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“Biology and computer science—life and 
computation—are related. I am confident that  
at their interface great discoveries await those  
who seek them.” 

— Leonard Adleman, 
Scientific American, Aug. 1998

Natural computing is the field of research that 
investigates models and computational techniques 
inspired by nature and, dually, attempts to under
stand the world around us in terms of information 
processing. It is a highly interdisciplinary field that 
connects the natural sciences with computing  
science, both at the level of information technology 
and at the level of fundamental research.33  
As a matter of fact, natural computing areas and  
topics come in many flavors, including pure 
theoretical research, algorithms and software 
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applications, as well as biology, chem-
istry, and physics experimental labora-
tory research.

In this review we describe com-
puting paradigms abstracted from 
natural phenomena as diverse as  
self-reproduction, the functioning of 
the brain, Darwinian evolution, group 
behavior, the immune system, the char-
acteristics of life, cell membranes, and 
morphogenesis. These paradigms can 
be implemented either on traditional 
electronic hardware or on alternative 
physical media such as biomolecular 
(DNA, RNA) computing, or trapped-ion 
quantum computing devices. Dually, 
we describe several natural processes 
that can be viewed as information pro-
cessing, such as gene regulatory net-
works, protein-protein interaction net-
works, biological transport networks, 
and gene assembly in unicellular or-
ganisms. In the same vein, we list ef-
forts to understand biological systems 
by engineering semi-synthetic organ-
isms, and to understand the universe 
from the point of view of information 
processing.

This review was written with the ex-
pectation that the reader is a computer 
scientist with limited knowledge of 
natural sciences, and it avoids dwell-
ing on the minute details of various 
natural phenomena. Thus, rather than 
being overwhelmed by particulars, it is 
our hope that readers see this article 
as simply a window into the profound 
relationship that exists between nature 
and computation.

There is information processing in 
nature, and the natural sciences are al-
ready adapting by incorporating tools 
and concepts from computer science 
at a rapid pace. Conversely, a closer 
look at nature from the point of view 
of information processing can and will 

The vivid images peppered throughout this 
story offer glimpses of what can happen when 
nature, art, and computer science join forces. 
While not directly referenced in this article, 
these images serve to offer readers some 
startling perspectives of nature up close as 
only technology can provide.
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change what we mean by computation. 
Our invitation to you, fellow computer 
scientists, is to take part in the uncov-
ering of this wondrous connection.a

Nature as Inspiration
Among the oldest examples of nature-
inspired models of computation are 
the cellular automata conceived by 
Ulam and von Neumann in the 1940s.  

a	 A few words are in order about the organization 
of this article. The classifications and labels 
we use for various fields of research are purely 
for the purpose of organizing the discourse. In 
reality, far from being clear-cut, many of the 
fields of research mentioned here overlap, or 
fit under more than one category. The general 
audience for whom this article is intended, our 
respective fields of expertise, and especially 
the limited space available for this review af-
fected both the depth and breadth of our expo-
sition. In particular, we did not discuss some 
fields of research that have large overlaps with 
natural computing, such as bioinformatics, 
computational molecular biology, and their 
roles in, for example, genomics and proteom-
ics. In addition, our explanations of various 
aspects, themes, and paradigms had to be 
necessarily oversimplified. As well, the space 
we devoted to various fields and topics was 
influenced by several factors and, as such, has 
no relation to the respective importance of the 
field or the relative size of the body of research 
in that field.

John von Neumann, who was trained 
in both mathematics and chemistry, 
investigated cellular automata as a 
framework for the understanding  of 
the behavior of complex systems. In 
particular, he believed that self-repro-
duction was a feature essential to both 
biological organisms and computers.40 

A cellular automaton is a dynami-
cal system consisting of a regular grid 
of cells, in which space and time are 
discrete. Each of the cells can be in one 
of a finite number of states. Each cell 
changes its state according to a list of 
given transition rules that determine 
its future state, based on its current 
state and the current states of some of 
its neighbors. The entire grid of cells 
updates its configuration synchro-
nously according to the a priori given 
transition rules. 

Cellular automata have been ap-
plied to the study of phenomena as 
diverse as communication, computa-
tion, construction, growth, reproduc-
tion, competition, and evolution. One 
of the best known examples of cellular 
automata—the “game of life” invented 
by Conway—was shown to be compu-
tationally universal. Cellular automata 
have been extensively studied as an al-

ternative explanation to the phenome-
non of emergence of complexity in the 
natural world, and used, among others, 
for modeling in physics and biology.

In parallel to early comparisons39 
between computing machines and the 
human nervous system, McCulloch and 
Pitts proposed the first model of artifi-
cial neurons. This research eventually 
gave rise to the field of neural computa-
tion, and it also had a profound influ-
ence on the foundations of automata 
theory. The goal of neural computa-
tion was twofold. On one hand, it was 
hoped that it would help unravel the 
structure of computation in nervous 
systems of living organisms (How does 
the brain work?). On the other hand, it 
was predicted that, by using the princi-
ples of how the human brain process-
es information, neural computation 
would yield significant computational 
advances (How can we build an intel-
ligent computer?). The first goal has 
been pursued mainly within the neu-
rosciences under the name of brain 
theory or computational neuroscience, 
while the quest for the second goal has 
become mainly a computer science 
discipline known as artificial neural 
networks or simply neural networks.5 

Neri Oxman, an architect 
and researcher currently 
working for her Ph.D. in 
design and computation 
at MIT, formed an 
interdisciplinary 
research initiative 
called Materialecology 
that undertakes 
design research in the 
intersection between 
architecture, engineering, 
computation, biology 
and ecology. Here, she 
illustrates how plants 
often grow in fashion to 
maximize the surface 
area of their branching 
geometries while 
maintaining structural 
support. This work was 
done in collaboration  
with W. Craig Carter, 
a professor in MIT’s 
Department of 
Material Science and 
Engineering. For more 
images, see http://www.
materialecology.com/.
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While Turing and von Neumann 
dreamed of understanding the brain, 
and possibly designing an intelligent 
computer that works like the brain, evo-
lutionary computation6 emerged as an-
other computation paradigm that drew 
its inspiration from a completely dif-
ferent part of biology: Darwinian evolu-
tion. Rather than emulating features of 
a single biological organism, evolution-
ary computation draws its inspiration 
from the dynamics of an entire species 
of organisms. An artificial evolution-
ary system is a computational system 
based on the notion of simulated evo-
lution. It features a constant- or vari-
able-size population of individuals, a 
fitness criterion according to which the 
individuals of the population are being 

evaluated, and genetically inspired op-
erators that produce the next genera-
tion from the current one. In an evolu-
tionary system, the initial population of 
individuals is generated at random or 
heuristically. At each evolutionary step, 
the individuals are evaluated according 
to a given fitness function. To form the 
next generation,  offspring are first gen-
erated from selected individuals by us-
ing operators such as mutation of a par-
ent, or recombination of pairs or larger 
subsets of parents. The choice of par-
ents for recombination can be guided 
by a fitness-based selection operator, 
thus reflecting the biological principle 
of mate selection. Secondly, individu-
als of the next generation are selected 
from the set of newly created offspring, 
sometimes also including the old par-
ents, according to their fitness—a pro-
cess reflecting the biological concept of 

An artificial neural network consists 
of interconnected artificial neurons.31 
Modeled after the natural neurons, 
each artificial neuron A has n real-val-
ued inputs, x1, x2, …, xn, and it computes 
its own primitive function fA as follows. 
Usually, the inputs have associated 
weights, w1, w2, …, wn. Upon receiving 
the n inputs, the artificial neuron A 
produces the output fA(w1x1 + w2x2 + … 
+ wnxn). An artificial neural network is 
a network of such neurons, and thus 
a network of their respective primitive 
functions. Some neurons are selected to 
be the output neurons, and the network 
function is a vectorial function that, for 
n input values, associates the outputs of 
the m output neurons. Note that differ-
ent selections of the weights produce 

different network functions for the 
same inputs. Based on given input-out-
put pairs, the network can “learn” the 
weights w1, …, wn. Thus, there are three 
important features of any artificial neu-
ral network: the primitive function of 
each neuron, the topology of the net-
work, and the learning algorithm used 
to find the weights of the network. One 
of the many examples of such learning 
algorithms is the “backwards propaga-
tion of errors.” Back-propagation is a 
supervised learning method by which 
the weights of the connections in the 
network are repeatedly adjusted so as 
to minimize the difference between the 
actual output vector of the net and the 
desired output vector. Artificial neural 
networks have proved to be a fruitful 
paradigm, leading to successful novel 
applications in both new and estab-
lished application areas.

environmental selection. 
Evolutionary systems have first been 

viewed as optimization processes in the 
1930s. The basic idea of viewing evolu-
tion as a computational process gained 
momentum in the 1960s, and evolved 
along three main branches.13 Evolution 
strategies use evolutionary processes 
to solve parameter optimization prob-
lems, and are today used for real-val-
ued as well as discrete and mixed types 
of parameters. Evolutionary program-
ming originally aimed at achieving the 
goals of artificial intelligence via evo-
lutionary techniques, namely by evolv-
ing populations of intelligent agents 
modeled, for example, as finite-state 
machines. Today, these algorithms 
are also often used for real-valued pa-
rameter optimization problems. Ge-
netic algorithms originally featured a 
population of individuals encoded as 
fixed-length bit strings, wherein muta-
tions consisted of bit-flips according 
to a typically small, uniform mutation 
rate, the recombination of two parents 
consisted of a cut-and-paste of a prefix 
of one parent with a suffix of the other, 
and the fitness function was problem-
dependent. If the initial individuals 
were to encode possible solutions to 
a given problem, and the fitness func-
tion were designed to measure the op-
timality of a candidate solution, then 
such a system would, in time, evolve 
to produce a near-optimal solution to 
the initial problem. Today, genetic al-
gorithms are also modified heavily for 
applications to real-valued parameter 
optimization problems as well as many 
types of combinatorial tasks such as, 
for example, permutation-based prob-
lems. As another application, if the 
individuals were computer programs, 
then the genetic algorithm technique 
would result in “the fittest” computer 
programs, as is the goal of genetic pro-
gramming.22

Cellular automata, neural compu-
tation, and evolutionary computation 
are the most established “classical” 
areas of natural computing. Several 
other bio-inspired paradigms emerged 
more recently, among them swarm in-
telligence, artificial immune systems, 
artificial life, membrane computing, 
and amorphous computing.

A computational paradigm strad-
dling at times evolutionary computa-
tion and neural computation is swarm 

From Archimorph, 
where work is 
continuing on their 
L-System and 
Evolutionary  
Algorithm, including 
new images of 
L-Systems growths 
as well as diagrams 
explaining the process 
of the overall design. 
For more images,  
see archimorph.
wordpress.com/.
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intelligence.16 A swarm is a group of mo-
bile biological organisms (such as bac-
teria, ants, termites, bees, spiders, fish, 
birds) wherein each individual com-
municates with others either directly or 
indirectly by acting on its local environ-
ment. These interactions contribute to 
distributive collective problem solving. 
Swarm intelligence, sometimes re-
ferred to as collective intelligence, is de-
fined as the problem-solving behavior 
that emerges from the interaction of 
such a collection of individual agents. 
For example, in research simulating 
flocking behavior, each individual was 
endowed with three simple possible 
behaviors: to act as to avoid collision, 
to match velocity with neighbors, and 
to stay close to nearby flock mates. The 
simulations showed that flocking was 
an emergent behavior that arose from 
the interaction of these simple rules. 

Particle swarm optimization was in-
troduced as a new approach to optimi-
zation that had developed from simple 
models of social interactions, as well as 
of flocking behavior in birds and other 
organisms. A particle swarm optimiza-
tion algorithm starts with a swarm of 
“particles,” each representing a poten-
tial solution to a problem, similar to 
the population of individuals in evolu-
tionary computation.

Particles move through a multidi-
mensional search space and their po-
sitions are updated according to their 
own experience and that of their neigh-
bors, by adding “velocity” to their cur-
rent positions. The velocity of a particle 
depends on its previous velocity (the 
“inertia” component), the tendency 
towards the past personal best posi-
tion (the cognitive, “nostalgia” compo-
nent), and the move toward a global or 
local neighborhood best (the “social” 
component). The cumulative effect is 
that each particle converges towards a 
point between the global best and its 
personal best. Particle Swarm Optimi-
zation algorithms have been used to 
solve various optimization problems, 
and have been applied to unsupervised 
learning, game learning, scheduling 
and planning applications, and design 
applications.

Ant algorithms were introduced to 
model the foraging behavior of ant 
colonies. In finding the best path be-
tween their nest and a source of food, 
ants rely on indirect communication 

by laying a pheromone trail on the way 
back to the nest if they found food, and 
following the concentration of phero-
mones in the environment if they are 
looking for food. This foraging behav-
ior has inspired a large number of ant 
algorithms used to solve mainly com-
binatorial optimization problems de-
fined over discrete search spaces.

Artificial immune systems are compu-
tational systems devised starting in the 
late 1980s and early 1990s as computa-
tionally interesting abstractions of the 
natural immune system of biological 
organisms. Viewed as an information 
processing system, the immune sys-
tem performs many complex computa-
tions in a highly parallel and distribut-
ed fashion.11 It uses learning, memory, 
associative retrieval, and other mecha-
nisms to solve recognition and classi-
fication problems such as distinction 
between self and nonself cells, and 
neutralization of nonself pathogenic 
agents. Indeed, the natural immune 
system has sometimes been called the 
“second brain” because of its powerful 
information processing capabilities.

The natural immune system’s main 
function is to protect our bodies against 
the constant attack of external patho-
gens (viruses, bacteria, fungi, and para-
sites). The main role of the immune 
system is to recognize cells in the body 
and categorize them as self or nonself.12 
There are two parts of the immune sys-
tem: innate (non-specific) and adaptive 
(acquired). The cells of the innate im-
mune system are immediately avail-
able to combat against a wide variety 
of antigens, without requiring previous 
exposure to them. These cells possess 
the ability of ingesting and digesting 
several “known” pathogens. In con-
trast, the adaptive immune response 
is the antibody production in response 
to a specific new infectious agent. Our 
body maintains a large “combinatorial 
database” of immune cells that circu-
late throughout the body. When a for-
eign antigen invades the body, only a 
few of these immune cells can detect 
the invaders and physically bind to 
them. This detection triggers the pri-
mary immune response: the genera-
tion of a large population of cells that 
produce matching antibodies that aid 
in the destruction or neutralization of 
the antigen. The immune system also 
retains some of these specific-anti-

A closer look 
at nature from 
the point of view 
of information 
processing can 
and will change 
what we mean by 
computation. Our 
invitation to you, 
fellow computer 
scientists, is to 
take part in the 
uncovering of 
this wondrous 
connection. 
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ample was the design36 of evolving vir-
tual block creatures that were selected 
for their ability to swim (or walk, or 
jump), and that competed for a com-
mon resource (controlling a cube) in 
a physically simulated world endowed 
with realistic features such as kinemat-
ics, dynamics, gravity, collisions, and 
friction. The result was that creatures 
evolved which would extend arms to-
wards the cube, while others would 
crawl or roll to reach it, and some even 
developed legs that they used to walk 
towards the cube. These ideas were 
taken one step further25 by combining 
the computational and experimental 
approaches, and using rapid manufac-
turing technology to fabricate physical 
robots that were materializations of 
their virtually evolved computational 
counterparts. In spite of the simplic-
ity of the task at hand (horizontal lo-
comotion), surprisingly different and 
complex robots evolved: many of them 
exhibited symmetry, some moved side-
ways in a crab-like fashion, and others 
crawled on two evolved limbs. This 
marked the emergence of mechanical 
artificial life, while the nascent field 
of synthetic biology, discussed later, 
explores a biological implementation 
of similar ideas. At the same time, 
the field of Artificial Life continues to 
explore directions such as artificial 
chemistry (abstractions of natural mo-
lecular processes), as well as tradition-
ally biological phenomena in artificial 
systems, ranging from computational 
processes such as co-evolutionary ad-
aptation and development, to physical 
processes such as growth, self-replica-
tion, and self-repair. 

Membrane computing investigates 
computing models abstracted from 
the structure and the functioning of 
living cells, as well as from the way the 
cells are organized in tissues or higher 
order structures.26 More specifically, 
the feature of the living cells that is 
abstracted by membrane computing 
is their compartmentalized internal 
structure effected by membranes. A 
generic membrane system is essen-
tially a nested hierarchical structure 
of cell-like compartments or regions, 
delimited by “membranes.” The entire 
system is enclosed in an external mem-
brane, called the skin membrane, and 
everything outside the skin membrane 
is considered to be the environment. 

body-producing cells in immunologi-
cal memory, so that any subsequent 
exposure to a similar antigen can lead 
to a rapid, and thus more effective, im-
mune response (secondary response).

The computational aspects of the 
immune system, such as distinguish-
ing of self from nonself, feature extrac-
tion, learning, memory, self-regulation, 
and fault tolerance, have been exploit-
ed in the design of artificial immune 
systems that have been successfully 
used in applications. The applications 
are varied and include computer virus 
detection, anomaly detection in a time 
series of data, fault diagnosis, pattern 
recognition, machine learning, bioin-
formatics, optimization, robotics, and 
control. Recent research in immunol-
ogy departs from the self-nonself dis-
crimination model to develop what is 
known as the “danger theory,” wherein 
it is believed that the immune system 
differentiates between dangerous and 
non-dangerous entities, regardless of 
whether they belong to self or to non-
self. These ideas have started to be ex-
ploited in artificial immune systems in 
the context of computer security.

While artificial immune systems 
(a.k.a. immunological computation, 
immunocomputing) constitute an ex-
ample of a computational paradigm 
inspired by a very specific subsystem 
of a biological organism, artificial life 
takes the opposite approach. Artificial 
life (ALife) attempts to understand the 
very essence of what it means to be 
alive by building ab initio, within in 
silico computers and other “artificial” 
media, artificial systems that exhibit 
properties normally associated only 
with living organisms.24 Lindenmayer 
systems (L-systems), introduced in 1968, 
can be considered as an early example 
of artificial life. 

L-systems are parallel rewriting sys-
tems that, starting with an initial word, 
proceed by applying rewriting rules in 
parallel to all the letters of the word, 
and thus generate new words.34 They 
have been most famously used to mod-
el plant growth and development,29 but 
also for modeling the morphology of 
other organisms.

Building on the ideas of evolution-
ary computation, other pioneers of ar-
tificial life experimented with evolving 
populations of “artificial creatures” 
in simulated environments.9 One ex-

While artificial 
immune systems 
constitute an 
example of a 
computational 
paradigm inspired 
by a very specific 
subsystem of 
a biological 
organism, artificial 
life attempts to 
understand the very 
essence of what it 
means to be alive.
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Each membrane-enveloped region con-
tains objects and transformation rules 
which modify these objects, as well as 
specify whether they will be transferred 
outside or stay inside the region. The 
transfer thus provides for communica-
tion between regions. Various formal 
mechanisms were developed that re-
flect the selective manner in which bio-
logical membranes allow molecules to 
pass through them.

Another biologically inspired fea-
ture of membrane systems as math-
ematical constructs is the fact that, 
instead of dealing with sets of objects, 
one uses multisets wherein one keeps 
track of the multiplicity of each ob-
ject. The computational behavior of a 
membrane system starts with an initial 
input configuration and proceeds in a 
maximally parallel manner by the non-
deterministic choice of application 
of the transformation rules, as well as 
of the objects to which they are to be 
applied. The output of the computa-
tion is then collected from an a priori 
determined output membrane. Next 
to the basic features indicated previ-
ously, many alternatives of membrane 
systems have been considered, among 
them ones that allow for membranes to 
be dissolved and created. Typical appli-
cations of membrane systems include 
biology (modeling photosynthesis and 
certain signaling pathways, quorum 
sensing in bacteria, modeling cell-me-
diated immunity), computer science 
(computer graphics, public-key cryp-
tography, approximation and sorting 
algorithms, and solving computation-
ally hard problems), and linguistics.

Amorphous computing is a paradigm 
that draws inspiration from the de-
velopment of form (morphogenesis) 
in biological organisms, wherein in-
teractions of cells guided by a genet-
ic program give rise to well-defined 
shapes and functional structures. 
Analogously, an amorphous comput-
ing medium comprises a multitude of 
irregularly placed, asynchronous, lo-
cally interacting computing elements.1 
These identically programmed “com-
putational particles” communicate 
only with particles situated within a 
small given radius, and may give rise 
to certain shapes and patterns such as, 
for example, any pre-specified planar 
graph. The goal of amorphous com-
puting is to engineer specified coher-

ent computational behaviors from the 
interaction of large quantities of such 
unreliable computational particles in-
terconnected in unknown, irregular, 
and time-varying ways. At the same 
time, the emphasis is on devising new 
programming abstractions that would 
work well for amorphous computing 
environments. Amorphous computing 
has been used both as a programming 
paradigm using traditional hardware, 
and as the basis for “cellular comput-
ing,” discussed later, under the topics 
synthetic biology, and computation in 
living cells.

Nature as Implementation 
Substrate
In the preceding section we saw cel-
lular automata inspired by self-repro-
duction, neural computation by the 
functioning of the brain, evolutionary 
computation by the Darwinian evolu-
tion of species, swarm intelligence by 
the behavior of groups of organisms, 
artificial immune systems by the natu-
ral immune system, artificial life by 
properties of life in general, membrane 
computing by the compartmentalized 
organization of the cells, and amor-
phous computing by morphogenesis. 
All these are computational techniques 
that, while inspired by nature, have 
been implemented until now mostly 
on traditional electronic hardware. 
An entirely distinct category is that of 
computing paradigms that use a radi-

cally different type of “hardware.” This 
category includes molecular comput-
ing and quantum computing.b

Molecular computing (known also 
as biomolecular computing, biocom-
puting, biochemical computing, DNA 
computing), is based on the idea that 
data can be encoded as biomolecules —  
such as DNA strands — and molecular 
biology tools can be used to transform 
this data to perform, for example, arith-
metic or logic operations. The birth of 
this field was the 1994 breakthrough 
experiment by Leonard Adleman who 
solved a small instance of the Hamil-
tonian Path Problem solely by manipu-
lating DNA strands in test tubes.2

DNA (deoxyribonucleic acid) is a 
linear chain made up of four different 
types of nucleotides, each consisting 
of a base (Adenine, Cytosine, Guanine, 
or Thymine) and a sugar-phosphate 
unit. The sugar-phosphate units are 
linked together by covalent bonds to 

b	 There are several research areas that, because 
of the limited space, we could not discuss 
here. Thus, for example, non-classical, uncon-
ventional computation38 focuses on carefully 
examining and possibly breaking the classi-
cal (Turing, von Neumann) computation as-
sumptions, and developing a more general 
science of computation. A substantial part of 
this research is concerned with implementing 
computation on new physical substrates, ex-
ploiting in this way computational properties 
of various physical, chemical, and biological 
media. A majority of this research is entwined 
with, and motivated by, natural computing.

McGill University’s 
Laboratory for Natural 
and Simulated Cognition 
(LNSC) investigates 
human cognition 
through a combination 
of psychological 
and computational 
approaches. Using the 
Cascade-correlation 
algorithm, LNSC 
researchers created a 
program that outputs 
a 2D display of random 
output values of neural 
networks. The results 
are sometimes quite 
phenomenal and 
artistic. For more, see 
www.psych.mcgill.ca/
labs/lnsc/.
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RNA. While similar to DNA, RNA dif-
fers in three main aspects: RNA is usu-
ally single-stranded while DNA is usu-
ally double-stranded, RNA nucleotides 
contain the sugar ribose, while DNA 
nucleotides contain the sugar deoxyri-
bose, and in RNA the nucleotide Ura-
cil, U, substitutes for Thymine, which 
is present in DNA.

There are many possible DNA bio-
operations that one can use for com-
putations,21 such as: cut-and-paste 
operations achievable by enzymes, syn-
thesizing desired DNA strands up to a 
certain length, making exponentially 
many copies of a DNA strand, and read-
ing out the sequence of a DNA strand. 

These bio-operations and the Watson-
Crick complementary binding have 
all been used to control DNA compu-
tations and DNA robotic operations. 
While initial experiments solved simple 
instances of computational problems, 
more recent experiments tackled suc-
cessfully sophisticated computational 
problems, such as a 20-variable in-
stance of the 3-Satisfiability-Problem. 
The efforts toward building an auton-
omous molecular computer include 
implementations of computational 
state transitions with biomolecules, 
and a DNA implementation of a finite 
automaton with potential applications 
to the design of smart drugs.

More importantly, since 1994, re-
search in molecular computing has 

form the backbone of the DNA single 
strand. Since nucleotides may differ 
only by their bases, a DNA strand can 
be viewed as simply a word over the 
four-letter alphabet {A,C,G,T}. A DNA 
single strand has an orientation, with 
one end known as the 5′ end, and the 
other as the 3′ end, based on their 
chemical properties. By convention, 
a word over the DNA alphabet repre-
sents the corresponding DNA single 
strand in the 5′ to 3′ orientation, that 
is, the word GGTTTTT stands for the 
DNA single strand 5′– GGTTTTT –3′. A 
crucial feature of DNA single strands is 
their Watson-Crick complementarity: 
A is complementary to T, G is comple-

mentary to C, and two complementary 
DNA single strands with opposite ori-
entation  bind to each other by hydro-
gen bonds between their individual 
bases. In so doing, they form a stable 
DNA double strand resembling a heli-
cal ladder, with the backbones at the 
outside and the bound pairs of bases 
lying inside. For example, the DNA sin-
gle strand 5′– AAAAACC – 3′ will bind 
to the DNA single strand 5′– GGTTTTT 
– 3′ to form the 7 base-pair-long (7bp) 
double strand 

5′ − AAAAACC − 3′ 
3′ − TTTTTGG − 5′

Another molecule that can be used 
for computation is ribonucleic acid, 

gained several new dimensions. One 
of the most significant achievements 
of molecular computing has been its 
contribution to the massive stream of 
research in nanosciences, by providing 
computational insights into a number 
of fundamental issues. Perhaps the 
most notable is its contribution to the 
understanding of self-assembly, which 
is among the key concepts in nanosci-
ences.30 Recent experimental research 
into programmable molecular-scale 
devices has produced impressive self-
assembled DNA nanostructures35 such 
as cubes, octahedra,  Sierpinski trian-
gles,32 DNA origami, or intricate nano-
structures that achieve computation  

such as  binary counting, or bit-wise 
cumulative XOR. Other experiments 
include the construction of DNA-based 
logic circuits, and ribozymes that can 
be used to perform logical operations 
and simple computations. In addition, 
an array of ingenious DNA nanoma-
chines8 were built with potential uses 
to nanofabrication, engineering, and 
computation: molecular switches that 
can be driven between two conforma-
tions, DNA “tweezers,” DNA “walkers” 
that can be moved along a track, and 
autonomous molecular motors.

A significant amount of research in 
molecular computing has been dedi-
cated to the study of theoretical models 
of DNA computation and their proper-
ties. The model of DNA computing in-
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troduced by Head, based on splicing (a 
combination of cut-and-paste opera-
tions achievable by enzymes), predates 
the experimental proof-of-principle of 
DNA computing by almost 10 years. 
Subsequently, studies on the compu-
tational power of such models proved 
that various subsets of bio-operations 
can achieve the computational power 
of a Turing machine, showing thus that 
molecular computers are in principle 
possible.27 Overall, molecular comput-
ing has created many novel theoretical 
questions, and has considerably en-
riched the theory of computation.

Quantum Computing is another par-
adigm that uses an alternative “hard-
ware” for performing computations.19 
Already in 1980 Benioff introduced 
simulations of classical Turing Ma-
chines on quantum mechanical sys-
tems. However the idea of a quantum 
computer that would run according 
to the laws of quantum physics and 
operate exponentially faster than a 
deterministic electronic computer to 
simulate physics, was first suggested 
by Feynman in 1982. Subsequently, 
Deutsch introduced a formal model 
of quantum computing using a Turing 
machine formalism, and described a 
universal quantum computer. 

A quantum computer uses distinc-
tively quantum mechanical phenom-
ena, such as superposition and en-
tanglement, to perform operations on 
data stored as quantum bits (qubits). 
A qubit can hold a 1, a 0, or a quantum 
superposition of these. A quantum 
computer operates by manipulating 
those qubits with quantum logic gates. 
The notion of information is different 
when studied at the quantum level. For 
instance, quantum information cannot 
be measured reliably, and any attempt 
at measuring it entails an unavoidable 
and irreversible disturbance. 

The 1980s saw an abundance of 
research in quantum information 
processing, such as applications to 
quantum cryptography which, unlike 
its classical counterpart, is not usu-
ally based on the complexity of com-
putation but on the special properties 
of quantum information. Recently an 
open air experiment was reported in 
quantum cryptography (not involv-
ing optical cable) over a distance of 
144km, conducted between two Ca-
nary islands.

The theoretical results that cata-
pulted quantum computing to the 
forefront of computing research were 
Shor’s quantum algorithms for factor-
ing integers and extracting discrete log-
arithms in polynomial time, obtained  
in 1994 — the same year that saw the 
first DNA computing experiment by 
Adleman. A problem where quantum 
computers were shown to have a qua-
dratic time advantage when compared 
to classical computers is quantum da-
tabase search that can be solved by Gro-
ver’s algorithm. Possible applications 
of Shor’s algorithm include breaking 
RSA exponentially faster than an elec-
tronic computer. This joined other ex-
citing applications, such as quantum 
teleportation (a technique that trans-
fers a quantum state, but not matter 
or energy, to an arbitrarily distant loca-
tion), in sustaining the general interest 
in quantum information processing.

So far, the theory of quantum com-
puting has been far more developed 
than the practice. Practical quantum 
computations use a variety of imple-
mentation methods such as ion-traps, 
superconductors, nuclear magnetic 
resonance techniques, to name just a 
few. To date, the largest quantum com-
puting experiment uses liquid state 
nuclear magnetic resonance quantum 
information processors that can oper-
ate on up to 12 qubits.

Nature as Computation
The preceding sections describe re-
search on the theory, applications and 
experimental implementations of na-
ture-inspired computational models 
and techniques. A dual direction of re-
search in natural computing is one in 
which the main goal becomes under-
standing nature by viewing processes 
that take place in nature as informa-
tion processing.

This dual aspect can be seen in sys-
tems biology, and especially in compu-
tational systems biology, wherein the 
adjective “computational” has two 
meanings. On one hand it means the 
use of quantitative algorithms for com-
putations, or  simulations that comple-
ment experiments in hypothesis gen-
eration and validation. On the other 
hand, it means a qualitative approach 
that investigates processes taking place 
in cells through the prism of commu-
nications and interactions, and thus of 

It is indeed 
believed that one 
of the possible 
contributions of 
computer science 
to biology could be 
the development of 
a suitable language 
to accurately and 
succinctly describe, 
and reason about, 
biological concepts 
and phenomena.
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computations. We shall herein address 
mostly the second aspect, whereby sys-
tems biology aims to understand the 
complex interactions in biological sys-
tems by using an integrative as opposed 
to a reductionist approach. The re-
ductionist approach to biology tries to 
identify all the individual components 
of functional processes that take place 
in an organism, in such a way that the 
processes and the interactions between 
the components can be understood. In 
contrast, systems biology takes a sys-
temic approach in focusing instead on 
the interaction networks themselves, 
and on the properties of the biological 
systems that arise because of these in-
teraction networks. Hence, for exam-
ple, at the cell level, scientific research 
on organic components has focused 
strongly on four different interdepen-
dent interaction networks, based on 
four different “biochemical toolkits:” 
nucleic acids (DNA and RNA), proteins, 
lipids, carbohydrates, and their build-
ing blocks (see Cardelli,10 whose cat-
egorization we follow here).

The genome consists of DNA se-
quences, some of which are genes that 
can be transcribed into messenger 
RNA (mRNA), and then translated into 
proteins according to the genetic code 
that maps 3-letter DNA segments into 
amino acids. A protein is a sequence 
over the 20-letter alphabet of amino ac-
ids. Each gene is associated with other 
DNA segments (promoters, enhancers, 
or silencers) that act as binding sites 
for proteins that activate or repress 
the gene’s transcription. Genes inter-
act with each other indirectly, either  
through their gene products (mRNA, 
proteins), which can act as transcrip-
tion factors to regulate gene transcrip-
tion — either as activators or repres-
sors — or through small RNA species 
that directly regulate genes.

These gene-gene interactions, to-
gether with the genes’ interactions with 
other substances in the cell, form the 
most basic interaction network of an 
organism, the gene regulatory network. 
Gene regulatory networks perform 
information processing tasks within 
the cell, including the assembly and 
maintenance of the other networks. 
Research into modeling gene regu-
latory networks includes qualitative 
models such as random and probabi-
listic Boolean networks, asynchronous 

automata, and network motifs. 
Another point of view,20 is that the 

entire genomic regulatory system can 
be thought of as a computational sys-
tem, the “genomic computer.” Such a 
perspective has the potential to yield 
insights into both computation as hu-
mans historically designed it, and com-
putation as it occurs in nature. There 
are both similarities and significant 
differences between the genomic com-
puter and an electronic computer. Both 
perform computations, the genomic 
computer on a much larger scale. How-
ever, in a genomic computer, molecular 
transport and movement of ions through 
electrochemical gradients replace wires, 
causal coordination replaces imposed 
temporal synchrony, changeable ar-
chitecture replaces rigid structure, and 
communication channels are formed 
on an as-needed basis. Both comput-
ers have a passive memory, but the ge-
nomic computer does not place it in an 
a priori dedicated and rigidly defined 
place; in addition, the genomic com-
puter has a dynamic memory  in which, 
for example, trancriptional subcircuits 
maintain given regulatory states. In a ge-
nomic computer robustness is achieved 
by different means, such as by rigorous 
selection: non (or poorly)-functional 
processes are rapidly degraded by vari-
ous feedback mechanisms or, at the cell 
level, non (or poorly)-functional cells are 
rapidly killed by apoptosis, and, at the or-
ganism level, non (or poorly)-functional 
organisms are rapidly out-competed 
by more fit species. Finally, in the case 
of a genomic computer, the distinction 
between hardware and software breaks 
down: the genomic DNA provides both 
the hardware and the digital regulatory 
code (software).

Proteins and their interactions form 
another interaction network in a cell, 
that of biochemical networks, which 
perform all mechanical and metabolic 
tasks inside a cell. Proteins are folded-
up strings of amino acids that take 
three-dimensional shapes, with pos-
sible characteristic interaction sites ac-
cessible to other molecules. If the bind-
ing of interaction sites is energetically 
favorable, two or more proteins may spe-
cifically bind to each other to form a 
dynamic protein complex by a process 
called complexation. A protein complex 
may act as a catalyst by bringing togeth-
er other compounds and facilitating 

As the natural 
sciences are rapidly 
absorbing ideas 
of information 
processing, and 
the meaning of 
computation is 
changing as it 
embraces concepts 
from the natural 
sciences, we have 
the rare privilege 
to take part in 
several such 
metamorphoses. 
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port of substances, forming transport 
networks. A biological membrane is 
more than a container: it consists of a 
lipid bilayer in which proteins and oth-
er molecules, such as glycolipids, are 
embedded. The membrane structural 
components, as well as the embedded 
proteins or glycolipids, can travel along 
this lipid bilayer. Proteins can inter-
act with free-floating molecules, and 
some of these interactions trigger sig-
nal transduction pathways, leading to 
gene transcription. Basic operations 
of membranes include fusion of two 
membranes into one, and fission of a 
membrane into two. Other operations 
involve transport, for example trans-
porting an object to an interior compart-
ment where it can be degraded. Formal-
isms that depict the transport networks 
are few, and include membrane systems 
described earlier, and brane calculi.

The gene regulatory networks, the 
protein-protein interaction networks, 
and the transport networks are all in-
terlinked and interdependent. Genes 
code for proteins which, in turn, can 
regulate the transcription of other 
genes, membranes are separators but 
also embed active proteins in their sur-
faces. Currently there is no single for-
mal general framework and notation 

chemical reactions between them. Pro-
teins may also chemically modify each 
other by attaching or removing modify-
ing groups, such as phosphate groups, 
at specific sites. Each such modification 
may reveal new interaction surfaces. 
There are tens of thousands of proteins 
in a cell. At any given moment,  each of 
them has certain available binding sites 
(which means that they can bind to oth-
er proteins, DNA, or membranes), and 
each of them has modifying groups at 
specific sites either present or absent. 
Protein-protein interaction networks 
are large and complex, and finding a 
language to describe them is a difficult 
task. Significant progress in this direc-
tion was made by the introduction of 
Kohn-maps, a graphical notation that 
resulted in succinct pictures depict-
ing molecular interactions.  Other ap-
proaches include the textual bio-calcu-
lus, or the recent use of existing process 
calculi (π-calculus), enriched with sto-
chastic features, as the language to de-
scribe chemical interactions.

Yet another biological interaction 
network, and the last that we discuss 
here, is that of transport networks medi-
ated by lipid membranes. Some lipids 
can self-assemble into membranes and 
contribute to the separation and trans-

able to describe all these networks and 
their interactions. Process calculus has 
been proposed for this purpose, but a 
generally accepted common language 
to describe these biological phenom-
ena is still to be developed and uni-
versally accepted. It is indeed believed 
that one of the possible contributions 
of computer science to biology could 
be the development of a suitable lan-
guage to accurately and succinctly de-
scribe, and reason about, biological 
concepts and phenomena.18

While systems biology studies 
complex biological organisms as inte-
grated wholes, synthetic biology is an 
effort to engineer artificial biological 
systems from their constituent parts. 
The mantra of synthetic biology is that 
one can understand only what one can 
construct. Thus, the main focus of syn-
thetic biology is to take parts of natu-
ral biological systems and use them to 
build an artificial biological system for 
the purpose of understanding natural 
phenomena, or for a variety of possible 
applications. In this sense, one can 
make an analogy between synthetic 
biology and computer engineering.3 
The history of synthetic biology can 
be arguably traced back to the discov-
ery in the 1960s, by Jacob and Monod, 
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Besides systems biology that tries 
to understand biological organisms as 
networks of interactions, and synthet-
ic biology that seeks to engineer and 
build artificial biological systems, an-
other approach to understanding na-
ture as computation is the research on 
computation in living cells. This is also 
sometimes called cellular computing, 
or in vivo computing, and one particular 
study in this area is that of the computa-
tional capabilities of gene assembly in 
unicellular organisms called ciliates.

Ciliates possess two copies of their 
DNA: one copy encoding functional 
genes, in the macronucleus, and an-
other “encrypted” copy in the micro-
nucleus. In the process of conjugation, 
after two ciliates exchange genetic in-
formation and form new micronuclei, 
they use the new micronuclei to as-
semble in real-time new macronuclei 
necessary for their survival. This is ac-
complished by a process that involves 
re-ordering some fragments of DNA 
(permutations and possibly inversions), 
and deleting other fragments from the 
micronuclear copy. The process of gene 
assembly is fascinating from both the 
biological and the computational point 
of view. From the computational point 
of view, this study led to many novel and 
challenging research themes.14 Among 
others, it was proved that various mod-
els of gene assembly have full Turing 
machine capabilities.23 From the bio-
logical point of view, the joint effort of 
computer scientists and biologists led 
to a plausible hypothesis (supported 
already by some experimental data) 
about the “bioware” that implements 
the process of gene assembly, which is 
based on the new concept of template-
guided recombination.4, 28 

Other approaches to cellular com-
puting include developing an in vivo 
programmable and autonomous finite-
state automaton within E.Coli, and de-
signing and constructing in vivo cellu-
lar logic gates and genetic circuits that 
harness the cell’s existing biochemical 
processes.

At the end of this spectrum of views 
of nature as computation, the idea was 
even advanced by Zuse and Fredkin 
in the 1960s that information is more 
fundamental than matter or energy. 
The Zuse-Fredkin thesis stated that the 
entire universe is some kind of compu-
tational device, namely a huge cellular 

of mathematical logic in gene regula-
tion. Early achievements in genetic 
engineering using recombinant DNA 
technology (the insertion, deletion, 
or combination of different segments 
of DNA strands) can be viewed as the 
experimental precursors of today’s 
synthetic biology, which now extends 
these techniques to entire systems of 
genes and gene products. One goal can 
be constructing specific synthetic bio-
logical modules such as, for example, 
pulse generator circuits that display a 
transient response to variations in in-
put stimulus.

Advances in DNA synthesis of lon-
ger and longer strands of DNA are pav-
ing the way for the construction of 
synthetic genomes with the purpose of 
building an entirely artificial organism. 
Progress includes the generation of a 
5,386bp synthetic genome of a virus, 
by rapid (14-day) assembly of chemi-
cally synthesized short DNA strands.37 
Recently an announcement was made 
of the near completion of the assem-
bly of an entire “minimal genome” of 
a bacterium, Mycoplasma Genitalium.7 
Smith and others indeed found about 
100 dispensable genes that can be re-
moved individually from the original 
genome. They hope to assemble a mini-
mal genome consisting of essential 
genes only, that would be still viable but 
shorter than the 528-gene, 580,000bp 
genome of M.Genitalium. This human-
made genome could then be inserted 

into a Mycoplasma bacterium using a 
technique wherein a whole genome can 
be transplanted from one species into 
another, such that the resulting prog-
eny is the same species as the donor ge-
nome. Counterbalancing objections to  
assembling  a semi-synthetic cell with-
out fully understanding its functioning,  
the  creation of a functionally and struc-
turally understood synthetic genome  
was proposed,17 containing 151 genes 
(113,000bp) that would produce all the 
basic molecular machinery for protein 
synthesis and DNA replication. A third 
approach to create a human-made cell 
is the one pursued by Szostak and oth-
ers, who would construct a single type of 
RNA-like molecule capable of self-repli-
cating, possibly housed in a single lipid 
membrane. Such  molecules can be ob-
tained by guiding the rapid evolution of 
an initial population of RNA-like mol-
ecules, by selecting for desired traits.

Lastly, another effort in synthetic 
biology is toward engineering multi-
cellular systems by designing, for ex-
ample, cell-to-cell communication 
modules that could be used to coordi-
nate living bacterial cell populations. 

Research in synthetic biology faces 
many challenges, some of them of an 
information processing nature. There 
arguably is a pressing need for stan-
dardization, modularization, and ab-
straction, to allow focusing on design 
principles without reference to lower-
level details.15
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automaton continuously updating its 
rules. Along the same lines, it has been 
recently suggested that the universe is 
a quantum computer that computes it-
self and its own behavior.

Natural Sciences: Ours to Discover
Science advances in ever-widening cir-
cles of knowledge. Sometimes it metic-
ulously crawls. Other times it leaps to a 
new dimension of understanding and, 
in the process, it reinvents itself. As the 
natural sciences are rapidly absorbing 
ideas of information processing, and 
the meaning of computation is chang-
ing as it embraces concepts from the 
natural sciences, we have the rare privi-
lege to take part in several such meta-
morphoses.

At this moment we and our natural 
scientist fellows are awash in wave after 
gigantic wave of experimental, especial-
ly biological, data. Just underneath this 
tumultuous surface lie ingenious algo-
rithms waiting to be designed, elegant 
theorems waiting to be proven, natural 
laws waiting to be discovered that will 
put order into chaos. For, as Spinoza 
wrote, “nothing happens in nature that 
does not follow from her laws.” 

Conversely, as this review shows, 
there is an abundance of natural phe-
nomena that can inspire computing 
paradigms, alternative physical sub-
strates on which to implement compu-
tations, while viewing various natural 
processes as computations has become 
more and more essential, desirable, 
and inevitable. All these developments 
are challenging our assumptions about 
computation, and indeed, our very def-
inition of it.

In these times brimming with ex-
citement, our task is nothing less than 
to discover a new, broader, notion of 
computation, and to understand the 
world around us in terms of informa-
tion processing. 

Let us step up to this challenge. Let 
us befriend our fellow the biologist, our 
fellow the chemist, our fellow the phys-
icist, and let us together explore this 
new world. Let us, as computers in the 
future will, embrace uncertainty. Let us 
dare to ask afresh: “What is computa-
tion?”, “What is complexity?”, “What 
are the axioms that define life?”

Let us relax our hardened ways of 
thinking and, with deference to our sci-
entific forebears, let us begin anew.
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Literature
The upper-bound placed on the num-
ber of references was a real limitation 
for this review, since the literature on 
natural computing is vast. For a more 
complete list of references the reader 
is referred to the full version of this ar-
ticle at www.csd.uwo.ca/˜lila/Natural-
Computing-Review.pdf.

Almost each of the areas we men-
tioned here has an extensive scien-
tific literature as well as a number of 
specialized journals and book series. 
There are also journals and book se-
ries aimed at the general natural com-
puting community, among them the 
journals Natural Computing, Springer, 
Theoretical Computer Science, Series C: 
Theory of Natural Computing, Elsevier, 
the Natural Computing book series, 
Springer, and the upcoming Handbook 
of Natural Computing (G. Rozenberg, T. 
Bäck, J. Kok, editors, Springer).
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