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Abstract. We formalize the notion of a DNA hairpin secondary struc-
ture, examining its mathematical properties. Two related secondary
structures are also investigated, taking into the account imperfect bonds
(bulges, mismatches) and multiple hairpins. We characterize maximal
sets of hairpin-forming DNA sequences, as well as hairpin-free ones.
We study their algebraic properties and their computational complexity.
Related polynomial-time algorithms deciding hairpin-freedom of regular
sets are presented. Finally, effective methods for design of long hairpin-
free DNA words are given.

1 Introduction

A single strand of deoxyribonucleic acid (DNA) consists of a sugar-phosphate
backbone and a sequence of nucleotides attached to it. There are four types of
nucleotides denoted by A, C, T, and G. Two single strands can bind to each
other if they have opposite polarity (strand’s orientation in space) and are pair-
wise Watson-Crick complementary: A is complementary to T, and C to G. The
binding of two strands is also called annealing. The ability of DNA strands to
anneal to each other allows for creation of various secondary structures. A DNA
hairpin is a particular type of secondary structure investigated in this paper. An
example of a DNA hairpin structure is shown in Figure 1.

The reader is referred to [1, 16] for an overview of the DNA computing
paradigm. The study of DNA secondary structures such as hairpin loops is
motivated by finding reliable encodings for DNA computing techniques. These
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Fig. 1. An example of a DNA hairpin loop

techniques usually rely on a certain set of DNA bonds and secondary structures,
while other types of bonds and structures are undesirable. Various approaches
to the design of DNA encodings without undesirable bonds and secondary struc-
tures are summarized in [14] and [11]. For more details we refer the reader e.g.
to [5, 12, 13]. Here we apply the formal language approach which has been used
in [2, 7, 8, 10, 11] and others.

Hairpin-like secondary structures are of special importance for DNA comput-
ing. For instance, they play an important role in insertion/deletion operations
with DNA. Hairpins are the main tool used in the Whiplash PCR computing
techniques [18]. In [20] hairpins serve as a binary information medium for DNA
RAM. Last, but not least, hairpins are basic components of “smart drugs” [3].

The paper is organized as follows. Section 2 introduces basic definitions, Sec-
tion 3 presents results on hairpins, and in Section 4 we study two important vari-
ants of the hairpin definition. The first one takes into the account imperfect DNA
bonds (mismatches, bulges), the second one is related to hairpin-based nanoma-
chines. We study algebraic properties of (maximal) hairpin-free languages. The
hairpin-freedom problem and the problem of maximal hairpin-free sets are both
shown to be decidable in polynomial time for both regular and context-free
languages. The last section provides methods of constructing long hairpin-free
words.

2 Preliminary Definitions

We denote by X a finite alphabet and by X∗ its corresponding free monoid. The
cardinality of the alphabet X is denoted by |X |. The empty word is denoted by
1, and X+ = X∗ − {1}. A language is an arbitrary subset of X∗. For a word
w ∈ X∗ and k ≥ 0, we denote by wk the word obtained as catenation of k copies
of w. Similarly, Xk is the set of all words from X∗ of length k. By convention,
w0 = 1 and X0 = {1}. We also denote X≤k = X0 ∪ X1 ∪ . . . ∪ Xk. A uniform,
or block, code is a language all the words of which are of the same length k, for
some k ≥ 0, and is therefore contained in Xk.

A mapping ψ : X∗ → X∗ is called a morphism (anti-morphism) of X∗ if
ψ(uv) = ψ(u)ψ(v) (respectively ψ(uv) = ψ(v)ψ(u)) for all u, v ∈ X∗, and ψ(1) =
1. See Chapter 7 in [19] for a general overview of morphisms. An involution
θ : X −→ X is defined as a map such that θ2 is the identity function. An
involution θ can be extended to a morphism or an antimorphism over X∗. In
both cases θ2 is the identity over X∗ and θ−1 = θ. The simplest involution is
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the identity function ε. A mirror involutionμ is an antimorphic involution which
maps each letter of the alphabet to itself.

We shall refer to the DNA alphabet Δ = {A, C, T, G}, over which two in-
volutions of interest are defined. The DNA complementarity involution γ is a
morphism given by γ(A) = T , γ(T ) = A, γ(C) = G, γ(G) = C. For example,
ACGCTG = μ(GTCGCA) = γ(TGCGAC).

The antimorphic involution τ = μγ (the composite function of μ and γ, which
is also equal to γμ), called the Watson-Crick involution, corresponds to the DNA
bond formation of two single strands. If for two strings u, v ∈ Δ∗ it is the case
that τ(u) = v, then the two DNA strands represented by u, v anneal as Watson-
Crick complementary sequences.

A nondeterministic finite automaton (NFA) is a quintuple A =
(S, X, s0, F, P ), where S is the finite and nonempty set of states, s0 is the start
state, F is the set of final states, and P is the set of productions of the form
sx → t, for s, t ∈ S, x ∈ X. If for every two productions sx1 → t1 and sx2 → t2
of an NFA we have that x1 �= x2 then the automaton is called a DFA (determin-
istic finite automaton). The language accepted by the automaton A is denoted
by L(A). The size |A| of the automaton A is the number |S| + |P |.

Analogously we define a pushdown automaton (PDA) and a deterministic
pushdown automaton (DPDA). We refer the reader to [6, 19] for detailed defini-
tions and basics of formal language theory.

3 Hairpins

Definition 1. If θ is a morphic or antimorphic involution of X∗ and k > 0,
then a word u ∈ X∗ is said to be θ-k-hairpin-free or simply hp(θ,k)-free if u =
xvyθ(v)z for some x, v, y, z ∈ X∗ implies |v| < k.

Notice that words of length less than 2k are hp(θ,k)-free. If we interpret this
definition for the DNA alphabet Δ and the Watson-Crick involution τ , then
a hairpin structure with the length of bond at least k is a word that is not
hp(θ,k)-free.

Definition 2. Denote by hpf (θ, k) the set of all hp(θ,k)-free words in X∗. The
complement of hpf (θ, k) is hp(θ, k) = X∗ − hpf (θ, k).

Notice that hp(θ, k + 1) ⊆ hp(θ, k) for all k > 0.

Definition 3. A language L is called θ-k-hairpin-free or simply hp(θ, k)-free if
L ⊆ hpf (θ, k).

It follows by definition that a language L is hp(θ, k)-free iff X∗vX∗θ(v)X∗∩L =
∅ for all |v| ≥ k. An analogous definition was given in [7], where a θ-k-hairpin-
free language is called θ-subword-k-code. The authors focused on their coding
properties and relations to other types of codes. They consider also the restriction
on the length of the hairpin, namely that 1 ≤ |y| ≤ m for some m ≥ 1. The
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reader can verify that many of the results given in this paper remain valid if we
apply this additional condition.

Example. Recall that γ is the DNA complementary involution over Δ∗, then:

hpf (γ, 1) = {A, C}∗ ∪ {A, G}∗ ∪ {T, C}∗ ∪ {T, G}∗

We give the necessary and sufficient conditions for finiteness of the languages
hpf (θ, k), k ≥ 1. Proofs of the following results can be found in [9]. Recall that
hpf (μ, k) is the set of all words which do not contain any two non-overlapping
mirror parts of length at least k.

Proposition 4. Let X be a binary alphabet. For every word w ∈ X∗ in hpf (μ, 4)
we have that |w| ≤ 31. Moreover the following word of length 31 is in hpf (μ, 4) :

a7ba3bababab2ab2a2b7.

Proposition 5. Consider a binary alphabet X. Then hpf (μ, k) is finite if and
only if k ≤ 4.

Proposition 6. Let θ be a morphic or antimorphic involution. The language
hpf (θ, k) over a non-singleton alphabet X is finite if and only if one of the
following holds:

(a) θ = ε, the identity involution;
(b) θ = μ, the mirror involution, and either k = 1 or |X | = 2 and k ≤ 4.

3.1 Properties of hp(θ, 1)-Free Languages

Recall the definition of an embedding order: u ≤e v if and only if u = u1u2 · · · un,
v = v1u1v2u2 · · · · · · vnunvn+1 for some integer n with ui, vj ∈ X∗.

A language L is called right ≤e-convex [21] if u ≤e w, u ∈ L implies w ∈ L.
The following result is well known: All languages (over a finite alphabet) that
are right ≤e-convex are regular.

Proposition 7. The language hp(θ, 1) is right ≤e-convex (and hence regular).

Proof. Observe that if u = u1u2 ∈ hp(θ, 1) and w ∈ X∗ then u1wu2 ∈ hp(θ, 1).
Hence, for u ∈ hp(θ, 1), u ≤e v implies v ∈ hp(θ, 1).

Let L ⊆ X∗ be a nonempty language and let S(L) = {w ∈ X∗|u ≤e w, u ∈ L}.
Recall further that a set H with ∅ �= H ⊆ X+ is called a hypercode over X∗ iff
x ≤e y and x, y ∈ H imply x = y. That is, a hypercode is an independent set
with respect to the embedding order.

Proposition 8. Let θ be a morphic or antimorphic involution. Then there exists
a unique hypercode H such that hp(θ, 1) = S(H).

Proof. Let H =
⋃

a∈X aθ(a), then S(H) =
⋃

a∈X X∗aX∗θ(a)X∗ = hp(θ, 1). The
uniqueness of H is immediate.
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3.2 Properties of hp(θ, k)-Free Languages

Proposition 7, true for the case k = 1, cannot in general be extended to the case
k > 1. Consider, for example, X = {a, b} and a morphism θ(a) = b, θ(b) = a. If
u = a2b2, then u = a2θ(a2) and hence u ∈ hp(θ, 2). But u ≤e w for w = abab2,
and w /∈ hp(θ, 2). Therefore, the language hp(θ, 2) is not ≤e-convex. However,
the following weaker result is proven in [9].

Proposition 9. The languages hp(θ, k) and hpf (θ, k), k ≥ 1, are regular.

Proposition 9 suggests an existence of fast algorithms solving some problems
important from the practical point of view. We investigate two such problems
now. Let θ be a fixed morphic or antimorphic involution and let k ≥ 1 be an
arbitrary but fixed integer.

Hairpin-Freedom Problem.

Input: A nondeterministic automaton M.
Output: Yes/No depending on whether L(M) is hp(θ, k)-free.

Maximal Hairpin-Freedom Problem.

Input: A deterministic automaton M1 accepting a hairpin-free language, and a
NFA M2.

Output: Yes/No depending on whether there is a word w ∈ L(M2)−L(M1) such
that L(M1) ∪ {w} is hp(θ, k)-free.

We assume that M and M1 are finite automata in the case of regular lan-
guages, and pushdown automata in the case of context-free languages.

Proposition 10. The hairpin-freedom problem for regular languages is decid-
able in linear time (w.r.t. |M |).

Proof. By definition, L(M) is hp(θ, k)-free iff L(M) ⊆ hpf (θ, k) iff L(M) ∩
hp(θ, k) = ∅. This problem is solvable in time O(|Mk|·|M |) for regular languages,
where Mk is a NFA accepting hp(θ, k). The automaton Mk is fixed for a chosen k.

Proposition 11. The maximal hairpin-freedom problem for regular languages
is decidable in time O(|M1| · |M2|).

Proof. We want to determine whether there exists a word w ∈ hpf (θ, k) such
that w /∈ L(M1), but w ∈ L(M2). It is decidable in time O(|M1| · |M2| · |M ′

k|)
whether (hpf (θ, k)∩L(M2))−L(M1) = ∅. The size of an NFA accepting hpf (θ, k)
is denoted by |M ′

k|. The automaton M ′
k is fixed for a chosen k.

As an immediate consequence, for a given block code K of length l it is decidable
in linear time with respect to |K| · l, whether there is a word w ∈ X l − K such
that K ∪ {w} is hp(θ, k)-free. This is of particular interest since the lab sets of
DNA molecules form often a block code.

Notice also that for a finite set S of DNA sequences (which is the case of
practical interest) the size of the automaton M (or M1) is in the worst case
proportional to the total length of all sequences in S.
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Proposition 12. The hairpin-freedom problem for context-free languages is de-
cidable in cubic time (w.r.t. |M |).

Proposition 13. The maximal hairpin-freedom problem for deterministic
context-free languages is decidable in time O((|M1| · |M2|)3).

Proof. We want to determine if ∃w ∈ hpf (θ, k) such that w /∈ L(M1), but w ∈
L(M2). Denote M1 = (Q1, X, Γ, q1, Z0, F1, P1), and let M ′

2 = (Q2, X, q2, F2, P2)
be a NFA accepting the language hpf (θ, k) ∩ L(M2). Consider the PDA M =
(Q, X, Γ, q0, Z0, F, P ), where Q = Q1 × Q2, q0 = (q1, q2). For p ∈ Q1, q ∈ Q2,
and Z ∈ Γ we define:

(1) (p, q)aZ →
P

(p′, q′)α iif paZ →
P1

p′α and qa →
P2

q′,

(2) (p, q)1Z →
P

(p′, q)α iif p1Z →
P1

p′α

Let F = {(p, q)|p /∈ F1 and q ∈ F2}. Then L(M) = (hpf (θ, k)∩L(M2))−L(M1),
and the size of M is O(|M1| · |M2|). Let G be a CFG such that L(G) = L(M).
Note that the construction of G takes cubic time w.r.t. |M |, see Theorem 7.31
of [6]. Finally, it is possible to decide in linear time w.r.t. |G| (see Section 7.4.3
of [6]) whether L(G) = ∅ or not.

The time complexity of the above mentioned algorithms is furthermore pro-
portional to the (constant) size of a NFA accepting the language hp(θ, k) or
hpf (θ, k), respectively. Therefore we recall results from [9] characterizing the
minimal size of these automata.

Proposition 14. The number of states of a minimal NFA accepting the lan-
guage hp(θ, k), k ≥ 1, over an alphabet X with the cardinality 
, is between 
k

and 3
k. Its size is at most 3(
k + 
k+1).

Proposition 15. Let there be distinct letters a, b ∈ X such that a = θ(b). Then
the size of a minimal NFA accepting hpf (θ, k), k ≥ 1, over an alphabet X with
the cardinality 
, is at least 2(�−2)k/2.

Corollary 16. Consider the DNA alphabet Δ = {A, C, T, G} and the Watson-
Crick involution τ.

(i) The size of a minimal NFA accepting hp(τ, k) is at most 15 ·4k. The number
of its states is between 4k and 3 · 4k.

(ii) The number of states of either a minimal DFA or an NFA accepting
hpf (τ, k) is between 22k−1

and 23·22k

.

The above results show that the size of a minimal NFA for hp(τ, k) grows ex-
ponentially w.r.t. k. However, one should recall that k is the minimal length of
bond allowing for a stable hairpin. Therefore k is rather low in practical applica-
tions and the construction of the mentioned automaton remains computationally
tractable.
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4 Variants of Hairpins

4.1 Scattered Hairpins

It is a known fact that parts of two DNA molecules could form a stable bond even
if they are not exact mutual Watson-Crick complements. They may contain some
mismatches and even may have different lengths. Hybridizations of this type are
addressed e.g. in [2] and [11]. Motivated by this observation, we consider now a
generalization of hairpins.

Definition 17. Let θ be an involution of X∗ and let k be a positive integer. A
word u = wy ∈ X∗ is θ-k-scattered-hairpin-free or simply shp(θ, k)-free if for all
t ∈ X∗, t ≤e w, θ(t) ≤e y implies |t| < k.

GC T AT C
GAT AGC A

C C
A
T

AC C T

A

AA

CTG
C C

A
TGAC

CTG

Fig. 2. An example of a scattered hairpin – a word in shp(τ, 11)

Definition 18. We denote by shpf (θ, k) the set of all shp(θ, k)-free words in
X∗, and by shp(θ, k) its complement X∗ − shpf (θ, k).

Definition 19. A language L is called θ-k-scattered-hairpin-free or simply
shp(θ,k)-free if L ⊆ shpf (θ, k).

Lemma 20. shp(θ, k) = S

( ⋃

w∈Xk

wθ(w)
)

.

Based on the above immediate result, analogous statements as in Section 3 hold
also for scattered hairpins. Proofs are straightforward and left to the reader.

Proposition 21. (i) The language shp(θ, k) is right ≤e -convex.
(ii) The languages shp(θ, k) and shpf (θ, k) are regular.
(iii) There exists a unique hypercode H such that shp(θ, k) = S(H).

Analogously as in Section 3 we can also define the scattered-hairpin-freedom
problem and maximal scattered-hairpin-freedom problem. Then we easily obtain
the following results whose proofs are analogous to those in Section 3.

Corollary 22. (i) The scattered-hairpin-freedom problem is decidable in linear
time for regular languages and in cubic time for context-free languages.

(ii) The maximal scattered-hairpin-freedom problem is decidable in time O(|M1|·
|M2|) for regular languages and in time O((|M1| · |M2|)3) for deterministic
context-free languages.
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Also the size of the minimal automaton accepting the language shp(θ, k) is sim-
ilar to the case of hp(θ, k) in Section 3.2.

For the proof of the next proposition we recall the following technical tools
from [4].

Definition 23. A set of pairs of strings {(xi, yi) | i = 1, 2, . . . , n} is called a
fooling set for a language L if for any i, j in {1, 2, . . . , n},

(1) xiyi ∈ L, and
(2) if i �= j then xiyj �∈ L or xjyi �∈ L.

Lemma 24. Let F be a fooling set of a cardinality n for a regular language L.
Then any NFA accepting L needs at least n states.

Proposition 25. The number of states of a minimal NFA accepting the lan-
guage shp(θ, k), k ≥ 1, over an alphabet X with the cardinality 
, is between 
k

and 3
k, its size is at most 7
k + 3
k+1.

Proof. Let Mk = (S, X, s1, F, P ) be an NFA accepting shp(θ, k). The statement
is trivial for the cases 
 = 1 or k = 1. Assume for the rest of the proof that k ≥ 2
and 
 ≥ 2.

(i) The reader can easily verify that the set F = {(w, θ(w))|w ∈ Xk} is a fooling
set for hp(θ, k). Therefore |S| ≥ 
k.

(ii) Let
S = {sw, pw | w ∈ X≤k−1} ∪ {qw | w ∈ Xk}.

Let further F = {p1}. The set of productions P is defined as follows:

sva → sw iif va = w, for each v ∈ X≤k−2, a ∈ X ;
sva → qw iif va = w, for each v ∈ Xk−1, a ∈ X ;
qwa → pv iif θ(av) = w, for each v ∈ Xk−1, a ∈ X ;
pwa → pv iif av = w, for each v ∈ X≤k−2, a ∈ X.
ra → r for all r ∈ S, a ∈ X.

The reader can verify that L(Mk) = shp(θ, k), and that |S| ≤ 3
k, |P | ≤
4
k + 3
k+1, therefore |Mk| ≤ 7
k + 3
k+1.

Note: An example of a similar automaton accepting the language hp(θ, k) can
be found in [9].

4.2 Hairpin Frames

In this section we point out the following two facts. First, long DNA and RNA
molecules can form complicated secondary structures as that shown in Figure 3.
Second, simple hairpins can be useful in various DNA computing techniques and
nanotechnologies, as in [3, 18, 20] and others. Hence it may be desirable to design
DNA strands forming simple hairpins but avoiding more complex structures.
This motivates another extension of the results from Section 3.
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Definition 26. The pair (v, θ(v)) of a word u in the form u = xvyθ(v)z, for
x, v, y, z ∈ X∗, is called an hp-pair of u. The sequence of hp-pairs (v1, θ(v1)),
(v2, θ(v2)), · · · , (vj , θ(vj)) of the word u in the form:

u = x1v1y1θ(v1)z1x2v2y2θ(v2)z2 · · · xjvjyjθ(vj)zj

is called an hp-frame of degree j of u or simply an hp(j)-frame of u.

An hp-pair is an hp-frame of degree 1. The definition of hairpin frames char-
acterizes secondary structures containing several complementary sequences such
as that in Fig. 3.

GC T AT C
GAT AG

C−G
C

T−A
C−G
C−G
A−T

GC AC C
GT GGC

A
C C

A
T

AC C T

AG
A

T G
CT

A−T
C−G

A
G

T

C
T

C

A

Fig. 3. An example of a hairpin frame – a word in hp(τ, fr , 3)

A word u is said to be an hp(fr,j)-word if it contains at least one hp-frame of
degree j. Observe that there may be more ways of finding hp-pairs in u, resulting
in hp-frames of various degrees. Obviously, any hp(fr,j)-word is also hp(fr,i) for
all 1 ≤ i ≤ j.

Definition 27. For an involution θ we denote by hp(θ, fr , j) the set of all
hp(fr,j)-words u ∈ X∗, and by hpf (θ, fr , j) its complement in X∗.

The results in Section 3, concerning the languages hp(θ, 1) and hpf (θ, 1), can
easily be extended for the case of hairpin frames. Proofs are left to the reader.

Lemma 28. hp(θ, fr , j) = hp(θ, 1)j =
( ⋃

a∈X

X∗aX∗θ(a)X∗
)j

.

Proposition 29. (i) The language hp(θ, fr , j) is right ≤e -convex.
(ii) The languages hp(θ, fr , j) and hpf (θ, fr , j) are regular.
(iii) There exists a unique hypercode H such that hp(θ, fr , j) = S(H).

Corollary 30. (i) The hp(fr,j)-freedom problem is decidable in linear time for
regular languages and in cubic time for context-free languages.
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(ii) The maximal hp(fr,j)-freedom problem is decidable in time O(|M1|·|M2|) for
regular languages and in time O((|M1| · |M2|)3) for deterministic context-free
languages.

Proposition 31. The size of a minimal NFA accepting the language hp(θ, fr , j),
j ≥ 1, over an alphabet X with the cardinality 
, is at most 4
j + 2j + 1.

Proof. The statement follows by the construction of an NFA M = (S, X, s1, F, P )
accepting the language hp(θ, fr , j). Let

S = {s0, s1, . . . , sj} ∪ {pk
i | 1 ≤ i ≤ j, 1 ≤ k ≤ 
}.

Let further F = {sj}, and denote X = {a1, . . . , a�}. The set of productions P is
defined as follows:

si−1ak → pk
i , pk

i θ(ak) → si for all 1 ≤ i ≤ j, 1 ≤ k ≤ 
;
sa → s for all s ∈ S, a ∈ X.

The reader can verify that L(Mk) = hp(θ, fr , j), and that |M | = 4
j + 2j + 1.

Unlike the cases of hairpins or scattered hairpins, the size of the minimal NFA
accepting hp(θ, fr , j) is O(j
). However, if we considered also a minimal length k
of the hairpin bonds, we would obtain the same exponential size of the automaton
as in Section 3.2, but multiplied by j.

5 Construction of Long Hairpin-Free Words

In this section we discuss the problem of constructing long hp(θ, k)-free words
for the cases where θ is the Watson-Crick involution and θ = ε. This question is
relevant to various encoding problems of DNA computing. For example, in [20]
the authors consider n-bit memory elements that are represented by DNA words
of the form

u1v1w1θ(v1) · · · unvnwnθ(vn)un+1,

such that (i) all the u’s and v’s have length 20 and the w’s have length 7, and
(ii) the only bonds permitted in a word of this form are the bonds between vi

and θ(vi) for all i = 1, . . . , n. This encoding problem can be solved if we first
construct a long hp(θ, k)-free word w of length (20 + 20 + 7)n + 20 = 47n + 20.
Then w can be written in the form

u1v1w1 · · · unvnwnun+1

and is such that no bonds can occur between any two subwords of length k of
w. Here k is the parameter that represents the smallest length of a block of
nucleotides that can form a stable bond with a corresponding block of comple-
mentary nucleotides – see also the relevant discussion in [11].

For the case where θ is the Watson-Crick involution we consider the method of
[11] for constructing (θ, H0,k)-bond-free languages L. Such a language L has the
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property that, for any two subwords u and v of L of length k, one has that u �=
θ(v). Note that each word of L is a hp(θ, k)-free word. Moreover, if L is infinite
then it contains arbitrarily long words, hence, also words of length 47n + 20,
for any n, as required in the encoding problem discussed in the beginning of
this section. We also note that if L is (θ, k)-bond-free then it is (θ, k′)-bond-free
for any k′ ≥ k. The method of [11] is based on the subword closure language
operation ⊗: Let S be a set of words of length k. Then S⊗ is the set of all words
w of length at least k such that any subword of w of length k belongs to S.
We note that given the set S one can construct a deterministic finite automaton
accepting S⊗ in linear time [11]. The method is as follows. Let S be any set
of words of length k such that S ∩ θ(S) = ∅. Then S⊗ is a (θ, H0,k)-bond-
free language. In our case, we wish to choose S such that S⊗ is infinite. For
example, let S2 be the set {AA, AC, CA, CC, AG, GA}. In [11] the authors show
an automaton accepting S⊗

2 . As S⊗
2 contains the set (ACCAGAC)+ it follows

that S⊗
2 is infinite as well.

For the case of θ = ε, we consider a totally different approach. Let H(K)
denote the minimum Hamming distance between any two different codewords of
a code K. A language K is said to be a solid code if (i) no word of K is a subword
of another word of K, and (ii) a proper and nonempty prefix of K cannot be a
suffix of K. See [17] or Chapter 8 in [19] for background information on codes.

Proposition 32. Let k ≥ 2 and let K be a uniform solid code of length k. If
H(K) > 
k/2�, or H(K) = 
k/2� and there are no different codewords with
a common prefix of length 
k/2�, then the word w1...wn is hp(θ, k)-free for all
n ≤ card(K) and for all pairwise different codewords w1, ..., wn.

Proof. Assume there is v ∈ Xk such that w1...wn = xvyvz for some words x, y, z.
If |x| is a multiple of k then v = wj for some j ≥ 1. As the wi’s are different,
|y| cannot be a multiple of k. Hence, v = stpt+1, where t > j and st is a proper
and nonempty suffix of wt and pt+1 is a proper and nonempty prefix of wt+1; a
contradiction. Now suppose |x| is not a multiple of k. Then, v = sjpj+1 for some
nonempty suffix sj and prefix pj+1. Again, the second occurrence of v cannot be
in K. Hence, v = stpt+1 for some t ≥ j. Hence, sjpj+1 = stpt+1. If |sj | �= |st|,
say |sj| > |st|, then a prefix of pt+1 is also a suffix of sj ; which is impossible.
Hence, sj = st and pj+1 = pt+1.

Note that H(K) ≥ 
k/2� and, therefore, 
k/2� ≤ H(pj+1sj+1, pt+1st+1) =
H(sj+1, st+1) ≤ |sj+1| = k − |pj+1|. Hence, |pj+1| ≤ �k/2�. Similarly, |sj | ≤
�k/2�. Also, as k = |sj | + |pj+1|, one has that |sj |, |pj+1| ∈ {
k/2�, �k/2�}. If
H(K) = 
k/2� then pj+1 = pt+1 implies that wj+1 and wt+1 have a common
prefix of length 
k/2�; a contradiction. If H(K) > 
k/2� then both pj+1 and sj

are shorter than �k/2� which contradicts with k = |sj | + |pj+1|.

Suppose the alphabet size |X | is l > 2. We can choose any symbol a ∈ X and
consider the alphabet X1 = X − {a}. Then for any uniform code F ⊆ Xk−1

1 it
follows that the code Fa is a uniform solid code of length k : Fa ⊆ Xk. We are
interested in cases where the code F is a linear code of type [k − 1, m, d]. That
is, F is of length k − 1, cardinality (l − 1)m, and H(F ) = d, and there is an m
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by k − 1−m matrix G over X1 such that F = {w ∗ [Im|G] : w ∈ Xm
1 }, where Im

is the identity m by m matrix and ∗ is the multiplication operation between a 1
by m vector and an m by m matrix. Thus, u ∈ F iff u = wx for some w ∈ Xm

1
and x ∈ Xk−1−m

1 and x = wG.

Proposition 33. Let F be a linear code over X1 of type [k − 1, m, 
k/2�]. If
m ≤ 
k/2� or k is even then the word w1..wn is hp(θ, k)-free for all n ≤ card(F )
and for all pairwise different codewords w1, ..., wn in Fa.

Proof. It is sufficient to show that H(Fa) = 
k/2� and there are no different
words in Fa with a common prefix of length 
k/2�. Obviously H(Fa) = H(F ) =

k/2�. As F is generated by a matrix [Im|G], where G is a matrix in X

m×(k−1−m)
1 ,

it follows that there can be no different words in F with a common prefix of
length m. If m ≤ 
k/2� then there can be no different words in Fa with a
common prefix of length 
k/2�. If k is even, consider the well known bound on
|F |: |F | ≤ |X1|k−1−�k/2	+1. Hence, |X1|m ≤ |X1|�k/2	 which gives m ≤ 
k/2�.
Hence, again, we are done.

By the above one can construct an hp(θ, k)-free word of length nk, for some
n ≤ card(F ), for every choice of n different words in Fa. It is interesting that,
for k = 13 and |X | = 4, the famous Golay code G12 of type [12, 6, 6] satisfies the
premises of the above Proposition.
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