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Abstract We solve an open problem, stated in 2008, about the feasibility
of designing efficient algorithmic self-assembling systems which produce 2-
dimensional colored patterns. More precisely, we show that the problem of
finding the smallest tile assembly system which rectilinearly self-assembles an
input pattern with 2 colors (i.e., 2-Pats) is NP-hard. Of both theoretical and
practical significance, the more general k-Pats problem has been studied in a
series of papers which have shown k-Pats to be NP-hard for k = 60, k = 29,
and then k = 11. In this paper, we prove the fundamental conjecture that
2-Pats is NP-hard, concluding this line of study.

While most of our proof relies on standard mathematical proof techniques,
one crucial lemma makes use of a computer-assisted proof, which is a rela-
tively novel but increasingly utilized paradigm for deriving proofs for complex
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mathematical problems. This tool is especially powerful for attacking com-
binatorial problems, as exemplified by the proof for the four color theorem
and the recent important advance on the Erdős discrepancy problem using
computer programs. In this paper, these techniques will be brought to a new
order of magnitude, computational tasks corresponding to one CPU-year. We
massively parallelize our program, and provide a full proof of its correctness.
Its source code is freely available online.

Keywords Algorithmic DNA self-assembly · Pattern assembly · NP-
hardness · Computer-assisted proof · Massively-parallelized program

1 Introduction

The traditional way for humankind to modify the physical world has been via
a top-down process of crafting things with tools, in which matter is directly
manipulated and shaped by those tools. In this work, we are interested in
another crafting paradigm called self-assembly, a model of building structures
from the bottom up. Via self-assembly, it is possible to design molecular sys-
tems so that their components autonomously combine to form structures with
nanoscale, even atomic, precision. At this scale, tools are no longer the easiest
way to build things, and programming the assembly of matter becomes at the
same time easier, cheaper, and more powerful.

Using this paradigm, researchers have already built a number of things,
such as regular arrays [46], fractal structures [12, 35], logic circuits [30, 37],
maps [34, 44], DNA tweezers [49], neural networks [31], and molecular robots
[24], just to name a few. Such examples demonstrate that self-assembly can
be used to manufacture specialized geometrical, mechanical, and computa-
tional objects at the nanoscale. Potential future applications of nanoscale self-
assembly include the production of new materials with specifically tailored
properties (electronic, photonic, etc.) and medical technologies which are ca-
pable of diagnosing and even treating diseases in vivo, at the cellular level. Fur-
thermore, studying the processes occurring in self-assembling systems yields
precious insights about what is physically, even theoretically, possible in these
molecular systems. Questions such as “what is the smallest program capable of
performing a given task?” arise naturally in these systems, either from experi-
mental applications, or from more fundamental research on the capabilities of
natural systems.

The abstract Tile Assembly Model (aTAM) was introduced by Winfree [45]
to study the possibilities brought by molecular components built by See-
man [38] using DNA. This model is essentially an asynchronous nondeter-
ministic cellular automaton, and can also be seen as a dynamical variant of
Wang tiling [43]. In the aTAM, the basic components are translatable but un-
rotatable square tiles whose sides are labeled with glues, each with an integer
strength. Growth proceeds from a seed assembly, one tile at a time, and at each
time step a tile can attach to an existing assembly if the sum of the strengths
of the glues on its sides, whose types match the existing assembly, is equal to
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at least a parameter of the model called the temperature. Despite its deliberate
simplification, the aTAM is a computationally expressive model [23, 29, 45]
capable of Turing universal computation. Recently, it has even been shown to
be intrinsically universal [8, 9, 10, 11, 27, 47].

1.1 NP-hardness of pattern tile set synthesis

The problem we study in this paper is the optimization of the design of tile
assembly systems in the aTAM which self-assemble to form colored input pat-
terns. DNA tiles can be equipped with proteins [48] and nanoparticles such
as gold (Au) [50]. Assemblies of normal tiles as well as tiles thus modified can
be considered a colored pattern, as a periodic placement of Au nanoparticles
on a 2D nanogrid [50] can be considered a 2-colored (i.e., binary) rectangu-
lar pattern on which the two colors specify the presence/absence of an Au

nanoparticle at the position. Various designs of pattern assemblers have been
proposed theoretically and experimentally; see for example [4, 6, 35, 50]. In
general, k-Pats for k ≥ 2 is the task, given a placement of k different kinds of
nanoparticles, represented in the model as a k-colored rectangular pattern, to
design an optimally small tileset and an L-shaped seed that self-assembles the
pattern; see Fig. 1 for an example. Essentially, each type of tile is assigned a
“color”, and the goal is to design a system consisting of the minimal number of
tile types such that they deterministically self-assemble to form a rectangular
assembly in which each tile is assigned the same color as the corresponding lo-
cation in the pattern. This problem was introduced in [25], and has since then
been extensively studied [7, 15, 18, 19, 39]. The interest is both theoretical,
to determine the computational complexity of designing efficient tile assembly
systems, and practical, as the goal of self-assembling patterned substrates onto
which a potentially wide variety of molecular components could be attached
is a major experimental goal. In [39] Seki proved for the first time the NP-
hardness of 60-Pats (i.e., the input pattern is allowed to have 60 colors) and
the result has since been strengthened to that of 29-Pats [18], and further to
11-Pats [19]. Additionally, a variant of k-Pats, where the number of tile types
of certain colors is restricted, has been proven to be NP-hard for 3 colors [21].

The foundational conjecture has been that for k = 2, that is, 2-Pats, the
problem is also NP-hard as stated in 20081. This open problem in the field
of DNA self-assembly is known as binary pattern tile set synthesis (2-Pats)
problem [25, 39]. Our main result confirms this conjecture, which is thus the
terminus of this line of research and a fundamental result in algorithmic self-
assembly. We state the main result of this paper here, although some terms
may not be formally defined yet:

Theorem 1 The 2-Pats optimization problem of finding, given a 2 colored
rectangular pattern P , the minimal colored tileset (together with an L-shape

1 This problem was claimed to be NP-hard in a subsequent paper by the authors of [25]
but what they proved was the NP-hardness of a different problem (see [40]).



4 Lila Kari et al.

seed) that produces a single terminal assembly where the color arrangement is
exactly the same as in P , is NP-hard.

The main idea of our proof is similar to the strategies adopted by [18, 19,
39]. We embed the computation of a verifier of solutions for an NP-complete
problem (in our case, a variant of Sat, which we call M-Sat) in an assem-
bly, which is relatively straightforward in Winfree’s aTAM. One can indeed
engineer a tile assembly system (TAS) in this model, with colored tiles, im-
plementing a verifier of solutions of the variant of Sat, in which a formula F
and a variable assignment φ ∈ {0, 1}n are encoded in the seed assembly, and
a tile of a special color appears in a certain position if and only if F (φ) = 1.
In our actual proof, reported in Sect. 3, we design a set T of 13 tile types and
a reduction of a given instance φ of M-Sat to a rectangular pattern PF such
that

Property 1. A TAS using tile types in T self-assembles PF iff F is satisfiable.

Property 2. Any TAS of at most 13 tile types that self-assembles PF is iso-
morphic to T .

Therefore, F is solvable if and only if PF can be self-assembled using at
most 13 tile types. In previous works [18, 19, 39], significant portions of the
proofs were dedicated to ensure their analog of Property 2, and many colors
were “wasted” to make the property “manually” checkable. For reference, 33
out of 60 colors just served this purpose for the proof of NP-hardness of 60-
Pats [39] and 2 out of 11 did that for 11-Pats [19]. Cutting this “waste”
causes a combinatorial explosion of cases to test and motivates us to use a
computer program to do the verification instead. Apart from the verification
of Property 2 (in Lemma 1), the rest of our proof can be verified as done in
traditional mathematical proofs; our proof is in Sect. 3.

The verification of Property 2 is done by an algorithm which, given a
pattern and an integer n, searches for all possible sets of n tile types that
self-assemble the pattern. We provide two parallelized implementations of the
algorithm: a fast, unproven C++ version, and a slower, but formally proven
OCaml implementation. A high-level explanation of the algorithm and the
two implementations is given in Sect. 4 and both implementations are freely
available online2. Both versions were implemented independently and neither
is the conversion of the code of the other implementation. The full statistics of
the runs are available on demand, and summarized by the Parry user interface:
http://pats.lif.univ-mrs.fr.

1.2 Computer-assisted proofs

In one of its parts, our proof of the 2-Pats conjecture requires the solution of
a massive combinatorial problem, meaning that one of the lemmas upon which

2 http://self-assembly.net/wiki/index.php?title=2PATS-tileset-search (C++
version) and http://self-assembly.net/wiki/index.php?title=2PATS-search-ocaml

(OCaml version)

http://pats.lif.univ-mrs.fr
http://self-assembly.net/wiki/index.php?title=2PATS-tileset-search
http://self-assembly.net/wiki/index.php?title=2PATS-search-ocaml
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it relies needs a massive exploration of more than 6 ·1013 cases via a computer
program. While this is not a traditional component of mathematical proofs,
and may not provide the same level of insight into why something is true that
a standard proof may, modern hardware and software have now given us the
tools to attack combinatorially formidable problems whose proofs, if not aug-
mented by computer programs, would often be impossible or as lacking in their
ability to elucidate the reasons for their truth due to explosive case analyses as
verification by brute force analysis of a computer program. Indeed, computer
science has at the same time introduced combinatorial arguments indicating
that most theorems do not have simple proofs, and possible ways to produce
certain facts anyway, by heavy algorithmic processes. Moreover, the “natu-
ral proofs” line of research [1, 5, 32, 36] suggests that understanding “why”
complexity classes are separated may be out of reach, and that therefore, the
study of these kinds of proofs, and methods to ensure their correctness, are a
fundamental direction in computer science today. Asserting the correctness of
biological and chemical programs is also an important problem, where “why”
questions are really not as important as the “whether” ones, for instance for
therapeutic applications. Computationally intensive proofs are therefore likely
to become common in these areas of science.

Historically, Appel and Haken [2, 3] were the first to prove a result — the
four color theorem — with this kind of method, in 1976. This proof was later
simplified in [33]. Since then, important problems in various fields have been
solved (fully or partially) with the assistance of computers: the discovery of
Mersenne primes [42], the 17-point case of the happy ending problem [41], the
NP-hardness of minimum-weight triangulation [28], a special case of Erdős’
discrepancy conjecture [22], the ternary Goldbach conjecture [17], and Kepler’s
conjecture [16, 26], among others. Over the years, exhaustive exploration and
massively parallel programs have also been commonly used in physics, or in
combinatorial problems such as solving the Rubik’s cube. However, none of
these programs was proven formally, and confidence in the validity of these
results thus relies on our trust in the programmers.

The first rigorous proof of a massive software exploration was for the four
colors theorem, recently done in the Coq proof assistant by Gonthier et al. [14].
The order of magnitude of their proof is close to the limits of Coq, and is not
comparable with our result, which needs a massively parallel exploration re-
quiring about one CPU-year on very modern, high-end machines (as a sum
total over several hundred distributed cores) to complete and verify the cor-
rectness of the lemma.

Unless the implementation of assistant computer programs is straightfor-
ward, we need to make a strategic plan to tackle a problem so meticulously
that human beings can verify the computer programs employed and their un-
derlying algorithms rigorously. Such efforts may lead us to further theoretical
developments and deeper insights into the problem, as a new proof of the four
color theorem by Robertson et al. benefited from the improved time complex-
ity of map-verification algorithms and the reduced number, 633, of candidates
to be checked [33].
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Fig. 1 (Left) Four tile types implement the half-adder with two inputs A, B from the west
and south, the output S to the north, and the carryout C to the east; (Right) Copies of the
half-adder tiles turn the L-shape seed into the binary counter pattern

A large parallel cluster was hence employed, which poses a number of new
challenges. Indeed, in a sequential program, we often implicitly use the fact
that function calls return the output of their computations, which becomes
more complicated when using multiple computers: without using unrealistic
hypotheses on the correction of the network and of operating systems, return
values could potentially be lost, duplicated or corrupted. Since our program
ran for a long time, we cannot make such strong hypotheses, which is why
we need to assert the authenticity of messages received by the server by using
cryptographic signatures.

Another feature of our proof is the use of a functional programming lan-
guage, OCaml. The main feature of this language is the conciseness of the
code, and the proximity of its syntax to mathematical proofs. In Section 5, we
present a full proof of our programs, for the sake of completeness. This is not
to be confused with an explanation of the code, which is given in Section 4: it
is rather a rigorous argument to show that the statement of Lemma 1 holds.
The whole framework for carrying out the programmatic part of our proof is
reusable for the same kind of tasks in the future.

2 Preliminaries

Let N be the set of nonnegative integers, and for a positive integer n ∈ N, let
[n] = {0, 1, 2, . . . , n−1}. For k ≥ 1, a k-colored pattern is a partial function
from N2 to the set of (color) indices [k], and a k-colored rectangular pattern
(of width w and height h) is a pattern whose domain is [w]× [h].

Let Σ be a glue alphabet. A (colored) tile type t is a tuple (gN, gW, gS, gE, c),
where gN, gW, gS, gE ∈ Σ represent the respective north, west, south, and east
glue of t, and c ∈ N is a color (index) of t. For instance, the right black
tile type in Fig. 1 (Left) is (1, 1, 0, 0, black). We refer to gN, gW, gS, gE as
t(N), t(W), t(S), t(E), respectively, and by c(t) we denote the color of t. For a
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set T of tile types, an assembly α over T is a partial function from N2 to T .
When algorithms and computer programs will be explained in Sect. 4, it is
convenient for the tile types in T to be indexed as t0, t1, . . . , t`−1 and consider
the assembly rather as a partial function from N2 to [`]. Its pattern, denoted
by P (α), is such that dom(P (α)) = dom(α) and P (α)(x, y) = c(α(x, y)) for
any (x, y) ∈ dom(α). Given another assembly β, we say α is a subassembly of
β if dom(α) ⊆ dom(β) and, for any (x, y) ∈ dom(α), β(x, y) = α(x, y).

A rectilinear tile assembly system (RTAS) is a pair T = (T, σL) of a set
T of tile types and an L-shape seed σL. The seed σL is an assembly over
another set of tile types disjoint from T such that dom(σ)L = {(−1,−1)} ∪
([w]× {−1}) ∪ ({−1} × [h]) for some w, h ∈ N. The vertical arm (of the seed)
consists of those tiles of the seed lying on the column with x-coordinate −1;
the other tiles of the seed, lying on the row with y-coordinate −1, make up
the horizontal arm (of the seed). The size of T is measured by the number of
tile types employed, that is, |T |. According to the following general rule that
all RTASs obey, it tiles the first quadrant delimited by the seed:

RTAS tiling rule: A tile t ∈ T can attach to an assembly α at position (x, y)
if

1. α(x, y) is undefined,
2. both α(x−1, y) and α(x, y−1) are defined,
3. t(W) = α(x−1, y)[E] and t(S) = α(x, y−1)[N].

The attachment results in a larger assembly β whose domain is dom(α) ∪
{(x, y)} such that for any (x′, y′) ∈ dom(α), β(x′, y′) = α(x, y), and β(x, y) =
t. When this attachment takes place in the RTAS T , we write α →T1 β.
Informally speaking, the tile t can attach to the assembly α at (x, y) if on α,
both (x−1, y) and (x, y−1) are tiled while (x, y) is not yet, and the west and
south glues of t match the east glue of the tile at (x−1, y) and the north glue
of the tile at (x, y−1), respectively. This implies that, at the outset, (0, 0) is
the sole position where a tile may attach. For those who are familiar with the
aTAM [45], it should be straightforward that an RTAS is a temperature-2 tile
assembly system all of whose glues are of strength 1.

Example 1 See Fig. 1 for an RTAS with 4 tile types that self-assembles the
binary counter pattern. To its L-shape seed shown there, a black tile of type
(1, 1, 0, 0, black) can attach at (0, 0), while no tile of other types can due
to glue mismatches. The attachment makes the two positions (0, 1) and (1,
0) attachable. Tiling in RTASs thus proceeds from south-west to north-east
rectilinearly until no attachable position is left.

The set A[T ] of producible assemblies by T is defined recursively as follows:
(1) σL ∈ A[T ], and (2) for α ∈ A[T ], if α→T1 β, then β ∈ A[T ]. A producible
assembly α ∈ A[T ] is called terminal if there is no assembly β such that α→T1
β. The set of terminal assemblies is denoted by A�[T ]. Note that the domain
of any producible assembly is a subset of ({−1} ∪ [w])× ({−1} ∪ [h]), starting
from the seed σL whose domain is {(−1,−1)} ∪ ([w]× {−1}) ∪ ({−1} × [h]).
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A tile set T is directed if for any distinct tile types t1, t2 ∈ T , t1(W) 6= t2(W)
or t1(S) 6= t2(S) holds. An RTAS T = (T, σL) is directed if its tile set T is
directed (the directedness of RTAS was originally defined in a different but
equivalent way). It is clear from the RTAS tiling rule that if T is directed,
then it has exactly one terminal assembly, which we call γ. Let γ′ be the
subassembly of the terminal assembly such that dom(γ′) ⊆ N2, that is, the
tiles on γ′ did not originate from the seed σL but were tiled by the RTAS.
Then we say that T uniquely self-assembles the pattern P (γ′).

The pattern self-assembly tile set synthesis (Pats), proposed by Ma and
Lombardi [25], aims at computing the minimum size directed RTAS that
uniquely self-assembles a given rectangular pattern. The solution to Pats
is required to be directed here, but not originally. However, in [15], it was
proved that among all the RTASs that uniquely self-assemble the pattern, the
minimum one is directed.

To study the algorithmic complexity of this problem on “real size” particle
placement problems, a first restriction that can be placed is on the number of
colors allowed for the input patterns, thereby defining the k-Pats problem:

k-colored Pats (k-Pats)
Given: a k-colored pattern P
Find: a smallest directed RTAS that uniquely self-assembles P

The NP-hardness of this optimization problem follows from that of its
decision variant, which decides, given also an integer `, if such an RTAS is
implementable using at most ` tile types or not. In the rest of this paper, we
use the terminology k-Pats to refer to this decision problem, unless otherwise
noted.

3 2-Pats is NP-hard

We will prove that Pats is NP-hard for binary patterns (2-colored patterns)
by providing a polynomial-time reduction from monotone satisfiability with
few true variables (M-Sat) to (the decision variant of) 2-Pats. In M-Sat we
consider a number k and a Boolean formula F in conjunctive normal form
without negations and ask whether or not F can be satisfied by only allowing
k variables to be true. In fact, M-Sat is just an alias of the well-known Set-
Cover problem (for its NP-completeness, see, e.g., [13], where it is rather
called MinimumCover). Nonetheless, interpreting the SetCover rather as
a variant of Sat enables us to naturally adopt know-how accumulated in the
existing proofs (e.g., [7, 21, 39]) for the NP-hardness of Pats and k-Pats,
many of which employed Sat or its variants as a source reduction.

Given an instance of M-Sat, which is a formula F and an integer k, we
reduce it to a binary pattern Pk,F such that a directed RTAS with ` = 13
or less tile types self-assembles Pk,F if and only if the answer to the M-Sat
instance is yes, that is, F can be satisfied with exactly k true variables.
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3.1 The gadget pattern G

We design the pattern Pk,F so as to incorporate, as a subpattern, a gadget
pattern G shown in Fig. 2. As formally stated in Lemma 1 below, the gadget
pattern G has the property that among all the tilesets of size at most 13,
exactly one (up to isomorphism) can be employed in a directed RTAS to as-
semble G, and thus any pattern with G as a subpattern has the same property.
Let T be this tileset, shown in Fig. 3. Lemma 1 is verified by an exhaustive
search by a computer program; see Sects. 4 and 5. All the other parts of our
proof of Theorem 1 are manually checkable.

Lemma 1 If a directed RTAS whose tileset consists of 13 or less tile types
self-assembles the gadget pattern G in Fig. 2, then its tileset is isomorphic
to T .

u ���������������������
u ���������������������
���������������������

u ���������������������
u ���������������������
◦ ���������������������
u ���������������������
u ���������������������
���������������������

u ���������������������
u ���������������������
u ���������������������
u ���������������������
���������������������

u ���������������������
u ���������������������
u ���������������������
u ���������������������
���������������������

u ���������������������
u ���������������������
◦ ���������������������
u ���������������������
u ���������������������

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Fig. 2 The binary gadget pattern G can only be assembled by using the tile set T (or
one isomorphic to it) unless 14 or more tile types are available. To self-assemble G using
T one has to use the glues on the L-shape seed as indicated on the bottom and left. For
performance purposes, the bottom row in the pattern was not included in the computerized
search; however, because uncovering rows (i.e., rows with horizontal glues u) appear in pairs,
we add the bottom row here for clarity.

Due to this property of G, in order to decide the reduced 2-Pats instance
(Pk,F , 13), it suffices to decide whether a directed RTAS with tileset T self-
assembles Pk,F or not. This is equivalent to finding an L-shape seed σL such
that the directed RTAS (T, σL) self-assembles Pk,F . A subtlety of our proof
comes from the fact that neither F nor k influence the optimal number of tile
types that can assemble Pk,F if F is satisfiable.
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3.2 The tileset T

The tileset T works as an M-Sat verifier when being used by a directed RTAS.
It contains 11 white tile types and 2 black ones; see Fig. 3.

u u

◦

◦
u u u u

◦

◦

◦

◦

◦

◦

◦◦

◦

◦ ◦ ◦

◦

◦

◦

Fig. 3 The tileset T : The background depicts the color of each tile type and the labels
and signals depict the glues (i.e., the glue on a side is equivalent to the label or signal on
that side, and the colored signals do not actually appear on the tiles). We refer to the tile
types with a gray background as the black tile types. For better visibility in printouts, the
red signals are dotted; blue and green signals can easily be distinguished as blue signals run
only horizontally while green signals run only vertically.

The RTASs given by tileset T verify a given M-Sat instance and present
its verification visually on its resulting assembly by “propagating signals” of
three kinds (red, green, and blue) via glues from bottom-left to top-right (as
the tiles attach in that ordering) and letting them interact with each other.
An important fact, that justifies the “signal” vocabulary, is that these signals
never fork, that is, in all the tile types of T , if a signal of type s appears on a
west or south glue of a tile t ∈ T , it appears on at most one other side, which
is either the east or the north side of t.

We interpret the glues in tile set T as follows. Ten of the white tile types
(first and second rows in Fig. 3) simulate three types of signals and their
interactions. Recall that in the RTAS, growth begins from an L-shape seed and
proceeds strictly up and to the right. Therefore, as tiles are added by matching
the signals on their bottom and/or left sides, we can think of them as passing
the signals to their output (i.e., top and/or right) sides, as indicated by the
colored lines showing the signals across each tile. These signals can necessarily,
due to the ordering of growth of the assembly and the definitions of the tile
types, move only up, right, up and right, or terminate. The signals propagate
as follows:

1. blue signals propagate left to right,
2. green signals propagate from bottom to top, and
3. red signals propagate diagonally, bottom left to top right in a wavelike line.

When any two of the signals meet, they simply cross over each other, while
the red signal is displaced upwards or rightwards when crossing a blue or
green signal, respectively. However when a blue signal crosses a green signal
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immediately before encountering a red signal, the red signal is destroyed. In
order to recognize this configuration, the blue signal is tagged when it crosses
a green signal; in Fig. 3, the tagging is displayed by the fork in the blue signal.
Let us stress that the signals are encoded in the glues of the tiles, and not (at
least directly) in their colors.

The other three tile types, called uncovering tiles, all with horizontal glues
of type u, are used to start rows called uncovering rows. A major challenge
of the reduction is that we cannot force our signals to appear directly in the
pattern, because we have only two colors. Instead, we start these uncovering
rows, and make the signals appear in the pattern by their effects on these rows.
More specifically, rows with horizontal u glues are always used in pairs. Table 1
shows which pattern of two stacked colors corresponds to which uncovering
tiles and signal. Note that by the definition of the tile set, it’s impossible for
two signals to be received in the same column. Moreover, blue signals are not
uncovered, since they never reach these rows. Green (resp. red) signals switch
to red (resp. green) in the first uncovering row, but they switch back to their
original state in the second uncover row. This allows the enforcement of the
encoding of the three possible values of signals (no signal, green signal, or red
signal) with exactly two colors. In our construction, uncovering rows always
appear in pairs in order to ensure that the original state of each signal is
reestablished after passing through a pair of uncovering rows.

pattern unique tiles of T signal from below

�
�

u u

◦

◦

u u

◦

◦

no signal

�
�

u u

u u

green

�
�

u u

u u

red

Table 1 Color pairs in the uncovering rows and their corresponding signals

The interactions of the tiles in the tileset T and, in particular, the signals
which are encoded in the glues of the tiles are illustrated in Figure 4. It shows
an example subassembly which represents the formula F = (x∨y)∧(y∨z) and
k = 1, without the gadget part. A more extensive example of a tile assembly
with tileset T , shown in Fig. 7 in Sect. 3.3, is the tiling of the gadget pattern
G together with some initialization rows.

We have already given an intuition how the red signals progress through
the pattern, and it is also clear that the green signals always progress upwards
from one glue to the next and blue signals progress rightwards from one glue
to the next. The following lemma formalizes the progression of red signals
through green and blue signals. It will play an important role in encoding the
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ct

blue signal counterclause (x ∨ y) clause (y ∨ z)

Fig. 4 Subpattern of Pk,F for the formula F = (x ∨ y) ∧ (y ∨ z) with k = 1: The position
of the blue signal represents the satisfying variable assignment φy = 1. Only the subpattern
which encodes F is shown, the gadget pattern and the areas needed to initialize the gadget
pattern are omitted here. The different subpatterns shown here are explained in the proof
of Theorem 1.

integer k of the given M-Sat instance into the pattern Pk,F , as well as in
proving how red signals can be destroyed; see Fig. 5 for an illustration.

Lemma 2 Let the south glue of a tile in position (x, y) be a red signal. If
this red signal progresses up-/rightwards to the south glue of a tile in position
(x′, y′) (hence, the tile at position (x′, y′) is not considered to be crossed) while
crossing i green signals, and j blue signals and/or uncovering rows (where
uncovering rows have to appear as pairs, i.e., two consecutive rows), then

x′ − x− i = y′ − y − j.

Proof In every row where the red signal crosses a blue signal, the red sig-
nal remains at its horizontal position. When the red signal passes a pair of
uncovering rows, the red signal is turned into a green signal and then back
into a red signal while remaining at its horizontal position. Thus, only in the
y′ − y − j rows without blue signal or uncovering glue u the red signal moves
rightwards. In each of these rows, we move one positions rightwards plus one
position for every green signal that is crossed on the total way. We conclude
that x′ = x+ i+ (y′ − y − j). ut

3.3 Proof of NP-hardness

The intuition of the construction of the pattern Pk,F and its assembly is that on
the vertical arm of the seed, variables x0, x1, . . . , xn−1 are encoded successively,
by the presence of a blue signal if the corresponding variable is set to 1, and a
tile with no signal otherwise. Each clause of F is, on the other hand, encoded
on the horizontal arm of the seed as a red signal followed by precisely spaced
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Fig. 5 Example interactions of the signals in the tile set T with uncovering of the configu-
rations: On the left side the red signal can pass through the pattern while the red signal on
the right side is destroyed. Note that the position of the blue signal, which is hidden in the
horizontal glues, controls whether or not the red signal is destroyed. The marked coordinates
(x, y) and (x′, y′) are the ones defined in Lemma 2.

green signals (intervals between these signals specify which variables are in the
clause); see Fig. 4.

For instance, in Fig. 5, the red signal on the left makes it through (i.e.,
it is not stopped by a tagged blue signal) and appears in the top uncovering
rows, while the one on the right does not. The reason for the red signal being
stopped on the right, is that the horizontal spacing between the red and the
green signal is “compatible” with the vertical location of blue signal. This
compatibility of blue, green, and red signals corresponds to a variable in a
clause, represented by the red and green signal, which is set true in the variable
assignment, represented by the blue signal. More generally, the absence of red
signals on the top uncovering rows ct means that all the clauses have been
satisfied, and the presence of a red signal means that at least one clause could
not be satisfied by the assignment. Additionally, note that the positions of
blue signals, encoding which variables are set to true in a variable assignment
of the M-Sat instance, do not appear in the pattern at all, since they travel
only through white tiles.

The part of Fig. 4 which is labeled the “blue signal counter” specifies the
number k of true variables in a satisfying variable assignment for F . Note that
the horizontal movement of the red signal from rows c0 to rows ct determines
the number of blue signals that appear in the white rows in between c0 and
ct; see Lemma 2.

Let us now prove Theorem 1, the NP-hardness of 2-Pats.

Proof (Proof of Theorem 1) Let k ∈ N and F be a set of m clauses which
is an instance of M-Sat. For convenience, we assume that F is defined over
the n variables V = {0, 1, . . . , n− 1}. We design a pattern Pk,F based on k
and F such that Pk,F can be self-assembled with no more than 13 tile types
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if and only if F is satisfiable with only k positive variables. Pattern Pk,F ,
schematically presented in Fig. 6, contains a pair c0 of uncovering rows which
we call the initial configuration, and a pair ct of uncovering rows called the
target configuration. c0 and ct are separated by k + n completely white rows.
The gadget pattern G is appended in the top left corner of the pattern and
is separated by 11 white rows from the target configuration. The area to the
right of G does not really matter to the reduction, but it needs to correspond
to a valid pattern producible by T . We will describe how to generate it later.
Note that we are only interested in directed RTASs whose tilesets are of size
13 or less. Since Pk,F includes G as subpattern, Lemma 1 allows us to focus
only on directed RTASs whose tileset is T .

c0

ct

gadget area

gadget initialization

hidden computation

G

k
+
n

1
1

2
4

Fig. 6 The pattern Pk,F , consisting of k + n + 39 rows. Non-white areas consist of black
and white patterns, while white areas consist only of white tiles.

The target and initial configurations are represented by two rows of black
or white pixels and do not contain a pair of white pixels above each other.
In other words, they are sequences over the three-letter alphabet

{
�
�,

�
�,

�
�

}
.

Recall that in the assemblies produced by tileset T , �
� encodes the absence of

a signal, �
� encodes a green signal, and �

� encodes a red signal; see Table 1.
The target and initial configuration rows are

ct = wG
�
�
�
�w0

�
�
�
�w1 · · ·���

�wm−1vt,k

c0 = wG
�
�
�
�w0

�
�
�
�w1 · · ·���

�wm−1v0,k.
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where wG, v0,k, vt,k, w0, . . . , wm−1 are words over pixel pairs
{
�
�,

�
�,

�
�

}
. We

let

wG = �
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

v0,k = �
�
k�
�
�
�
n

vt,k = �
�
k+n�

�

Note that wG encodes the green signals which appear in the gadget pattern
G. For 0 ≤ i < m and j ∈ V , let xi,j = �

� if variable j does not appear in

clause Ci, and xi,j = �
�
�
� if variable j appears in Ci. Recall that �

� represents

“no signal” and �
�
�
� represents “a green signal followed by no signal”. Then,

let wi = xi,0xi,1 . . . , xi,n−1. Furthermore, v0,t and vt,k encode a blue signal
counter that contains only one red signal.

In this way, the horizontal arm of the seed and the first two glues of the
vertical arm (counting from the bottom) cause c0 to assemble, which represents
the clauses of F . Note that c0 uniquely determines the glue sequence on the
horizontal and the first two glues of the vertical arm. Then, the next k+n glues
on the vertical arm of the seed, that encode which of the k variables are set
to true, act as input along with c0 for the growth of the section called hidden
computation in Fig. 6. The tiles of this section are completely white, but when
its assembly completes, then the north glues of the tiles in row k+n+2 encode
whether or not each clause is satisfied in the hidden computation. The next
two rows are a pair of uncovering rows ct which can only correctly form the
pattern Pk,F if F was satisfied by the k variables set to true.

Above ct are 11 gadget initialization rows used to initialize the correct
growth of the gadget pattern G. They are required so that the red signals
encoded in the corresponding 11 glues of the vertical arm of the seed can
move the necessary distances to the right and serve as input for G. The top
row of the gadget initialization section exposes a combination of these red
signals, plus green signals that have passed upward from the horizontal arm
of the seed. Thus, this row is composed as follows:

WG
◦W0

◦W1 · · · ◦Wm−1( )k+n+1

where WG represents the glues on the bottom border of G, pictured on Fig. 2,
and for all 0 ≤ i < m, the glue sequence Wi is defined in a way similar to wi:
for all j ∈ V , let Xi,j = ◦ if j appears in Ci, and Xi,j = ◦ otherwise. Then,
let Wi = Xi,0Xi,1 . . . Xi,n−1. The glue sequence WG, which is the south border
of G, can be initialized with the 11 rows below it: see Fig. 7 for the exact way
to do this. Note that the red signal which is part of the blue signal counter will
run out of the pattern and will not appear in the glue sequence anymore. To
the right of the gadget pattern is the gadget area which is the pattern that the
tile set T self-assembles given as left glues the signals that leave the gadget
pattern G on its right, and ◦W0

◦W1 · · · ◦Wm−1( )k+n+1 as bottom
glues.
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Note that the width of pattern Pk,F is in O(n ·m), its height is k+n+ 39,
and that it can clearly be computed from k and F in polynomial time as it
requires only a simple encoding of the clauses of F , the counter for k, and
the constant information of the pattern G. See Fig. 4 for the conversion of a
formula with three variables and two clauses into a pattern where the gadget
pattern, gadget area and its initialization parts are omitted for the sake of
simplicity.

Recall that, since Pk,F includes G as a subpattern, and by Lemma 1, Pk,F
can be assembled with a tileset of at most ` = 13 tile types if and only if Pk,F
can be assembled by tileset T (or a tileset isomorphic to T ). To conclude the
proof, we show that Pk,F can be assembled by T if and only if F is satisfiable
with exactly k true variables.

If (F, k) is satisfiable, then Pk,F can be assembled by T : First, consider the
upper part of the pattern Pk,F , above and including the two rows ct. The
rows ct can be assembled by using the uncovering tile types, given the correct
glues on the north border of the hidden computation. The 11 white gadget
initialization rows, followed by the 24 rows of G, can be assembled by T from
the north glues of wG in ct and with the glues on the vertical arm of the seed
as shown in Fig. 7; from bottom to top these are the glues:

u2 ◦4 ◦ ◦2 u2◦ u2 u4 u4 u2 ◦ u2 u2 .

The first 13 glues in this sequence together with the green signals in wG
create the south input of the gadget pattern G, allowing the gadget pattern
to self-assemble in the top left corner of Pk,F . Furthermore, the gadget area
is designed to be exactly the pattern that T self-assembles given the signals
that leave the gadget pattern and the green signals in ct.

As a side note, other sequences might yield the same assembly above ct.
The only important point, used in the other direction of the reduction, is that
G is a subpattern of Pk,F , forcing any solution tileset with no more than 13
tile types to be a tileset which is isomorphic to T .

Next, we prove that the lower part of the pattern, up to and including
the two rows of ct, can be self-assembled by T if F is satisfiable with exactly
k positive variables. Let φ ∈ {0, 1}n be a satisfying variable assignment for
F such that k = |{i | φi = 1}|. We define the glue sequence Z, the k + n
glues on the vertical arm of the seed to the left of the hidden computation, by
Z = Z0Z1 . . . Zn−1 where for all 0 ≤ i < n:

Zi = ◦ (on two rows) if φi = 1

Zi = ◦ (on one row) if φi = 0.

Note that Z contains n glues ◦, and k blue signals. Then, the first n+k+4
glues, from bottom to top, of the vertical arm of the seed are uuZuu. We define
the glues for the horizontal arm of the seed by:

( ◦ )4 ◦ ( ◦ )2 ( ◦ )2 ( ◦ )4 ( ◦ )2 ◦ W0
◦ W1 · · · ◦ Wm−1( ◦ )k ( ◦ )n
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Fig. 7 The gadget pattern with initialization: This subpattern appears in every pattern
PF,k in the top left corner and is independent of F and k. It shows how the pattern can
be self-assembled above the the first 21 pixel pairs wG of the two uncovering rows ct. The
eleven white rows are needed in order to initialize the red signals at the south border of G.
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The first 21 glues ensure the attachment of wG, the last n + k + 1 glues
initialize the blue signal counter which allow the attachment of v0,k. The op-
eration of this counter is straightforward from the tileset, as illustrated by the
blue signal counter in Fig. 4 and stated in Lemma 2: indeed, the red signal in
the counter propagates exactly n columns to the right during the hidden com-
putation rows since it has to pass k blue signals. This allows the right-most
part vt,k of ct to assemble.

The following argument is illustrated in Fig. 8. Let Ci be a clause of F ,
and j ∈ V be the smallest variable appearing in Ci such that φj = 1. Let a be
the number of variables smaller than j that appear in Ci and b the number of
variables smaller than j that are true in φ. Consider the red signal that starts
at the south of the tile in position (x, 0) in the beginning of the encoded clause
Ci, immediately to the left of Wi. This signal must cross a + 1 green signals
and b blue signals plus two uncovering rows before it reaches the south of row
y′ = j + b + 3. After these crossings, by Lemma 2, its horizontal position on
the south of row y′ is

x′ = x+ (a+ 1) + (j + b+ 3)− (b+ 2) = x+ j + a+ 2.

Note that row y′ contains a blue signal since φj = 1 and the y′-th glue on
the vertical arm is the upper glue of Zj ; and column x+ j + a+ 1 contains a
green column because j ∈ Ci and, therefore, the (j + a+ 1)-th glue of Wi is
the left glue of Xi,j which is . Thus, this red signal stops propagating at this
position because it meets a tagged blue signal. As desired, the red signal does
not appear in the pair of uncovering rows ct.
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Fig. 8 The red signal which corresponds to a clause Ci is destroyed by the blue and green
signals representing the variable j ∈ Ci with φj = 1. The positions (x, 0), (x′, y′) and the
values a, b are explained in the text.
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Iterating this argument through all the clauses shows that this part of the
pattern can be assembled by T if F is satisfiable with exactly k true variables
since no red signals appear in ct other than the one in the blue signal counter.

If Pk,F can be assembled by T , then (F, k) is satisfiable: We will only argue
about the pattern between and including c0 and ct. The tiles placed on rows
c0 and ct can only be the three tiles with horizontal u glues since all black tiles
on T have horizontal u glues. The only constellations of tiles from T that can
assemble pairs of uncovering rows are listed in Table 1. Clearly, the horizontal
arm of the seed must have the same glue sequence as described above:

( ◦ )4 ◦ ( ◦ )2 ( ◦ )2 ( ◦ )4 ( ◦ )2 ◦ W0
◦ W1 · · · ◦ Wm−1( ◦ )k ( ◦ )n.

Let Z be the sequence of n+k glues (from bottom to top) left of the hidden
computation on the vertical arm of the seed that is used to assembles Pk,F by
T . Clearly, Z does not contain any uncovering row as there are no black tiles
in the hidden computation and, if the white uncovering tile covered an entire
row, all south glues of this row had to be green signals. If the first glue of Z
is a blue signal, then it cannot block any red signals; otherwise, green signals
would be needed immediately before the start points of red signals, which is
incompatible with the definition of c0. Furthermore, Z cannot contain a tagged
blue signal since there is no tile in T with a tagged blue signal as west glue and
a green signal as south glue. Lastly, it is possible that Z contains red signals,
but they have to be destroyed before they reach ct and they have absolutely
no effect on any other signals nor on the pattern.

The red signal that appears in the target configuration of the blue signal
counter vt,k has to be the red signal that is released in the initial configuration
of the blue signal counter v0,k as this red signal is spaced more than n + k
columns without green signals apart from any other red signal. Due to the
blue signal counter, by Lemma 2, Z must contain exactly k blue signals.

The positions of the blue signals in Z can be decoded into a variable assign-
ment φ ∈ {0, 1}n similar to the encoding above: for 0 ≤ i < n, we let φi = 1
if and only if there is j such that the j-th glue in Z is a blue signal which is
preceded by i + 1 glues from {◦, } in Z (and an arbitrary number of blue
signals). Note that |{i | φi = 1}| ≤ k because there are k blue signals in Z,
and two (or more) consecutive blue signals only contribute one true variable
and a blue signal in the first position of Z does not contribute a true variable
at all.

Let us prove next that every clause in F is satisfied by φ. This argument
is the reverse of the argument used before and Fig. 8 serves as illustration
again. Consider a clause Ci and its encoding as the glue sequence ◦ Wi =
◦ Xi,0Xi,1 · · ·Xi,n−1 on the horizontal arm which is enforced by c0. Let x
be the horizontal position of the red signal of this encoding in the first row of
Pk,F . Because no red signal appears in ct, except the one in the blue signal
counter, the red signal in the glue encoding of Ci has to be destroyed at some
point in the hidden computation. The green signal and the blue signal that
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cross each other immediately before the thus tagged blue signal destroys this
red signal are said to verify the clause Ci. By the numbers of green signals
and u glues in Wi it is clear that the green signal that verifies Ci has to be
emitted in Wi. Let j ∈ V such that the green signal emitted in Xi,j verifies
Ci, and let a be the number of variables in Ci that are smaller than j; this
means the green signal that verifies Ci covers the column x+ j+a+ 1 and the
red signal gets destroyed in column x′ = x + j + a + 2. Let b be the number
of blue signals that the red signal crosses before it meets the blue signal that
verifies Ci. By Lemma 2, the red signal is destroyed in row

y′ = (b+ 2) + (x+ j + a+ 2)− x− (a+ 1) = j + b+ 3.

Since the red signal moves past j + 1 rows without signal, φj is true in the
variable assignment φ that we decoded from Z. Furthermore, since Xi,j con-
tains a green signal, we have j ∈ Ci. This concludes the proof that φ satisfies
the clause Ci.

Using this argument for all the clauses in F , we obtain that if Pk,F can be
self-assembled by T , then F can be satisfied by a variable assignment with at
most k true variables. Due to the monotone nature of F , this also implies that
F can be satisfied using exactly k true variables. ut

4 Programmatic search for the minimal tile set

We present our algorithm for finding all tile sets of a given size ` which self-
assemble a given k-colored pattern on a rectangle (in our case ` = 13 and
k = 2). In Sect. 4.1, we show that it is sufficient to generate all valid tile
assemblies for the given pattern, which use at most ` tile types, rather than
generating all tile sets with all possible L-shape seeds. Next, we present the
algorithm which generates these valid tile assemblies and the corresponding
tile sets in Sect. 4.2 and discuss several methods which we implemented to
speed up the algorithm. Lastly, we discuss the parallel implementation and
the performance of the algorithm in the two programming languages C++
(Sect. 4.3) and Ocaml (Sect. 4.4).

4.1 RTASs defined by assemblies

Consider the k-colored pattern P : [m] × [n] → [k]. Recall that for a tile set
T = {t0, . . . , t`−1} a terminal assembly (without the seed structure) of P is a
mapping α : [m]× [n]→ [`] such that

(a) if α(x, y) = α(x′, y′), then P (x, y) = P (x′, y′) for all x, x′ ∈ [m] and
y, y′ ∈ [n],

(b) tα(x,y)(S) = tα(x,y−1)(N) for all x ∈ [m] and y ∈ {1, . . . , n− 1}, and
(c) tα(x,y)(W) = tα(x−1,y)(E) for all x ∈ {1, . . . ,m− 1} and y ∈ [n].
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Condition (a) implies that every tile type can only have one color and condi-
tions (b) and (c) ensure that there are no vertical or horizontal glue mismatches
in the assembly. An (partial) assembly is a partial mapping α : [m]× [n]→p [`]
which satisfies the three conditions for all positions which are defined in α.
Every RTAS T = (T, σL) that self-assembles P yields a terminal assembly
α : [m]× [n]→ [|T |] by enumerating the tiles in T where the seed is implicitly
constituted by the south glues of the tiles α(x, 0) for x ∈ [m] and the west
glues of the tiles α(0, y) for y ∈ [n].

Conversely, every mapping α : [m]× [n]→ [`] which satisfies condition (a)
yields a (not necessarily directed) tile set Tα = {t0, . . . , t`−1} where condi-
tion (b) imposes equivalence classes on the vertical glues and condition (c)
imposes equivalence classes on the horizontal glues (e.g., the glue tα(0,0)(E)
belongs to the same equivalence class as the glue tα(1,0)(W)). For each of these
equivalence classes we reserve one unique glue label in Tα; in particular, no
vertical glue gets the same label as a horizontal glue. Thus, α is a terminal
assembly of P for Tα. Next, we show that if α is a terminal assembly of P
for a tile set T , then T is a morphic image of Tα; that is, there exists a bijec-
tion of tile types h : Tα → T , and a morphisms g from the glues of Tα to the
glues of T such that for all t ∈ TA and d ∈ {N, E, S, W} we have c(t) = c(h(t))
and g(t(d)) = h(t(d)). Let T = {t0, . . . , t`−1} and Tα = {s0, . . . , s`−1} be the
chosen tile enumerations with respect to the assembly α, then the bijection h
is chosen such that h(si) = ti for all i ∈ [`]. Since both, T and Tα, have to
satisfy (a), we obtain that c(si) = c(h(si)) = c(ti) as desired. Furthermore,
Tα was defined such that it satisfies the minimal requirements for α to be an
assignment according to conditions (b) and (c). Because T must also satisfy
these two conditions, it is clear that the morphism g can be defined.

Note that the fact that T is a morphic image of Tα implies that if T is a
directed tile set, then Tα is directed as well (though, the converse does not
necessarily hold). Henceforth, we call an assembly α valid if it is terminal
and its corresponding tile set Tα is directed. The algorithm that we present
next lists all valid assemblies of P together with their corresponding directed
tile sets with at most ` tile types. Therefore, up to morphic images of these
solution tile sets, it lists all directed tile sets which can self-assemble P . Also
note that if a directed tile set S is a morphic image of our tile set T shown
in Fig. 3, then T and S are isomorphic. This can easily be verified as every
tile set which is obtained by combining any two horizontal glues or any two
vertical glues in T is an undirected tile set.

4.2 The algorithm

Instead of fully generating every terminal assembly α of the pattern P and
then checking whether or not the corresponding tile set Tα is directed, we
generate partial assemblies tile by tile while adapting a generic tile set in each
step such that it satisfies conditions (a) through (c) from Sect. 4.1. If a tile
set Tα which corresponds to an assembly α is not directed, then we do not



22 Lila Kari et al.

have to place any further tiles into this assembly because any larger assembly
β which contains α as subassembly has a corresponding undirected tile set Tβ
and, hence, α cannot be completed to become a valid assembly. This procedure
can be illustrated in a tree spanning the search space where every node is a
partial assembly with corresponding tile set. Its root is the empty assembly
(no tiles are placed) whose corresponding tile set consists of ` = 13 tile types
with every glue of every tile type unique and all tiles un-colored. Leaves in this
tree are either solutions, valid assemblies of P with a corresponding directed
tile set, or breakpoints, nodes whose tile sets are not directed.

The tiles are placed according to a tile placing strategy; that is, each posi-
tion in α has a successor position where the next tile is placed. The correctness
of the algorithm does not depend on the tile placing strategy, however, the per-
formance of the algorithm highly depends on this strategy. Our strategy is to
keep the area that is covered by tiles as compact as possible. Performance
tests on small patterns confirmed that the average depth of paths in the tree
spanning the search space is significantly smaller when using our strategy as
compared to the naive row-by-row or column-by-column approaches. The or-
dering of positions is illustrated in Fig. 9, and is intuitively defined by “the
alternative addition of a row and a column”, starting as shown in the fig-
ure. Formally, this amounts to defining a sequence of coordinates (xi, yi)n∈N
inductively by (x0, y0) = (0, 0) and

(xi+1, yi+1) =


(0, yi + 1) if xi = yi,

(xi + 1, 0) if xi = yi − 1,

(xi, yi + 1) if xi > yi,

(xi + 1, yi) otherwise.

The cases in the formula can be interpreted as follows, from top to bottom:
start a new row, start a new column, add one tile to an existing column, add
one tile to an existing row. This simplified formula suggests that the pattern
has to be a square, but it can also be interpreted as total ordering on all
positions in the rectangular pattern P by simply skipping positions which lie
outside of P .

0

1

2

3

4 5

6

7

8

Fig. 9 Order on positions
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Let α be a partial assembly in which exactly the first i ∈ [n·m−1] positions,
according to the tile placing strategy, are covered with tiles and let Tα be the
corresponding tile set which we assume to be directed. Therefore, (α, Tα) can
be viewed as a node in the tree spanning the search space which is not a leaf.
We try out all possible tile types in the empty position α(xi+1, yi+1) as follows:

1. If there is a tile type t in the current tile set T which fits (i.e., its glues match
those adjacent to the position and its color matches c(t) = P (xi+1, yi+1)),
a tile of that type is placed in α(xi+1, xi+1). Note that due to the ordering
of tile placements, the adjacent glues (if any) will always be to the west
and/or south, ensuring that those are the input sides. If the location is on
the bottom (left) edge of the pattern, there will not be an input glue on
the south (west).

2. Else:
(a) For each tile type t which has already been placed somewhere in the

assembly and which has color c(t) = P (xi+1, yi+1), the west and south
glues of t can be changed to match those adjacent to the current posi-
tion, wherever they occur throughout the current tiles of the assembly
(modifying additional tile types as necessary). If the tile set remains
directed (i.e., no tile types have the same input glues), then the glue
changes are made and t is placed in the current location.

(b) If the number of tile types which are used in the partial assembly
is less than ` = 13, change the glues of one unused type so that it
matches those adjacent to the current location, assign the color c(t)←
P (xi+1, yi+1), and place a tile of that type in position α(xi+1, yi+1).

Note that this procedure is optimized such that it will not generate two
assemblies which are permutations of each other because we do not try several
unused tile types in the same position. The tree spanning the search space
which is defined through this procedure is recursively traversed in a depth-
first manner.

If this procedure finds a valid assignment α of P with a corresponding di-
rected tile set Tα, then we output (α, Tα) as solution. As discussed in Sect. 4.1,
this algorithm will generate all directed tile sets which can self-assemble P up
to morphic images. Both, the Ocaml and C++ version of our program, are
parallelized implementations of the algorithm described here.

4.3 Implementation in C++

The C++ code uses MPI3 as its communication protocol and a simple strategy
for sharing the work among the cores. The master process generates a list
containing all partial assemblies in which exactly 14 positions are covered by
tiles and whose corresponding tile sets are directed. This list contains 271,835
partial assemblies, or jobs, in the case of our gadget pattern G from Sect. 3. The
master sends out one of these jobs to each of the client processes. Afterwards,

3 The implementation is Open MPI: http://www.open-mpi.org

http://www.open-mpi.org
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the master process only gathers the results of jobs that were finished by clients
and assigns new jobs to clients on request. When the list is empty the master
sends a kill signal to each client process that requests a new job.

A client process which got assigned the partial assembly α generates all
valid assemblies of P which contain α as a subassembly with corresponding
directed tile set, using the algorithm described in Sect. 4.2. When one job
is finished, possible solutions are transmitted to the master and a new job
is requested by the client. In this implementation we did not address the
computational bottleneck that emerges when client processes finish the last
jobs and then have to idle until the last client process is finished. There is no
concept of sharing a job after it has been assigned to a client.

The C++ implementation of our algorithm was run on the cluster saw.sharcnet.ca
of Sharcnet4. The cluster allowed us to utilize the processing power of 256 cores
of Intel Xeon 2.83GHz (out of the total 2712 cores) for our computation. In
order to minimize the chances of the already unlikely event that undetected
network errors influenced the outcome of the computation, our program was
run twice on this system, with both runs yielding the same result, namely
that the tile set T from Fig. 3 is the only tile set (up to isomorphism) with
13 or less tile types capable of generating the gadget pattern G, thus proving
Lemma 1. Each of the computations finished after almost 35 hours using a
total CPU time of approximately 342 days. Note that this implies a combined
CPU idle time of about 30 days for the clients which we assume to be chiefly
caused by the computational bottleneck at the end of the computation. Dur-
ing one computation all the cores together generated over 66 · 1012 partial tile
assemblies.

Later a third run was performed on the Sharcnet cluster orca.sharcnet.ca
utilizing 256 cores of AMD Opteron 2.2–2.7GHz. In this run the roles of the
x- and y-coordinate in the tile placing strategy was swapped, which turned
out to reduce the search space by about 7%, yet the computational time was
slightly higher due to the different core architecture of the clusters.

4.4 Implementation in Ocaml

The kind of intensive proofs our approach uses has traditionally been proven
“rigorously”, with consensual proofs, several years after their first publication.
This means that some of the latest proofs rely on the simplicity of their im-
plementation to make them checkable. Moreover, proof assistants like Coq are
not yet able to provide a fast enough alternative, to verify really large proofs
in a reasonable amount of time.

Things are beginning to change, however, and the gap between rigorous
and algorithmic proofs is being progressively bridged. The ultimate goal of
this research direction is to get rigorous proofs as the first proof of a theorem,
even in the case of explorations run on large parallel computers.

4 https://www.sharcnet.ca/my/systems/show/41

https://www.sharcnet.ca/my/systems/show/41
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In order to reach this goal for Lemma 1, we wrote a library to be used for
additional algorithmic proofs whose size requires a parallel implementation.
It also allows for working with different computing platforms, including grids,
clusters and desktop computers.

This library, called Parry, is available at http://parry.lif.univ-mrs.fr.
Remarkably enough for a parallel program, its proof makes no hypotheses

on the network, and only relies on the equivalence of Ocaml semantics and
its compiled assembly version, as well as on the security of cryptographic
primitives. The results of the exploration can be seen at http://pats.lif.

univ-mrs.fr.

5 The algorithm in OCaml and the proof of Lemma 1

We now discuss the Ocaml implementation of the proof of Lemma 1, and give
a proof of this implementation. In order to make this part reusable for other
projects, we first wrote a library, called Parry, and then wrote a specialized
version of it for the 2-Pats problem.

5.1 Global overview of the architecture

Our system is composed of two main components, a “server” and a “client”.
The server orchestrates the work done by a collection of clients by assigning
jobs (where a job is a current tile set and partial assembly) to each, monitor-
ing their progress, and recording all discovered solutions. The clients are
assigned jobs by the server and perform the actual testing of all possible tile
sets within the fixed size bound (i.e., 13 tile types) to see if they can self-
assemble the input pattern. To prove the correctness of the system, we will
individually prove the correctness of the server and client. The main result
to be proven for the system is the following:

Lemma 3 The server completes its search if and only if all tilesets of size
≤ 13 (up to isomorphism) which can self-assemble the input pattern have been
discovered.

The task of the server is to assign and keep track of all jobs which are
being explored by the clients. Each client connects to it to ask for a job
assignment. The server then replies with an assignment and keeps track of
that job in case the client crashes, in which case the server will be able to
detect that (in a way to be discussed) and reassign the job to another client.
Along with that job, the server sends a Boolean indicating whether it expects
the job to be re-shared.

The clients’ messages to the server can be of three kinds: “get job”
messages, new jobs (in our case, new tilesets and new partial assemblies to be
explored), or a “job done” message, to tell the server that the job has been
completed.

http://parry.lif.univ-mrs.fr
http://pats.lif.univ-mrs.fr
http://pats.lif.univ-mrs.fr
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5.2 The implementation

Our strategy to prove the whole system is the following:

– First prove, in Sect. 5.4, an invariant on the server’s state, conditioned
on hypotheses called validity and fluency on the clients with a valid RSA
signature of their messages (we will also prove that it rejects all other
clients).

– Then prove, in Sect. 5.5, that our clients respect the fluency and validity
condition, if their worker function (which is the actual implementation of
the algorithm described in Sect .4.2), shares the work properly.

– Finally, prove, in Sect. 5.6 that our worker function shares the work prop-
erly.

The reason for this organization is to make the proof for the server and
client reusable in other applications.

Definition 1 Let T and R be two sets, whose elements are called jobs and
results, respectively. Let f : T → 2R be any function. If there is a set
{t1, . . . , tn} ⊆ T such that f(t) =

⋃
1≤i≤n f(ti), we call t1, . . . , tn subjobs

of t.
We say that a task t has been explored when f(t) is known.

5.3 How to read the code, and what we prove on it

The language we used to implement this architecture is the functional language
Ocaml. Although the syntax of this language may be somewhat surprising at
first, the essential points that make our program easier to read, and easy to
prove, are:

– Our program makes almost no use of mutable variables: the server state
is completely held within a single record variable, and changes are made
by nondestructive updates, which allows it to remain in a consistent state
after each modification. This is especially important in the server, which
makes use of threads.
All other variables that we use are non-mutable, meaning that new vari-
ables are created whenever a change is needed. For instance, in the client’s
place tile function, we will see in Sect. 5.6 that new partially assembled
patterns are allocated at each tile placement.
Fortunately, efficient functional data structures exist, that can even make
such operations as efficient as in-place updates (this is also due to efficient,
specific garbage collectors).
In particular, Map and Set will be commonly used in our program.

– In two particular cases, however, we use an Ocaml construct called ref.
For instance, let a=ref 0 creates a box called a, whose contents is 0. To
change the contents to 1, we write a:=1. To access the contents of a box,
we write !a.
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– In order for our program to stay “as functional as possible”, and therefore
as close as possible to a mathematical proof, we tried to use as few global
variables as possible: therefore, all core functions depend only on their
arguments.

– Surprisingly, we do not need to prove anything about the messages sent
by the server : any message sent by the protocol can be interpreted as the
statement of a lemma of the global proof.
This makes the following kind of “attacks” possible: an attacker intercepts
a “job mission” sent to a client and changes it. The client then starts to
work on that job. However, when it sends its “lemma” back to the server,
these parts of the proof cannot be used, because they do not correspond
to any “proof goal” in the server.

Moreover, many details of our functions need not be proven: we are only
interested in the correctness of a program. In particular, we will not prove
the efficiency or complexity of our protocol, nor the fact that the server will
eventually halt on all runs: the fact that it halts on at least one run is sufficient
for Lemma 1 to hold. Moreover, as explained above, proving that a parallel
program halts would require additional unproven hypotheses on the network
anyway.

5.4 Proving the server

We now proceed to the proof of the server. The main property we use is the
fact that the whole state of the server is recorded in a single record datatype
called state, and defined below.

module Server (J : Job) =struct

The invariant we are going to prove is on the state type: we prove that after
any message the server receives, its state contains all the jobs that have not
yet been explored, and all the results found during the exploration of already
explored jobs.

type ongoing = { host :string; key : Cryptokit.RSA.key; job : J.job;
start time : float;
last seen : float }

type state = {
jobs : JSet.t;
ongoing : ongoing IntMap.t;
unemployed :float IntMap.t;
min depth :int;
results : J.result;
newId :int;
killings :int;
solved :int;
authorized keys : Cryptokit.RSA.key IntMap.t;
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reverse authorized keys :int StrMap.t;
}

The following function creates an initial state containing the list of jobs and
results received as arguments.

let initial state jobs res =
(ref {
jobs = List.fold left (fun a b→ JSet.add b a) JSet.empty jobs;
ongoing = IntMap.empty;
unemployed = IntMap.empty;
min depth = 0;
results = res;
newId = 0;
killings = 0;
solved = 0;
authorized keys = IntMap.empty;
reverse authorized keys = StrMap.empty

},Mutex.create ())

In order to handle Unix signals properly, we need to avoid these in critical sec-
tions, which is done by locking and unlocking mutexes using the two following
functions:

let mutex lock m =
let = Thread.sigmask Unix.SIG BLOCK

[Sys.sigint; Sys.sigterm; Sys.sigquit; Sys.sigpipe]
in

Mutex.lock m

let mutex unlock m =
Mutex.unlock m;
let = Thread.sigmask Unix.SIG UNBLOCK

[Sys.sigint; Sys.sigterm; Sys.sigquit; Sys.sigpipe] in
()

Definition 2 In a server state st, the current job of a client is the job regis-
tered in the ongoing field of st.

Definition 3 We call a client valid if, at the same time:

1. Its NewJobs messages contain all the results in subjobs of its current job
that have been completely explored, and the subjobs of its current job that
have not been completely explored, divided into three fields: the results it
has found, its next current job, and other subjobs.

2. It does not send a JobDone message before the task representing its current
job is completely explored.

The main function, answer, keeps track of the clients. We now prove the
following Lemma:
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Lemma 4 If st is a state of the server containing (in the union of job st and
ongoing st) jobs representing all the tasks that have not yet been explored,
and for any job j, j and kill j represent the same task, then for any message
m sent by a valid client, all values of host and time, answer host time st

m (the Ocaml syntax for “the value of function answer, called with arguments
t, host, st and m”) is a couple (st′, m′), where st’ is a state of the server
containing the roots of all subtrees that have not yet been explored (m’ is the
message to be sent to the client).

Moreover, all results sent by the clients are added to the server state using
the add result function.

Proof We prove it for all the cases.

let answer t host key st msg =match msg with

GetJob num→ (
try

If the client is registered as an “ongoing” job, we can simply send it the job
it is supposed to be working on. In this case, the invariant is still maintained,
as we do not change its recorded current job (here, we only update the time
at which we last saw this client).

let ongoing job = IntMap.find num st.ongoing in

if host = ongoing job.host ∧ key = ongoing job.key then

({ st with ongoing =
IntMap.add num

{ ongoing job with last seen =
t }

st.ongoing },
Job (false,ongoing job.job))

else

(st, Die)
with

Not found→ (

Else, client num is not in the map of ongoing jobs. Therefore, the call to
IntMap.find above raises exception Not found, that we are catching here.
In this case, if there are no more jobs to be done:

– if there are no more jobs being worked on, we do not modify the state, and
we tell the client to stop (with a Finished message).

– else, we simply record that client as “unemployed”. The next time a client
reports its state, it will be asked to share its current job. This does not
change the jobs registered in the server’s state anyway.
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if JSet.is empty st.jobs then

if IntMap.is empty st.ongoing then

(st, Finished)
else

let min depth =
IntMap.fold

(fun ongoing d→ min d (J.depth ongoing.job))
st.ongoing max int

in

({st with

unemployed = IntMap.add num t st.unemployed;
min depth =if min depth = max int then -1 else min depth},
Die)

else

Else, there are still jobs to be done; we pick the one with the smallest depth,
using JSet.min elt. Therefore, since num is not a member of ongoing st

(this is the case where no exception is raised), the returned state contains, in
the union of its ongoing and jobs fields, exactly the same jobs as in st.

let h = JSet.min elt st.jobs in

({ st with

jobs = JSet.remove h st.jobs;
ongoing = IntMap.add num

{ host = host;
key = key; job = h;
start time = t; last seen =

t }
st.ongoing;

unemployed = IntMap.remove num st.unemployed },
Job (false,h))

)
)

Another message the server can receive is the NewJobs message, when clients
reshare their work: In this case, the client sends its number num, its current job
current, the new job next that it will work on, a list jobs of jobs that need
to be shared, and a list of results. We can think of this message as equivalent
to “I, valid client num, hereby RSA-certify that job current you gave me has
subjobs next, jobs, and results results j, and no other subjobs or results.”.

If the client is not registered as an “ongoing job”, this message is ignored,
the state is not modified, and the client is sent the Die message.

| NewJobs (num, current, next, jobs, results)→ (
try

let ongoing = IntMap.find num st.ongoing in

if ongoing.host = host ∧ ongoing.job = current then
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The first case is when the host name and current job match what the server
had recorded for that client. Recall our assumption that messages processed
by answer can only be sent by valid clients. Therefore, this message contains
all subjobs of its current job that have not been explored, along with the job
it will start working on, and the list of all results that have been found during
the exploration of the other subjobs of its current job. Since all these subjobs
are stored in the jobs field of the state, and the ongoing field is updated with
the client’s new current job, our claim still holds.

({ st with

jobs = List.fold left (fun s x→ JSet.add x s) st.jobs jobs;
ongoing =
IntMap.add num

{ ongoing with job = next; last seen = t }
st.ongoing;

results =
List.fold left (J.add result host) st.results results },

Ack)
else

(st, Die)
with

Not found→ (st, Die)
)

| JobDone (num, current, results)→ (

In the case of the JobDone message, if the client is not registered as an ongoing
job, we do not modify the state. Else, we can safely delete the corresponding
job from the state, and add its results to the state’s results field: indeed, since
we assumed that this message is sent by a valid client, that job has been
explored completely. The intuitive version of this message is “I, valid client
num, hereby RSA-certify that I have explored job current completely, and that
it contains exactly results results”.

try

let ongoing = IntMap.find num st.ongoing in

if ongoing.job = current then

({ st with

ongoing = IntMap.remove num st.ongoing;
results =
List.fold left (J.add result host) st.results results;

solved = st.solved + 1 }, Ack)
else

(st, Die)
with

Not found→ (st, Die)
)

| Alive num→ (
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The last case of answer is when the client sends an “Alive” message. In that
case, we do not modify the contents of st.ongoing nor st.jobs: indeed, the
only operation we do updates a “time” field of st.ongoing, so that the client
will not be considered dead. Therefore, our claim still holds.

try

let ongoing = IntMap.find num st.ongoing in

if ongoing.host = host ∧
(IntMap.is empty st.unemployed
∨ ¬ (J.sharable ongoing.job)
∨ J.depth ongoing.job > st.min depth)

then

({ st with

ongoing =
IntMap.add num { ongoing with last seen = t }

st.ongoing },
Ack)

else

(st, Die)
with

Not found→ (st, Die)
) ut

Our next task is to prove reply, the network interface to the answer

function. We first need hypotheses on how this interface works, and especially
how the messages are written and read at the ends of the connection.

Definition 4 A client is fluent if the messages it sends on the network are of
exactly two kinds:

– Messages starting with a single byte with value 255 (or 0xff), and then
components n and e of the client’s public key.

– Messages starting with a single byte b < 255, followed by a message m of
type client message, as output by the ocaml builtin function output value,
and then the RSA signature, using the key of index b in the server, of the
SHA-1 hash of m.
Additionally, we use b as the index of the client’s public key, as registered
by the server.

Lemma 5 If all the clients that have their public key in st.authorized keys,
where st is the state of the server, are valid and fluent, and st contains all
the jobs that have not been completely explored (in the ongoing and jobs

fields), then so does it after one run of reply, assuming that input value ◦
output value is the identity, where input value and output value are
ocaml’s builtin functions.

Proof We prove this invariant on the code of the reply function, which handles
every connection to our server.
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let bufsig0 = String.create (J.signature size lsr 2)
let bufsig1 = String.create (J.signature size lsr 3)
let buf = String.create (max 2 Marshal.header size)

let reply rstate mstate descr host =
let inch = Unix.in channel of descr descr in

let ouch = Unix.out channel of descr descr in

If the client is fluent, then by Definition 4, there are two cases, depending on
the first byte received.

really input inch buf 0 1;

if int of char buf.[0] = ff16 then (

In case the first byte is 0xff, then the next part of the message should be the
the public part of its key, in 2J.signature size bits, by Definition 4.

We receive these bits in variable bufsig0, and then check if this public key
is registered in the server’s state, in the reverse authorized keys field. If
so, we send the client an index number for itself, and the index of its public
key, for further communication:

really input inch bufsig0 0 (J.signature size lsr 2);

mutex lock mstate;
let i = StrMap.find bufsig0 (!rstate).reverse authorized keys in

let newId = (!rstate).newId in

rstate := { !rstate with newId = (!rstate).newId + 1 };
mutex unlock mstate;

let open Cryptokit.RSA in

Marshal.to channel ouch (newId, i) [ ];
flush ouch

) else (

In this case, the client is sending an actual message. By Definition 4, that
message has two parts: a real message, sent using output value, and the
RSA signature of an SHA-1 hash of that message. However, receiving this
message is not completely straightforward, since we need to receive the full
message first in order to check its key. The first step is to fetch the client’s
public key, as indicated by the message’s first byte.

let key =
let current state =
mutex lock mstate;
let st = !rstate in

mutex unlock mstate;
st

in

IntMap.find (int of char buf.[0]) (current state).authorized keys

in
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Then, we receive the message’s header, as output by output value. This
header indicates the total length, which allows us to receive the full message
in variable bu. Finally, we receive the signature, on J.signature size bits,
in variable bufsig1.

really input inch buf 0 Marshal.header size;
let size = Marshal.data size buf 0 in

let buffer = String.create (Marshal.header size + size) in
String.blit buf 0 buffer 0 Marshal.header size;
really input inch buffer Marshal.header size size;
really input inch bufsig1 0 (J.signature size lsr 3);

We can now verify the signature sent by the client, and check whether it
matches the hash of its message. The implementation we use (in module
Cryptokit) stores decrypted signatures as a suffix of a constant size string,
which is why we compare only that suffix (of variable unwrapped) with hash bu.

let hash bu = Cryptokit.hash string sha buffer in

let rec compare sig a ia b ib =
if ia < 0 ∨ ib < 0 then true else

if a.[ia] = b.[ib] then compare sig a (ia−1) b (ib−1) else false
in

let unwrapped = Cryptokit.RSA.unwrap signature key bufsig1 in

if compare sig

hash bu (String.length hash bu− 1)
unwrapped (String.length unwrapped− 1)

then (

Finally, by assumption, if the signature is correct, then the client is valid
and fluent, and therefore, its message was output using output value. We
can thus safely fetch it using Marshal.from string, from OCaml’s standard
library. Then, by Lemma 4, the following call to answer maintains the claimed
invariant:

let t = Unix.time () in
mutex lock mstate;
let (state′, msg) =
answer t host key !rstate (Marshal.from string buffer 0)

in

rstate := state′;
mutex unlock mstate;

Marshal.to channel ouch msg [ ];
flush ouch;

)
) ut

A major concern, when writing massively parallel programs on machines
connected by a network, is the detection of dead machines. Machines can die
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because of various physical problems, such as power outages; most of the time,
however, processes running on clusters die because they have reached their
limit time. To handle this problem, our implementation requires jobs to keep
the server informed periodically that they are still alive, by sending message
Alive.

When they stop sending this message for too long, they are considered
dead, and their current job is rescheduled to another machine. This is done by
a function called cleanup, that we prove now:

Lemma 6 If state contains, in the ongoing and jobs fields, all the jobs that
have not been explored, then so does cleanup state.

Proof In the following function: the state is only modified by partitionning the
st.ongoing map into two maps a and b, and adding all the jobs of a to the
jobs st set. Therefore, the set of jobs in the union of jobs st and ongoing

st is not modified.

let cleanup state =
let t = Unix.time () in
let (a, b) = IntMap.partition

(fun k ongoing→ (t− .ongoing.last seen) > J.timeout)
state.ongoing

in

let unemployed =
IntMap.filter (fun k t1→ (t− .t1) > J.timeout) state.unemployed

in

{ state with

jobs =
IntMap.fold (fun ongoing b→ JSet.add ongoing.job b)

a state.jobs;
unemployed = unemployed;
ongoing = b } ut

Finally, connections to our server are processed by a function called server,
using standard unix functions, or emulations thereof, on other platforms.

Lemma 7 If:

– all tasks that have not been completely explored have job representants in
the ongoing and jobs fields of the state argument to server,

– all clients that sign their messages with a private RSA key whose corre-
sponding public key is in the state variable are valid and fluent,

– input value ◦ output value is the identity,

then after any number of messages received by the server, variable state

also contains jobs representing tasks that have not been completely explored,
in the union of its ongoing and jobs fields.

Proof Everything the server does is calling the functions proved in Lemmas 5
and 6.
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5.5 Proving the client

open Parry common

open Cryptokit.RSA

module Client (J : Job) =struct

type config = { server : Unix.inet addr; port :int; key : Cryptokit.RSA.key }
exception EFinished

exception ReportToServer

let buf = String.create 1

Lemma 8 The sign and send function sends only one kind of messages on
the network, consisting of exactly one byte, strictly smaller than 255, followed
by a message m generated with Marshal.to string, and the RSA signature
of the SHA-1 hash of m.

Then, sign and send returns the server’s reply, defaulting to message Die

if an error occurs.

Proof The following code follows closely this specification. It first computes
bu=Marshal.to string msg, then hash bu, the SHA-1 hash of bu, and finally
the signature signed of hash bu, before outputting one byte, msg and its
signature to the network.

let rec sign and send retry key num key sockaddr msg =
let sock = Unix.socket Unix.PF INET Unix.SOCK STREAM 0 in

let ok, serv msg =
try

let bu = Marshal.to string msg [ ] in
let hash bu = Cryptokit.hash string sha bu in

let signed = Cryptokit.RSA.sign key hash bu in

buf.[0]← char of int (min 254 key num);
Unix.connect sock sockaddr;

The next few lines use OCaml buffered “channels” to send and receive values.

let inch = Unix.in channel of descr sock in

let ouch = Unix.out channel of descr sock in

output ouch buf 0 1;
output ouch bu 0 (String.length bu);
output ouch signed 0 (String.length signed);
flush ouch;
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let x = Marshal.from channel inch in

Unix.close sock;
true,x

with

Unix.Unix error (e, f, g)→
(Unix.close sock;
false,Die)

| → false,Die
in

If anything went wrong, and retry is true, then sign and send waits one
second and resend the message exactly once. Else, it returns the server’s reply,
defaulting to Die

if ¬ ok ∧ retry then

(Unix.sleep 1; sign and send false key num key sockaddr msg)
else

serv msg ut

Lemma 9 The get nums function sends only one kind of messages on the
network, consisting of exactly one byte equal to 255 (or 0xff), followed by the
public components n and e of the client’s RSA key.

It returns a couple (a, b) of integers, where a is the client’s index, and b is
the key index assigned by the server, or -1 for both values in cases of errors.

Proof The following indeed follows closely this specification:

let get nums key sockaddr =
let sock = Unix.socket Unix.PF INET Unix.SOCK STREAM 0 in

try

Unix.connect sock sockaddr;
let inch = Unix.in channel of descr sock in

let ouch = Unix.out channel of descr sock in

buf.[0]← char of int ff16;
output ouch buf 0 1;
output ouch key.n 0 (String.length key.n);
output ouch key.e 0 (String.length key.e);
flush ouch;
let nums = Marshal.from channel inch in

Unix.close sock;
nums

with

e→ (Unix.close sock; (−1,−1)) ut

To prove the remaining functions, we need to introduce the following in-
variant on their arguments:

Invariant 2 When the cur variable is not Nothing, the jobs and results

variables contain, respectively, the list of all jobs of the contents of cur that
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have not been completely explored, and the list of results found during the
exploration of all other subjobs of the job in cur.

Lemma 10 Let work be a function such that, at the same time:

1. For all values of b, save and j, work b save j only calls save with ar-
guments l and r such that r is the list of all results that have been found,
when the subjobs of j that have not been completely explored are all in list
l.

2. For all values of b, save and j, work b save j returns the list of all
subjobs of j that have not been explored, and the list of all results that have
been found in j, in the remaining subjobs of j.

3. For all values of b, save and j, work b save j does not communicate
with the server.

Then for all values of conf, client conf work is a valid and fluent client.

Proof We first prove fluency: in the client function below, the only messages
that can be sent on the network are sent by get nums and sign and send.
Therefore, by Lemmas 9 and 8, for all values of conf, client conf work is
fluent.

We now prove that client conf work is valid. First, the two conditions
of validity are not applicable until the client receives work from the server:
indeed, neither NewJobs nor JobDone messages are sent until then.

let rec client conf work =
let sockaddr = Unix.ADDR INET (conf.server, conf.port) in
let num, key num = get nums conf.key sockaddr in

if num < 0 then (
Unix.sleep 1;
client conf work

) else (
let continue =ref true in

The following is the main client loop. The general scheme of that loop is: until
a signal has been received (probably because a user or a scheduler is trying
to stop this client), ask the server for some work, using the GetJob message.
There are three possible answers: Finished, Job and something else.

while !continue do

let x = sign and send true key num conf.key sockaddr (GetJob num) in
match x with

Finished→ exit 0

The first possible answer is Finished, which tells the client that the whole
exploration is completely finished. In this case, the client simply stops.

| Job (share, j)→ begin

The second possible answer is a job from the server. In this case, we claim that
each time the ReportToServer exception is raised, saved results contains
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exactly the results found at that step, and saved jobs contains exactly the
remaining jobs at that same step.

Indeed, since we assumed that save can only be called by work with argu-
ments that respect this condition, and only save modifies these two references,
then at the two points in the following code where ReportToServer is raised,
this condition clearly holds.

Therefore, since NewJobs or JobDone messages can only be sent by catching
the ReportToServer exception, conditions 1 and 2 of validity clearly hold.

let saved results =ref [ ] in
let saved jobs =ref [j] in
let time =ref (Unix.time ()) in
let save results jobs =
saved results := results;
saved jobs := jobs;

if ¬ !continue then raise ReportToServer else

let t = Unix.time () in
if t− . !time > J.ping then

begin

let m = sign and send true key num conf.key
sockaddr

(Alive num)
in

time := t;
match m with

Ack→ ()
| → raise ReportToServer

end

in

try

let (a, b) = work save j in

saved results := a;
saved jobs := b;
raise ReportToServer

with

ReportToServer→
let =
match !saved jobs with

[ ]→
sign and send false key num conf.key
sockaddr

(JobDone (num, j, !saved results))
| h :: s→
sign and send false key num conf.key
sockaddr
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(NewJobs (num, j, h, s, !saved results))
in

()
end

| →

Finally, the server could reply something else, meaning that there are still
other clients working, but it has no job available for the moment. In this case,
our client waits some time, and asks for a job again.

Unix.sleep 10
done

)

Altogether, this implies that our client is fluent and valid.

5.6 The 2-Pats instance

We now proceed to the proof of the instance of Parry that we used for our
problem. This module is mostly written in purely functional style, without side
effects or mutable variables. Therefore, for performance reasons, the encoding
of tiles and positions is not the most naive one: first, tiles are encoded as single
integers with five bit fields of wgl bits each (where variable wgl is 5), where
the south and west fields are the two leftmost fields. Functions withC, withN,
withS, withW, withE return a new integer with the color, north, south, west
and east fields changed, respectively. Functions color, north, south, west,
east return the color, south, west and east field.

Positions are encoded as two 16 bits fields, where the left field is the x
component, and the right one is the y component.

This allows to encode assemblies and tilesets in map data structures, which
are purely functional (i.e. non-mutable).

module Pats = Parry client.Client(Job)
open Parry common

open Pats

open Job

Lemma 11 Given a tileset tiles, isDirected tiles = true if and only if
tiles is a directed tile assembly system, that is, no two tiles in tiles have
the same input (i.e. south and west) glues.

Proof isDirected works by traversing the tileset using IntMap.fold, with a
set accumulator. Let t1, . . . tn the successive tiles it sees, and s1, . . . , sn the
corresponding accumulator values, and sn+1 the final accumulator value.

We first prove by induction on i that si+1 = {(South(tj),West(tj)|j ≤ i}
if and only if no two tiles, among t1, t2, . . . , ti, have the same south and west
glues.
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Since s1 = ∅, this holds for i = 1. For i ≥ 2, by the induction hypothesis, if
(South(ti),West(ti)) 6∈ si, then ti has different south and west glues from all
tj for j < i, in which case si+1 = si ∪ {(South(ti),West(ti))}.

Else, two tiles have the same south and west glues; thus, exception Not directed

is raised, and isDirected ts is false.
Therefore, the induction hypothesis holds also for i+ 1.
By induction, we conclude that if no exception has been raised, sn is de-

fined, and thus the south and west glues of all tiles in ts are different, and
isDirected ts is true.

exception Not directed

let isDirected ts =
try

let = IntMap.fold (fun t s→
let k = t lsr (3× wgl) in
if IntSet.mem k s then raise Not directed else IntSet.add k s

) ts IntSet.empty
in

true

with

Not directed→ false ut

We now proceed to the proof of the merge function. Its formal specification of
this function is given by the following Lemma:

Lemma 12 Given a tileset ts, a color c, an index into the tileset i, a pair of
north/south glues a0 and b0 , and a pair of east/west glues a1 and b1 , the
function merge returns a tileset in which the ith tile of ts is set to color c,
and all north/south glues in ts equal to max(a0 , b0 ) are set to min(a0 , b0 )
if this value is strictly smaller than mgl (and left unchanged else), and all
east/west glues in ts equal to max(a1 , b1 ) are set to min(a1 , b1 ) if this
value is strictly smaller than mgl (and left unchanged else).

Proof In merge, the pair (a0, b0) is formed such that a0 = min(a0 , b0 ) and
b0 = max(a0 , b0 ). Similarly, the pair (a1, b1) is formed such that a1 =
min(a1 , b1 ) and b1 = max(a1 , b1 ).

Then, a new tileset is created, by folding through all the tiles of ts, adding
the modified tiles to an accumulator tileset ts’. The modification clearly fol-
lows our claim.

let merge a0 b0 a1 b1 i0 c ts =
let (a0, b0) =if a0 < b0 then (a0 , b0 ) else (b0 , a0 ) in
let (a1, b1) =if a1 < b1 then (a1 , b1 ) else (b1 , a1 ) in
IntMap.fold (fun i t ts′ →
let u =if i = i0 then withC t c else t in

let v =if south u = b0 ∧ a0 < mgl then withS u a0 else u in

let w =if west v = b1 ∧ a1 < mgl then withW v a1 else v in

let x =if north w = b0 ∧ a0 < mgl then withN w a0 else w in
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let y =if east x = b1 ∧ a1 < mgl then withE x a1 else x in

if y = t then ts′ else IntMap.add i y ts′

) ts ts ut

The next step of our proof is to prove the core computation, called placeTile.
We first need to introduce the pattern, hardcoded in the program,

let pattern =
[|[|1; 0; 1; 1; 0; 1; 1; 1; 0; 1; 1; 1; 1; 1; 1; 0; 1; 1; 1; 1; 1|];

[|0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0|];
[|0; 1; 1; 1; 1; 0; 1; 0; 1; 1; 0; 1; 1; 0; 1; 1; 1; 1; 0; 1; 1|];
[|1; 1; 0; 1; 1; 1; 0; 1; 1; 0; 1; 1; 1; 1; 1; 1; 0; 1; 1; 1; 1|];
[|0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0|];
[|0; 1; 1; 1; 1; 0; 1; 0; 1; 1; 0; 1; 1; 0; 1; 1; 1; 1; 0; 1; 1|];
[|1; 1; 0; 1; 1; 1; 1; 1; 1; 0; 1; 1; 1; 1; 1; 1; 0; 1; 1; 1; 1|];
[|0; 1; 1; 1; 1; 0; 1; 0; 1; 1; 0; 1; 1; 0; 1; 1; 1; 1; 0; 1; 1|];
[|1; 1; 0; 1; 1; 1; 1; 1; 1; 0; 1; 1; 1; 1; 1; 1; 0; 1; 1; 1; 1|];
[|0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0|];
[|0; 1; 1; 1; 1; 0; 1; 0; 1; 1; 0; 1; 1; 0; 1; 1; 1; 1; 0; 1; 1|];
[|1; 1; 0; 1; 1; 1; 1; 1; 1; 0; 1; 1; 1; 1; 1; 1; 0; 1; 1; 1; 1|];
[|0; 1; 1; 1; 1; 0; 1; 0; 1; 1; 0; 1; 1; 0; 1; 1; 1; 1; 0; 1; 1|];
[|1; 1; 0; 1; 1; 1; 1; 1; 1; 0; 1; 1; 1; 1; 1; 1; 0; 1; 1; 1; 1|];
[|0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0|];
[|0; 1; 1; 1; 1; 0; 1; 0; 1; 1; 0; 1; 1; 0; 1; 1; 1; 1; 0; 1; 1|];
[|1; 0; 1; 0; 1; 1; 1; 1; 1; 1; 1; 0; 1; 1; 1; 1; 1; 0; 1; 1; 1|];
[|0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0|];
[|0; 1; 1; 1; 1; 0; 1; 0; 1; 1; 0; 1; 1; 0; 1; 1; 1; 1; 0; 1; 1|];
[|1; 1; 0; 1; 0; 1; 1; 1; 1; 1; 1; 1; 0; 1; 1; 1; 1; 1; 1; 0; 1|];
[|0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0|];
[|0; 1; 1; 1; 1; 0; 1; 0; 1; 1; 0; 1; 1; 0; 1; 1; 1; 1; 0; 1; 1|];
[|1; 1; 0; 1; 0; 1; 1; 1; 1; 1; 1; 1; 0; 1; 1; 1; 1; 1; 1; 1; 1|]|]

Finally, the core of our algorithm is the following recursive function, placeTile,
which moves through all locations in the pattern in the ordering shown by Fig-
ure 9 and places tiles from the current tile set (often modifying the tile set,
too) as long as it is able to. By making recursive calls which attempt all pos-
sibilities, it ensures that the full set of possible tile sets (up to isomorphism)
is explored and returns exactly those which self-assemble the given pattern.
The arguments to placeTile are:

1. save: a function that we have explained in Lemma 10, that placeTile can
use to “save” intermediate results in case it is asked to reshare, or killed
(for instance if it runs on a cluster).

2. results: a list of results that have been found so far.
3. jobs: a list of jobs to treat. Each job contains four relevant fields for the

actual computation:
(a) posX,posY: the coordinates of the current position in the assembly

which placeTile should attempt to fill with a tile
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(b) tileset: the current tileset (which is a vector of integer values which
are each the concatenated integer values representing the properties of
a tile type)

(c) assembly: the current assembly (which is a two-dimensional vector stor-
ing the index of the tile type, in the tileset, which is located at each
pair of (x, y) coordinates

Note that placeTile also makes use of the globally defined two-dimensional
vector pattern which, at each location representing a pair of (x, y) coordinates,
defines one of two colors (i.e. 0 (black) or 1 (white)) for the pattern at that
location.

Lemma 13 For any list of jobs j0 and any function save, placeTile share

save j0 returns the list of all subjobs of jobs of j0 that have not been explored,
and all results that have been found during the exploration of the explored
subjobs of j0.

Moreover, all its calls to save are of the form save j r, where j is the list
of all subjobs of j0 that have not been completely explored, and r is the list of
all results that have been found in the exploration of all other subjobs of j0.

Proof We will prove, by induction on the number of subjobs of j0, that for all
values of r and j, placeTile share save r j is the concatenation of r with
all the results found in the exploration, and all the subjobs of jobs of j that
have not been explored.

Moreover, we will prove the following invariant:

Invariant 3 The recursive calls of placeTile are all such that the results

and jobs arguments verify the condition that jobs is the list of all subjobs
of the initial job list that have not been explored and contains no results, and
results is the list of all results that have been found during the exploration of
all other subjobs of the initial job list.

let pos a b = (a lsl 16) lor b

let counter =ref 0
let rec placeTile share save results js =
match js with

[ ]→

The first case is when the list of jobs to explore is empty. In this case, we
simply return the list of found results, and the claim holds.

(results, [ ])

| j :: s→ (

The following expression is the only place where placeTile calls save. Al-
though it is not purely functional, the arguments results and js to save are
non-mutable, and hence not modified by this call. Moreover, by invariant 3 on
the recursive calls of placeTile, our claim on the calls to save clearly holds.
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if !counter ≥ 10000 then (
save results js;
counter := 0;

) else incr counter;

First, the variable inS is the glue to the south of the location (x, y) to be tiled
(i.e. its south input). If the location to the south is outside of the pattern or
if there is no tile there, then the glue value of mgl is used. In an analogous
manner, the variable inW is the value of the input glue to the west.

let inS =if j.posY ≤ 0 then mgl else

try

north (
IntMap.find

(IntMap.find (pos j.posX (j.posY− 1)) j.assembly)
j.tileset

)
with

Not found→ mgl

in

let inW =if j.posX ≤ 0 then mgl else

try

east (
IntMap.find

(IntMap.find (pos (j.posX− 1) j.posY) j.assembly)
j.tileset

)
with

Not found→ mgl

in

If inS (respectively inW) is mgl, and we are not on the south (respectively west)
border, then there is no more tile we can add on the current row (respectively
column). Therefore, we must start a new column (respectively a new row).
Remark that since we keep alternating between adding rows and columns, we
maintain the following invariant: posX ≥ posY if and only if we are adding a
new row. This is what the following code does. Invariant 3, on placeTile’s
recursive calls, is clearly preserved by all the calls in this portion of the code.

if inS = mgl ∧ j.posY > 0 then

if j.posX < Array.length pattern.(0) then
placeTile share save results ({ j with posY = 0 } :: s)

else

if j.posY + 1 ≥ Array.length pattern then

placeTile share save (j :: results) s
else

placeTile share save results ({ j with posX = 0; posY =
j.posY + 1 } :: s)
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else

if inW = mgl ∧ j.posX > 0 then

if j.posY < Array.length pattern then

placeTile share save results ({ j with posX = 0 } :: s)
else

if j.posX + 1 ≥ Array.length pattern.(0) then
placeTile share save (j :: results) s

else

placeTile share save results ({ j with posY = 0; posX =
j.posX + 1 } :: s)

else

Else, both the south and west glues are defined, or we are at the beginning of
a row or a column. Hence, there are two possible cases: either there is already
a tile with matching south and west glues, or there is none. In the first case,
we have no choice but to place that tile at the current position, and move on
to the next position, which is done when possible ≥ 0:

let nextX, nextY =
if j.posY > j.posX then (j.posX+1, j.posY) else (j.posX, j.posY+

1)
and col = pattern.(j.posY).(j.posX)
and key = ((inS lsl wgl) lor inW) in
let possible =
IntMap.fold (fun k a x→
if a lsr (3× wgl) = key then k else x

) j.tileset (−1)
in

if possible ≥ 0 then

let tile = IntMap.find possible j.tileset in

if color tile = col ∨ color tile = mgl then

placeTile share save results

({ posX = nextX; posY = nextY;
tileset = IntMap.add possible (withC tile col) j.tileset;
assembly = IntMap.add (pos j.posX j.posY) possible j.assembly }

:: s)
else (
placeTile share save results s

)
else

Or there is no matching tile, in which case we simply try all tiles that can be
placed at the current position, which fall in either of two cases:

– tiles whose color matches the pattern’s color at the current position.
– tiles that have not yet been used, i.e. whose color is not yet defined. We

only need to consider one of them, because we do not consider solutions
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that are equivalent by renaming. This is why we use the tried blank

parameter of IntMap.fold below.

In both cases, we merge these tiles’ west and south glues with inW and inS,
respectively: according to Lemma 12, this means that we adjust the tileset so
that the chosen tile can be placed without mismatches at the current position.

let , next jobs =
IntMap.fold (fun k t (tried blank, jobs)→
if color t = col ∨ (color t = mgl ∧ ¬ tried blank) then (
let merged = merge inS (south t) inW (west t) k col j.tileset in
if isDirected merged then

(tried blank ∨ color t = mgl,
{ posX = nextX; posY = nextY;
tileset = merged;
assembly = IntMap.add (pos j.posX j.posY) k j.assembly } ::

jobs)
else (

(tried blank ∨ color t = mgl, jobs)
)

) else
(tried blank, jobs)

) j.tileset (false,s)
in

Finally, the following recursive call to placeTile maintains the invariant 3:
Indeed, results is the same as in the initial call, and next jobs now contains
js, along with all subjobs of j (up to renaming of unused tiles).

placeTile share save results next jobs

) ut

The last part of this module uses the client framework proven in Section
5.5 to call the placeTile function.

let =
Pats.client
{ server = (Unix.gethostbyname "pats.lif.univ-mrs.fr").Unix.h addr list.(0);
port = 5129;
key = key }

(fun save j→
placeTile true save [ ] [j]

)
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5.7 Proof of Lemma 1

We can finally combine all the results of Sect. 5.2 to get our Lemma:

Lemma 1 If the RSA signatures of all messages used when checking the proof
were not counterfeit, then the gadget pattern G, shown in Fig. 2, can only be
self-assembled with 13 tile types if a tile set is used which is isomorphic to T .

Proof The result follows from the combination of Lemmas 7, 10 and 13. ut
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