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ABSTRACT

In this paper we study a generalization of the classical notions of bordered and unbor-
dered words, motivated by DNA computing. DNA strands can be viewed as finite strings
over the alphabet {A, G, C, T}, and are used in DNA computing to encode information.
Due to the fact that A is Watson-Crick complementary to T and G to C, DNA single
strands that are Watson-Crick complementary can bind to each other or to themselves
in either intended or unintended ways. One of the structures that is usually undesirable
for biocomputation, since it makes the affected DNA string unavailable for future inter-
actions, is the hairpin: If some subsequences of a DNA single string are complementary
to each other, the string will bind to itself forming a hairpin-like structure. This paper
studies a mathematical formalization of a particular case of hairpins, the Watson-Crick
bordered words. A Watson-Crick bordered word is a word with the property that it has a
prefix that is Watson-Crick complementary to its suffix. More generally, we investigate
the notion of θ-bordered words, where θ is a morphic or antimorphic involution. We
show that the set of all θ-bordered words is regular, when θ is an antimorphic involution
and the set of all θ-bordered words is context-sensitive when θ is a morphic involution.
We study the properties of θ-bordered and θ-unbordered words and also the relation
between θ-bordered and θ-unbordered words and certain type of involution codes.

Keywords: Combinatorics of words, DNA computing, molecular computing, bordered
words, unbordered words, DNA encodings

1. Introduction

In this paper we study a generalization of the classical notions of bordered and
unbordered words motivated by DNA Computing. Recall that a DNA single-strand
consists of four different types of units called nucleotides or bases strung together
by an oriented backbone like beads on a wire. The bases are Adenine (A), Guanine
(G), Cytosine (C) and Thymine (T), and A can chemically bind to an opposing T
on another single strand, while C can similarly bind to G. Bases that can thus bind
are called Watson-Crick (WK) complementary, and two DNA single strands with
opposite orientation and with WK complementary bases at each position can bind
to each other to form a DNA double strand in a process called base-pairing. These
and other biochemical properties of DNA are all harnessed in biocomputing, [1]:
To encode information using DNA, one can choose an encoding scheme mapping
the original alphabet onto strings over {A,C, G, T}, and proceed to synthesize the
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obtained information-encoding strings as DNA single strands. A computation will
consists of a succession of bio-operations, [5], such as cutting and pasting DNA
strands, separating DNA sequences by length, extracting DNA sequences containing
a given pattern or making copies of DNA strands. The DNA strands representing
the output of the computation can then be read out and decoded.

Herein lies a wealth of problems to be explored, stemming from the fundamental
differences between bioinformation and biocomputation and their electronic coun-
terparts. For example, DNA encoded information is not associated to a memory
location but consist of infinitesimal DNA strands free-floating in solution that can
interact with each other in desired but, due to WK complementarity, also in un-
programmed ways. In addition, each data-encoding DNA strand is usually present
in millions of identical copies and the bio-operations are governed by the laws of
chemistry, thermodynamics, and statistics. Differences like these point to the fact
that a new approach has to be employed when analyzing bioinformation and bio-
computation. The long term objective of this research is to pursue theoretical
properties of bioinformation by investigating formal language theoretic and com-
binatorics of words models of DNA-encoded information and DNA computations.
This paper represents a preliminary step in that it investigates a DNA computing
motivated generalization of a classical concept in combinatorics of words, namely
that of a bordered word.

A nonempty word over an alphabet Σ is called bordered if it has a proper prefix
which is also a suffix of that word. A nonempty word is called unbordered if it is
not bordered, and unbordered words have been extensively studied, [12, 23, 24, 25].
For example, in [9], the authors defined the border correlation function, and used
it to study the relationship between unbordered conjugates and critical points. In
[10], the authors studied the number of primitive and unbordered words with a
fixed weight and estimated the number of words that have a unique border. In [4]
the authors characterized the biinfinite words in terms of their unbordered factors.
A proof of the extended version of the Duval-Conjecture∗ was given in [11]. The
study of unbordered partial words was discussed in [3], while the relation between
monogenic expansion closed languages and unbordered words was discussed in [22].

Herein we extend the notion of bordered and unbordered words by replacing
the identity function with an arbitrary morphic or antimorphic involution. An
involution is a function θ such that θ2 equals the identity, and an antimorphism f

over an alphabet Σ is a function such that f(uv) = f(v)f(u) for all words u, v ∈ Σ∗.
Thus, while a morphic involution function generalizes the identity function on Σ∗,
an antimorphic involution models the DNA Watson-Crick complementarity. Indeed,
the WK complement of a DNA single strand is the reverse (antimorphic property)
complement (involution property) of the original strand.

Using an arbitrary morphic or antimorphic involution θ, we can therefore define
the notions of θ-bordered and θ-unbordered words as follows. A word u is called
θ-bordered if there exists v ∈ Σ+ that is a proper prefix of u, while θ(v) is a proper
suffix of u. A word u is called θ-unbordered if u is not θ-bordered. With this def-
inition, in the particular case where θ is the Watson-Crick antimorphic involution
over the DNA alphabet {A,C, G, T}, the notions of θ-bordered and θ-unbordered
words become meaningful in the context of DNA computing. Indeed, if a word is
Watson-Crick bordered, then it may interact with itself, Figure 1, or with another
copy of itself, Figure 2. Both these cases are usually undesirable in a DNA comput-

∗The Duval conjecture states, [7], “Let u and v be words such that u 6= v, |u| = |v| = n and u
is unbordered. Then uv contains an unbordered word of length at least n + 1.”
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Figure 1: A Watson-Crick bordered word over the DNA alphabet, with non-
overlapping WK borders. This word may form a so-called hairpin structure. Such a
secondary structure is usually undesirable in DNA computing experiments, since it
renders the involved DNA strand unavailable for subsequent computational steps.
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Figure 2: A Watson-Crick bordered word over the DNA alphabet, with overlapping
WK borders. As seen in the figure, such a word u can potentially bind to an-
other copy of itself, rendering both copies unavailable for subsequent computations.
(Usually, in a DNA computing experiment, each strand is present in hundreds or
millions of copies in the solution.)

ing experiment, since the formation of such structures imply that the Watson-Crick
bordered word will become unavailable for subsequent computations. In this sense,
this paper furthers the study of optimal DNA encodings for DNA computing, which
has been the subject of extensive research, see [6, 8, 20] and [13, 14, 15, 16, 17].

The paper is organized as follows. Section 2 reviews basic concepts and intro-
duces the definition of θ-bordered and θ-unbordered words. We define a relation
<θ

d such that v <θ
d u iff v is a θ-border of u and also show that for an antimorphic

involution the relation <θ
d is transitive. In Section 3, we give a characterization of

the set of all θ-bordered words when θ is an antimorphic involution and show that
the set of all θ-unbordered words is a dense set. We also provide necessary and
sufficient conditions for a word u to be θ-unbordered. In Section 4, we study the
closure property of the set of all θ-unbordered words with respect to the catenation
operation. In Section 5, we show that the set of all θ-bordered words is regular for
an antimorphic involution θ and the set of all θ-bordered words is context-sensitive
for a morphic involution θ. We discuss the relation between involution codes and
the sets of all θ-bordered and θ-unbordered words for a morphic or an antimorphic
involution θ in Section 6.

2. Basic concepts and properties

An alphabet Σ is a finite nonempty set of symbols. A word u over Σ is a finite
sequence of symbols in Σ. We denote by Σ∗ the set of all words over Σ, including
the empty word λ and by Σ+ the set of all nonempty words over Σ. We note that
with the concatenation operation on words, Σ∗ is the free monoid and Σ+ is the
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free semigroup generated by Σ. For a word w ∈ Σ∗, the length of w is the number
of nonempty symbols in w and is denoted by |w|. Throughout this paper we assume
that the alphabet Σ has at least two letters. In the following we review some known
concepts. For a word w, the set of its proper prefixes, proper suffixes and proper
subwords are defined as follows.

PPref(w) = {u ∈ Σ+ | ∃v ∈ Σ+, uv = w}.
PSuff(w) = {u ∈ Σ+ | ∃v ∈ Σ+, vu = w}.
PSub(w) = {u ∈ Σ+ | ∃v1 , v2 ∈ Σ∗, v1 v2 6= λ, v1uv2 = w}.

Note that Pref(w) = {u ∈ Σ+|∃v ∈ Σ∗, w = uv} and Suff(w) = {u ∈ Σ+|∃v ∈
Σ∗, w = vu}.

An involution θ : Σ → Σ of a set Σ is a mapping such that θ2 equals the identity
mapping, θ(θ(x)) = x, for all x ∈ Σ.

The so-called complement mapping ν : ∆ → ∆ defined by ν(A) = T , ν(T ) = A,
ν(C) = G, ν(G) = C is an involution on the DNA alphabet set ∆ and can be
extended to a morphic involution ν of ∆∗. If we extend the identity mapping on
∆ to an antimorphic involution on ∆∗, we obtain the well-known reversal function
ρ : ∆∗ → ∆∗. The Watson-Crick complementarity can then be modelled, [13], as
the antimorphic involution obtained by composing the complement and the reversal
functions, νρ = ρν. Hence the Watson-Crick complement of a DNA strand u ∈ ∆∗,
usually denoted by

←
u , can be modelled as ρν(u) = νρ(u) =

←
u .

Throughout this paper we will focus on morphic and antimorphic involutions of
Σ∗ that we will denote by θ.
Definition 1 Let θ be either a morphic or antimorphic involution on Σ∗.

1. For v, w ∈ Σ∗, w ≤θ
p v iff v ∈ θ(w)Σ∗.

2. For v, w ∈ Σ∗, w ≤θ
s v iff v ∈ Σ∗θ(w).

3. ≤θ
d =≤p ∩ ≤θ

s.

4. For u ∈ Σ∗, v ∈ Σ∗ is said to be a θ-border of u if v ≤θ
d u, i.e., u = vx = yθ(v).

5. For w, v ∈ Σ∗, w <θ
p v iff v ∈ θ(w)Σ+.

6. For w, v ∈ Σ∗, w <θ
s v iff v ∈ Σ+θ(w).

7. <θ
d =<p ∩ <θ

s.

8. For u ∈ Σ∗, v ∈ Σ∗ is said to be a proper θ-border of u if v <θ
d u.

9. For u ∈ Σ+, define Lθ
d(u) = {v : v ∈ Σ∗, v <θ

d u}.
10. νθ(u) = |Lθ

d(u)|.
11. Dθ(i) = {u|u ∈ Σ+, νθ(u) = i}.
12. A word u ∈ Σ+ is said to be θ-bordered if there exists v ∈ Σ+ such that v <θ

d u,
i.e., u = vx = yθ(v) for some x, y ∈ Σ+.

13. A nonempty word which is not θ-bordered is called θ-unbordered.

Note that we call a word u θ-bordered if it has a nonempty θ-border, i.e., if it
has a proper θ-border. Also note that the empty word λ is a θ-border of any word
in Σ+.
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If, in Definition 1, θ is the identity function e, then the relations w ≤e
p v, w ≤e

s v,
w <e

p v, w <e
s v, become the well-known preffix, suffix respectively proper preffix

and proper suffix relations, the e-border becomes the well-known border of a word,
and the notion of a e-bordered respectively e-unbordered word become the well-
known notions of bordered, respectively unbordered word, [23]. In the same way,
De(1) becomes D(1), the set of all unbordered words over Σ. For properties of
bordered and unbordered words we refer the reader to [10, 11, 23, 24, 25].

If, in Definition 1, the alphabet Σ equals ∆, the DNA alphabet, and θ repre-
sents the Watson-Crick complementarity function ρν, a ρν-bordered (respectively
ρν-unbordered) word is called Watson-Crick bordered (respectively Watson-Crick
unbordered). A Watson-Crick bordered word represents thus a DNA single strand
that may bind to itself or to another copy of itself as shown in Figure 1 and Figure
2. Consequently, constructing the set Dρν(1) of all the Watson-Crick unbordered
words over the DNA alphabet is meaningful for DNA computing experiments, since
it represents a set that contains only structure-free DNA strands, i.e., DNA strands
that do not form the undesirable structures of Figure 1 and Figure 2.
Example 2.1 Let u = abababa be a word over the alphabet set {a, b} and let
θ be a morphic involution such that θ(a) = b and θ(b) = a. Then Lθ

d(u) =
{λ, ab, abab, ababab} and νθ(u) = 4, hence u ∈ Dθ(4).

Based on Definition 1 we have the following observations.
Lemma 1 Let θ be either a morphic or an antimorphic involution.

1. Dθ(1) is the set of all θ-unbordered words.

2. A θ-bordered word x ∈ Σ+ has length greater than or equal to 2.

3. For all a ∈ Σ, a is θ-unbordered.

4. For all u ∈ Σ+ such that u 6= θ(u), Lθ
d(u) = {v|v ∈ Σ∗, v ≤θ

d u}.
5. For all a ∈ Σ such that a 6= θ(a), a+ ⊆ Dθ(1).

Recall that an involution is a map θ on Σ∗ such that θ2 is the identity map.
Lemma 2 Let u ∈ Σ+. Then for a morphic involution θ, θ(Lθ

d(u)) = Lθ
d(θ(u)) and

when θ is an antimorphic involution we have, Lθ
d(u) = Lθ

d(θ(u)).
Proof. Let θ be a morphic involution and let v ∈ Lθ

d(u) which implies u = vx =
yθ(v) for some x, y ∈ Σ+ and hence θ(u) = θ(v)θ(x) = θ(y)θ(θ(v)) which implies
θ(v) ∈ Lθ

d(θ(u)). Thus θ(Lθ
d(u)) ⊆ Lθ

d(θ(u)). Similarly let v ∈ Lθ
d(θ(u)) which

implies θ(u) = vx = yθ(v) for some x, y ∈ Σ+ and u = θ(v)θ(x) = θ(y)v which
implies θ(v) ∈ Lθ

d(u) and hence v ∈ θ(Lθ
d(u)). Thus θ(Lθ

d(u)) = Lθ
d(θ(u)).

Let θ be an antimorphic involution and let v ∈ Lθ
d(u), then u = vx = yθ(v) for some

x, y ∈ Σ+ which imply that θ(u) = θ(x)θ(v) = vθ(y). Thus v ∈ Lθ
d(θ(u)). Similarly

we can show that Lθ
d(θ(u)) ⊆ Lθ

d(u). Hence Lθ
d(u) = Lθ

d(θ(u)). 2

Using the following lemma we show that the relation <θ
d is transitive for an

antimorphic involution θ.
Lemma 3 Let u ∈ Σ∗ and v, w ∈ Σ+ such that u <θ

d w and w <θ
d v. Then for a

morphic involution θ, we have u <d v and for an antimorphic involution θ, we have
u <θ

d v.
Proof. When θ is a morphic involution, u <θ

d w and w <θ
d v imply that w =

ux = yθ(u) and v = wα = βθ(w) for some x, y, α, β ∈ Σ+ which implies v = uxα =
βθ(yθ(u)) and hence v = uxα = βθ(y)u which implies u <d v.
When θ is an antimorphic involution, u <θ

d w and w <θ
d v imply that w = ux =
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yθ(u) and v = wα = βθ(w) for some x, y, α, β ∈ Σ+ and hence v = uxα = βθ(ux)
which implies v = uxα = βθ(x)θ(u) implying that u <θ

d v. 2

Corollary 1 If θ is an antimorphic involution, the relation <θ
d is transitive.

Lemma 4 Let u, v, w be such that u, v ∈ Σ+, u 6= v and u <θ
d w, v <θ

d w. If θ is a
morphic involution, then either v <d u or u <d v. If θ is an antimorphic involution,
then either v <p u or u <p v.

Proof. Let θ be a morphic involution and u <θ
d w, v <θ

d w which imply that
w = ux = yθ(u) , w = vα = βθ(v) for some x, y, α, β ∈ Σ+. If |u| > |v|, then u = vp

and θ(u) = qθ(v) for some p, q ∈ Σ+. Thus u = θ(q)v implying that u = vp = θ(q)v
which implies v <d u. If |u| < |v| then v = up and θ(v) = qθ(u) for some p, q ∈ Σ+

which imply that v = θ(q)u. Therefore v = up = θ(q)u and hence u <d v.
Let θ be an antimorphic involution and u <θ

d w, v <θ
d w which imply that w =

ux = yθ(u) and w = vα = βθ(v) for some x, y, α, β ∈ Σ+. If |u| > |v| then u = vp

and θ(u) = qθ(v) for some p, q ∈ Σ+ and hence u = vθ(q) which implies v <p u.
Similarly if |v| > |u|, we can show that u <p v. 2

Corollary 2 Let u, v, w be such that u, v ∈ Σ+, u 6= v and u <θ
d w, v <θ

d w. Then
for an antimorphic involution θ, either θ(v) <s θ(u) or θ(u) <s θ(v).
Corollary 3 Let u ∈ Σ+. Then

1. For a morphic involution θ, Lθ
d(u) is a totally ordered set with <d.

2. For an antimorphic involution θ, Lθ
d(u) is a totally ordered set with <p and

θ(Lθ
d(u)) is a totally ordered set with <s.

Lemma 5 Let θ be a morphic involution. Then for all θ-unbordered words x, y

such that x 6= y, xy 6= θ(y)x.
Proof. Let x, y be two θ-unbordered words, i.e., x, y ∈ Dθ(1). Note that both
x and y are nonempty as Dθ(i) ⊆ Σ+. Suppose xy = θ(y)x then we have the
following cases to consider. If |x| = |y| then x = θ(y) and y = x, a contradiction to
our assumption that x 6= y. If |x| > |y| then there exist p ∈ Σ+ such that x = θ(y)p
and x = py which imply that x = θ(y)p = pθ(θ(y)) since θ is an involution, which
is a contradiction since x is θ-unbordered. If |x| < |y| then there exist q ∈ Σ+ such
that θ(y) = xq and y = qx which imply that y = qx = θ(x)θ(q) since θ is a morphic
involution, which is a contradiction since y is θ-unbordered. Thus xy 6= θ(y)x. 2

3. Involutively bordered words

In this section we give a characterization of the set of all θ-bordered words
when θ is an antimorphic involution. We use this characterization to show several
properties of the set of all θ-bordered and θ-unbordered words for an antimorphic
involution θ.
Lemma 6 Let θ be an antimorphic involution. Then x ∈ Σ+ is θ-bordered iff
x = ayθ(a) for some a ∈ Σ and y ∈ Σ∗.
Proof. If x is θ-bordered then x = pα = βθ(p) for some p, α, β ∈ Σ+. Let p = ar

for some a ∈ Σ and r ∈ Σ∗. Then θ(p) = θ(r)θ(a) and since α ∈ Σ+, we have
α = sθ(a) for some s ∈ Σ∗. Thus there exist y ∈ Σ∗ such that x = ayθ(a). The
converse is obvious. 2

We recall that a language X ⊆ Σ∗ is said to be dense if for all u ∈ Σ∗, X ∩
Σ∗uΣ∗ 6= ∅. We use the above lemma to show that Dθ(1) is a dense set.
Corollary 4 Let θ be an antimorphic involution on Σ∗. Then
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1. u ∈ Dθ(1) iff θ(u) ∈ Dθ(1).

2. If Σ is such that there exist a, b ∈ Σ with θ(a) 6= b then Dθ(1) is a dense set.

3. Let a, b ∈ Σ such that θ(a) = b then for all u ∈ Σ+ either ua is θ-unbordered
or ub is θ-unbordered.

4. If uwv ∈ Dθ(1) for some u, v ∈ Σ+ and w ∈ Σ∗ then uv ∈ Dθ(1).

5. For all a, b ∈ Σ such that a 6= θ(b), aΣ∗b ⊆ Dθ(1).

6. Let u ∈ Σ+ be θ-bordered and x be the shortest θ-border of u, then x is θ-
unbordered.

Proof. We only prove the first two statements. The rest of them follow from
Lemma 6. Let θ be an antimorphic involution on Σ∗.

1. Let u ∈ Dθ(1) and suppose θ(u) /∈ Dθ(1) then we have θ(u) = aαθ(a) for some
a ∈ Σ which imply that u = aθ(α)θ(a) and hence u /∈ Dθ(1), a contradiction.
The converse is similar.

2. Choose a, b ∈ Σ such that a 6= θ(b) then for all w ∈ Σ∗ there exist a, b ∈ Σ∗

such that awb ∈ Dθ(1) which implies that Dθ(1) is a dense set.

2

Statement 6 in the above corollary does not hold true when θ is a morphism.
For example let Σ = {a, b} and θ be a morphism such that θ(a) = b and θ(b) = a.
Take u = ababa. The shortest θ-border of u is x = ab. But x = ab = a.b = a.θ(a)
which is θ-bordered.

It was shown in [24] that when θ is identity and if x is the shortest border of u,
then for all other borders y 6= x of u, y is bordered. But this is not true when θ is
an antimorphism, as shown by the following example.
Example 3.1 Let Σ = {a, b, c} and θ be antimorphism that maps a 7→ b, b 7→ a

and c 7→ c. Then for u = acacb, we have x = a to be the shortest θ-border of u.
Also y = ac is a θ-border of u as θ(ac) = cb, but y is θ-unbordered.

The following lemma relates the set of all prefixes and suffixes of a word with
the set of all prefixes and suffixes of the set of all words obtained by concatenating
the word with itself. We use the lemma to show some closure properties of the set
of all θ-bordered and θ-unbordered words.
Lemma 7 Let θ be a morphism or an antimorphism of Σ∗ and let u, v ∈ Σ∗. Then
θ(Pref(u)) ∩ Suff(v) = ∅ iff θ(Pref(u+)) ∩ Suff(v+) = ∅.
Proof. “⇒” Assume that θ(Pref(u)) ∩ Suff(v) = ∅ and we need to show that
θ(Pref(u+)) ∩ Suff(v+) = ∅. Suppose there exist x ∈ θ(Pref(u+)) ∩ Suff(v+)
then x = θ(uku1) = v2v

l where u1 ∈ Pref(u) and v2 ∈ Suff(v). When θ is a
morphism, we have x = θ(uk)θ(u1) = v2v

l which implies that either θ(u1) is a suffix
of v or θ(u1) = v′vr for some v′ ∈ Suff(v) which imply that θ(u′1) = v′ for some
u′1 ∈ Pref(u1). Both cases lead to a contradiction since θ(Pref(u))∩Suff(v) = ∅.
The converse is obvious.
The case when θ is an antimorphism can be proved similarly. 2

In the next lemma we give a necessary and sufficient condition for a word to be
θ-unbordered. Note that it is clear from Lemma 6 that a word u is θ-unbordered for
an antimorphic involution θ iff u = ayb such that a 6= θ(b). The following lemma
provides a much weaker characterization of θ-unbordered words. However this char-
acterization can be used in proving certain closure properties of θ-unbordered words.
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Lemma 8 Let θ be an antimorphic involution on Σ∗. Then for all u ∈ Σ+ such
that |u| ≥ 2, u is θ-unbordered iff θ(Pref(u)) ∩ Suff(u) = ∅.
Proof. Let u be θ-unbordered. Suppose there exist x ∈ θ(Pref(u))∩Suff(u) then
x = θ(u1) = u′′ for some u = u1u2 = u′u′′ which imply that u = u1u2 = u′θ(u1).
Then we have the following cases. If u2, u

′ ∈ Σ+ then u /∈ Dθ(1) which is a
contradiction since u is θ-unbordered. If u2 = u′ = λ then u = θ(u) and u = av for
some a ∈ Σ and v ∈ Σ+ since |u| ≥ 2 which imply that u = av = θ(v)θ(a) = θ(u)
which is a contradiction since u is θ-unbordered. Hence θ(Pref(u))∩Suff(u) = ∅.
Conversely assume that θ(Pref(u)) ∩ Suff(u) = ∅ and suppose u is θ-bordered
then there exist y ∈ Σ∗ and a ∈ Σ such that u = ayθ(a) which is a contradiction
since θ(a) ∈ θ(Pref(u)) ∩ Suff(u). 2

Corollary 5 Let θ be an antimorphic involution on Σ∗ and let u ∈ Σ+ such that
|u| ≥ 2. Then u is θ-unbordered iff u+ ⊆ Dθ(1).
Proof. Follows from Lemma 8 and Lemma 7. 2

Lemma 9 Let θ be a morphic involution on Σ∗. Then for all u ∈ Σ+ such that
|u| ≥ 2 and u 6= θ(u), u is θ-unbordered iff θ(Pref(u)) ∩ Suff(u) = ∅.
Proof. Let u ∈ Dθ(1) such that |u| ≥ 2 and u 6= θ(u). Suppose there exist
an x ∈ θ(Pref(u)) ∩ Suff(u) then we have the following cases. If x = θ(u) then
x = u ∈ Suff(u) which implies that u = θ(u) which is a contradiction. If x = θ(u1)
for some u1, u2 ∈ Σ+ such that u = u1u2 and u = u1u2 = u′θ(u1) since x ∈ Suff(u)
which is a contradiction since u is θ-unbordered. 2

Corollary 6 Let θ be a morphic involution on Σ∗ and let u ∈ Σ+ such that |u| ≥ 2
and u 6= θ(u). Then u is θ-unbordered iff u+ ⊆ Dθ(1).
Proof. Follows from Lemma 9 and 7. 2

In view of Lemma 8 and Lemma 9 we have the following observation. The proof
of the following lemma is similar to that of the above two lemmas and hence we
omit the proof.
Lemma 10 Let θ be either a morphic or an antimorphic involution. Then for
u ∈ Σ+ such that |u| ≥ 2, u is θ-unbordered iff θ(PPref(u)) ∩ PSuff(u) = ∅.

4. Closure properties of the set of all involutively unbordered words

This section investigates certain closure properties of the set of all θ-unbordered
words, where θ is a morphic or antimorphic involution. We mainly concentrate
on the conditions under which the concatenation of two θ-unbordered words is
also θ-unbordered. The operation of catenation is important since often in DNA
computing experiments information-encoding DNA strands are ligated together.
The need exists thus for finding sets of DNA strands with the property that the
catenation of any DNA strands in the set has the same desirable structure-free
properties that the individual DNA strands possess.
Proposition 1 Let θ be either a morphic or an antimorphic involution and let
u, v ∈ Σ+ be θ-unbordered. Then uv is θ-unbordered iff θ(Pref(u)) ∩ Suff(v) = ∅.
Proof. Assume that for u, v ∈ Σ+ such that |uv| ≥ 2, θ(Pref(u)) ∩ Suff(v) = ∅
and suppose uv is not θ-unbordered.
Then for an antimorphic involution θ, we have by Lemma 6, uv = ayθ(a) for some
a ∈ Σ and y ∈ Σ∗. Then a ∈ Pref(u) and θ(a) ∈ Suff(v) which implies that
θ(a) ∈ θ(Pref(u)) ∩ Suff(v) which is a contradiction. Hence uv is θ-unbordered.
When θ is a morphism, then there exist x ∈ Σ+ such that uv = xα = βθ(x) for
some α, β ∈ Σ+. We have the following cases:
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(i) |x| ≤ |u| and |θ(x)| ≤ |v|
(ii) |x| ≤ |u| and |θ(x)| > |v|
(iii) |x| > |u| and |θ(x)| ≤ |v|
(iv) |x| > |u| and |θ(x)| > |v|

Note that case(i) implies that x ∈ Pref(u) and θ(x) ∈ Suff(v) which immediately
leads to a contradiction since x ∈ Pref(u) and θ(x) ∈ θ(Pref(u)) ∩ Suff(v).

Case(ii) implies that x ∈ Pref(u), θ(x) ∈ Suff(uv) and θ(x) /∈ Suff(u) and hence
x = u1 for some u1 ∈ Σ+ and u2 ∈ Σ∗ such that u = u1u2 and θ(x) ∈ Suff(v)
implies that θ(x) = u′′v for some u′ ∈ Σ+ and u′′ ∈ Σ∗ such that u = u′u′′. Thus
x = θ(u′′)θ(v) = u1 which imply that θ(u′′) ∈ Pref(u) and u = θ(u′′)y = u′u′′ with
y, u′ ∈ Σ+ since v ∈ Σ+, which is a contradiction since u is θ-unbordered.

Case(iii) implies that x ∈ Pref(uv), θ(x) ∈ Suff(v) and x /∈ Pref(u) and hence
x = uv1 for some v1 ∈ Σ+ and v = v1v2 with v2 ∈ Σ+ and θ(x) ∈ Suff(v) implies
that θ(x) = v′′ for some v′′ ∈ Σ+, v′ ∈ Σ∗ with v = v′v′′. Thus for x = uv1,
θ(x) = θ(u)θ(v1) = v′′ which implies that v = v1v2 = yθ(v1) with v2, y ∈ Σ+ since
u ∈ Σ+ which is a contradiction since v is θ-unbordered.

Case(iv) implies that x ∈ Pref(uv) and θ(x) ∈ Suff(uv) but none of the above
hold. x ∈ Pref(uv) implies that x = uv1 for some v1, v2 ∈ Σ+ with v = v1v2

and θ(x) ∈ Suff(uv) implies that θ(x) = u2v for some u1, u2 ∈ Σ+ with u =
u1u2. Thus for x = uv1, θ(x) = θ(u)θ(v1) = u2v. If u = u′u′′ then θ(u)θ(v1) =
θ(u′)θ(u′′)θ(v1) = u2v such that θ(u′) = u2 which imply that u = u′u′′ = u1θ(u′)
with u′, u′′, u1 ∈ Σ+ which is a contradiction since u is θ-unbordered. Hence uv is
θ-unbordered.

Conversely for u, v both θ-unbordered and |uv| ≥ 2, assume that uv is also θ-
unbordered. Suppose there exist x ∈ θ(Pref(u)) ∩ Suff(v) such that x = θ(u1) =
v2 for u = u1u2 and v = v1v2 with u1, v2 ∈ Σ+ and u2, v1 ∈ Σ∗. Then uv =
u1u2v1v2 = u1u2v1θ(u1) which is a contradiction since uv is θ-unbordered. Hence
θ(Pref(u)) ∩ Suff(v) = ∅. 2

Lemma 11 Let θ be either a morphic or an antimorphic involution on Σ∗ and let
u, v ∈ Σ+ with both u and v θ-unbordered and non θ(u) 6= u, θ(v) 6= v. Then the
following are equivalent.

1. uv is θ-unbordered.

2. The set of all words in u+v+ is θ-unbordered.

3. θ(Pref(u)) ∩ Suff(v) = ∅.
4. For all x ∈ (uv)+, x is θ-unbordered.

Proof. Note that from Proposition 1 it is clear that 1 ⇔ 3. From Lemma 7
and Proposition 1 it is clear that 1 ⇔ 2. Note that from Lemma 8 uv ∈ Dθ(1) iff
θ(Pref(uv))∩ Suff(uv) = ∅. Also from Lemma 7 θ(Pref(uv))∩ Suff(uv) = ∅ iff
θ(Pref((uv)+)) ∩ Suff((uv)+) = ∅. Hence from Proposition 1 θ(Pref((uv)+)) ∩
Suff((uv)+) = ∅ iff (uv)+ ⊆ Dθ(1). Hence 1 ⇔ 4. 2

We use the following result from [17] to prove the next result.
Lemma 12 ([17]) Let u and w be such that uv = θ(v)w for some v ∈ Σ∗. Then
for a morphic involution θ there exist x, y ∈ Σ∗ such that u = xy and one of the
following holds

1. If |u| > |v| then w = yθ(x) and v = (θ(x)θ(y)xy)iθ(x) for i ≥ 0.
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2. If |u| < |v| then w = θ(y)x and v = (θ(x)θ(y)xy)iθ(x)θ(y)x for i ≥ 0.

Proposition 2 Let x1, x2 ∈ Σ+ and θ be either a morphic or an antimorphic
involution. If x1x2 is θ-unbordered, then for any k > 1, x1x

k
2 is θ-unbordered.

Proof. We first consider the case when θ is an antimorphism. Suppose that, for
some k > 1, x1x

k
2 is θ-bordered, then from Lemma 6, there exist a ∈ Σ and y ∈ Σ∗,

x1x
k
2 = ayθ(a). Since both x1, x2 ∈ Σ+ we have x1x2 = axθ(a) for some x ∈ Σ∗

which is a contradiction since x1x2 is θ-unbordered. Hence x1x
k
2 is θ-unbordered.

We shall prove by induction on k the case when θ is morphism.
Base Case: Let k = 2. Suppose x1x

2
2 is θ-bordered. Then there exist x, y, u ∈ Σ+

such that x1x
2
2 = ux = yθ(u). We have several cases:

Case 1 Let |u| ≤ |x1| then we have x1 = uα for some α ∈ Σ∗.

• If |θ(u)| ≤ |x2| then x2 = βθ(u) for some β ∈ Σ∗ and x1x2 = uαβθ(u) with
u ∈ Σ+, which is a contradiction since x1x2 is θ-unbordered.

• If |x2| < |θ(u)| ≤ |x2
2| then θ(u) = β1x2 for some x2 = ββ1 with β1 ∈ Σ+.

Thus u = θ(β1)θ(x2) and x1x2 = uαx2 = uαββ1 = θ(β1)θ(x2)αββ1, which is
a contradiction since x1x2 is θ-unbordered.

• If |θ(u)| > |x2
2| then θ(u) = β1x

2
2 with x1 = ββ1 and β1 ∈ Σ+. Thus u =

θ(β1)θ(x2
2) and x1 = uα = ββ1 which implies that x1x2 = θ(β1)θ(x2

2)αx2 =
ββ1x2 which imply that x1x2 = θ(β1x2)θ(x2)αx2 = β(β1x2) which is a con-
tradiction since x1x2 is θ-unbordered.

Case 2 Let |x1| ≤ |u| ≤ |x1x2| then we have uα = x1x2 for some α ∈ Σ∗.

• If |θ(u)| ≤ |x2| then β1θ(u) = x2 which implies x1x2 = uα = x1β1θ(u), a
contradiction.

• If |x2| ≤ |θ(u)| ≤ |x2x2| then x1x2 = uα and θ(u) = β1x2 for x2 = ββ1. As θ

is a morphism, x1x2 = uα = θ(β1)θ(x2)α which imply that x1x2 = x1ββ1 =
θ(β1)θ(x2)α, a contradiction.

• If |x2x2| ≤ |θ(u)| ≤ |x1x2x2|, then x1x2 = ua and θ(u) = s1x2x2 for x1 = ss1.
Then we have x1x2 = uα = θ(s1)θ(x2)θ(x2)α and hence x1x2 = ss1x2 =
θ(s1)θ(x2)θ(x2)α, a contradiction.

Case 3 Let |x1x2| < |u| < |x1x2x2|. If |x2| ≤ |θ(u)| ≤ |x2x2| then we have u = x1x2β

with x2 = ββ1 and θ(u) = s1x2 for x2 = ss1. Then we have u = x1x2β = θ(s1)θ(x2).
Note that |x1β| = |s1| hence θ(s1) = x1r, x2 = rp and θ(x2) = pβ which im-
plies x1x2β = θ(s1)pβ which imply that x1x2 = x1ss1 = θ(s1)p, a contradic-
tion. If |x2x2| ≤ |θ(u)| ≤ |x1x2x2| then θ(u) = s1x2x2 and u = x1x2β for
x1 = ss1 and x2 = ββ1 with s, s1, β, β1 ∈ Σ+. Then u = x1x2β = θ(s1)θ(x2)θ(x2)
which implies that u = x1ββ1β = θ(s1)θ(x2)θ(x2) and by the length argument we
have θ(x2) = β1β and hence x2 = ββ1 = θ(β1)θ(β) or β1β = θ(β)θ(β1). Thus
x1β = θ(s1)θ(x2) which implies that x1x2 = ss1θ(β1)θ(β) = θ(s1)β1ββ1 which is a
contradiction since x1x2 is θ-unbordered. Hence we have x1x

2
2 ∈ Dθ(1).

Induction Step Assume x1x
k
2 ∈ Dθ(1). Suppose x1x

k+1
2 /∈ Dθ(1), then we have

x1x
k+1
2 = ux = yθ(u) for some x, y ∈ Σ+.

Case 1: Let u be such that |x1x
k
2 | < |θ(u)| < |x1x

k+1
2 | then θ(u) = α1x

k+1
2 for some

α1 ∈ Σ+ such that x1 = αα1. If |x1x
k
2 | < |u| < |x1x

k+1
2 |, then u = x1x

k
2β for some

β ∈ Σ+ such that x2 = ββ1. Hence u = θ(α1)θ(xk
2)θ(x2) = θ(α1)θ(xk

2)θ(β)θ(β1) =
x1x2ββ1β. Thus x1x

k−1
2 β = θ(α1)θ(xk

2) and hence x1x
k
2 = θ(α1)θ(xk

2)β1 = αα1x
k
2
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which is a contradiction since x1x
k
2 is θ-unbordered. If |u| ≤ |x1x

k
2 | then u = x1x

i
2β

for some i < k and x2 = ββ1 for some β, β1 ∈ Σ∗. Thus u = θ(α1)θ(xk+1
2 )

which implies that x1x
i
2β = θ(α1)θ(xk

2)θ(β)θ(β1) and hence x1x
i−1
2 β = θ(α1)θ(xk

2).
Therefore x1x

k
2 = θ(α1)θ(xk

2)β1x
k−i
2 = αα1x

k
2 , a contradiction since x1x

k
2 is θ-

unbordered.
Case 2: Let u be such that |θ(u)| ≤ |xk+1

2 |. Then θ(u) = β1x
i
2 with x2 = ββ1

and i ≤ k and β, β1 ∈ Σ∗. If |x1x
k
2 | < |u| < |x1x

k+1
2 | then u = x1x

k
2α with

x2 = αα1 and α1 ∈ Σ+. Hence u = θ(β1)θ(xi−1
2 )θ(x2) = x1x

k−1
2 αα1α which implies

that x1x
k−1
2 α = θ(β1)θ(xi−1

2 ). Therefore x1x
k
2 = θ(β1)θ(xi−1

2 )α1 = x1x
k−1
2 ββ1,

a contradiction. If |u| ≤ |x1x
k
2 | then u = x1x

j
2α with x2 = αα1, α1 ∈ Σ∗

and j < k. Thus x1x2 = x1x
j
2αα1x

k−j−1
2 = θ(β1)θ(xi

2)α1x
k−j−1
2 which implies

that x1x
k
2 = x1x

k−1
2 ββ1 = θ(β1)θ(xi

2)α1x
k−j−1
2 , a contradiction since x1x

k
2 is θ-

unbordered. Hence x1x
k
2 ∈ Dθ(1) for all k > 1. 2

The proof of the next proposition is similar to that of the previous one and hence
we omit the proof.
Proposition 3 Let x1, x2 ∈ Σ+ and θ be either morphic or an antimorphic invo-
lution. If x1x2 is θ-unbordered, then for any k > 1, xk

1x2 is θ-unbordered.
Proposition 4 Let θ be an antimorphic involution and let v be θ-unbordered. Then
for all vp ∈ PPref(v) and vs ∈ PSuff(v), vpuvs is θ-unbordered for all u ∈ Σ∗.
Proof. Let x ∈ vpΣ∗vs such that x is θ-bordered. Then there exist a ∈ Σ and
y ∈ Σ∗ such that x = ayθ(a) which implies that a ∈ Pref(vp) and θ(a) ∈ Suff(vs).
Thus there exist z ∈ Σ∗ such that v = azθ(a) which is a contradiction since v is
θ-unbordered. Hence x is also θ-unbordered. 2

Note that the above lemma does not hold when θ is a morphic involution. For
example, let Σ = {a, b} such that θ(a) = b and θ is a morphism. Note that
aa, b ∈ Dθ(1) but aba = (ab)a = aθ(ab) and hence aba /∈ Dθ(1).
Proposition 5 Let θ be a morphic or an antimorphic involution and v be θ-unbordered.
1. If u = v0v1...vn−1 for some vi ∈ PPref(v), then uv ∈ Dθ(1).
2. If u = v0v1...vn−1 for some vi ∈ PSuff(v), then vu ∈ Dθ(1).

Proof. We prove the first case (the second one is similar to the first case). The
case when θ is an antimorphic involution follows directly from Proposition 4. We
only consider the case when θ is a morphism. Let v ∈ Dθ(1) such that |v| ≥ 2 and
let u = v0v1...vn−1 for some vi ∈ PPref(v). Suppose uv is θ-bordered, then there
exist x, α, β ∈ Σ+ such that uv = xα = βθ(x).

1. If |x| > |u| then there exist v′, v′′ ∈ Σ+ such that v = v′v′′ and x = uv′ then we
have uv = uv′v′′ = βθ(uv′) = βθ(u)θ(v′) which implies that v = v′v′′ = rθ(v′)
for some r ∈ Σ+, a contradiction since v is θ-unbordered.

2. If |x| ≤ |u| then there exist α1, α2 such that α1 ∈ Σ∗ and α2 ∈ Σ+ and
u = xα1, v = α2. If |x| < |v0| then there exist p ∈ Σ+ such that v0 = xp

which implies that x ∈ PPref(v) and hence v = xr = sθ(x) for some r, s ∈ Σ+

which is a contradiction. If |x| ≥ |v0| then there exist p1, p ∈ Σ∗ such that
x = v0pp1 and p = v1..vk for some k and p1 ∈ PPref(vk+1) with |p1| < |v|.
Hence uv = xα = βθ(x) = v0pp1α = βθ(v0)θ(p)θ(p1) which implies that
v = p1r = sθ(p1), a contradiction.

2
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5. Classification of the set of all involutively bordered words

In this section we show that the set of all θ-bordered words is regular when θ

is an antimorphic involution and properly context-sensitive when θ is a morphic
involution. In the next proposition we use Lemma 6 and show that the set of all θ-
unbordered words is indeed a regular language when θ is an antimorphic involution.
Proposition 6 When θ is an antimorphic involution on Σ∗, Dθ(1) is a regular
language.

Proof. Note that for all a ∈ Σ, a is θ-unbordered and from Lemma 6, we have
Dθ(1) = Σ ∪ Y where Y =

⋃
a,b∈Σ aΣ∗b such that θ(a) 6= b. Since Σ is finite, Y is

regular and hence Dθ(1) is regular. 2

In the next proposition we find an example of θ, which is a morphic involution
but not the identity function and an alphabet Σ such that the set of all θ-bordered
words over Σ is not context free and hence not regular.
Proposition 7 If θ is a morphic involution over an alphabet Σ, such that θ is not
identity, the set of all θ-bordered words over Σ is not context free.
Proof. Let a, b ∈ Σ such that a 6= b and θ(a) = b. Then θ(b) = a holds because θ

is an involution map. Denote by L the set of all θ-bordered words over Σ. We will
prove, by contradiction, that L is not context-free.

Indeed, assume L were context-free. Let n be the constant defined by the Pump-
ing Lemma for context-free languages. Choose the word z1 = an+1bn+1an+1, which
is clearly θ-bordered. By the pumping lemma, there is a decomposition z1 = αxvyβ

such that |xvy| ≤ n, |xy| ≥ 1, and for all i ≥ 0, zi = αxivyiβ ∈ L. Note that any
θ-border wi of zi has the property wi = au for some u ∈ Σ∗ because zi begins with
a for any i ≥ 0.

We will consider first the case where xvy is a subword of an+1bn+1 of z1. In this
case, θ(wi) = bΣ∗an+1 for any i ≥ 0 because zi has the suffix an+1. Consequently,
wi ∈ aΣ∗bn+1. If neither x nor y contains any bs, that is, xvy is in the prefix an+1

of z1, zi = ambn+1an+1 for i ≥ 2, where m > n + 1. Considering the form of wi

mentioned above, wi = ambn+1. This further implies θ(wi) = bman+1, which is a
contradiction since zi does not contain m consecutive bs. Consequently, x or y must
include at least one letter b. However, in this case z0 has at most n letters b which
contradicts the fact that z0 has w0 = aubn+1 for u ∈ Σ∗ as its θ-border.

By virtue of the symmetric form of z1, it is clear that the second case, where
xvy occurs as a subword of bnan of z1, leads to the same contradiction.

These two cases cover all possible decompositions, and they all lead to contra-
dictions. Consequently, our assumption was false and L is not context-free. 2

Note that in [18], it was shown that for a morphic involution θ, for all θ-bordered
words v, either v = urθ(u) for some r, u ∈ Σ∗ or v = (xyθ(x)θ(y))∗xyθ(x)θ(y)x for
some x, y ∈ Σ∗. In the next proposition we construct a grammar that generates
all such θ-bordered words. We use the workspace theorem [21] to show that the
language generated is indeed a context-sensitive language. We recall the following
from [21].
Definition 2 Let G = (N, T, S, P ) be a grammar and consider a derivation D

according to G, D : S = w0 ⇒ w1 ⇒ ... ⇒ wn = w.
The workspace of the w by the derivation D is:

WSG(w,D) = max{|wi| : 0 ≤ i ≤ n}.

The workspace of w is : WSG(w, D) = min{WSG(w,D) : D is a derivation of w}.
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Theorem 1 [21] If G is a type 0 grammar and if there is a nonnegative integer
k such that WSG(w) ≤ k|w| for all nonempty words w ∈ L(G), then L(G) is a
context-sensitive language.
Proposition 8 Let θ be a morphic involution on Σ∗. Then the set of all θ-bordered
words is context-sensitive i.e., Σ∗ \Dθ(1) is context-sensitive.
Proof. Let Σ = {a1, a2, ..., an} be the alphabet set and take G = (VN , Σ, X0,R)
where VN = {X, X0, X1, X2, X3, Yi, Z,Z1,P, Q} where 1 ≤ i ≤ n and X0 is the start
symbol. Define the productions R of G for all ai ∈ Σ to be

X0 → ZX1X2X3XZ1 (1)

X1X2 → aiX1Yi (2)

YiX3 → X2θ(ai)X3, Yiaj → ajYi, aiX2 → X2ai (3)

YiX3 → PX2θ(ai)X3Q, aiPX2 → PX2ai, Yiaj → ajYi (4)

X1PX2 → aiX1PX2 (5)

ajX → Xaj , YiXZ1 → aiXZ1, ZXai → aiZYiX,YiXaj → ajYiX (6)

X1X2 → λ,X3 → λ (7)

QXZ1 → λ,X1PX2 → λ,Z → λ (8)

XZ1 → λ (9)

Consider derivations D from ZRX1X2θ(R)X3XZ1 leading to a terminal word (after
an application of the initial rule 1 and R = λ). If the rule in 2 is used then we
can either use rules 3 or rules 4. If rule 2 is used then we eventually end up
with ZuX1X2θ(u)XZ1. Then we can either use rules in 6 and 7 which results in
the word (uvθ(u)θ(v))∗uvθ(u)θ(v)u for u, v ∈ Σ∗ or use rules in 2 and 4 which
results in word of the type urθ(u) for r, u ∈ Σ∗. If D begins with an applica-
tion of rule 2 and the first rule in 3 then the only possibility is to continue the
derivation to the word ZraiX1Yiθ(r)X3XZ1 → ZraiX1θ(r)YiX3XZ1 which leads
to ZraiX1X2θ(r)θ(ai)X3XZ1. Here we have two choices, either we continue to
apply rules in 2 or apply rules in 7 and get Zraiθ(r)θ(ai)XZ1 and we can apply
rules in 6 which will lead to ZXraiθ(r)θ(ai)Z1 and the only possibility to con-
tinue the derivation is to apply the rule ZXai → aiZYiX in 6 and we get the
word ajZYjXr2aiθ(r)θ(ai)Z1 which leads to ajZr2aiθ(r)θ(ai)YjXZ1 and hence
ajZr2aiθ(r)θ(ai)ajXZ1. Continuing to apply the rules in 6 we end up with the
word of type (uvθ(u)θ(v))∗uvθ(u)θ(v)u. If D begins with an application of rule 2
and the first rule in 4, then it will lead to the word ZraiX1PX2θ(r)θ(ai)X3QXZ1.
Then we can either apply rules in 8 to get words of type uθ(u) or apply the rule in 5
to get words of the type usθ(u) for s ∈ Σ∗. Hence L(G) = {xsθ(x), (uvθ(u)θ(v))iu

for i ≥ 1 and u, v, s, x ∈ Σ∗}. Note that L(G) = Σ∗ \Dθ(1).
The workspace of w, for all w ∈ L(G), is less than or equal to k|w|, for k = 8.

Indeed, the only deletions that can occur during a terminal derivation of a word w

are the ones in the rules 7, 8 and 9. Moreover, these rules can only be applied in
a terminal derivation as follows: We can either apply rules 8 and X3 → λ in rule
7, or apply rules 7 alone, or apply rules 7 and rule 9. Hence the maximum number
of letters we can delete is by using rules 8 and X3 → λ in rule 7, which gives us a
maximum of 8 deleted letters per terminal derivation. Thus all the sentential forms

13



of any terminal derivation of a word w have length less than or equal to 8|w|. By
Theorem 1, L(G) is indeed a context-sensitive language and hence the set of all
θ-bordered words is context-sensitive. 2

Proposition 9 Given v ∈ Σ+ it is decidable whether or not v ∈ Dθ(1).
Proof. Follows immediately from the decidability of membership for context-
sensitive and regular languages. 2

Note that for an antimorphic involution θ and for u ∈ Dθ(i) for some i ≥ 2 with
Lθ

d(u) = {λ <p u1 <p u2 <p ... <p ui−1} we have u1 ∈ Dθ(1).
Proposition 10 Let u ∈ Dθ(1). If v <θ

d ui then either v = λ or u = θ(u) and
v = uj for 1 ≤ j < i.
Proof. Let v <θ

d ui for some u ∈ Dθ(1). If v 6= λ, ui = vα = βθ(v), for
α, β, v ∈ Σ+, then v = ujr1 and θ(v) = s2u

j for u = r1r2 = s1s2 and 0 ≤ j < i.
We only prove the statement when θ is a morphic involution. The case when θ is
an antimorphic involution is similar. If v = ujr1, then θ(v) = θ(uj)θ(r1) = s2u

j .
If r1.s2 ∈ Σ+, then u = r1r2 = pθ(r1). If r2 6= λ then u /∈ Dθ(1) which is a
contradiction. If r2 = λ then p = λ and u = r1 = θ(r1) which implies that u = θ(u)
and v = uj+1 = θ(v). If r1 = λ then v = uj = θ(v) and u = θ(u). 2

The following lemma provides for a given u ∈ Σ∗, the number of θ-borders of u.
We recall that u ∈ Σ∗ is said to be primitive if u = vi for some v ∈ Σ+, i ≥ 1, then
i = 1 and the set of all primitive words over Σ is denoted by Q. A word u ∈ Σ∗ is
called a θ-palindrome iff u = θ(u). Define Pθ(Σ) to be the set of all θ-palindromes
over an alphabet Σ. If the alphabet is clear from the context, we will denote this
set shortly by Pθ.
Lemma 13 Let θ be an antimorphic involution and let x ∈ Σ+ such that x ∈ Pθ

and |x| = n. Then x ∈ Dθ(n).
Proof. The fact that x ∈ Pθ implies that, for all v ∈ Pref(x), we have θ(v) ∈
Suff(x). Also note that since PPref(x) = {x1, x1x2, ...., x1x2...xn−1} for x = x1x2...xn,
xi ∈ Σ we have |PPref(x)| = n − 1 and for all v ∈ Pref(x), v <θ

d x. Thus
Lθ

d(x) = {λ} ∪ PPref(x) and |Lθ
d(x)| = n which imply that x ∈ Dθ(n). 2

Proposition 11 Let θ be an antimorphic involution.

1. Let x /∈ Pθ. Then for all a ∈ Σ and for all i ≥ 1, u = axθ(a) ∈ Dθ(i + 1) iff
x ∈ Dθ(i).

2. Let x ∈ Pθ. Then for all a ∈ Σ and for all i ≥ 1, axθ(a) ∈ Dθ(i + 2) iff
x ∈ Dθ(i).

Proof. We only prove 1.
“ ⇐ ” Let x ∈ Dθ(i), i.e., |Lθ

d(x)| = i. Take u = axθ(a) for a ∈ Σ. Since
x ∈ Dθ(i), we have Lθ

d(x) = {λ, v1, ..., vi−1} and, for all v ∈ Lθ
d(x), v <θ

d x which
means there exist y, z ∈ Σ+ such that x = vy = zθ(v). Thus u = axθ(a) =
avyθ(a) = azθ(v)θ(a) = avy1 = z1θ(v)θ(a) which implies that for all v ∈ Lθ

d(x),
av ∈ Lθ

d(u). Suppose there exists w ∈ Pref(x) such that w /∈ Lθ
d(x) and aw <θ

d u.
Then u = awy = zθ(w)θ(a). If w = x, then y = θ(a) and w = θ(w), x = θ(x), a
contradiction with our assumption that x /∈ Pθ. If w ∈ PPref(x) then x = wy1 =
z1θ(w), a contradiction since w /∈ Lθ

d(x). Hence Lθ
d(u) = {λ, a, av1, av2, ..., avi−1}

which implies u ∈ Dθ(i + 1).
“ ⇒ ” Let u = axθ(a) ∈ Dθ(i+1). Then Lθ

d(u) = {λ, a, av1, av2, ..., avi−1} for some
vi ∈ Pref(x) which implies that θ(vi) ∈ Suff(x). If for some i, vi = x then x ∈ Pθ,
a contradiction. Thus for all avi ∈ Lθ

d(u), vi <θ
d x and Lθ

d(x) = {λ, v1, v2, ..., vi−1}
which imply that x ∈ Dθ(i). 2
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Proposition 12 Let u be a θ-palindromic primitive word and j be an integer, j ≥ 1.
Then,

1. For a morphic involution θ, νθ
d(uj) = νθ

d(u) + j − 1.

2. For an antimorphic involution θ, νθ
d(uj) = |uj | = j × |u|.

Proof. Let θ be a morphic involution and u ∈ Pθ, i.e., u = θ(u). For u = a1a2...an,
θ(u) = θ(a1)...θ(an), ai ∈ Σ which implies ai = θ(ai) for all i. Hence θ is identity
on Σ and thus νd(u) = νθ

d(u). It was shown in [12] that νd(uj) = νd(u) + j − 1.
Hence νd(uj) = νθ

d(uj) = νθ
d(u) + j − 1.

Let θ be an antimorphic involution and u = θ(u). If u = a1...an then θ(u) =
θ(an)...θ(a1) and since u = θ(u) we have ai = θ(an+1−i). Hence, by Lemma 13,
νθ

d(u) = |u| since Lθ
d(u) = {λ, a1, a1a2, ..., a1a2...an−1}. Note that for all j ≥ 1,

uj = θ(uj). Hence νθ
d(uj) = |uj | = j × |u|. 2

6. Relations to involution codes

Involution codes were introduced in [13] in the process of designing information
encoding DNA strand sets whose properties guarantee that their members will not
form undesirable secondary structures. The name “involution code” has been used
to refer to any of several types of codes used in DNA computing that are defined
using an involution function, and that avoid some unwanted bindings between their
elements. Examples of involution codes are sticky-free codes, overhang-free codes,
hairpin-free codes, etc. Several properties of involution codes have been discussed
in [13, 14, 15, 6, 16]. Besides being of interest for DNA computing, it turns out that
these involution codes generalize several well-known notions such as prefix codes,
suffix codes, infix codes, comma-free codes, etc., [2], [19]. In this section we discuss
the relations between certain involution codes and the set of all words that are
θ-unbordered with respect to the involution map θ. We begin the section with the
review of definitions of some involution codes defined in [14, 15].
Definition 3 Let θ : Σ∗ → Σ∗ be a morphic or antimorphic involution and X ⊆
Σ+.

1. The set X is called θ-infix if Σ∗θ(X)Σ+ ∩X = ∅ and Σ+θ(X)Σ∗ ∩X = ∅.
2. The set X is called θ-comma-free if X2 ∩ Σ+θ(X)Σ+ = ∅.
3. The set X is called θ-intercode if Xm+1 ∩ Σ+θ(Xm)Σ+ = ∅, m ≥ 1. The

integer m is called the index of X.

4. The set X is called n-θ-comma-free if every n-element subset of X is θ-comma-
free.

5. The set X is called n-θ-intercode of index m if every n-element subset of X

is a θ-intercode of index m.

6. The set X is called θ-overlap-free if PPref(X)∩PSuff(θ(X)) = ∅ and PPref(θ(X))∩
PSuff(X) = ∅.

7. The set X is called θ-sticky-free if the conditions wx, yθ(w) ∈ X imply xy = λ.

8. The set X is called θ-strict if X ∩ θ(X) = ∅ .

15



We recall the following definition. Let R be a binary relation on Σ∗. A language
L is R-independent if for any u, v ∈ L, uRv implies u = v. In the following
propositions we show that some of the involution sets are independent with respect
to the binary relation <θ

d, where θ is either a morphic or an antimorphic involution.
Proposition 13 If X ⊆ Σ∗ is θ-infix (θ-comma-free) then the set X is independent
with respect to <θ

d.
Proof. Suppose there exist u, v ∈ X such that v = ux = yθ(u) for some x, y ∈ Σ+

which implies X is not θ-infix and hence not θ-comma-free since θ(u) is a suffix of
v. Hence X is independent with respect to <θ

d. 2

Proposition 14 If X ⊆ Σ∗ is θ-sticky-free then X is independent with respect to
<θ

d.
Proof. Let u, v ∈ X such that v = ux = yθ(u) for some x, y ∈ Σ+. Then
ux, yθ(u) ∈ X but x 6= y 6= λ which is a contradiction since X is θ sticky-free. 2

Proposition 15 Let θ be a morphic involution. If X ⊆ Σ∗ is strictly θ-overlap-free
then X is independent with respect to <θ

d.
Proof. Since X is θ-overlap-free we have PPref(X) ∩ PSuff(θ(X)) = ∅ and
PSuff(X) ∩ PPref(θ(X)) = ∅. Suppose for u, v ∈ X we have v = ux = yθ(u),
for some x, y ∈ Σ+ then θ(v) = θ(u)θ(x) and θ(v) = θ(y)u ⇒ u ∈ PPref(X) ∩
PSuff(θ(X)) and θ(u) ∈ PSuff(X) ∩ PPref(θ(X)), a contradiction. 2

We recall from Proposition 16 in [16] that every θ-comma-free code is also a
θ-intercode of index m for all m ≥ 1.
Proposition 16 Let θ be morphic involution and let L(n) be a set of all θ-unbordered
words such that for all x, y ∈ L(n), |x| = |y| = n and xy ∈ Dθ(1). Then L(n) is
θ-comma-free.
Proof. Note that from Proposition 1 for all x, y ∈ Dθ(1), xy ∈ Dθ(1) iff
θ(Pref(x)) ∩ Suff(y) = ∅. Suppose L(n) is not θ-comma-free then there exist
x, y, z ∈ L(n) such that xy = αθ(z)β for some α, β ∈ Σ+. Then we have θ(z) = x2y1

where x = x1x2 and y = y1y2 with both x2, y1 ∈ Σ∗. The case when θ(z) = x or
θ(z) = y implies that zx = zθ(z) or zy = zθ(z) which is a contradiction since zx

and zy are θ-unbordered. The case when θ(z) = x2y1 with x2, y1 ∈ Σ+ implies
that x2 ∈ θ(Pref(z)) and thus zx = θ(x2)z2x1x2 which is a contradiction since
zx ∈ Dθ(1). A similar contradiction arises when y1 ∈ θ(Suff(z)). Hence L(n) is
θ-comma-free. 2

Corollary 7 Let θ be a morphic involution. Let L(n) be as defined in Proposition
16. Then L(n) is a θ-intercode of index m for all m ≥ 1.
Proof. Obvious, since every θ-comma-free is also a θ-intercode of index m for all
m ≥ 1, [16]. 2

Note that the set L(n) defined in Proposition 16 is not unique. For example,
let Σ = {a, b, c, d} and θ be a morphic involution such that θ(a) = b and θ(c) = d.
Then L(2) = {aa, cc, ac, ca} or {bc, bb, cc, cb} or {ad, da, dd, aa} or {bd, bb, db, dd}.
The above proposition does not hold when θ is an antimorphic involution. Let
Σ = {a, b, c, d} and θ be an antimorphic involution such that a 7→ b , c 7→ d and
vice versa. Note that aaba, cbbc, adba ∈ L(4), but aa(bacb)bc = aaθ(adba)bc which
implies that L(4) is not θ-comma-free.
Proposition 17 Let θ be a morphic or an antimorphic involution such that θ is
not the identity. Then L ⊆ Σ+ is θ-strict and θ-sticky-free if and only if L ⊆ Dθ(1)
and L2 ⊆ Dθ(1).
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Proof. Assume that L is θ-strict and θ-sticky-free. We need to show that both
L,L2 ⊆ Dθ(1). Note that since L is θ-sticky-free for all wx, yθ(w) ∈ L we have
xy = λ and since L is θ-strict we have L ∩ θ(L) = ∅. Thus for all u, v ∈ L we have
θ(Pref(u)) ∩ Suff(v) = ∅. Hence from Lemmas 8, 9 and Proposition 1 we have
L,L2 ⊆ Dθ(1).

Conversely, assume that L, L2 ⊆ Dθ(1). We need to show that L is θ-strict and
L is θ-sticky-free. Suppose L is not θ-strict. Then there exist u, v ∈ L such that
u = θ(v). This implies that vu = θ(u)u /∈ Dθ(1), a contradiction since L2 ⊆ Dθ(1).
Suppose L is not θ-sticky-free. Then there exist wx, yθ(w) ∈ L with xy 6= λ, which
implies that wxyθ(w) ∈ L2 but wxyθ(w) /∈ Dθ(1), a contradiction. Hence L is both
θ-strict and θ-sticky-free. 2

The following results follow from Lemma 11.
Corollary 8 Let L be θ-strict and θ-sticky-free. Then L+ ⊆ Dθ(1).
Corollary 9 Let L1, L2 ⊆ Σ+ be θ-strict and θ-sticky-free. Then L1L2 ⊆ Dθ(1) iff
L+

1 L+
2 ⊆ Dθ(1).
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