then u = x1x

j
2α with x2 = αα1, α1 ∈ Σ∗

and j < k. Thus x1x2 = x1x
j
2αα1x

k−j−1
2 = θ(β1)θ(xi

2)α1x
k−j−1
2 which implies

that x1x
k
2 = x1x

k−1
2 ββ1 = θ(β1)θ(xi

2)α1x
k−j−1
2 a contradiction since x1x

k
2 is θ-

unbordered. Hence x1x
k
2 ∈ Dθ(1) for all k > 1. 2

The proof of the next proposition is similar to that of the previous one and hence
we omit the proof.
Proposition 3 Let x1, x2 ∈ Σ+ and θ be either morphic or an antimorphic invo-
lution. If x1x2 is θ-unbordered, then for any k > 1, xk

1x2 is θ-unbordered.
Proposition 4 Let θ be an antimorphic involution and let v be θ-unbordered. Then
for all vp ∈ PPref(v) and vs ∈ PSuff(v), vpuvs is θ-unbordered for all u ∈ Σ∗.
Proof. Let x ∈ vpΣ∗vs such that x is θ-bordered. Then there exists a ∈ Σ and
y ∈ Σ∗ such that x = ayθ(a) which implies that a ∈ Pref(vp) and θ(a) ∈ Suff(vs).
Thus there exists z ∈ Σ∗ such that v = azθ(a) which is a contradiction since v is
θ-unbordered. Hence x is also θ-unbordered. 2

Note that the above lemma does not hold when θ is a morphic involution. For
example, let Σ = {a, b} such that θ(a) = b and θ is a morphism. Note that
aa, b ∈ Dθ(1) but aba = (ab)a = aθ(ab) and hence aba /∈ Dθ(1).
Proposition 5 Let θ be a morphic or an antimorphic involution and v be θ-unbordered.
1. If u = v0v1...vn−1 for some vi ∈ PPref(v), then uv ∈ Dθ(1).
2. If u = v0v1...vn−1 for some vi ∈ PSuff(v), then vu ∈ Dθ(1).

Proof. We prove the first case (the second one is similar to the first case). The
case when θ is an antimorphic involution follows directly from Proposition 4. We
only consider the case when θ is a morphism. Let v ∈ Dθ(1) such that |v| ≥ 2 and
let u = v0v1...vn−1 for some vi ∈ PPref(v). Suppose uv is θ-bordered, then there
exists x, α, β ∈ Σ+ such that uv = xα = βθ(x).

1. If |x| > |u| then there exists v′, v′′ ∈ Σ+ such that v = v′v′′ and x = uv′ then
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we have uv = uv′v′′ = βθ(uv′) = βθ(u)θ(v′) which implies that v = v′v′′ =
rθ(v′) for some r ∈ Σ+ a contradiction since v is θ-unbordered.

2. If |x| ≤ |u| then there exists α1, α2 such that α1 ∈ Σ∗ and α2 ∈ Σ+ and
u = xα1, v = α2. If |x| < |v0| then there exists p ∈ Σ+ such that v0 = xp

which implies that x ∈ PPref(v) and hence v = xr = sθ(x) for some r, s ∈ Σ+

which is a contradiction. If |x| ≥ |v0| then there exists p1, p ∈ Σ∗ such that
x = v0pp1 and p = v1..vk for some k and p1 ∈ PPref(vk+1) with |p1| < |v|.
Hence uv = xα = βθ(x) = v0pp1α = βθ(v0)θ(p)θ(p1) which implies that
v = p1r = sθ(p1) a contradiction.

2

5. Classification of the set of all θ-bordered words

In this section we show that the set of all θ-bordered words is regular when θ

is an antimorphic involution and context sensitive when θ is a morphic involution.
In the next proposition we use Lemma 7 and show that the set of all θ-unbordered
words is indeed a regular language when θ is an antimorphic involution.
Proposition 6 When θ is an antimorphic involution on Σ∗, Dθ(1) is a regular
language.

Proof. Note that for all a ∈ Σ, a is θ-unbordered and from Lemma 7, we have
Dθ(1) = Σ ∪ Y where Y =

⋃
a,b∈Σ aΣ∗b such that θ(a) 6= b. Since Σ is finite, Y is

regular and hence Dθ(1) is regular. 2

In the next proposition we find an example of θ, which is a morphic involution
but not the identity function and an alphabet Σ such that the set of all θ-bordered
words over Σ is not context free and hence not regular.
Proposition 7 If θ is a morphic involution over an alphabet Σ, such that θ is not
identity, the set of all θ-bordered words over Σ is not context free.
Proof. Let a, b ∈ Σ such that a 6= b and θ(a) = b. Then θ(b) = a holds because θ

is an involution map. Denote by L the set of all θ-bordered words over Σ. We will
prove, by contradiction, that L is not context-free.

Indeed, assume L were context-free. Let n be the constant defined by the Pump-
ing Lemma for context-free languages. Choose the word z1 = an+1bn+1an+1, which
is clearly θ-bordered. By the pumping lemma, there is a decomposition z1 = αxvyβ

such that |xvy| ≤ n, |xy| ≥ 1, and for all i ≥ 0, zi = αxivyiβ ∈ L. Note that any
θ-border wi of zi has the property wi = au for some u ∈ Σ∗ because zi begins with
a for any i ≥ 0.

We will consider first the case where xvy is a subword of an+1bn+1 of z1. In this
case, θ(wi) = bΣ∗an+1 for any i ≥ 0 because zi has the suffix an+1. Consequently,
wi ∈ aΣ∗bn+1. If neither x nor y contains any bs, that is, xvy is in the prefix an+1

of z1, zi = ambn+1an+1 for i ≥ 2, where m > n + 1. Considering the form of wi

mentioned above, wi = ambn+1. This further implies θ(wi) = bman+1, which is a
contradiction since zi does not contain m consecutive bs. Consequently, x or y must
include at least one letter b. However, in this case z0 has at most n letters b which
contradicts the fact that z0 has w0 = aubn+1 for u ∈ Σ∗ as its θ-border.

By virtue of the symmetric form of z1, it is clear that the second case, where
xvy occurs as a subword of bnan of z1, leads to the same contradiction.

These two cases cover all possible decompositions, and they all lead to contra-
dictions. Consequently, our assumption was false and L is not context-free. 2
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Note that in [24], it was shown that for a morphic involution θ, for all θ-bordered
words v, either v = urθ(u) for some r, u ∈ Σ∗ or v = (xyθ(x)θ(y))∗xyθ(x)θ(y)x for
some x, y ∈ Σ∗. In the next proposition we construct a grammar that generates all
such θ-bordered words.
Proposition 8 Let θ be a morphic involution on Σ∗. Then the set of all θ-bordered
words is context sensitive i.e., Σ∗ \Dθ(1) is context sensitive.
Proof. Let Σ = {a1, a2, ..., an} be a finite alphabet set and take G = (VN , VT , X0, Σ)
where VN = {X, X0, X1, X2, X3, Yi, Z,Z1,P,Q} where 1 ≤ i ≤ n and VT ⊆ Σ∗. De-
fine the productions of G for all ai ∈ Σ to be

X0 → ZX1X2X3XZ1 (1)

X1X2 → aiX1Yi (2)

YiX3 → X2θ(ai)X3, Yiaj → ajYi, aiX2 → X2ai (3)

YiX3 → PX2θ(ai)X3Q, aiPX2 → PX2ai, Yiaj → ajYi (4)

X1PX2 → aiX1PX2 (5)

ajX → Xaj , YiXZ1 → aiXZ1, ZXai → aiZYiX,YiXaj → ajYiX (6)

X1X2 → λ,X3 → λ (7)

QXZ1 → λ,X1PX2 → λ,Z → λ (8)

XZ1 → λ (9)

Consider derivations D from ZRX1X2θ(R)X3XZ1 leading to a terminal word (after
an application of the initial rule 1 and R = λ). If the rule in 2 is used then we
can either use rules 3 or rules 4. If rule 2 is used then we eventually end up
with ZuX1X2θ(u)XZ1. Then we can either use rules in 6 and 7 which results in
the word (uvθ(u)θ(v))∗uvθ(u)θ(v)u for u, v ∈ Σ∗ or use rules in 2 and 4 which
results in word of the type urθ(u) for r, u ∈ Σ∗. If D begins with an applica-
tion of rule 2 and the first rule in 3 then the only possibility is to continue the
derivation to the word ZraiX1Yiθ(r)X3XZ1 → ZraiX1θ(r)YiX3XZ1 which leads
to ZraiX1X2θ(r)θ(ai)X3XZ1. Here we have two choices, either we continue to
apply rules in 2 or apply rules in 7 and get Zraiθ(r)θ(ai)XZ1 and we can apply
rules in 6 which will lead to ZXraiθ(r)θ(ai)Z1 and the only possibility to con-
tinue the derivation is to apply the rule ZXai → aiZYiX in 6 and we get the
word ajZYjXr2aiθ(r)θ(ai)Z1 which leads to ajZr2aiθ(r)θ(ai)YjXZ1 and hence
ajZr2aiθ(r)θ(ai)ajXZ1. Continuing to apply the rules in 6 we end up with the
word of type (uvθ(u)θ(v)) ∗ uvθ(u)θ(v)u. If D begins with an application of rule 2
and the first rule in 4, then it will lead to the word ZraiX1PX2θ(r)θ(ai)X3QXZ1.
Then we can either apply rules in 8 to get words of type uθ(u) or apply the rule in
5 to get words of type usθ(u) for s ∈ Σ∗. Hence L(G) = {xsθ(x), (uvθ(u)θ(v))iu

for i ≥ 1 and u, v, s, x ∈ Σ∗}. Note that L(G) = Σ∗ \Dθ(1). 2

Proposition 9 Given v ∈ Σ+ it is decidable whether v ∈ Dθ(1) or not.
Proof. Follows immediately from the decidability of membership for context
sensitive and regular languages. 2

Note that for an antimorphic involution θ and for u ∈ Dθ(i) for some i ≥ 2 with
Lθ

d(u) = {λ <p u1 <p u2 <p ... <p ui−1} we have u1 ∈ Dθ(1).
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Proposition 10 Let u ∈ Dθ(1). If v <θ
d ui then either v = λ or u = θ(u) and

v = uj for 1 ≤ j < i.
Proof. Let v <θ

d ui for some u ∈ Dθ(1). If v 6= λ, ui = vα = βθ(v), for
α, β, v ∈ Σ+, then v = ujr1 and θ(v) = s2u

j for u = r1r2 = s1s2 and 0 ≤ j < i.
We only prove the statement when θ is a morphic involution. The case when θ is
an antimorphic involution is similar. If v = ujr1, then θ(v) = θ(uj)θ(r1) = s2u

j .
If r1.s2 ∈ Σ+, then u = r1r2 = pθ(r1). If r2 6= λ then u /∈ Dθ(1) which is a
contradiction. If r2 = λ then p = λ and u = r1 = θ(r1) which implies that u = θ(u)
and v = uj+1 = θ(v). If r1 = λ then v = uj = θ(v) and u = θ(u). 2

The following lemma provides for a given u ∈ Σ∗, the number of θ-borders of u.
We recall that u ∈ Σ∗ is said to be primitive if u = vi for some v ∈ Σ+, i ≥ 1, then
i = 1 and the set of all primitive words over Σ is denoted by Q.
Lemma 13 Let u ∈ Q such that u = θ(u) and j ≥ 1. Then,

1. For a morphic involution θ, νθ
d(uj) = νθ

d(u) + j − 1.

2. For an antimorphic involution θ, νθ
d(uj) = |u|j = j.|u|.

Proof. Let θ be a morphic involution and u ∈ Lθ
pal, .i.e., u = θ(u). For u =

a1a2...an, θ(u) = θ(a1)...θ(an), ai ∈ Σ which implies ai = θ(ai) for all i. Hence
θ is identity on Σ and thus νd(u) = νθ

d(u). It was shown in [30] that νd(uj) =
νθ

d(u) + j − 1. Hence νd(uj) = νθ
d(uj) = νθ

d(u) + j − 1.
Let θ be an antimorphic involution and u = θ(u). If u = a1...an then θ(u) =

θ(an)...θ(a1) and since u = θ(u) we have ai = θ(an+1−i). Hence νθ
d(u) = |u| since

Lθ
d(u) = {λ, a1, a1a2, ..., a1a2...an−1}. Note that for all j ≥ 1, uj = θ(uj). Hence

νθ
d(uj) = |uj | = j.|u|. 2

6. Relations to involution codes

Involution codes were introduced in [18] in the process of designing DNA strands
with certain properties. Several properties of involution codes that avoid various
types of unwanted hybridizations have been discussed in [18, 19, 21, 22]. In this
section we discuss the relations between certain involution codes and the set of
all words that are unbordered with respect to the involution map θ. We begin the
section with the review of definitions of some involution codes defined in [19, 20, 21].
Definition 3 Let θ : Σ∗ → Σ∗ be a morphic or antimorphic involution and X ⊆
Σ+.

1. The set X is called θ-infix if Σ∗θ(X)Σ+ ∩X = ∅ and Σ+θ(X)Σ∗ ∩X = ∅.
2. The set X is called θ-comma-free if X2 ∩ Σ+θ(X)Σ+ = ∅.
3. The set X is called θ-intercode if Xm+1 ∩ Σ+θ(Xm)Σ+ = ∅, m ≥ 1. The

integer m is called the index of X.

4. The set X is called n-θ-comma-free if every n element subset of X is θ-comma-
free.

5. The set X is called n-θ-intercode of index m if every n element subset of X

is a θ-intercode of index m.

6. The set X is called θ-overlap-free if PPref(X)∩PSuff(θ(X)) = ∅ and PPref(θ(X))∩
PSuff(X) = ∅.
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7. The set X is called θ-sticky-free if wx, yθ(w) ∈ X then xy = λ.

8. The set X is called θ-strict if X ∩ θ(X) = ∅ .

We recall the following definition. Let R be a binary relation on Σ∗. A language
L is R-independent if for any u, v ∈ L, uRv implies u = v. In the following
propositions we show that some of the involution sets are independent with respect
to the binary relation <θ

d, where θ is either a morphic or an antimorphic involution.
Proposition 11 If X ⊆ Σ∗ is θ-infix (θ-comma-free) then the set X is independent
with respect to <θ

d.
Proof. Suppose there exists u, v ∈ X such that v = ux = yθ(u) for some x, y ∈ Σ+

which implies X is not θ-infix and hence not θ-comma-free since θ(u) is a suffix of
v. Hence X is independent with respect to <θ

d. 2

Proposition 12 If X ⊆ Σ∗ is θ-sticky-free then X is independent with respect to
<θ

d.
Proof. Let u, v ∈ X such that v = ux = yθ(u) for some x, y ∈ Σ+. Then
ux, yθ(u) ∈ X but x 6= y 6= λ which is a contradiction since X is θ sticky-free. 2

Proposition 13 Let θ be a morphic involution. If X ⊆ Σ∗ is strictly θ-overlap-free
then X is independent with respect to <θ

d.
Proof. Since X is θ-overlap-free we have PPref(X) ∩ PSuff(θ(X)) = ∅ and
PSuff(X) ∩ PPref(θ(X)) = ∅. Suppose for u, v ∈ X we have v = ux = yθ(u),
for some x, y ∈ Σ+ then θ(v) = θ(u)θ(x) and θ(v) = θ(y)u ⇒ u ∈ PPref(X) ∩
PSuff(θ(X)) and θ(u) ∈ PSuff(X) ∩ PPref(θ(X)) a contradiction. 2

Proposition 14 Let θ be morphic involution and let L(n) be a set of all θ-unbordered
words such that for all x, y ∈ L(n), |x| = |y| = n and xy ∈ Dθ(1). Then L(n) is
θ-comma-free.
Proof. Note that from Proposition 1 for all x, y ∈ Dθ(1), xy ∈ Dθ(1) iff
θ(Pref(x)) ∩ Suff(y) = ∅. Suppose L(n) is not θ-comma-free then there exists
x, y, z ∈ L(n) such that xy = αθ(z)β for some α, β ∈ Σ+. Then we have θ(z) = x2y1

where x = x1x2 and y = y1y2 with both x2, y1 ∈ Σ∗. The case when θ(z) = x or
θ(z) = y implies that zx = zθ(z) or zy = zθ(z) which is a contradiction since zx

and zy are θ-unbordered. The case when θ(z) = x2y1 with x2, y1 ∈ Σ+ implies
that x2 ∈ θ(Pref(z)) and thus zx = θ(x2)z2x1x2 which is a contradiction since
zx ∈ Dθ(1). Similar contradiction arises when y1 ∈ θ(Suff(z)). Hence L(n) is
θ-comma-free. 2

Corollary 7 Let θ be a morphic involution. Let L(n) be as defined in Proposition
14. Then L(n) is a θ-intercode of index m for all m ≥ 1.
Proof. Obvious, since every θ-comma-free is also a θ-intercode of index m for all
m ≥ 1. 2

Note that the set L(n) defined in Proposition 14 is not unique. For example,
let Σ = {a, b, c, d} and θ be a morphic involution such that θ(a) = b and θ(c) = d.
Then L(2) = {aa, cc, ac, ca} or {bc, bb, cc, cb} or {ad, da, dd, aa} or {bd, bb, db, dd}.
The above proposition does not hold when θ is an antimorphic involution. Let
Σ = {a, b, c, d} and θ be an antimorphic involution such that a 7→ b , c 7→ d and
viceversa. Note that aaba, cbbc, adba ∈ L(4), but aa(bacb)bc = aaθ(adba)bc which
implies that L(4) is not θ-comma-free.
Proposition 15 Let θ be a morphic or an antimorphic involution such that θ is
not identity. Then L ⊆ Σ+ is θ-strict and θ-sticky-free if and only if L ⊆ Dθ(1)
and L2 ⊆ Dθ(1).
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Proof. Assume that L is θ-strict and θ-sticky-free. We need to show that both
L,L2 ⊆ Dθ(1). Note that since L is θ-sticky-free for all wx, yθ(w) ∈ L we have
xy = λ and since L is θ-strict we have L ∩ θ(L) = ∅. Thus for all u, v ∈ L we have
θ(Pref(u)) ∩ Suff(v) = ∅. Hence from Lemma 8, 9 and Proposition 1 we have
L,L2 ⊆ Dθ(1).

Conversely, assume that L, L2 ⊆ Dθ(1). We need to show that L is θ-strict and
L is θ-sticky-free. Suppose L is not θ-strict. Then there exist u, v ∈ L such that
u = θ(v). This implies that vu = θ(u)u /∈ Dθ(1) a contradiction since L2 ⊆ Dθ(1).
Suppose L is not θ-sticky-free. Then there exist wx, yθ(w) ∈ L with xy 6= λ, which
implies that wxyθ(w) ∈ L2 but wxyθ(w) /∈ Dθ(1) a contradiction. Hence L is both
θ-strict and θ-sticky-free. 2

The following results follow from Corollary 11.
Corollary 8 Let L be θ-strict and θ-sticky-free. Then L+ ⊆ Dθ(1).
Corollary 9 Let L1, L2 ⊆ Σ+ be θ-strict and θ-sticky-free. Then L1L2 ⊆ Dθ(1) iff
L+

1 L+
2 ⊆ Dθ(1).
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