
72 communications of the acm | october 2008 | vol. 51 | no. 10

review articles

“Biology and computer science—life and
computation—are related. I am confident that
at their interface great discoveries await those
who seek them.”

— Leonard Adleman,
Scientific American, Aug. 1998

Natural computing is the field of research that
investigates models and computational techniques
inspired by nature and, dually, attempts to under
stand the world around us in terms of information
processing. It is a highly interdisciplinary field that
connects the natural sciences with computing
science, both at the level of information technology
and at the level of fundamental research.33
As a matter of fact, natural computing areas and
topics come in many flavors, including pure
theoretical research, algorithms and software

doi:10.1145/1400181.1400200

Natural computing builds a bridge between
computer science and natural sciences.

By Lila Kari and Grzegorz Rozenberg

The Many
Facets of
Natural
Computing

applications, as well as biology, chem-
istry, and physics experimental labora-
tory research.

In this review we describe com-
puting paradigms abstracted from
natural phenomena as diverse as
self-reproduction, the functioning of
the brain, Darwinian evolution, group
behavior, the immune system, the char-
acteristics of life, cell membranes, and
morphogenesis. These paradigms can
be implemented either on traditional
electronic hardware or on alternative
physical media such as biomolecular
(DNA, RNA) computing, or trapped-ion
quantum computing devices. Dually,
we describe several natural processes
that can be viewed as information pro-
cessing, such as gene regulatory net-
works, protein-protein interaction net-
works, biological transport networks,
and gene assembly in unicellular or-
ganisms. In the same vein, we list ef-
forts to understand biological systems
by engineering semi-synthetic organ-
isms, and to understand the universe
from the point of view of information
processing.

This review was written with the ex-
pectation that the reader is a computer
scientist with limited knowledge of
natural sciences, and it avoids dwell-
ing on the minute details of various
natural phenomena. Thus, rather than
being overwhelmed by particulars, it is
our hope that readers see this article
as simply a window into the profound
relationship that exists between nature
and computation.

There is information processing in
nature, and the natural sciences are al-
ready adapting by incorporating tools
and concepts from computer science
at a rapid pace. Conversely, a closer
look at nature from the point of view
of information processing can and will

The vivid images peppered throughout this
story offer glimpses of what can happen when
nature, art, and computer science join forces.
While not directly referenced in this article,
these images serve to offer readers some
startling perspectives of nature up close as
only technology can provide.

october 2008 | vol. 51 | no. 10 | communications of the acm 73

change what we mean by computation.
Our invitation to you, fellow computer
scientists, is to take part in the uncov-
ering of this wondrous connection.a

Nature as Inspiration
Among the oldest examples of nature-
inspired models of computation are
the cellular automata conceived by
Ulam and von Neumann in the 1940s.

a	 A few words are in order about the organization
of this article. The classifications and labels
we use for various fields of research are purely
for the purpose of organizing the discourse. In
reality, far from being clear-cut, many of the
fields of research mentioned here overlap, or
fit under more than one category. The general
audience for whom this article is intended, our
respective fields of expertise, and especially
the limited space available for this review af-
fected both the depth and breadth of our expo-
sition. In particular, we did not discuss some
fields of research that have large overlaps with
natural computing, such as bioinformatics,
computational molecular biology, and their
roles in, for example, genomics and proteom-
ics. In addition, our explanations of various
aspects, themes, and paradigms had to be
necessarily oversimplified. As well, the space
we devoted to various fields and topics was
influenced by several factors and, as such, has
no relation to the respective importance of the
field or the relative size of the body of research
in that field.

John von Neumann, who was trained
in both mathematics and chemistry,
investigated cellular automata as a
framework for the understanding of
the behavior of complex systems. In
particular, he believed that self-repro-
duction was a feature essential to both
biological organisms and computers.40

A cellular automaton is a dynami-
cal system consisting of a regular grid
of cells, in which space and time are
discrete. Each of the cells can be in one
of a finite number of states. Each cell
changes its state according to a list of
given transition rules that determine
its future state, based on its current
state and the current states of some of
its neighbors. The entire grid of cells
updates its configuration synchro-
nously according to the a priori given
transition rules.

Cellular automata have been ap-
plied to the study of phenomena as
diverse as communication, computa-
tion, construction, growth, reproduc-
tion, competition, and evolution. One
of the best known examples of cellular
automata—the “game of life” invented
by Conway—was shown to be compu-
tationally universal. Cellular automata
have been extensively studied as an al-

ternative explanation to the phenome-
non of emergence of complexity in the
natural world, and used, among others,
for modeling in physics and biology.

In parallel to early comparisons39
between computing machines and the
human nervous system, McCulloch and
Pitts proposed the first model of artifi-
cial neurons. This research eventually
gave rise to the field of neural computa-
tion, and it also had a profound influ-
ence on the foundations of automata
theory. The goal of neural computa-
tion was twofold. On one hand, it was
hoped that it would help unravel the
structure of computation in nervous
systems of living organisms (How does
the brain work?). On the other hand, it
was predicted that, by using the princi-
ples of how the human brain process-
es information, neural computation
would yield significant computational
advances (How can we build an intel-
ligent computer?). The first goal has
been pursued mainly within the neu-
rosciences under the name of brain
theory or computational neuroscience,
while the quest for the second goal has
become mainly a computer science
discipline known as artificial neural
networks or simply neural networks.5

Neri Oxman, an architect
and researcher currently
working for her Ph.D. in
design and computation
at MIT, formed an
interdisciplinary
research initiative
called Materialecology
that undertakes
design research in the
intersection between
architecture, engineering,
computation, biology
and ecology. Here, she
illustrates how plants
often grow in fashion to
maximize the surface
area of their branching
geometries while
maintaining structural
support. This work was
done in collaboration
with W. Craig Carter,
a professor in MIT’s
Department of
Material Science and
Engineering. For more
images, see http://www.
materialecology.com/.

74 communications of the acm | october 2008 | vol. 51 | no. 10

review articles

While Turing and von Neumann
dreamed of understanding the brain,
and possibly designing an intelligent
computer that works like the brain, evo-
lutionary computation6 emerged as an-
other computation paradigm that drew
its inspiration from a completely dif-
ferent part of biology: Darwinian evolu-
tion. Rather than emulating features of
a single biological organism, evolution-
ary computation draws its inspiration
from the dynamics of an entire species
of organisms. An artificial evolution-
ary system is a computational system
based on the notion of simulated evo-
lution. It features a constant- or vari-
able-size population of individuals, a
fitness criterion according to which the
individuals of the population are being

evaluated, and genetically inspired op-
erators that produce the next genera-
tion from the current one. In an evolu-
tionary system, the initial population of
individuals is generated at random or
heuristically. At each evolutionary step,
the individuals are evaluated according
to a given fitness function. To form the
next generation, offspring are first gen-
erated from selected individuals by us-
ing operators such as mutation of a par-
ent, or recombination of pairs or larger
subsets of parents. The choice of par-
ents for recombination can be guided
by a fitness-based selection operator,
thus reflecting the biological principle
of mate selection. Secondly, individu-
als of the next generation are selected
from the set of newly created offspring,
sometimes also including the old par-
ents, according to their fitness—a pro-
cess reflecting the biological concept of

An artificial neural network consists
of interconnected artificial neurons.31
Modeled after the natural neurons,
each artificial neuron A has n real-val-
ued inputs, x1, x2, …, xn, and it computes
its own primitive function fA as follows.
Usually, the inputs have associated
weights, w1, w2, …, wn. Upon receiving
the n inputs, the artificial neuron A
produces the output fA(w1x1 + w2x2 + …
+ wnxn). An artificial neural network is
a network of such neurons, and thus
a network of their respective primitive
functions. Some neurons are selected to
be the output neurons, and the network
function is a vectorial function that, for
n input values, associates the outputs of
the m output neurons. Note that differ-
ent selections of the weights produce

different network functions for the
same inputs. Based on given input-out-
put pairs, the network can “learn” the
weights w1, …, wn. Thus, there are three
important features of any artificial neu-
ral network: the primitive function of
each neuron, the topology of the net-
work, and the learning algorithm used
to find the weights of the network. One
of the many examples of such learning
algorithms is the “backwards propaga-
tion of errors.” Back-propagation is a
supervised learning method by which
the weights of the connections in the
network are repeatedly adjusted so as
to minimize the difference between the
actual output vector of the net and the
desired output vector. Artificial neural
networks have proved to be a fruitful
paradigm, leading to successful novel
applications in both new and estab-
lished application areas.

environmental selection.
Evolutionary systems have first been

viewed as optimization processes in the
1930s. The basic idea of viewing evolu-
tion as a computational process gained
momentum in the 1960s, and evolved
along three main branches.13 Evolution
strategies use evolutionary processes
to solve parameter optimization prob-
lems, and are today used for real-val-
ued as well as discrete and mixed types
of parameters. Evolutionary program-
ming originally aimed at achieving the
goals of artificial intelligence via evo-
lutionary techniques, namely by evolv-
ing populations of intelligent agents
modeled, for example, as finite-state
machines. Today, these algorithms
are also often used for real-valued pa-
rameter optimization problems. Ge-
netic algorithms originally featured a
population of individuals encoded as
fixed-length bit strings, wherein muta-
tions consisted of bit-flips according
to a typically small, uniform mutation
rate, the recombination of two parents
consisted of a cut-and-paste of a prefix
of one parent with a suffix of the other,
and the fitness function was problem-
dependent. If the initial individuals
were to encode possible solutions to
a given problem, and the fitness func-
tion were designed to measure the op-
timality of a candidate solution, then
such a system would, in time, evolve
to produce a near-optimal solution to
the initial problem. Today, genetic al-
gorithms are also modified heavily for
applications to real-valued parameter
optimization problems as well as many
types of combinatorial tasks such as,
for example, permutation-based prob-
lems. As another application, if the
individuals were computer programs,
then the genetic algorithm technique
would result in “the fittest” computer
programs, as is the goal of genetic pro-
gramming.22

Cellular automata, neural compu-
tation, and evolutionary computation
are the most established “classical”
areas of natural computing. Several
other bio-inspired paradigms emerged
more recently, among them swarm in-
telligence, artificial immune systems,
artificial life, membrane computing,
and amorphous computing.

A computational paradigm strad-
dling at times evolutionary computa-
tion and neural computation is swarm

From Archimorph,
where work is
continuing on their
L-System and
Evolutionary
Algorithm, including
new images of
L-Systems growths
as well as diagrams
explaining the process
of the overall design.
For more images,
see archimorph.
wordpress.com/.

review articles

october 2008 | vol. 51 | no. 10 | communications of the acm 75

intelligence.16 A swarm is a group of mo-
bile biological organisms (such as bac-
teria, ants, termites, bees, spiders, fish,
birds) wherein each individual com-
municates with others either directly or
indirectly by acting on its local environ-
ment. These interactions contribute to
distributive collective problem solving.
Swarm intelligence, sometimes re-
ferred to as collective intelligence, is de-
fined as the problem-solving behavior
that emerges from the interaction of
such a collection of individual agents.
For example, in research simulating
flocking behavior, each individual was
endowed with three simple possible
behaviors: to act as to avoid collision,
to match velocity with neighbors, and
to stay close to nearby flock mates. The
simulations showed that flocking was
an emergent behavior that arose from
the interaction of these simple rules.

Particle swarm optimization was in-
troduced as a new approach to optimi-
zation that had developed from simple
models of social interactions, as well as
of flocking behavior in birds and other
organisms. A particle swarm optimiza-
tion algorithm starts with a swarm of
“particles,” each representing a poten-
tial solution to a problem, similar to
the population of individuals in evolu-
tionary computation.

Particles move through a multidi-
mensional search space and their po-
sitions are updated according to their
own experience and that of their neigh-
bors, by adding “velocity” to their cur-
rent positions. The velocity of a particle
depends on its previous velocity (the
“inertia” component), the tendency
towards the past personal best posi-
tion (the cognitive, “nostalgia” compo-
nent), and the move toward a global or
local neighborhood best (the “social”
component). The cumulative effect is
that each particle converges towards a
point between the global best and its
personal best. Particle Swarm Optimi-
zation algorithms have been used to
solve various optimization problems,
and have been applied to unsupervised
learning, game learning, scheduling
and planning applications, and design
applications.

Ant algorithms were introduced to
model the foraging behavior of ant
colonies. In finding the best path be-
tween their nest and a source of food,
ants rely on indirect communication

by laying a pheromone trail on the way
back to the nest if they found food, and
following the concentration of phero-
mones in the environment if they are
looking for food. This foraging behav-
ior has inspired a large number of ant
algorithms used to solve mainly com-
binatorial optimization problems de-
fined over discrete search spaces.

Artificial immune systems are compu-
tational systems devised starting in the
late 1980s and early 1990s as computa-
tionally interesting abstractions of the
natural immune system of biological
organisms. Viewed as an information
processing system, the immune sys-
tem performs many complex computa-
tions in a highly parallel and distribut-
ed fashion.11 It uses learning, memory,
associative retrieval, and other mecha-
nisms to solve recognition and classi-
fication problems such as distinction
between self and nonself cells, and
neutralization of nonself pathogenic
agents. Indeed, the natural immune
system has sometimes been called the
“second brain” because of its powerful
information processing capabilities.

The natural immune system’s main
function is to protect our bodies against
the constant attack of external patho-
gens (viruses, bacteria, fungi, and para-
sites). The main role of the immune
system is to recognize cells in the body
and categorize them as self or nonself.12
There are two parts of the immune sys-
tem: innate (non-specific) and adaptive
(acquired). The cells of the innate im-
mune system are immediately avail-
able to combat against a wide variety
of antigens, without requiring previous
exposure to them. These cells possess
the ability of ingesting and digesting
several “known” pathogens. In con-
trast, the adaptive immune response
is the antibody production in response
to a specific new infectious agent. Our
body maintains a large “combinatorial
database” of immune cells that circu-
late throughout the body. When a for-
eign antigen invades the body, only a
few of these immune cells can detect
the invaders and physically bind to
them. This detection triggers the pri-
mary immune response: the genera-
tion of a large population of cells that
produce matching antibodies that aid
in the destruction or neutralization of
the antigen. The immune system also
retains some of these specific-anti-

A closer look
at nature from
the point of view
of information
processing can
and will change
what we mean by
computation. Our
invitation to you,
fellow computer
scientists, is to
take part in the
uncovering of
this wondrous
connection.

76 communications of the acm | october 2008 | vol. 51 | no. 10

review articles

ample was the design36 of evolving vir-
tual block creatures that were selected
for their ability to swim (or walk, or
jump), and that competed for a com-
mon resource (controlling a cube) in
a physically simulated world endowed
with realistic features such as kinemat-
ics, dynamics, gravity, collisions, and
friction. The result was that creatures
evolved which would extend arms to-
wards the cube, while others would
crawl or roll to reach it, and some even
developed legs that they used to walk
towards the cube. These ideas were
taken one step further25 by combining
the computational and experimental
approaches, and using rapid manufac-
turing technology to fabricate physical
robots that were materializations of
their virtually evolved computational
counterparts. In spite of the simplic-
ity of the task at hand (horizontal lo-
comotion), surprisingly different and
complex robots evolved: many of them
exhibited symmetry, some moved side-
ways in a crab-like fashion, and others
crawled on two evolved limbs. This
marked the emergence of mechanical
artificial life, while the nascent field
of synthetic biology, discussed later,
explores a biological implementation
of similar ideas. At the same time,
the field of Artificial Life continues to
explore directions such as artificial
chemistry (abstractions of natural mo-
lecular processes), as well as tradition-
ally biological phenomena in artificial
systems, ranging from computational
processes such as co-evolutionary ad-
aptation and development, to physical
processes such as growth, self-replica-
tion, and self-repair.

Membrane computing investigates
computing models abstracted from
the structure and the functioning of
living cells, as well as from the way the
cells are organized in tissues or higher
order structures.26 More specifically,
the feature of the living cells that is
abstracted by membrane computing
is their compartmentalized internal
structure effected by membranes. A
generic membrane system is essen-
tially a nested hierarchical structure
of cell-like compartments or regions,
delimited by “membranes.” The entire
system is enclosed in an external mem-
brane, called the skin membrane, and
everything outside the skin membrane
is considered to be the environment.

body-producing cells in immunologi-
cal memory, so that any subsequent
exposure to a similar antigen can lead
to a rapid, and thus more effective, im-
mune response (secondary response).

The computational aspects of the
immune system, such as distinguish-
ing of self from nonself, feature extrac-
tion, learning, memory, self-regulation,
and fault tolerance, have been exploit-
ed in the design of artificial immune
systems that have been successfully
used in applications. The applications
are varied and include computer virus
detection, anomaly detection in a time
series of data, fault diagnosis, pattern
recognition, machine learning, bioin-
formatics, optimization, robotics, and
control. Recent research in immunol-
ogy departs from the self-nonself dis-
crimination model to develop what is
known as the “danger theory,” wherein
it is believed that the immune system
differentiates between dangerous and
non-dangerous entities, regardless of
whether they belong to self or to non-
self. These ideas have started to be ex-
ploited in artificial immune systems in
the context of computer security.

While artificial immune systems
(a.k.a. immunological computation,
immunocomputing) constitute an ex-
ample of a computational paradigm
inspired by a very specific subsystem
of a biological organism, artificial life
takes the opposite approach. Artificial
life (ALife) attempts to understand the
very essence of what it means to be
alive by building ab initio, within in
silico computers and other “artificial”
media, artificial systems that exhibit
properties normally associated only
with living organisms.24 Lindenmayer
systems (L-systems), introduced in 1968,
can be considered as an early example
of artificial life.

L-systems are parallel rewriting sys-
tems that, starting with an initial word,
proceed by applying rewriting rules in
parallel to all the letters of the word,
and thus generate new words.34 They
have been most famously used to mod-
el plant growth and development,29 but
also for modeling the morphology of
other organisms.

Building on the ideas of evolution-
ary computation, other pioneers of ar-
tificial life experimented with evolving
populations of “artificial creatures”
in simulated environments.9 One ex-

While artificial
immune systems
constitute an
example of a
computational
paradigm inspired
by a very specific
subsystem of
a biological
organism, artificial
life attempts to
understand the very
essence of what it
means to be alive.

review articles

october 2008 | vol. 51 | no. 10 | communications of the acm 77

Each membrane-enveloped region con-
tains objects and transformation rules
which modify these objects, as well as
specify whether they will be transferred
outside or stay inside the region. The
transfer thus provides for communica-
tion between regions. Various formal
mechanisms were developed that re-
flect the selective manner in which bio-
logical membranes allow molecules to
pass through them.

Another biologically inspired fea-
ture of membrane systems as math-
ematical constructs is the fact that,
instead of dealing with sets of objects,
one uses multisets wherein one keeps
track of the multiplicity of each ob-
ject. The computational behavior of a
membrane system starts with an initial
input configuration and proceeds in a
maximally parallel manner by the non-
deterministic choice of application
of the transformation rules, as well as
of the objects to which they are to be
applied. The output of the computa-
tion is then collected from an a priori
determined output membrane. Next
to the basic features indicated previ-
ously, many alternatives of membrane
systems have been considered, among
them ones that allow for membranes to
be dissolved and created. Typical appli-
cations of membrane systems include
biology (modeling photosynthesis and
certain signaling pathways, quorum
sensing in bacteria, modeling cell-me-
diated immunity), computer science
(computer graphics, public-key cryp-
tography, approximation and sorting
algorithms, and solving computation-
ally hard problems), and linguistics.

Amorphous computing is a paradigm
that draws inspiration from the de-
velopment of form (morphogenesis)
in biological organisms, wherein in-
teractions of cells guided by a genet-
ic program give rise to well-defined
shapes and functional structures.
Analogously, an amorphous comput-
ing medium comprises a multitude of
irregularly placed, asynchronous, lo-
cally interacting computing elements.1
These identically programmed “com-
putational particles” communicate
only with particles situated within a
small given radius, and may give rise
to certain shapes and patterns such as,
for example, any pre-specified planar
graph. The goal of amorphous com-
puting is to engineer specified coher-

ent computational behaviors from the
interaction of large quantities of such
unreliable computational particles in-
terconnected in unknown, irregular,
and time-varying ways. At the same
time, the emphasis is on devising new
programming abstractions that would
work well for amorphous computing
environments. Amorphous computing
has been used both as a programming
paradigm using traditional hardware,
and as the basis for “cellular comput-
ing,” discussed later, under the topics
synthetic biology, and computation in
living cells.

Nature as Implementation
Substrate
In the preceding section we saw cel-
lular automata inspired by self-repro-
duction, neural computation by the
functioning of the brain, evolutionary
computation by the Darwinian evolu-
tion of species, swarm intelligence by
the behavior of groups of organisms,
artificial immune systems by the natu-
ral immune system, artificial life by
properties of life in general, membrane
computing by the compartmentalized
organization of the cells, and amor-
phous computing by morphogenesis.
All these are computational techniques
that, while inspired by nature, have
been implemented until now mostly
on traditional electronic hardware.
An entirely distinct category is that of
computing paradigms that use a radi-

cally different type of “hardware.” This
category includes molecular comput-
ing and quantum computing.b

Molecular computing (known also
as biomolecular computing, biocom-
puting, biochemical computing, DNA
computing), is based on the idea that
data can be encoded as biomolecules — 
such as DNA strands — and molecular
biology tools can be used to transform
this data to perform, for example, arith-
metic or logic operations. The birth of
this field was the 1994 breakthrough
experiment by Leonard Adleman who
solved a small instance of the Hamil-
tonian Path Problem solely by manipu-
lating DNA strands in test tubes.2

DNA (deoxyribonucleic acid) is a
linear chain made up of four different
types of nucleotides, each consisting
of a base (Adenine, Cytosine, Guanine,
or Thymine) and a sugar-phosphate
unit. The sugar-phosphate units are
linked together by covalent bonds to

b	 There are several research areas that, because
of the limited space, we could not discuss
here. Thus, for example, non-classical, uncon-
ventional computation38 focuses on carefully
examining and possibly breaking the classi-
cal (Turing, von Neumann) computation as-
sumptions, and developing a more general
science of computation. A substantial part of
this research is concerned with implementing
computation on new physical substrates, ex-
ploiting in this way computational properties
of various physical, chemical, and biological
media. A majority of this research is entwined
with, and motivated by, natural computing.

McGill University’s
Laboratory for Natural
and Simulated Cognition
(LNSC) investigates
human cognition
through a combination
of psychological
and computational
approaches. Using the
Cascade-correlation
algorithm, LNSC
researchers created a
program that outputs
a 2D display of random
output values of neural
networks. The results
are sometimes quite
phenomenal and
artistic. For more, see
www.psych.mcgill.ca/
labs/lnsc/.

78 communications of the acm | october 2008 | vol. 51 | no. 10

review articles

RNA. While similar to DNA, RNA dif-
fers in three main aspects: RNA is usu-
ally single-stranded while DNA is usu-
ally double-stranded, RNA nucleotides
contain the sugar ribose, while DNA
nucleotides contain the sugar deoxyri-
bose, and in RNA the nucleotide Ura-
cil, U, substitutes for Thymine, which
is present in DNA.

There are many possible DNA bio-
operations that one can use for com-
putations,21 such as: cut-and-paste
operations achievable by enzymes, syn-
thesizing desired DNA strands up to a
certain length, making exponentially
many copies of a DNA strand, and read-
ing out the sequence of a DNA strand.

These bio-operations and the Watson-
Crick complementary binding have
all been used to control DNA compu-
tations and DNA robotic operations.
While initial experiments solved simple
instances of computational problems,
more recent experiments tackled suc-
cessfully sophisticated computational
problems, such as a 20-variable in-
stance of the 3-Satisfiability-Problem.
The efforts toward building an auton-
omous molecular computer include
implementations of computational
state transitions with biomolecules,
and a DNA implementation of a finite
automaton with potential applications
to the design of smart drugs.

More importantly, since 1994, re-
search in molecular computing has

form the backbone of the DNA single
strand. Since nucleotides may differ
only by their bases, a DNA strand can
be viewed as simply a word over the
four-letter alphabet {A,C,G,T}. A DNA
single strand has an orientation, with
one end known as the 5′ end, and the
other as the 3′ end, based on their
chemical properties. By convention,
a word over the DNA alphabet repre-
sents the corresponding DNA single
strand in the 5′ to 3′ orientation, that
is, the word GGTTTTT stands for the
DNA single strand 5′– GGTTTTT –3′. A
crucial feature of DNA single strands is
their Watson-Crick complementarity:
A is complementary to T, G is comple-

mentary to C, and two complementary
DNA single strands with opposite ori-
entation bind to each other by hydro-
gen bonds between their individual
bases. In so doing, they form a stable
DNA double strand resembling a heli-
cal ladder, with the backbones at the
outside and the bound pairs of bases
lying inside. For example, the DNA sin-
gle strand 5′– AAAAACC – 3′ will bind
to the DNA single strand 5′– GGTTTTT
– 3′ to form the 7 base-pair-long (7bp)
double strand

5′ − AAAAACC − 3′
3′ − TTTTTGG − 5′

Another molecule that can be used
for computation is ribonucleic acid,

gained several new dimensions. One
of the most significant achievements
of molecular computing has been its
contribution to the massive stream of
research in nanosciences, by providing
computational insights into a number
of fundamental issues. Perhaps the
most notable is its contribution to the
understanding of self-assembly, which
is among the key concepts in nanosci-
ences.30 Recent experimental research
into programmable molecular-scale
devices has produced impressive self-
assembled DNA nanostructures35 such
as cubes, octahedra, Sierpinski trian-
gles,32 DNA origami, or intricate nano-
structures that achieve computation

such as binary counting, or bit-wise
cumulative XOR. Other experiments
include the construction of DNA-based
logic circuits, and ribozymes that can
be used to perform logical operations
and simple computations. In addition,
an array of ingenious DNA nanoma-
chines8 were built with potential uses
to nanofabrication, engineering, and
computation: molecular switches that
can be driven between two conforma-
tions, DNA “tweezers,” DNA “walkers”
that can be moved along a track, and
autonomous molecular motors.

A significant amount of research in
molecular computing has been dedi-
cated to the study of theoretical models
of DNA computation and their proper-
ties. The model of DNA computing in-

Paul W.K. Rothemund,
a senior research
associate at California
Institute of Technology,
has developed a method
of creating nanoscale
shapes and patterns
using DNA. The smiley
faces are actually
giant DNA complexes
called “scaffolded DNA
origami.” Rothemund
notes that while the
smiley face shape may
appear silly, there is
serious science behind
it. He hopes to use this
DNA origami (and other
DNA nanotechnologies)
to build smaller, faster
computers and devices.
For more on his work,
visit http://www.dna.
caltech.edu/~pwkr/.

review articles

october 2008 | vol. 51 | no. 10 | communications of the acm 79

troduced by Head, based on splicing (a
combination of cut-and-paste opera-
tions achievable by enzymes), predates
the experimental proof-of-principle of
DNA computing by almost 10 years.
Subsequently, studies on the compu-
tational power of such models proved
that various subsets of bio-operations
can achieve the computational power
of a Turing machine, showing thus that
molecular computers are in principle
possible.27 Overall, molecular comput-
ing has created many novel theoretical
questions, and has considerably en-
riched the theory of computation.

Quantum Computing is another par-
adigm that uses an alternative “hard-
ware” for performing computations.19
Already in 1980 Benioff introduced
simulations of classical Turing Ma-
chines on quantum mechanical sys-
tems. However the idea of a quantum
computer that would run according
to the laws of quantum physics and
operate exponentially faster than a
deterministic electronic computer to
simulate physics, was first suggested
by Feynman in 1982. Subsequently,
Deutsch introduced a formal model
of quantum computing using a Turing
machine formalism, and described a
universal quantum computer.

A quantum computer uses distinc-
tively quantum mechanical phenom-
ena, such as superposition and en-
tanglement, to perform operations on
data stored as quantum bits (qubits).
A qubit can hold a 1, a 0, or a quantum
superposition of these. A quantum
computer operates by manipulating
those qubits with quantum logic gates.
The notion of information is different
when studied at the quantum level. For
instance, quantum information cannot
be measured reliably, and any attempt
at measuring it entails an unavoidable
and irreversible disturbance.

The 1980s saw an abundance of
research in quantum information
processing, such as applications to
quantum cryptography which, unlike
its classical counterpart, is not usu-
ally based on the complexity of com-
putation but on the special properties
of quantum information. Recently an
open air experiment was reported in
quantum cryptography (not involv-
ing optical cable) over a distance of
144km, conducted between two Ca-
nary islands.

The theoretical results that cata-
pulted quantum computing to the
forefront of computing research were
Shor’s quantum algorithms for factor-
ing integers and extracting discrete log-
arithms in polynomial time, obtained
in 1994 — the same year that saw the
first DNA computing experiment by
Adleman. A problem where quantum
computers were shown to have a qua-
dratic time advantage when compared
to classical computers is quantum da-
tabase search that can be solved by Gro-
ver’s algorithm. Possible applications
of Shor’s algorithm include breaking
RSA exponentially faster than an elec-
tronic computer. This joined other ex-
citing applications, such as quantum
teleportation (a technique that trans-
fers a quantum state, but not matter
or energy, to an arbitrarily distant loca-
tion), in sustaining the general interest
in quantum information processing.

So far, the theory of quantum com-
puting has been far more developed
than the practice. Practical quantum
computations use a variety of imple-
mentation methods such as ion-traps,
superconductors, nuclear magnetic
resonance techniques, to name just a
few. To date, the largest quantum com-
puting experiment uses liquid state
nuclear magnetic resonance quantum
information processors that can oper-
ate on up to 12 qubits.

Nature as Computation
The preceding sections describe re-
search on the theory, applications and
experimental implementations of na-
ture-inspired computational models
and techniques. A dual direction of re-
search in natural computing is one in
which the main goal becomes under-
standing nature by viewing processes
that take place in nature as informa-
tion processing.

This dual aspect can be seen in sys-
tems biology, and especially in compu-
tational systems biology, wherein the
adjective “computational” has two
meanings. On one hand it means the
use of quantitative algorithms for com-
putations, or simulations that comple-
ment experiments in hypothesis gen-
eration and validation. On the other
hand, it means a qualitative approach
that investigates processes taking place
in cells through the prism of commu-
nications and interactions, and thus of

It is indeed
believed that one
of the possible
contributions of
computer science
to biology could be
the development of
a suitable language
to accurately and
succinctly describe,
and reason about,
biological concepts
and phenomena.

80 communications of the acm | october 2008 | vol. 51 | no. 10

review articles

computations. We shall herein address
mostly the second aspect, whereby sys-
tems biology aims to understand the
complex interactions in biological sys-
tems by using an integrative as opposed
to a reductionist approach. The re-
ductionist approach to biology tries to
identify all the individual components
of functional processes that take place
in an organism, in such a way that the
processes and the interactions between
the components can be understood. In
contrast, systems biology takes a sys-
temic approach in focusing instead on
the interaction networks themselves,
and on the properties of the biological
systems that arise because of these in-
teraction networks. Hence, for exam-
ple, at the cell level, scientific research
on organic components has focused
strongly on four different interdepen-
dent interaction networks, based on
four different “biochemical toolkits:”
nucleic acids (DNA and RNA), proteins,
lipids, carbohydrates, and their build-
ing blocks (see Cardelli,10 whose cat-
egorization we follow here).

The genome consists of DNA se-
quences, some of which are genes that
can be transcribed into messenger
RNA (mRNA), and then translated into
proteins according to the genetic code
that maps 3-letter DNA segments into
amino acids. A protein is a sequence
over the 20-letter alphabet of amino ac-
ids. Each gene is associated with other
DNA segments (promoters, enhancers,
or silencers) that act as binding sites
for proteins that activate or repress
the gene’s transcription. Genes inter-
act with each other indirectly, either
through their gene products (mRNA,
proteins), which can act as transcrip-
tion factors to regulate gene transcrip-
tion — either as activators or repres-
sors — or through small RNA species
that directly regulate genes.

These gene-gene interactions, to-
gether with the genes’ interactions with
other substances in the cell, form the
most basic interaction network of an
organism, the gene regulatory network.
Gene regulatory networks perform
information processing tasks within
the cell, including the assembly and
maintenance of the other networks.
Research into modeling gene regu-
latory networks includes qualitative
models such as random and probabi-
listic Boolean networks, asynchronous

automata, and network motifs.
Another point of view,20 is that the

entire genomic regulatory system can
be thought of as a computational sys-
tem, the “genomic computer.” Such a
perspective has the potential to yield
insights into both computation as hu-
mans historically designed it, and com-
putation as it occurs in nature. There
are both similarities and significant
differences between the genomic com-
puter and an electronic computer. Both
perform computations, the genomic
computer on a much larger scale. How-
ever, in a genomic computer, molecular
transport and movement of ions through
electrochemical gradients replace wires,
causal coordination replaces imposed
temporal synchrony, changeable ar-
chitecture replaces rigid structure, and
communication channels are formed
on an as-needed basis. Both comput-
ers have a passive memory, but the ge-
nomic computer does not place it in an
a priori dedicated and rigidly defined
place; in addition, the genomic com-
puter has a dynamic memory in which,
for example, trancriptional subcircuits
maintain given regulatory states. In a ge-
nomic computer robustness is achieved
by different means, such as by rigorous
selection: non (or poorly)-functional
processes are rapidly degraded by vari-
ous feedback mechanisms or, at the cell
level, non (or poorly)-functional cells are
rapidly killed by apoptosis, and, at the or-
ganism level, non (or poorly)-functional
organisms are rapidly out-competed
by more fit species. Finally, in the case
of a genomic computer, the distinction
between hardware and software breaks
down: the genomic DNA provides both
the hardware and the digital regulatory
code (software).

Proteins and their interactions form
another interaction network in a cell,
that of biochemical networks, which
perform all mechanical and metabolic
tasks inside a cell. Proteins are folded-
up strings of amino acids that take
three-dimensional shapes, with pos-
sible characteristic interaction sites ac-
cessible to other molecules. If the bind-
ing of interaction sites is energetically
favorable, two or more proteins may spe-
cifically bind to each other to form a
dynamic protein complex by a process
called complexation. A protein complex
may act as a catalyst by bringing togeth-
er other compounds and facilitating

As the natural
sciences are rapidly
absorbing ideas
of information
processing, and
the meaning of
computation is
changing as it
embraces concepts
from the natural
sciences, we have
the rare privilege
to take part in
several such
metamorphoses.

review articles

october 2008 | vol. 51 | no. 10 | communications of the acm 81

port of substances, forming transport
networks. A biological membrane is
more than a container: it consists of a
lipid bilayer in which proteins and oth-
er molecules, such as glycolipids, are
embedded. The membrane structural
components, as well as the embedded
proteins or glycolipids, can travel along
this lipid bilayer. Proteins can inter-
act with free-floating molecules, and
some of these interactions trigger sig-
nal transduction pathways, leading to
gene transcription. Basic operations
of membranes include fusion of two
membranes into one, and fission of a
membrane into two. Other operations
involve transport, for example trans-
porting an object to an interior compart-
ment where it can be degraded. Formal-
isms that depict the transport networks
are few, and include membrane systems
described earlier, and brane calculi.

The gene regulatory networks, the
protein-protein interaction networks,
and the transport networks are all in-
terlinked and interdependent. Genes
code for proteins which, in turn, can
regulate the transcription of other
genes, membranes are separators but
also embed active proteins in their sur-
faces. Currently there is no single for-
mal general framework and notation

chemical reactions between them. Pro-
teins may also chemically modify each
other by attaching or removing modify-
ing groups, such as phosphate groups,
at specific sites. Each such modification
may reveal new interaction surfaces.
There are tens of thousands of proteins
in a cell. At any given moment, each of
them has certain available binding sites
(which means that they can bind to oth-
er proteins, DNA, or membranes), and
each of them has modifying groups at
specific sites either present or absent.
Protein-protein interaction networks
are large and complex, and finding a
language to describe them is a difficult
task. Significant progress in this direc-
tion was made by the introduction of
Kohn-maps, a graphical notation that
resulted in succinct pictures depict-
ing molecular interactions. Other ap-
proaches include the textual bio-calcu-
lus, or the recent use of existing process
calculi (π-calculus), enriched with sto-
chastic features, as the language to de-
scribe chemical interactions.

Yet another biological interaction
network, and the last that we discuss
here, is that of transport networks medi-
ated by lipid membranes. Some lipids
can self-assemble into membranes and
contribute to the separation and trans-

able to describe all these networks and
their interactions. Process calculus has
been proposed for this purpose, but a
generally accepted common language
to describe these biological phenom-
ena is still to be developed and uni-
versally accepted. It is indeed believed
that one of the possible contributions
of computer science to biology could
be the development of a suitable lan-
guage to accurately and succinctly de-
scribe, and reason about, biological
concepts and phenomena.18

While systems biology studies
complex biological organisms as inte-
grated wholes, synthetic biology is an
effort to engineer artificial biological
systems from their constituent parts.
The mantra of synthetic biology is that
one can understand only what one can
construct. Thus, the main focus of syn-
thetic biology is to take parts of natu-
ral biological systems and use them to
build an artificial biological system for
the purpose of understanding natural
phenomena, or for a variety of possible
applications. In this sense, one can
make an analogy between synthetic
biology and computer engineering.3
The history of synthetic biology can
be arguably traced back to the discov-
ery in the 1960s, by Jacob and Monod,

Artist Jonathan
McCabe’s interests
include theories of
biological pattern
formation and evolution
and their application to
computer art. He writes
computer programs
that measure statistical
properties of images
for use in artificial
evolution of computer
art. For more, see www.
jonathanmccabe.com/.

82 communications of the acm | october 2008 | vol. 51 | no. 10

review articles

Besides systems biology that tries
to understand biological organisms as
networks of interactions, and synthet-
ic biology that seeks to engineer and
build artificial biological systems, an-
other approach to understanding na-
ture as computation is the research on
computation in living cells. This is also
sometimes called cellular computing,
or in vivo computing, and one particular
study in this area is that of the computa-
tional capabilities of gene assembly in
unicellular organisms called ciliates.

Ciliates possess two copies of their
DNA: one copy encoding functional
genes, in the macronucleus, and an-
other “encrypted” copy in the micro-
nucleus. In the process of conjugation,
after two ciliates exchange genetic in-
formation and form new micronuclei,
they use the new micronuclei to as-
semble in real-time new macronuclei
necessary for their survival. This is ac-
complished by a process that involves
re-ordering some fragments of DNA
(permutations and possibly inversions),
and deleting other fragments from the
micronuclear copy. The process of gene
assembly is fascinating from both the
biological and the computational point
of view. From the computational point
of view, this study led to many novel and
challenging research themes.14 Among
others, it was proved that various mod-
els of gene assembly have full Turing
machine capabilities.23 From the bio-
logical point of view, the joint effort of
computer scientists and biologists led
to a plausible hypothesis (supported
already by some experimental data)
about the “bioware” that implements
the process of gene assembly, which is
based on the new concept of template-
guided recombination.4, 28

Other approaches to cellular com-
puting include developing an in vivo
programmable and autonomous finite-
state automaton within E.Coli, and de-
signing and constructing in vivo cellu-
lar logic gates and genetic circuits that
harness the cell’s existing biochemical
processes.

At the end of this spectrum of views
of nature as computation, the idea was
even advanced by Zuse and Fredkin
in the 1960s that information is more
fundamental than matter or energy.
The Zuse-Fredkin thesis stated that the
entire universe is some kind of compu-
tational device, namely a huge cellular

of mathematical logic in gene regula-
tion. Early achievements in genetic
engineering using recombinant DNA
technology (the insertion, deletion,
or combination of different segments
of DNA strands) can be viewed as the
experimental precursors of today’s
synthetic biology, which now extends
these techniques to entire systems of
genes and gene products. One goal can
be constructing specific synthetic bio-
logical modules such as, for example,
pulse generator circuits that display a
transient response to variations in in-
put stimulus.

Advances in DNA synthesis of lon-
ger and longer strands of DNA are pav-
ing the way for the construction of
synthetic genomes with the purpose of
building an entirely artificial organism.
Progress includes the generation of a
5,386bp synthetic genome of a virus,
by rapid (14-day) assembly of chemi-
cally synthesized short DNA strands.37
Recently an announcement was made
of the near completion of the assem-
bly of an entire “minimal genome” of
a bacterium, Mycoplasma Genitalium.7
Smith and others indeed found about
100 dispensable genes that can be re-
moved individually from the original
genome. They hope to assemble a mini-
mal genome consisting of essential
genes only, that would be still viable but
shorter than the 528-gene, 580,000bp
genome of M.Genitalium. This human-
made genome could then be inserted

into a Mycoplasma bacterium using a
technique wherein a whole genome can
be transplanted from one species into
another, such that the resulting prog-
eny is the same species as the donor ge-
nome. Counterbalancing objections to
assembling a semi-synthetic cell with-
out fully understanding its functioning,
the creation of a functionally and struc-
turally understood synthetic genome
was proposed,17 containing 151 genes
(113,000bp) that would produce all the
basic molecular machinery for protein
synthesis and DNA replication. A third
approach to create a human-made cell
is the one pursued by Szostak and oth-
ers, who would construct a single type of
RNA-like molecule capable of self-repli-
cating, possibly housed in a single lipid
membrane. Such molecules can be ob-
tained by guiding the rapid evolution of
an initial population of RNA-like mol-
ecules, by selecting for desired traits.

Lastly, another effort in synthetic
biology is toward engineering multi-
cellular systems by designing, for ex-
ample, cell-to-cell communication
modules that could be used to coordi-
nate living bacterial cell populations.

Research in synthetic biology faces
many challenges, some of them of an
information processing nature. There
arguably is a pressing need for stan-
dardization, modularization, and ab-
straction, to allow focusing on design
principles without reference to lower-
level details.15

European artist Leonel
Moura works with
AI and robotics. The
Swarm Paintings,
produced in 2001, were
the result of several
experiments with
an “Ant Algorithm”
where he tried to
apply virtual emergent
pheromone trails to
a real space pictorial
expression. In this case,
a computer running
an ant algorithm was
connected to a robotic
arm that “translated” in
pencil or brush strokes
the trails generated by
the artificial swarm of
ants. For more images,
see www.leonelmoura.
com/.

review articles

october 2008 | vol. 51 | no. 10 | communications of the acm 83

automaton continuously updating its
rules. Along the same lines, it has been
recently suggested that the universe is
a quantum computer that computes it-
self and its own behavior.

Natural Sciences: Ours to Discover
Science advances in ever-widening cir-
cles of knowledge. Sometimes it metic-
ulously crawls. Other times it leaps to a
new dimension of understanding and,
in the process, it reinvents itself. As the
natural sciences are rapidly absorbing
ideas of information processing, and
the meaning of computation is chang-
ing as it embraces concepts from the
natural sciences, we have the rare privi-
lege to take part in several such meta-
morphoses.

At this moment we and our natural
scientist fellows are awash in wave after
gigantic wave of experimental, especial-
ly biological, data. Just underneath this
tumultuous surface lie ingenious algo-
rithms waiting to be designed, elegant
theorems waiting to be proven, natural
laws waiting to be discovered that will
put order into chaos. For, as Spinoza
wrote, “nothing happens in nature that
does not follow from her laws.”

Conversely, as this review shows,
there is an abundance of natural phe-
nomena that can inspire computing
paradigms, alternative physical sub-
strates on which to implement compu-
tations, while viewing various natural
processes as computations has become
more and more essential, desirable,
and inevitable. All these developments
are challenging our assumptions about
computation, and indeed, our very def-
inition of it.

In these times brimming with ex-
citement, our task is nothing less than
to discover a new, broader, notion of
computation, and to understand the
world around us in terms of informa-
tion processing.

Let us step up to this challenge. Let
us befriend our fellow the biologist, our
fellow the chemist, our fellow the phys-
icist, and let us together explore this
new world. Let us, as computers in the
future will, embrace uncertainty. Let us
dare to ask afresh: “What is computa-
tion?”, “What is complexity?”, “What
are the axioms that define life?”

Let us relax our hardened ways of
thinking and, with deference to our sci-
entific forebears, let us begin anew.

Approach. MIT Press, 2006.
14.	 Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D., and

Rozenberg, G. Computation in Living Cells: Gene
Assembly in Ciliates. Springer, 2004.

15.	 Endy, D. Foundations for engineering biology. Nature
438 (2005), 449–453.

16.	 Engelbrecht, A. Fundamentals of Computational
Swarm Intelligence. Wiley and Sons, 2005.

17.	 Forster, A. and Church, G. Towards synthesis of a
minimal cell. Molecular Systems Biology 2, 45 (Aug.
2006).

18.	 Fox Keller, E. and Harel, D. Beyond the gene. PLoS
ONE 2, 11 (2007), e1231.

19.	 Hirvensalo, M. Quantum Computing, 2nd Ed. Springer,
2004.

20.	 Istrail, S., De-Leon, B-T., and Davidson, E. The
regulatory genome and the computer. Developmental
Biology 310 (2007), 187–195.

21.	 Kari, L. DNA computing—the arrival of biological
mathematics. The Math. Intelligencer 19, 2 (1997),
9–22.

22.	 Koza, J. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press,
1992.

23.	 Landweber, L. and Kari, L. The evolution of cellular
computing: Nature’s solution to a computational
problem. Biosystems 52, 1/3 (1999), 3–13.

24.	 Langton, C., editor. Artificial Life. Addison-Wesley
Longman, 1990.

25.	 Lipson, H. and Pollack, J. Automatic design and
manufacture of robotic lifeforms. Nature 406, (2000),
974–978.

26.	 Paun, G. Membrane Computing: An Introduction.
Springer, 2002.

27.	 Paun, G., Rozenberg, G., and Salomaa, A. DNA
Computing: New Computing Paradigms. Springer,
1998.

28.	 Prescott, D., Ehrenfeucht, A., and Rozenberg, G.
Template guided recombination for IES elimination
and unscrambling of genes in stichotrichous ciliates. J.
Theoretical Biology 222, 3 (2003), 323–330.

29.	 Prusinkiewicz, P. and Lindenmayer, A. The Algorithmic
Beauty of Plants. Springer, 1990.

30.	 Reif, J. and LaBean, T. Autonomous programmable
biomolecular devices using self-assembled DNA
nanostructures. Commun. ACM 50, 9 (Sept. 2007),
46–53.

31.	 Rojas, R. Neural Networks: A Systematic Introduction.
Springer, 1996.

32.	 Rothemund, P., Papadakis, N., and Winfree, E.
Algorithmic self-assembly of DNA Sierpinski triangles.
PLoS Biology 2, 12 (Dec. 2004).

33.	 Rozenberg, G. Computer science, informatics and
natural computing—personal reflections. In New
Computational Paradigms: Changing Conceptions of
What Is Computable. Springer, 2008, 373–379.

34.	 Rozenberg, G. and Salomaa, A. The Mathematical
Theory of L Systems. Academic Press, 1980.

35.	 Seeman, N. Nanotechnology and the double helix.
Scientific American Reports, 17, 3 (2007), 30–39.

36.	 Sims, K. Evolving 3D morphology and behavior by
competition. In Proceedings of Artificial Life IV. MIT
Press, 1994, 28–39.

37.	 Smith, H., Hutchison III, C., Pfannkoch, C., and Venter,
C. Generating a synthetic genome by whole genome
assembly: fX174 bacteriophage from synthetic
oligonucleotides. PNAS 100, 26 (2003), 15440–15445.

38.	 Stepney, S. et al. Journeys in non-classical
computation I: A grand challenge for computing
research. Int. J. Parallel, Emergent and Distributed
Systems 20, 1 (2005), 5–19.

39.	 von Neumann, J. The Computer and the Brain. Yale
University Press, 1958.

40.	von Neumann, J. Theory of Self-Reproducing
Automata. U. Illinois Press, 1966. Edited and
completed by A.W.Burks.

Lila Kari (lila@csd.uwo.ca) is Professor and Canada
Research Chair in Biocomputing in the Department of
Computer Science at the University of Western Ontario,
London, Canada.

Grzegorz Rozenberg (rozenber@liacs.nl) is Professor
at the Leiden Institute of Advanced Computer Science,
Leiden University, Leiden, The Netherlands, and Adjunct
Professor in the Department of Computer Science at the
University of Colorado at Boulder, USA.

© 2008 ACM 0001-0782/08/1000 $5.00

Literature
The upper-bound placed on the num-
ber of references was a real limitation
for this review, since the literature on
natural computing is vast. For a more
complete list of references the reader
is referred to the full version of this ar-
ticle at www.csd.uwo.ca/˜lila/Natural-
Computing-Review.pdf.

Almost each of the areas we men-
tioned here has an extensive scien-
tific literature as well as a number of
specialized journals and book series.
There are also journals and book se-
ries aimed at the general natural com-
puting community, among them the
journals Natural Computing, Springer,
Theoretical Computer Science, Series C:
Theory of Natural Computing, Elsevier,
the Natural Computing book series,
Springer, and the upcoming Handbook
of Natural Computing (G. Rozenberg, T.
Bäck, J. Kok, editors, Springer).

Acknowledgments
We gratefully acknowledge comments
on early drafts of this paper by T. Bäck,
D. Bentley, G. Brassard, D. Corne, M.
Hirvensalo, J. Kari, P. Krishna, H. Lip-
son, R. Mercer, A. Salomaa, K. Sims, H.
Spaink, J. Timmis, C. Torras, S. Watt,
R. Weiss.

This work was supported by NSERC
Discovery Grant and Canada Research
Chair Award to L.K., and NSF grant
0622112 to G.R.	

References
1.	 Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G.,

Knight Jr., T., Nagpal, R., Rauch, E., Sussman, G., and
Weiss, R. Amorphous computing. Commun. ACM 43, 5
(May 2000), 74–82.

2.	 Adleman, L. Molecular computation of solutions
to combinatorial problems. Science 266 (1994),
1021–1024.

3.	 Andrianantoandro, E., Basu, S., Karig, D., and Weiss,
R. Synthetic biology: new engineering rules for an
emerging discipline. Molecular Systems Biology 2
(2006), 1–14.

4.	 Angeleska, A., Jonoska, N., Saito, M., and Landweber,
L. RNA-guided DNA assembly. J. Theoretical Biology
248 (2007), 706–720.

5.	 Arbib, M., editor. The Handbook of Brain Theory and
Neural Networks. MIT Press, 2003.

6.	 Bäck, T., Fogel, D., and Michalewicz, Z., editors.
Handbook of Evolutionary Computation. IOP
Publishing, U.K., 1997.

7.	 Barry, P. Life from scratch: learning to make synthetic
cells. Science News, 173, 2 (2008), 27.

8.	 Bath, J. and Turberfield, A. DNA nanomachines.
Nature Nanotechnology 2 (May 2007), 275–284

9.	 Brooks, R. Artificial life: From robot dreams to reality.
Nature 406 (2000), 945–947.

10.	 Cardelli, L. Machines of systems biology. Bulletin of
the EATCS 93 (2007), 176–204.

11.	 Dasgupta, D. editor. Artificial Immune Systems and
Their Applications. Springer, 1998.

12.	 de Castro, L. and Timmis, J. Artificial Immune
Systems: A New Computational Intelligence
Approach. Springer, 2002.

13.	 De Jong, K. Evolutionary Computation: A Unified

