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Abstract. When representing DNA molecules as words, it is necessary
to take into account the fact that a word u encodes basically the same
information as its Watson-Crick complement θ(u), where θ denotes the
Watson-Crick complementarity function. Thus, an expression which in-
volves only a word u and its complement can be still considered as a
repeating sequence. In this context, we define and investigate the prop-
erties of a special class of primitive words, called θ-primitive, which can-
not be expressed as such repeating sequences. For instance, we prove the
existence of a unique θ-primitive root of a given word, and we give some
constraints forcing two distinct words to share their θ-primitive root.
Also, we present an extension of the well-known Fine and Wilf Theorem,
for which we give an optimal bound.

1 Introduction

Encoding information as DNA strands as in, e.g., DNA Computing, brings up for
investigation new features based on the specific biochemical properties of DNA
molecules. Recall that single-stranded DNA molecules can be viewed as words
over the quaternary alphabet of bases {A, T, C, G}. Moreover, one of the main
properties of DNA molecules is the Watson-Crick complementarity of the bases
A and T and respectively G and C. Because of this property two Watson-Crick
complementary single DNA strands with opposite orientation bind together to
form a DNA double strand, in a process called base-pairing. Recently, there were
several approaches to generalize notions from classical combinatorics on words
in order to incorporate this major characteristic of DNA molecules, see, e.g., [6],
[7], and [9]. Following these lines, in this paper, we generalize the concept of
primitivity and define θ-primitive words.

The notion of primitivity plays an important role in various fields of theoret-
ical computer science, such as algebraic coding theory, [11], and combinatorics
on words, [8]. A word is called primitive if it cannot be decomposed as a power
of another word. Thus, investigating the primitivity of a word is often the first
step when analyzing its properties. Moreover, how a word can be decomposed
and whether two words are powers of a common word are two questions which
were widely investigated in language theory, see, e.g., [2], [8], and [12]. While, in
classical combinatorics on words we look for repetitions of the form ui for some
word u and some i ≥ 2, when dealing with DNA molecules (i.e., their abstract



representation as words) we should exploit the fact that a word u encodes the
same information as its complement θ(u), where θ denotes the Watson-Crick
complementarity function, or its mathematical formalization as an arbitrary an-
timorphic involution. In other words, we should look for expressions involving
a word u and its complement θ(u). In this context, we define θ-primitive words
as strings which cannot be decomposed using only some word u and its comple-
ment. Also, we define the θ-primitive root of a word w as the shortest word u
such that w can be decomposed using only u and its complement. In classical
combinatorics on words, there exist two equivalent definitions for the primitive
root of a word w: the shortest word u such that w = ui for some i ≥ 1, or
the unique primitive word u such that w = ui for some i ≥ 1. In our search
for such equivalent definitions for the θ-primitive root of a word, we succeed to
prove an extension of the well-known Fine and Wilf Theorem, one of the most
widely used results on words. Although it was initially proved in connection with
real functions, [5], the Fine and Wilf Theorem can be naturally interpreted also
as a result on words, see, e.g., [2] and [8]. Moreover, several extensions of this
theorem were proved so far, see, e.g., [1], [3], [4], and [10]. In this paper, we look
at the case when a word w has two decompositions: one using a word u and its
complement θ(u), and the other using some other word v and its complement
θ(v). If w is longer than a given bound, then we prove that u and v share their
θ-primitive root t and, thus w will have a refined decomposition depending on
t and its complement. Moreover, we show that our bound is optimal, i.e., twice
the length of the longer word (u or v) plus the length of the other word minus
the greatest common divisor of the lengths of u and v.

The paper is organized as follows. In Section 2, we fix our terminology and
recall some basic results. In Section 3 we investigate some basic properties of
θ-primitive words. In particular, we give an extension of the Fine and Wilf The-
orem which implies immediately that we can define the θ-primitive root of a
word in two equivalent ways. In Section 4, we present several constraints forc-
ing two words to share their θ-primitive root. In Section 5, we investigate some
connections between the θ-primitive words that we introduced here and the
θ-palindrome words, which were proposed and investigated in [7] and [9]. In Sec-
tion 6, we present the optimal bound for our extension of the Fine and Wilf
Theorem.

2 Preliminaries

Let Σ be a finite alphabet. We denote by Σ∗ the set of all finite words over Σ,
by ǫ the empty word, and Σ+ = Σ∗ \ {ǫ}. The length of a word w, denoted by
|w|, is the number of letters occurring in it, i.e., if w = a1 . . . an with ai ∈ Σ,
1 ≤ i ≤ n, then |w| = n. We say that u is a prefix (resp. a suffix ) of v if v = ut
(resp. v = tu) for some t ∈ Σ∗. For any 0 ≤ k ≤ |v|, we use the notation prefk(v)
(resp. sufk(v)) for the prefix (resp. suffix) of length k of a word v and Pref(v)
(resp. Suff(v)) for the set of all prefixes (resp. all suffixes) of v. In particular



pref0(v) = ǫ for any word v ∈ Σ∗. An integer p ≥ 1 is a period of a word
w = a1 . . . an, with ai ∈ Σ for all 1 ≤ i ≤ n, if ai = ai+p for all 1 ≤ i ≤ n − p.

A word w ∈ Σ+ is called primitive if it cannot be written as a power of
another word; that is, w = un implies n = 1 and w = u. For a word w ∈ Σ+, the
shortest u ∈ Σ+ such that w = un for some n ≥ 1 is called the primitive root
of the word w and is denoted by ρ(w). The following result gives an alternative,
equivalent way for defining the primitive root of a word.

Theorem 1. For a word w ∈ Σ∗, there exists a unique primitive word t ∈ Σ+

such that ρ(w) = t, i.e., w = tn for some n ≥ 1.

The next result illustrates another useful property of primitive words.

Proposition 1. Let u ∈ Σ+ be a primitive word. Then, u cannot be a factor of
u2 in a nontrivial way, i.e., if u2 = xuy, then necessarily either x = ǫ or y = ǫ.

We say that two words u and v commute if uv = vu. The following result
characterizes the commutation of two words in terms of primitive roots.

Theorem 2. For u, v ∈ Σ∗, the following conditions are equivalent: i) u and v
commute; ii) u and v satisfy a non-trivial relation, i.e., an equation where the
two sides are not graphically identical; iii) u and v have the same primitive root.

Two words u and v are said to be conjugate if there exist words x and y
such that u = xy and v = yx. In other words, v can be obtained via a cyclic
permutation of u. The next result characterizes the conjugacy of two words.

Theorem 3. Let u, v ∈ Σ+. Then, the following conditions are equivalent: i) u
and v are conjugate; ii) there exists a word z such that uz = zv; moreover, this
holds if and only if u = pq, v = qp, and z = (pq)ip, for some p, q ∈ Σ∗ and
i ≥ 0; iii) the primitive roots of u and v are conjugate.

Note that conjugacy is an equivalence relation, the conjugacy class of a word
w consisting of all conjugates of w. The following is a well-known result.

Proposition 2. If w is a primitive word, then its conjugacy class contains |w|
distinct primitive words.

The following result, known as the Fine and Wilf theorem in its form for
words, cf. [2] and [8], illustrates a fundamental periodicity property of words. As
usual, gcd(n, m) denotes the greatest common divisor of n and m.

Theorem 4. Let u, v ∈ Σ∗, n = |u|, m = |v|, and d = gcd(n, m). If two powers
ui and vj of u and v have a common prefix of length at least n + m − d, then u
and v are powers of a common word. Moreover, the bound n +m− d is optimal.

A mapping θ : Σ∗ → Σ∗ is called a morphism (resp. an antimorphism) if
for any words u, v ∈ Σ∗, θ(uv) = θ(u)θ(v) (resp. θ(uv) = θ(v)θ(u)). Moreover, a
mapping θ : Σ∗ → Σ∗ is called an involution if, for all words u ∈ Σ∗, θ(θ(u)) = u.



For a mapping θ : Σ∗ → Σ∗, a word w ∈ Σ∗ is called θ-palindrome if
w = θ(w), see [7] and [9]. Now we say that a word w ∈ Σ+ has a θ-decomposition
if there exist a positive integer k ≥ 2 and some words t, w1, . . . , wk ∈ Σ+ such
that w = w1 . . . wk and wi ∈ {t, θ(t)} for all 1 ≤ i ≤ k. In this case, we say that
w is θ-periodic, with θ-period |t|. We call a word w ∈ Σ+ θ-primitive if it has no
θ-decompositions, i.e., its least θ-period is |w|. We define the θ-primitive root of
w, denoted by ρθ(w), as the shortest word t such that w = w1 . . . wk for some
k ≥ 2, wi ∈ {t, θ(t)} for all 1 ≤ i ≤ k, and w1 = t. Note that if w is θ-primitive,
then we can fix ρθ(w) = w.

3 Properties of θ-Primitive Words

In this section, we consider θ : Σ∗ → Σ∗ to be either a morphic or antimorphic
involution, other than the identity function. We start by looking at some basic
properties of θ-primitive words.

Proposition 3. If a word w ∈ Σ+ is θ-primitive, then it is also primitive.
Moreover, the converse is not always true.

Proof. Suppose that w is a θ-primitive word but not primitive. Then, there exists
some t ∈ Σ+ such that w = tn with n ≥ 2. But then we can θ-decompose w as
w = w1 . . . wn, where w1 = . . . = wn = t, which contradicts the θ-primitivity of
w. For the converse, since θ is not the identity function, there exists a letter a
such that θ(a) 6= a. Then, if we take w = aθ(a), it is obvious that w is primitive,
but not θ-primitive. ⊓⊔

primitive words

θ-primitive words

Fig. 1. The sets of primitive and θ-primitive words

Thus, the class of θ-primitive words is strictly included in the set of primitive
ones, as illustrated in Fig. 1.

Proposition 4. The θ-primitive root of a word is θ-primitive.

Proof. Let w ∈ Σ+ and t = ρθ(w) be its θ-primitive root. We can suppose, with-
out loss of generality, that w is not θ-primitive; otherwise, ρθ(w) = w and thus
the θ-primitive root is obviously θ-primitive. Then, we can write w = w1 . . . wn,
where n ≥ 2 and wi ∈ {t, θ(t)} for all 1 ≤ i ≤ n. Suppose, now that t is not
θ-primitive. Then, there exist a word s ∈ Σ+ with |s| < |t| and a positive integer
k ≥ 2, such that t has the θ-decomposition t = t1 . . . tk, where for all 1 ≤ i ≤ k,
ti ∈ {s, θ(s)}. Thus, we obtain another θ-decomposition of w, i.e., w = v1 . . . vkn,
where all vi ∈ {s, θ(s)} and |s| < |t|. But this contradicts the fact that t is the
θ-primitive root of w. ⊓⊔



We also obtain the following result as an immediate consequence.

Corollary 1. The θ-primitive root of a word is primitive.

Contrary to the case of primitive words, a conjugate of a θ-primitive word
need not be θ-primitive, as shown by the following two examples.

Example 1. Let θ : {A, T, C, G}∗ → {A, T, C, G}∗ be the Watson-Crick antimor-
phic involution defined by θ(A) = T , θ(T ) = A, θ(G) = C, and θ(C) = G.
Then, the word w = GCTA is θ-primitive, while its conjugate w′ = AGCT =
AGθ(AG) is not.

Example 2. Let θ : {a, b, c, d}∗ → {a, b, c, d}∗ be a morphic involution defined
by θ(a) = c, θ(c) = a, θ(b) = d, and θ(d) = b. Then, the word w = abadcb is
θ-primitive, while its conjugate w′ = babadc = (ba)2θ(ba) is not.

So, we can formulate the following result.

Proposition 5. The class of θ-primitive words is not necessarily closed under
circular permutations.

Fine and Wilf’s result on words, i.e., Theorem 4, constitutes one of the fun-
damental periodicity properties of words. Thus, a natural question is whether we
can obtain an extension of this result when, instead of taking powers of two words
un and vm, we look at expressions over {u, θ(u)} and {v, θ(v)}, respectively. In
particular, since the mapping θ is an involution, we can suppose without loss of
generality that the two expressions start with u and v, respectively. First, we
analyze the case when θ is a morphic involution; it turns out that in this case
we can obtain the same bound as in Theorem 4. However, since the proof of this
result is analogous to the one for Theorem 4, see for instance [8], we will not
include it here due to space limitations.

Theorem 5. Let θ : Σ∗ → Σ∗ be a morphic involution, u, v ∈ Σ+ with n =
|u|, m = |v|, and d = gcd(n, m), α(u, θ(u)) ∈ u{u, θ(u)}∗, and β(v, θ(v)) ∈
v{v, θ(v)}∗. If the two expressions α(u, θ(u)) and β(v, θ(v)) have a common prefix
of length at least n + m − d, then there exists a word t ∈ Σ+ such that u, v ∈
t{t, θ(t)}∗, i.e., ρθ(u) = ρθ(v). Moreover, the bound n + m − d is optimal.

However, as illustrated by the following example, if the mapping θ is an anti-
morphic involution, then the bound given by Theorem 5 is not enough anymore.

Example 3. Let θ : {a, b}∗ → {a, b}∗ be the mirror mapping defined as follows:
θ(a) = a, θ(b) = b, and θ(w1 . . . wn) = wn . . . w1, where wi ∈ {a, b} for all
1 ≤ i ≤ n. Obviously, θ is an antimorphic involution on {a, b}∗. Let now u =
(ab)kb and v = ab. Then, u2 and vkθ(v)k+1 have a common prefix of length
2|u| − 1 > |u| + |v| − gcd(|u|, |v|). However, ρθ(u) 6= ρθ(v).

The next result gives a lower bound for the antimorphic case, for which we
employ similar techniques as in [4], so we omit the proof here. As usual, lcm(n, m)
denotes the least common multiple of n and m.



Theorem 6. Let θ : Σ∗ → Σ∗ be an antimorphic involution, u, v ∈ Σ+, and
α(u, θ(u)) ∈ u{u, θ(u)}∗, β(v, θ(v)) ∈ v{v, θ(v)}∗ be two expressions sharing a
common prefix of length at least lcm(|u|, |v|). Then, there exists a word t ∈ Σ+

such that u, v ∈ t{t, θ(t)}∗, i.e., ρθ(u) = ρθ(v). In particular, if α(u, θ(u)) =
β(v, θ(v)), then ρθ(u) = ρθ(v).

Note that, in many cases there is a big gap between the bounds given in
Theorems 5 and 6. Moreover, Theorem 6 does not give the optimal bound for
the general case when θ is an antimorphic involution. In Section 6, we show that
this optimal bound for the general case is 2|u|+ |v|−gcd(|u|, |v|), where |u| > |v|,
while for some particular cases we obtain bounds as low as |u|+ |v|−gcd(|u|, |v|).
As an immediate consequence of Theorems 5 and 6, we obtain the following
result.

Corollary 2. For any word w ∈ Σ+ there exists a unique θ-primitive word
t ∈ Σ+ such that w ∈ t{t, θ(t)}∗, i.e., ρθ(w) = t.

Let us note now that, maybe even more importantly, just as in the case of
primitive words, this result provides us with an alternative, equivalent way for
defining the θ-primitive root of a word w, i.e., the θ-primitive word t such that
w ∈ t{t, θ(t)}∗. This proves to be a very useful tool in our future considerations.

Moreover, we also obtain the following two results as immediate consequences
of Theorems 5 and 6.

Corollary 3. Let u, v ∈ Σ+ be two words such that ρ(u) = ρ(v) = t. Then,
ρθ(u) = ρθ(v) = ρθ(t).

Corollary 4. If we have two words u, v ∈ Σ+ such that u ∈ v{v, θ(v)}∗, then
ρθ(u) = ρθ(v).

4 Relations Imposing θ-Periodicity

It is well-known, due to Theorem 2, that any non-trivial equation over two
distinct words forces them to be powers of a common word, i.e., to share a
common period. Thus, a natural question is whether this would be the case
also when we want two distinct words to have θ-decompositions depending on
the same u and θ(u), i.e., to share a common θ-period. From [6], we already
know that the equation uv = θ(v)u imposes ρθ(u) = ρθ(v) only when θ is a
morphic involution. In this section, we give several examples of equations over
{u, θ(u), v, θ(v)} forcing ρθ(u) = ρθ(v) in the case when θ : Σ∗ → Σ∗ is an
antimorphic involution.

The first equation we look at is very similar to the commutation equation of
two words, but it involves also the mapping θ.

Theorem 7. Let θ : Σ∗ → Σ∗ be an antimorphic involution over the alphabet
Σ and u, v ∈ Σ+. If uvθ(v) = vθ(v)u, then ρθ(u) = ρθ(v).



Proof. Since uvθ(v) = vθ(v)u, we already know, due to Theorem 2, that there
exists a primitive word t ∈ Σ+ such that u = ti and vθ(v) = tj , for some i, j ≥ 0.
If j = 2k for some k ≥ 0, then we obtain immediately that v = θ(v) = tk, i.e.,
ρ(u) = ρ(v) = t. Thus, ρθ(u) = ρθ(t) = ρθ(v). Otherwise, i.e., j = 2k+1, we can
write v = tkt1 and θ(v) = t2t

k, where t = t1t2 and |t1| = |t2| > 0. Hence, θ(v) =
θ(t1)θ(t)

k = t2t
k, which implies t2 = θ(t1). In conclusion, u, v ∈ t1{t1, θ(t1)}

∗,
for some word t1 ∈ Σ+, i.e., ρθ(u) = ρθ(t1) = ρθ(v). ⊓⊔

Next, we modify a little bit the previous equation, such that on one side,
instead of vθ(v), we take its conjugate θ(v)v.

Theorem 8. Let θ : Σ∗ → Σ∗ be an antimorphic involution over the alphabet
Σ and u, v ∈ Σ+. If vθ(v)u = uθ(v)v, then ρθ(u) = ρθ(v).

Proof. If we concatenate the word θ(v) to the right on both sides of the equa-
tion vθ(v)u = uθ(v)v, then we obtain (vθ(v))(uθ(v)) = (uθ(v))(vθ(v)). Due to
Theorem 2, this means that there exists a primitive word t ∈ Σ+ such that
vθ(v) = ti and uθ(v) = tj , for some i, j ≥ 0, j ≥ ⌈i/2⌉. If i = 2k for some
k ≥ 0, then θ(v) = v = tk and thus also u = tj−k, i.e., ρ(u) = ρ(v) = t. Hence-
forth, ρθ(u) = ρθ(t) = ρθ(v). Otherwise, i.e., j = 2k + 1, we can write v = tkt1
and θ(v) = t2t

k, where t = t1t2 and |t1| = |t2| > 0. Hence, we achieve again
t2 = θ(t1), which implies that v ∈ t1{t1, θ(t1)}

∗. Moreover, since uθ(v) = tj , we
also obtain u = tj−k−1t1 ∈ t1{t1, θ(t1)}

∗. Thus, ρθ(u) = ρθ(t1) = ρθ(v). ⊓⊔

Next, we look at the case when both uv and vu are θ-palindrome words,
which also proves to be enough to impose that u, v ∈ {t, θ(t)}∗ for some t ∈ Σ+.

Theorem 9. Let u, v ∈ Σ∗ be two words such that both uv and vu are θ-
palindrome words and let t = ρ(uv). Then, t = θ(t) and either ρ(u) = ρ(v) = t
or u = (t1θ(t1))

it1 and v = θ(t1)(t1θ(t1))
j , where t = t1θ(t1) and i, j ≥ 0.

Proof. The equality uv = θ(uv) immediately implies that t = θ(t). Moreover,
if u and v commute, then ρ(u) = ρ(v) = ρ(uv) = t. Assume now that u and
v do not commute. Since ρ(u) 6= ρ(v) and uv = tn for some n ≥ 1, we can
write u = tit1 and v = t2t

n−i−1 for some i ≥ 0 and t1, t2 ∈ Σ+ such that
t = t1t2. Thus, vu = t2t

n−1t1 = (t2t1)
n and since vu = θ(vu) we obtain that

also t2t1 is θ-palindrome, i.e., t2t1 = θ(t2t1) = θ(t1)θ(t2). Now, if |t1| = |t2|,
then t2 = θ(t1) and thus t = t1θ(t1), u = tit1, and v = θ(t1)t

n−i−1. Otherwise,
either |t1| > |t2| or |t1| < |t2|. We consider next only the case |t1| > |t2|, the
other one being similar. Since t2t1 = θ(t1)θ(t2), we can write θ(t1) = t2x and
t1 = xθ(t2) for some word x ∈ Σ+ with x = θ(x). Then, since t = θ(t) we
have that t = t1t2 = xθ(t2)t2 = θ(xθ(t2)t2) = θ(t2)t2x. Hence, x and θ(t2)t2
commute, which contradicts the primitivity of t. ⊓⊔

As an immediate consequence we obtain the following result.

Corollary 5. For u, v ∈ Σ∗, if uv = θ(uv) and vu = θ(vu), then ρθ(u) =
ρθ(θ(v)). In particular, there exists some t ∈ Σ+ such that u, v ∈ {t, θ(t)}∗.



5 On θ-Primitive and θ-Palindrome Words

In this section, we investigate two word equations under which a θ-primitive
word must be θ-palindrome. Throughout this section we consider θ : Σ∗ → Σ∗

to be an antimorphic involution over the alphabet Σ.

Theorem 10. Let θ : Σ∗ → Σ∗ be an antimorphic involution over the alphabet
Σ and v ∈ Σ+ be a θ-primitive word. If θ(v)vx = yvθ(v) for some words x, y ∈
Σ∗ with |x|, |y| < |v|, then v is θ-palindrome and x = y = ǫ.

Proof. Assume there exist some words x, y ∈ Σ∗ with |x|, |y| < |v|, such that
θ(v)vx = yvθ(v), as illustrated in Fig. 2.

Then, we can write v = v1v2 = v2v3, with v1, v2, v3 ∈ Σ∗, y = θ(v2) = x,
v1 = θ(v1), v3 = θ(v3). Since v1v2 = v2v3, we can write v1 = pq, v3 = qp,
v2 = (pq)ip, and v = (pq)i+1p for some words p, q ∈ Σ∗ and some i ≥ 0.
Thus, pq = θ(pq) and qp = θ(qp), which, due to Theorem 9, leads to one of
the following two cases. First, if p = tkt1 and q = θ(t1)t

j , where k, j ≥ 0 and
t = t1θ(t1) is the primitive root of pq, then we obtain that v = t(k+j+1)(i+1)+kt1
with (k + j +1)(i+1)+k ≥ 1, which contradicts the θ-primitivity of v. Second,

y v θ(v)

θ(v) v x

θ(v2) θ(v1) v2 v3

v1 v2 θ(v3) θ(v2)

Fig. 2. The equation θ(v)vx = yvθ(v)

if ρ(p) = ρ(q) = t, then also v ∈ {t}∗ where t = θ(t). Thus, v = θ(v), and
the initial identity becomes v2x = yv2. But, since v is θ-primitive and thus also
primitive, we immediately obtain, due to Proposition 1, that x = y = ǫ. ⊓⊔

In other words, the previous result states that if v is a θ-primitive word,
then θ(v)v cannot overlap with vθ(v) in a nontrivial way. However, the following
example shows that this is not the case anymore if we look at the overlaps
between θ(v)v and v2, or between vθ(v) and v2, respectively, even if we consider
the larger class of primitive words.

Example 4. Let θ : Σ∗ → Σ∗ be an antimorphic involution over the alphabet Σ,
p, q ∈ Σ+ such that ρ(p) 6= ρ(q), p = θ(p), and q = θ(q), and let v = p2q2p and
u = pq2p2. It is easy to see that u and v are primitive words. In addition, if we
take Σ = {a, b}, the mapping θ to be the mirror image, p = a, and q = b, then
u and v are actually θ-primitive words. Since θ(v) = pq2p2 and θ(u) = p2q2p,
we can write xv2 = vθ(v)y and yθ(u)u = u2z where x = p2q2, y = pq2p, and
z = q2p2. Thus, for primitive (resp. θ-primitive) words u and v, vθ(v) can overlap
with v2 and θ(u)u with u2 in a nontrivial way.

Maybe even more surprisingly, the situation changes again if we try to fit v2

inside vθ(v)v, as shown by the following result.



Theorem 11. Let θ : Σ∗ → Σ∗ be an antimorphic involution over the alphabet
Σ and v ∈ Σ+ be a primitive word. If vθ(v)v = xv2y for some words x, y ∈ Σ∗,
then v is θ-palindrome and either x = ǫ and y = v or x = v and y = ǫ.

Proof. Suppose that vθ(v)v = xv2y for some words x, y ∈ Σ∗, as illustrated in
Fig. 3. If we look at this identity from left to right, then we can write v = xv1 =
v1v2, with v1, v2 ∈ Σ∗ such that |x| = |v2| and θ(v) = θ(v2)θ(v1). Now, if we
look at the right sides of this identity, then we immediately obtain that x = v2

and v1 = y. Thus, v = xy = yx, implying that x, y ∈ {t}∗, for some primitive
word t. However, since v is primitive, this means that either x = ǫ and y = v

x v v y

v θ(v) v

x v1 θ(v2) θ(v1) x v1

v1 v2 v1 v2

Fig. 3. The equation vθ(v)v = xv2y

or x = v and y = ǫ. Moreover, in both cases we also obtain v = θ(v). ⊓⊔

6 An Optimal Bound for the Antimorphic Extension of

the Fine and Wilf Theorem

Throughout this section we take θ : Σ∗ → Σ∗ to be an antimorphic invo-
lution, u, v ∈ Σ+ with |u| > |v|, α(u, θ(u)) ∈ {u, θ(u)}+, and β(v, θ(v)) ∈
{v, θ(v)}+. Since θ is an involution, we can suppose, without loss of general-
ity, that α(u, θ(u)) and β(v, θ(v)) start with u and v, respectively. We start our
analysis with the case when v is θ-palindrome.

Theorem 12. Let u and v be two words with |u| > |v| and v = θ(v). If there ex-
ist two expressions α(u, θ(u)) ∈ u{u, θ(u)}∗ and β(v, θ(v)) ∈ v{v, θ(v)}∗ having
a common prefix of length at least |u| + |v| − gcd(|u|, |v|), then ρθ(u) = ρθ(v).

Proof. First, we can suppose, without loss of generality that gcd(|u|, |v|) = 1.
Otherwise, i.e., gcd(|u|, |v|) = d ≥ 2, we consider a new alphabet Σ′ = Σd, where
the new letters are words of length d in the original alphabet, and we look at
the words u and v as elements of (Σ′)+. In the larger alphabet gcd(|u|, |v|) = 1,
and if we can prove the theorem there it immediately gives the general proof.

Since v = θ(v), β(v, θ(v)) = vn for some n ≥ 2. Moreover, if v ∈ Σ, then
trivially u ∈ v{v, θ(v)}∗, i.e., ρθ(u) = ρθ(v). So, suppose next that |v| ≥ 2 and,
since gcd(|u|, |v|) = 1, u = viv1, where i ≥ 1 and v = v1v2 with v1, v2 ∈ Σ+.

If α(u, θ(u)) = u2α′(u, θ(u)), then u2 and vn have a common prefix of length
at least |u| + |v| − gcd(|u|, |v|), which, due to Theorem 4, implies that ρ(u) =
ρ(v) = t, for some primitive word t ∈ Σ+, and thus ρθ(u) = ρθ(t) = ρθ(v).

Otherwise, α(u, θ(u)) = uθ(u)α′(u, θ(u)) for some α′(u, θ(u)) ∈ {u, θ(u)}∗.
Now, we have two cases depending on |v1| and |v2|. We present here only the



case when |v1| ≤ |v2|, see Fig. 4, the other one being symmetric. Now, since θ is
an antimorphism, θ(suf|v|−1(u)) = pref|v|−1(θ(u)). So, we can write v2 = θ(v1)z
for some z ∈ Σ∗, since |v1| ≤ |v2| ≤ |v| − 1 = |v| − gcd(|u|, |v|). Now, to the

. . .v v v

u θ(u)

θ(v2) θ(v1)

|v| − 1

v1 v2 v1 v2

z

Fig. 4. The common prefix of uθ(u) and vn of length |u| + |v| − 1

left of the border-crossing v there is at least one occurrence of another v, so
we immediately obtain z = θ(z), as v2 = θ(v1)z and θ(v2) = θ(z)v1. Then,
v = v1θ(v1)z = zv1θ(v1) = θ(v) implying, due to Theorem 7, ρθ(v1) = ρθ(z). So,
since v = v1θ(v1)z and u = viv1 = (v1θ(v1)z)iv1, we obtain ρθ(u) = ρθ(v). ⊓⊔

Let us look next at the case when u is θ-palindrome.

Theorem 13. Let u and v be two words with |u| > |v| and u = θ(u). If there ex-
ist two expressions α(u, θ(u)) ∈ u{u, θ(u)}∗ and β(v, θ(v)) ∈ v{v, θ(v)}∗ having
a common prefix of length at least |u| + |v| − gcd(|u|, |v|), then ρθ(u) = ρθ(v).

Proof. As before, we can suppose without loss of generality that gcd(|u|, |v|) = 1.
Also, since u = θ(u), we actually have α(u, θ(u)) = un for some n ≥ 2. Moreover,
since u starts with v and u = θ(u), we also know that u ends with θ(v). Now, if
v ∈ Σ, then trivially u ∈ v{v, θ(v)}∗, i.e., ρθ(u) = ρθ(v). So, we can suppose next
that |v| ≥ 2 and thus, since gcd(|u|, |v|) = 1, we have u = β′(v, θ(v))v′, where
β′(v, θ(v)) is a prefix of β(v, θ(v)) and v′ ∈ Σ+, v′ ∈ Pref(v) ∪ Pref(θ(v)).

Case 1: We begin our analysis with the case when the border between the
first two u’s falls inside a v, as illustrated in Fig. 5. Then, we can write v =

. . . . . .v vv

θ(v) v

v1 v2

v2 v3θ(v2)

v2v1

u u

|v| − 1

Fig. 5. The common prefix of u2 and β(v, θ(v)) of length |u| + |v| − 1

v1v2 = v2v3 where v1, v2, v3 ∈ Σ+, implying that v1 = xy, v3 = yx, and v2 =
(xy)jx for some j ≥ 0 and x, y ∈ Σ∗. Moreover, since u ends with θ(v), we
also have v1 = θ(v1), i.e., xy = θ(y)θ(x). If x = ǫ, then v1, v2, v3, v ∈ {y}∗,
which implies that also u ∈ y{y, θ(y)}∗, i.e., ρθ(u) = ρθ(v) = ρθ(y); moreover,
since gcd(|u|, |v|) = 1 we actually must have y ∈ Σ. Similarly, we also obtain
ρθ(u) = ρθ(v) when y = ǫ. So, from now on we can suppose that x, y ∈ Σ+.



Let us consider next the case when, before the border-crossing v we have an
occurrence of another v, as illustrated in Fig. 5. Then, we have that v2 = θ(v2),
i.e., (xy)jx = (θ(x)θ(y))jθ(x). If j ≥ 1, then this means that x = θ(x) and
y = θ(y). Then, the equality xy = θ(y)θ(x) becomes xy = yx. So, there exists a
word t ∈ Σ+ such that x, y ∈ {t}∗, and thus also v ∈ {t}+ and u ∈ t{t, θ(t)}∗,
i.e., ρθ(u) = ρθ(v). Otherwise, j = 0 and we have x = θ(x). But then, the
equality xy = θ(y)θ(x) becomes xy = θ(y)x, implying that x = p(qp)n and
y = (qp)m for some m ≥ 1, n ≥ 0, and some words p and q with p = θ(p) and
q = θ(q), see [6]. Since u2 and β(v, θ(v)) share a common prefix of length at least
|u|+|v|−gcd(|u|, |v|) = |u|+|v|−1, v3 and some β′(v, θ(v)) share a prefix of length
|v3| − 1. Furthermore, as v3 = yx = (qp)mp(qp)n, v = v1v2 = p(qp)m+np(qp)n,
and θ(v) = (pq)np(pq)m+np, this means that independently of what follows to
the right the border-crossing v, either v or θ(v), we have two expressions over p
and q sharing a common prefix of length at least |p|+ |q|. Thus, from [2], we can
conclude that p, q ∈ {t}∗ for some t ∈ Σ+, which implies that also x, y, v ∈ {t}+

and u ∈ t{t, θ(t)}∗, i.e., ρθ(u) = ρθ(v).
Now, suppose that before the border-crossing v we have an occurrence of θ(v).

If |u| < 2|v|+ |v1|, then, since β(v, θ(v)) starts with v, we must have v = θ(v), in
which case we can use Theorem 12 to conclude that ρθ(u) = ρθ(v). Otherwise,
|u| ≥ 2|v| + |v1| and since u = θ(u), u ends either with vθ(v) or with θ(v)θ(v).
In the first case, we obtain v3 = θ(v3), i.e., yx = θ(yx), which together with
xy = θ(xy) imply, due to Corollary 5, that x, y ∈ {t, θ(t)}∗, for some t ∈ Σ+

and thus, ρθ(u) = ρθ(v). In the second case, we obtain v1 = v3, i.e., xy = yx.
So, x, y ∈ {t}∗, and thus also v ∈ {t}+ and u ∈ t{t, θ(t)}∗, i.e., ρθ(u) = ρθ(v).

Case 2: The case when the border between the first two u’s falls inside θ(v)
is similar to the one above. So, due to page limitations, we omit it here. ⊓⊔

Although the previous two results give a very short bound, i.e., |u| + |v| −
gcd(|u|, |v|), this is not enough in the general case, as illustrated also in Exam-
ple 3. However, we can prove that, independently of how the expression α(u, θ(u))
starts, 2|u|+ |v| − gcd(|u|, |v|) is enough to impose θ-periodicity of u and v. The
first case we consider is when α(u, θ(u)) starts with u2. The proofs of Theorems
14 and 16 are rather complex and necessitate the analysis of many cases. Their
inclusion would double the length of this paper and we therefore omit them here.

Theorem 14. Given two distinct words u, v ∈ Σ+ with |u| > |v|, if there ex-
ist two expressions α(u, θ(u)) ∈ u{u, θ(u)}∗ and β(v, θ(v)) ∈ v{v, θ(v)}∗ hav-
ing a common prefix of length at least 2|u| + |v| − gcd(|u|, |v|) and, moreover,
α(u, θ(u)) = u2α′(u, θ(u)) for some α′(u, θ(u)) ∈ {u, θ(u)}+, then ρθ(u) = ρθ(v).

The next result considers the case when α(u, θ(u)) starts with uθ(u)u, which
is an immediate consequence of Theorem 13.

Theorem 15. Given two distinct words u, v ∈ Σ+ with |u| > |v|, if there ex-
ist two expressions α(u, θ(u)) ∈ u{u, θ(u)}∗ and β(v, θ(v)) ∈ v{v, θ(v)}∗ hav-
ing a common prefix of length at least 2|u| + |v| − gcd(|u|, |v|) and, moreover,
α(u, θ(u)) = uθ(u)uα′(u, θ(u)) with α′(u, θ(u)) ∈ {u, θ(u)}∗, then ρθ(u) = ρθ(v).



The only case left is when α(u, θ(u)) starts with uθ(u)θ(u).

Theorem 16. Let u, v ∈ Σ+ be two words with |u| > |v|. If there exist two
expressions α(u, θ(u)) ∈ u{u, θ(u)}∗ and β(v, θ(v)) ∈ v{v, θ(v)}∗ having a com-
mon prefix of length at least 2|u|+ |v|−gcd(|u|, |v|), and, moreover, α(u, θ(u)) =
uθ(u)θ(u)α′(u, θ(u)) for some α′(u, θ(u)) ∈ {u, θ(u)}∗, then ρθ(u) = ρθ(v).

To conclude, in this section we proved that if θ is an antimorphic involution,
then we only need two expressions α(u, θ(u)) and β(v, θ(v)) to share a common
prefix of length 2|u| + |v| − gcd(|u|, |v|), where |u| > |v|, in order to impose
ρθ(u) = ρθ(v). Moreover, the following examples show that this bound is optimal.

Example 5. Let θ : {a, b}∗ → {a, b}∗ be the mirror involution, u1 = a2ba3b,
v1 = a2ba, with gcd(|u1|, |v1|) = 1, and u2 = ba2baba, v2 = ba2ba, with
gcd(|u2|, |v2|) = 1. Then, u3

1 and v2
1θ(v1)

2v1 have a common prefix of length
2|u1| + |v1| − 2, but ρθ(u1) 6= ρθ(v1). Also, u2θ(u2)

2 and v4
2 have a common

prefix of length 2|u2| + |v2| − 2, but ρθ(u2) 6= ρθ(v2).
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