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Abstract. The paper addresses two problems belonging to the basic
combinatorics of words. They are connected with the operations of se-
quential insertion and deletion, which are nondeterministic versions of
catenation and right/ left quotient. Necessary and sufficient conditions,
under which the result of sequential insertion or deletion of two words
is a singleton set, are given. Also the situation when the insertion and
deletion are inverse to each other, which is not generally the case, is
studied.

1 Introduction

Operations on languages are intensively studied in formal language theory. One
of the main goals of the theory is to represent a family of languages as the
closure of some atomic languages with respect to some operations. The theory
of abstract families of languages deals with operations, many operations appear
in formal language theory applications, and so on. The operations of sequential
insertion and sequential deletion (called in the sequel, shortly, insertion and
deletion), defined and studied in [2] play an important role in understanding
the mechanisms of generating languages. The insertion and deletion operations
are generalizations of catenation respectively right/left quotient and right/left
derivative. The purpose of this paper is to study two specific problems concerning
these operations. The problems belong to the very basic combinatorics of words.

The result of insertion (deletion) of a word into (from) another is in general a
set with cardinality greater than one. In Section 3, necessary and sufficient con-
dition under which the result of insertion or deletion of two words is a singleton
set, are given.

In Section 4 we obtain some necessary and sufficient conditions under which
the original word w results, after first inserting a word u into w and then deleting
u from the result. The cryptographic connotations are obvious: after encrypting
the message with a key, the decryption has to provide the original message.

Indeed, apart from formal language theory and combinatorics of words, these
issues have recently become important in certain cryptographic considerations
? The work reported here is a part of the project 11281 of the Academy of Finland



(see [1], [4]). We will not enter a discussion on the connections with cryptography
in this paper. For a detailed presentation of applications of formal languages in
cryptography, see [5].

2 Basic Definitions and Notions

An alphabet is a finite nonempty set; its elements are called letters or symbols.
If Σ = {a1, . . . , an} is an alphabet then any sequence w = ai1 . . . aik

, k ≥ 0,
aij
∈ Σ, 1 ≤ j ≤ k, is called a string (word) over Σ. The length of the word

w is denoted with lg(w) and, by definition, equals k. The word ”consisting” of
zero letters is denoted by λ and is called the empty word. Obviously, lg(λ) = 0.
The word consisting of repeating the word w j times is abbreviated wj , with the
convention w0 = λ. The set of all words over Σ is denoted Σ∗ and the set of all
nonempty words, Σ∗ − {λ}, is denoted Σ+.

The set Σ∗ is a monoid under the operation of catenation defined by:

uv = ai1 . . . airaj1 . . . ajs ,

where u = ai1 . . . air , v = aj1 . . . ajs , r, s ≥ 0, aiq , ajp ∈ Σ for 1 ≤ q ≤ r,
1 ≤ p ≤ s. The fact that r, s can be also zero means that the words u and v can
be empty. The catenation operation is associative and λ is the neutral element
of the monoid.

The left quotient of a word u by a word v is defined by:

v\u = w iff u = vw .

The right quotient of a word u by a word v is defined by:

u/v = w′ iff u = w′v .

Definition 1. Let u, v be words over an alphabet Σ, The insertion of v into u
is defined as:

u← v = {u1vu2| u = u1u2} .

Example 1. Let u = cd, v = a. The insertion of v into u is u← v = {acd, cad, cda}.
Notice that uv = cda is an element of the set u← v.

The insertion is neither an associative nor a commutative operation.

Definition 2. Let u, v be words over an alphabet Σ. The deletion of v from u
is defined as:

u→ v = {w ∈ Σ∗| u = w1vw2, w = w1w2, w1, w2 ∈ Σ∗} .

Example 2. Let u = abababa and v = aba, The result of the deletion of v from
u is u→ v = {baba, abab, abba}.

The deletion operation is neither associative nor commutative.
Note. The definitions of insertion and deletion can be extended to languages

in the natural fashion. Indeed, for languages L1, L2 over Σ,

L1 ← L2 =
⋃

u∈L1,v∈L2

(u← v) and L1 → L2 =
⋃

u∈L1,v∈L2

(u→ v) .



3 Determinism: When Is the Result a Singleton

The catenation and the right and left quotient of words are deterministic oper-
ations in the sense that the result of the operation is, in all three cases, a single
word. The insertion and deletion are nondeterministic versions of catenation re-
spectively right and left quotient. The result of the insertion (deletion) of one
word into (from) another is in general a set whose cardinality is greater than
one. A natural problem that arises is under what circumstances the insertion or
the deletion of two words is deterministic, that is, produces as result a singleton
set.

The structural property of words which influences the answer to this problem
is whether or not they are bordered (the terminology is due to [7]). Before this,
the notion of a primitive word is introduced.

Definition 3. A word u ∈ Σ+ is called a primitive word if u = gi, g ∈ Σ+,
i ≥ 1, implies that i = 1.

Every word in Σ+ can be expressed uniquely as a power of a primitive word (see
[3], [7], p.7).

Definition 4. A word u ∈ Σ+ is called bordered if u = xy = yx′ for some
x, y, x′ ∈ Σ+.

A word which is not bordered will be called unbordered. Clearly, an unbordered
word is primitive. Thus the set of unbordered words is a proper subfamily of the
set of primitive words.

Example 3. The following words over Σ = {a, b} are bordered: aba, ababab,
ababa. The words aab, abb, a2b2 are unbordered.

The following lemmas (see [7], pp.6-11) will be needed in the sequel:

Lemma 1. Let x, y be words in Σ∗ such that xy 6= λ. If xy = yx then there
uniquely exist a primitive word g ∈ Σ+ and naturals, i, j ≥ 0, i + j > 0, with
the property x = gi, y = gj.

Lemma 2. If g ∈ Σ+ is a primitive word such that g = xy = yx for some
x, y ∈ Σ∗, then x = λ or y = λ.

For a bordered primitive word we have the following property (see [8]):

Lemma 3. Let u be a bordered primitive word in Σ+. Then u can be expressed
as u = xyx for some x, y ∈ Σ+.

The following two theorems give necessary and sufficient conditions under
which the result of the deletion of a word from another is a singleton.

Note. Let u, w be words in Σ∗. If u = λ then w → u is a singleton, namely
{w}. If w = λ then w → u is a singleton iff u = λ. Therefore we will deal in the
following only with the case where u and w are nonempty words.



Theorem 1. If w, u are words in Σ+ and u is a power of an unbordered word
g ∈ Σ+, u = gi, i ≥ 1, then the statements (a) and (b) are equivalent:

(a) The set w → u is a singleton;
(b) (1) The word w is of the form w = αgjβ, j ≥ i, α, β ∈ Σ∗,

(2) The number j is maximal with this property, i.e., α does not contain g
as a suffix and β does not contain g as a prefix,

(3) Neither α nor β contains u as a subword.

Proof. (a)=⇒(b) Let us assume that w, u ∈ Σ+ as in the theorem.If w → u
is a singleton, for any two decompositions of w as w = xuy = euf with
x, y, e, f ∈ Σ∗, we have xy = ef . Let us choose x, y, e, f in such a way that
the two occurrences of u are the rightmost and the leftmost one. Consider now
all the possible relative positions of x, y and e, f .
• If lg(eu) ≤lg(x) then:

w = eu x2uy︸ ︷︷ ︸
f

= eux2︸︷︷︸
x

uy, x2 ∈ Σ∗ .

The equality xy = ef implies in this case that eux2y = ex2uy that is, ux2 = x2u.
According to Lemma 1, x2 and u are powers of the same primitive word. As
u = gi, g primitive, we deduce that x2 = gk, k ≥ 0. The word w can be then
written as

w = egigkgiy = egk+2iy .

Taking now α = e and β = y, (b)(1) holds. Our choice of x, y, e, f guarantees
that also (b)(2) and (b)(3) hold.
• If lg(e) <lg(x) <lg(eu) then:

w = e u1u2︸︷︷︸
u

u3y︸︷︷︸
f

= eu1︸︷︷︸
x

u2u3︸︷︷︸
u

y, u1, u2, u3,∈ Σ+ .

The equality xy = ef implies eu1y = eu3y, that is, u1 = u3. As u = u1u2 = u2u1,
according to Lemma 1 we obtain that u1 and u2 are powers of the same primitive
word, which is g. Therefore u1 = gk, u2 = gi−k, k > 0, which implies:

w = eu1u2u1y = egi+ky, k > 0 .

Taking now α = e and β = y, (b)(1) holds. Our choice of x, y, e, f implies also
(b)(2) and (b)(3).
• If lg(e) =lg(x) then there is only one occurrence of the word u in w and

(b) obviously holds.
For (b)=⇒(a) assume that w, u ∈ Σ+ are as in the theorem and that (b)

holds. As j ≥ i there exists a k ≥ 0 such that j = i + k. Argue indirectly and
assume that w → u is not a singleton, that is, there exists a word in w → u
which is differs from αgkβ.
Remark. Because u is a power of the unbordered word g, two occurrences of u
can overlap only on powers of g.



We shall consider in the following all the possible cases w = αugkβ = xuy,
x, y ∈ Σ∗, which can lead to the situation that xy 6= αgkβ.
• If lg(αu) ≤lg(x) then

w = αux1︸ ︷︷ ︸
x

u y1β︸︷︷︸
y

= αu x1uy1︸ ︷︷ ︸
gk

β, x1, y1 ∈ Σ∗ .

Note that u cannot overlap with α or β because g is unbordered and (b)(2),
(b)(3) hold.

As we have assumed that xy 6= αgkβ we have that αux1y1β 6= αgkβ which
implies that gix1y1 6= gk. As gk = x1g

iy1, this is a contradiction. Our assumption
was false, therefore this case cannot hold.
• If lg(α) <lg(x) <lg(αu) then:

w = αx1︸︷︷︸
x

u1u2︸︷︷︸
u

y1β︸︷︷︸
y

= α x1u1︸︷︷︸
u

u2y1︸︷︷︸
gk

β, x1, u1 ∈ Σ+, u2, y1 ∈ Σ∗ .

As u = x1u1 = u1u2 = gi and g is an unbordered word we have that u1 = gi1 ,
u2 = gi2 = x1, i1, i2 > 0. The fact that xy 6= αgkβ implies αx1g

k−i2β 6= αgkβ
that is, x1g

k−i2 6= gk. As we have shown that x1 = gi2 , this is a contradiction.
Our assumption was false, therefore this case cannot hold either.

As all the possible cases led to contradictions, our assumption that w → u
is not a singleton is false. The proof of the second implication, and therefore of
the theorem, is complete.

The proof of the implication (a)=⇒(b) did not use the fact that g is an
unbordered word.

The reverse implication does not hold if g is not unbordered. For example,
if w = ababa and u = aba, taking α = ab, β = λ, g = aba, the condition
(b) is satisfied. However the set w → u = {ab, ba} is not singleton. A stronger
condition than (b) is needed to assure that w → u is a singleton, if u is a power
of a primitive bordered word.

Theorem 2. Let w, u be words in Σ+. If u is a power of a primitive bordered
word g ∈ Σ+, u = gi, i ≥ 1, then the statements (a) and (b) are equivalent:

(a) The set w → u is a singleton.
(b) (1) The word w is of the form w = αgjβ, j ≥ i, α, β ∈ Σ∗,

(2) The number j is maximal with this property, i.e., α does not contain g
as a suffix and β does not contain g as a prefix,

(3) Neither α nor β contains u as a subword,
(4) For any decomposition of g, g = xy = yx′ where x, y, x′ ∈ Σ+ we have:

α 6= α′gi−1x, ∀α′ ∈ Σ∗ and β 6= x′gi−1β′, ∀β′ ∈ Σ∗.

Proof. (a)=⇒(b) Let w, u be as in the theorem.
If w → u is a singleton, using the proof of Theorem 1 and the remark following

it, (b)(1), (b)(2) and (b)(3) hold. Therefore w is of the form w = αgjβ, j ≥ i. As
j ≥ i there exists k ≥ 0 such that j = i + k.



Argue indirectly and assume that (b)(4) does not hold. This means that one
of the following cases holds:
• α = α′gi−1x where α′ ∈ Σ∗, x ∈ Σ+ and there exists y, x′ ∈ Σ+ such that

g = xy = yx′,
• β = x′gi−1β′ where β′ ∈ Σ∗, x′ ∈ Σ+ and there exist y, x ∈ Σ+ such that

g = xy = yx′.
We shall consider the first case, the other one being symmetric. The word w

can be written as:

w = α′gi−1xgi+kβ = α′gi−1x(yx′)i+kβ = α′ gi−1xy︸ ︷︷ ︸
gi=u

x′gi+k−1β .

As w → u is a singleton the words α′x′gi+k−1β and α′gi−1xgkβ are equal.
This equality leads to the following chain of implications:

x′gi+k−1 = gi−1xgk =⇒ x′gi−1 = gi−1x =⇒

x′ yx′ . . . yx′︸ ︷︷ ︸
i−1

= xy . . . xy︸ ︷︷ ︸
i−1

x and, as lg(x′) = lg(x), =⇒

x = x′ =⇒ g = xy = yx

According to Lemma 2, the last equality implies that either x or y equals λ. This
contradicts our assumption that x, y ∈ Σ+.

All the possible cases led to contradiction and therefore our assumption that
(b)(4) does not hold was false.

For the implication (b)=⇒(a), let w, u be words in Σ+, satisfying (b). There-
fore u and w are nonempty words, w = αgjβ, u = gi, j ≥ i ≥ 1, (g ∈ Σ+

primitive and bordered) such that (b) holds. As j ≥ i there exists k ≥ 0 such
that j = i + k.

From (b) it follows that an arbitrary occurrence of u in w overlaps with
neither α nor β. Assume, for example, that u overlaps with α. Then we have:

w = α1u1︸ ︷︷ ︸
α

u2u3︸︷︷︸
u

gkβ, α1 ∈ Σ∗, u1, u2, u3 ∈ Σ+, u = u1u2 = u2u3 .

As u = u1u2 = u2u3, if any of ui, i = 1, 2, 3 would be a power of g then
u1 would equal u3. This, in turn, would imply that α contains g as a suffix – a
contradiction with (b)(2). Therefore we can assume that none of ui, i = 1, 2, 3 is
a power of g and we have:

u = gqg1︸︷︷︸
u1

g2g
p︸︷︷︸

u2

= g2g
p︸︷︷︸

u2

u3, q + p + 1 = i, g1, g2 ∈ Σ+, g = g1g2 .

If p > 0 and q = 0 then the preceding equality implies:

u = g1g2(g1g2)p = g2(g1g2)pu3 ,



and as lg(g1g2) =lg(g2g1) we conclude that g = g1g2 = g2g1. According to
Lemma 2 this implies g1 = λ or g2 = λ– a contradiction with our assumption
g1, g2 ∈ Σ+.

If p > 0 and q > 0 then:

u = g1g2 . . . g1g2︸ ︷︷ ︸
q times

g1g2(g1g2)p = g2(g1g2)pu3 ,

which implies that g1g2 = g2g1 and leads to the same contradiction.
If p = 0 then gqg1︸︷︷︸

u1

g2︸︷︷︸
u2

= g2u3. As q = i − 1 we obtain that α = α1g
i−1g1

where g = g1g2 = g2u3, and g1, g2, u3 ∈ Σ+, which contradicts (b)(4).
As all cases led to contradictions, our assumption that an occurrence of u in

w can overlap with α was false. Similarly we can prove that no occurrence of u
in w overlaps with β.

As u can overlap with neither α nor β, an occurrence of u in w can appear
only in the ”g-part” of w. This means that an arbitrary occurrence of u in w
can have only one of the following locations:
• w = αgk1−1g1 g2g

i−1g1︸ ︷︷ ︸
u

g2g
k2β, g1, g2 ∈ Σ+, g1g2 = g ,

where k > 0 and k1 + k2 = k. We have assumed here that k1 > 0 and k2 ≥ 0.
The case when k2 > 0 and k1 ≥ 0 is similar.

As u = gi = (g1g2)i = g2(g1g2)i−1g1 we deduce that g = g1g2 = g2g1 which,
together with Lemma 2, leads to a contradiction with our assumption that g1,
g2 ∈ Σ+. We conclude that such a situation cannot occur.
• w = αgk1 gi︸︷︷︸

u

gk2 , k ≥ 0, k1 + k2 = k .

In this situation, the erasing of u from w produces the word αgkβ, regardless
of the values of k1 and k2, k1 + k2 = k.

We conclude that the only possible occurrence of u in w yields w → u =
{αgkβ}. Therefore w → u is a singleton, that is, (a) holds. This completes the
proof of the second implication, and therefore of the theorem.

The following theorem gives a necessary and sufficient condition under which
the result of the insertion between two words is a singleton set.

Theorem 3. Let u, w be words in Σ∗. The set w ← u is a singleton iff one of
the following cases holds:

(i) The words w, u have the forms w = ap, u = ai, a ∈ Σ, p, i > 0;
(ii) Either u or w (or both) is equal with λ.

Proof. The ”if”-part is obvious. For the ”only if”-part let u, w be in Σ+ such
that w ← u is a singleton. We will show that in this case (i) holds. The fact
that w ← u is a singleton implies that for any decomposition of w as w = xy,
x, y ∈ Σ∗ we have that xuy = uxy = xyu, all being elements of the set w ← u.
From the equality xuy = uxy and using Lemma 1, we deduce that x and u are



powers of the same primitive word, x = gj , u = gi, g ∈ Σ+, j ≥ 0, i > 0.
Analogously, from xuy = xyu we deduce that y = gk, k ≥ 0, being a power of
the same primitive word as u. As x, y were arbitrary words with the property
xy = w, taking for example x the first letter of w we conclude that u is of the
form u = ai, a ∈ Σ, i > 0 and w is of the form w = xy = aj+k, j ≥ 0, k ≥ 0,
j + k > 0. Taking p = j + k the proof of the ”only if”-part is complete.

4 Conditions for Reversibility

The catenation and the right and left quotient of words possess the property that
given the result of the operation and one of the operands, the other operand can
be recovered. Indeed, if x, y, z are words in Σ∗ then xy = z iff x = z/y iff
y = x\z. The insertion and deletion of words do not have this property. In
general, if x ← y = z then {x} ⊆ z → y and if x → y = z then {x} ⊆ z ← y,
but the reverse inclusions do not hold. The following theorems will deal with
circumstances under which, given the result of the insertion and the inserted
word, the other operand can be obtained. The problem can be stated shortly :
”When is (w ← u) → u equal with {w} ?”, where u, w ∈ Σ∗. Besides the fact
that u is a power of a primitive bordered or unbordered word, the answer to this
problem is influenced by whether or not u is a subword of w.

Note. If u = λ or w = λ then (w ← u)→ u = {w}. Therefore we will consider
in the following only the case where u and w are nonempty words.

Theorem 4. Let u, w be two words in Σ+ such that u is not a subword of w. If
u is a power of an unbordered word then (w ← u)→ u = {w}.

Proof. Let u, w be as in the theorem, such that u = gi, g ∈ Σ+, i ≥ 1, and g is
an unbordered word. Let xuy be an arbitrary word in (w ← u), where x, y ∈ Σ∗,
w = xy.

If the only occurrence of u in xuy is the one inserted, then xuy → u = xy =
{w}.

Else, the second occurrence of u must overlap the first, as we have assumed
that u is not a subword of w. Moreover, because u is a power of an unbordered
word g, they must overlap on powers of g. Under these circumstances, the erasing
of the second ocurrence of u from xuy produces also w.

In all the possible cases the erasing of an occurrence of u from an arbitrary
word of (w ← u) produced w, and therefore we can conclude that (w ← u) →
u = {w}.

The reverse implication does not hold. For example, taking w = cd, u = aba,
we have that u is not a subword of w and that (w ← u)→ u = {w} but u is not
a power of an unbordered word.

Theorem 5. Let u, w be words in Σ+ such that u is not a subword of w. If u
is a power of a primitive bordered word g ∈ Σ+, u = gi, i ≥ 1 then the following
statements are equivalent:



(i) The set (w ← u)→ u is a singleton, namely {w}.
(ii) For any decomposition of g, g = xy = yx′, x, y, x′ ∈ Σ+, the word w contains

neither gi−1x nor x′gi−1 as a subword.

Proof. We will prove first that ¬(ii)=⇒¬(i). Let u, w be as in the theorem such
that (ii) does not hold. There exists a decomposition of g, g = xy = yx′ where
x, y, x′ ∈ Σ+ such that w = αgi−1xβ, α, β ∈ Σ∗. The case where w is of the
form w = αx′gi−1β is symmetric. The word

αgi−1xgiβ = α gi−1xy︸ ︷︷ ︸
u

x′(yx′)i−1β

belongs to w ← u and therefore both words αgi−1xβ and αx′gi−1β are in the
set (w ← u)→ u.

If we assume that (w ← u) → u is a singleton, we obtain gi−1x = x′gi−1

which implies
xyxy . . . xy︸ ︷︷ ︸
(i−1) times

x = x′ yx′ . . . yx′︸ ︷︷ ︸
(i−1) times

.

The last equality shows that x = x′, which implies g = xy = yx. According to
Lemma 2 either x or y equals λ, which contradicts our assumption x, y ∈ Σ+.
Consequently, we conclude that (w ← u)→ u is not a singleton.

For (ii)=⇒(i), let w, u be words as in the theorem such that (ii) holds.
Assume that (w ← u) → u is not a singleton. This means that there exist a
word α ∈ (w ← u) and two occurrences of u in α, which produce different words
after being erased. As u is not a subword of w, these two occurrences of u must
overlap:

α = xuy = euf = eu1︸︷︷︸
x

u2u3︸︷︷︸
u

y = e u1u2︸︷︷︸
u

u3y︸︷︷︸
f

∈ (w ← u) ,

where x, y, e, f ∈ Σ∗, u1, u2, u3 ∈ Σ+ and w = xy, xy 6= ef . The words xy =
eu1y, ef = eu3y are not equal and therefore u1 6= u3.

If any of ui, i = 1, 2, 3, is a power of g, as u = u1u2 = u2u3, we obtain
u1 = u3 – a contradiction. We will assume therefore that none of ui, i = 1, 2, 3,
is a power of g. This implies:

gkg1︸︷︷︸
u1

g2g
p︸︷︷︸

u2

= g2g
p︸︷︷︸

u2

u3, g1, g2 ∈ Σ+, p + k + 1 = i .

If p > 0 we obtain that g1g2 = g2g1 which, together with Lemma 2, implies
g1 = λ or g2 = λ. This contradicts the fact that g1, g2 ∈ Σ+.

If p = 0 then:
gkg1︸︷︷︸

u1

g2 = g2u3 = u ,

and, as w = xy = eu1y = egkg1y and k = i − 1, this implies that w contains
a subword of the form gi−1g1 with g = g1g2 = g2u4, g1, g2, u4 ∈ Σ+. We have



arrived at a contradiction with (ii). All cases led to contradictions and therefore
our assumption that (w ← u)→ u is not a singleton was false.

The proof of the second implication and consequently, of the theorem, is now
complete.

Theorem 6. Let u, w be words in Σ+, u a proper subword of w. Then (w ←
u)→ u = {w} iff w = ap, u = ai, a ∈ Σ, p > i > 0.

Proof. The implication ”⇐= ” is obvious. In order to show the reverse implica-
tion, let u, w be words in Σ+ where u a is subword of w (not necessarily proper)
and (w ← u)→ u = {w}. The word w can be expressed as w = xuy, x, y ∈ Σ∗,
u ∈ Σ+. This implies that both words u(xuy) and (xuy)u belong to w ← u and
therefore:

xuy, uxy, xyu ∈ (w ← u)→ u = {w} .

From the equality xuy = uxy we deduce xu = ux. According to Lemma 1, x
and u are powers of the same primitive word, u = gi, x = gk, g ∈ Σ+, k ≥ 0,
i ≥ 1.

From the equality xuy = xyu we deduce uy = yu. According to Lemma 1, y
and u are powers of the same primitive word g that is, y = gj , j ≥ 0.

The primitive word g is unbordered. Indeed, assume that g is bordered. Then,
according to Lemma 3, g can be written as g = γvγ, γ, v ∈ Σ+. As u = (γvγ)i

and w = (γvγ)k+i+j we deduce that both words:

(γvγ)k+2i+j , and γ(γvγ)ivγ(γvγ)k+i+j−1 = γ(γvγ)i−1γv(γvγ)i(γvγ)k+j ,

are in the set w ← u (the first word was obtained by catenating w and u and
the second by inserting u after the first occurrence of γ.) This implies that both
words:

(γvγ)k+i+j and γ(γvγ)i−1γv(γvγ)k+j ,

belong to (w ← u) → u, which is a singleton. The equality of the above men-
tioned words implies the equality of their prefixes γvγ = γγv which further
implies vγ = γv. According to Lemma 1, γ and v are powers of the same primi-
tive word, γ = δr, v = δr′

, δ ∈ Σ+, r, r′ > 0. We can rewrite g now as g = γvγ =
δ2r+r′

, 2r+r′ > 2, which contradicts the fact that g is primitive. Our assumption
was false, therefore g is an unbordered word.

Taking p = i + j + k we have therefore proved that if u is a subword of
w (proper or not) and (w ← u) → u = {w} then u = gi, w = gp, g ∈ Σ+,
p ≥ i > 0, where g is an unbordered word.

Assume now that u 6= λ is a proper subword of w and denote k′ = j + k,
k′ > 0. Argue indirectly and assume that g contains at least two different letters,
g = aαbβ, a, b ∈ Σ, a 6= b,α, β ∈ Σ∗. Then both words:

(aαbβ)2i+k′
and aα(aαbβ)ibβ(aαbβ)i+k′−1 ,

are in the set w ← u which implies that both:

(aαbβ)i+k′
and aα(aαbβ)ibβ(aαbβ)k′−1



belong to (w ← u) → u. Indeed, as k′ ≥ 1 we have another occurrence of u in
w ← u than the one inserted, namely the prefix of length lg(u) of (aαbβ)i+k′−1.
As (w ← u)→ u is a singleton, the two words belonging to it are equal that is,

aαbβ(aαbβ)i+k′−1 = aα(aαbβ)ibβ(aαbβ)k′−1 .

We arrive at a contradiction as, after erasing the prefix aα, the above equality
implies a = b and we assumed that the letters a and b are distinct. Our assump-
tion that g contains at least two different letters was false. As g is also primitive
and unbordered we deduce that g is of the form g = a, a ∈ Σ and consequently,
w = ai+k′

, i ≥ 1, k′ > 0.
Taking p = i + k′, the proof of the second implication is complete.

Theorem 7. If u is a word in Σ+ then (u← u)→ u = {u} iff u is a power of
an unbordered word.

Proof. It has been shown in the proof of Theorem 6 that, if u, w ∈ Σ+ and u
is a subword of w (proper or not) then (w ← u) → u = {w} implies u = gi,
w = gp, p ≥ i > 0, where g ∈ Σ+ is an unbordered word. Taking u = w, this
proves the implication ”=⇒” of the theorem.

For the reverse implication let u ∈ Σ+ be a power of an unbordered word
g ∈ Σ+, u = gi, i ≥ 1.

Assume that there exists w ∈ (u ← u) → u, w 6= u. Applying the oper-
ations in the reverse order, we deduce that u ∈ (w ← u) → u. As w 6= u
but lg(w) =lg(u), u is not a subword of w. According to Theorem 4 we have
(w ← u) → u = {w}, which implies w = u. This contradicts our assumption
that w 6= u. Consequently, we can conclude that the set (u ← u) → u = {u},
and therefore the proof for the second implication is complete.

The last theorem of this section gives a necessary and sufficient condition
under which the set (w → u)← u is a singleton.

Theorem 8. If u, w are words in Σ∗ then (w → u) ← u = {w} iff one of the
next cases holds:

(i) The word w is equal with u;
(ii) The word u equals λ;
(iii) The words w, u are of the form w = ap, u = ai, a ∈ Σ, p > i ≥ 1.

Proof. The implication ” ⇐= ” is obvious. For the reverse implication, assume
that w, u ∈ Σ∗, such that (w → u)← u = {w} and w 6= u, u 6= λ. We will show
that in this case (iii) holds.

As u is a proper subword of w we can assume, without loss of generality,
that it is a suffix of w, that is, w = aαu, a ∈ Σ, α ∈ Σ∗. The word aα is in the
set w → u therefore both auα and uaα belong to (w → u) ← u = {w}. The
equality auα = uaα implies that u = ai, i > 0. The equality aαu = auα implies
that w = ap, p > 1. As u is a proper subword of w, p > i ≥ 1, and the proof of
the second implication is complete.



5 Open Problems

As problems for further research we could mention Theorem 4 which should be
replaced with an ”if and only if” condition. From the practical point of view, it
would be also preferable to have more compact and easily testable necessary and
sufficient conditions for the problems investigated in Sections 3 and 4. Interesting
and cryptographically motivated seems to be the study of analogous problems
with more sophisticated types of insertion and deletion. For example, the parallel,
controlled, permuted and permuted scattered variants of insertion and deletion
defined in [2], [6], could be of interest.
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