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Abstract

In this paper, we investigate the state complexities of (
k∪

i=1

Li)
∗ and (

k∪
i=1

Li)
2,

where Li, 1 ≤ i ≤ k, k ≥ 2 are regular languages. We establish exact bounds
for both of these general combined operations and show that they are much
lower than the mathematical compositions of the state complexities of their
basic individual component operations, but have similar forms with the state
complexities of some participating combined operations.

Keywords: state complexity, combined operations, regular languages, finite
automata

In Memory of Dr. Sheng Yu

1. Introduction

State complexity is a fundamental topic in automata theory and its study
dates back to the 1950’s [23]. State complexity is a type of descriptional com-
plexity for regular languages based on the number of states in their minimal
finite automata. The state complexity of a language operation gives an upper
bound for both the time and space complexity of the operation [28]. The s-
tudy of state complexity is motivated by the use of automata of very large sizes
in multiple areas, e.g. programming languages, natural language and speech
processing, and so on.

Many papers on state complexity appeared in the literature, see, e.g., [4, 5,
7, 6, 8, 14, 16, 17, 18, 21, 22, 26, 28, 29]. The state complexities of almost all
the individual standard regular language operations, e.g., union, intersection,
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catenation, star, reversal, shuffle, orthogonal catenation, proportional removal,
and cyclic shift, etc., have been obtained.

In practice, not only a single operation, but also a sequence of operations
can be applied in some specific order. For example, primer extension, which is
a basic biological operation, can be formalized as a combination of catenation
and antimorphic involution [1]. Therefore, in the mid of 2000s, the study of
state complexity of combined operations was initiated [25, 31]. Following that,
many results on this topic were obtained, e.g., [1, 3, 9, 10, 12, 13, 19, 20].

A theoretical reason for studying the state complexity of combined opera-
tions is that, given an arbitrary combined operation, we cannot use the math-
ematical composition of the state complexities of its individual component op-
erations as its state complexity. The state complexity of a combined operation
can be much lower than the aforementioned composition, because the resulting
languages of one individual operation may not be among the worst case inputs
of the next operation [19, 25]. An often used example for this phenomenon is
(L1∪L2)

∗, where L1 and L2 are regular languages accepted by n1- and n2-state
DFAs, respectively. In [25], the state complexity of the combined operation
(L1 ∪L2)

∗ was proved to be 2n1+n2−1 − 2n1−1 − 2n1−1 +1, whereas the mathe-
matical composition of the state complexities of union and star is 3

42
n1n2 .

It has been proved that there does not exist a general algorithm that, for an
arbitrarily given combined operation and a class of regular languages, computes
the state complexity of the operation on this class of languages [27]. It seems
that every combined operation must be investigated separately. However, the
number of combined operations is obviously unlimited, and it is impossible to
investigate all of them. Thus, the combined operations with arbitrarily many
individual operations which we call general combined operations, should be the
emphasis of theoretical studies because they are more general than the basic
combined operations which are composed of only a limited number of individual
operations. The latter can indeed be viewed as the special cases of the former.

In this paper, we study such two general combined operations: (
k∪

i=1

Li)
∗

and (
k∪

i=1

Li)
2, where Li, 1 ≤ i ≤ k, k ≥ 2 are regular languages. Clearly, the

combined operation (L1 ∪ L2)
∗ is an instance of (

k∪
i=1

Li)
∗. We show that the

state complexity of star of union on k regular languages is not only much lower
than the mathematical composition of the state complexities of union and star,
but also in a similar form with the state complexity of (L1 ∪ L2)

∗.

We obtain tight bounds for (
k∪

i=1

Li)
2 as well. One interesting thing is, when

we investigated this combined operation, we found that it could be considered
as a combination of (1) union and square, or (2) union-catenation ((L1∪L2)L3)
and union, or (3) union and catenation-union (L1(L2 ∪ L3)). Finally, the tight
upper bound was obtained with the last combination which has a similar for-
m with the state complexity of L1(L2 ∪ L3). It seems that decomposing a
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combined operation into its participating combined operations can give better
upper bounds than the mathematical composition of the state complexities of
its individual component operations.

In the next section, we introduce the basic notation and definitions used in

this paper. In Sections 3 and 4, we investigate the state complexities of (
k∪

i=1

Li)
∗

and (
k∪

i=1

Li)
2, respectively. In Section 5, we conclude the paper.

2. Preliminaries

A DFA is denoted by a 5-tuple A = (Q,Σ, δ, s, F ), where Q is the finite set
of states, Σ is the finite input alphabet, δ : Q × Σ → Q is the state transition
function, s ∈ Q is the initial state, and F ⊆ Q is the set of final states. A DFA
is said to be complete if δ(q, a) is defined for all q ∈ Q and a ∈ Σ. All the
DFAs we mention in this paper are assumed to be complete. We extend δ to
Q× Σ∗ → Q in the usual way.

In this paper, the state transition function δ of a DFA is often extended to
δ̂ : 2Q × Σ → 2Q. The function δ̂ is defined by δ̂(R, a) = {δ(r, a) | r ∈ R}, for
R ⊆ Q and a ∈ Σ. We just write δ instead of δ̂ if there is no confusion.

A string w ∈ Σ∗ is accepted by a DFA if δ(s, w) ∈ F . Two states in a DFA
A are said to be equivalent if and only if for every string w ∈ Σ∗, if A is started
in either state with w as input, it either accepts in both cases or rejects in
both cases. A language accepted by a DFA is said to be regular. The language
accepted by a DFA A is denoted by L(A). The reader may refer to [15, 30] for
more details about regular languages and finite automata.

The state complexity of a regular language L, denoted by sc(L), is the number
of states of the minimal complete DFA that accepts L. The state complexity
of a class S of regular languages, denoted by sc(S), is the supremum among all
sc(L), L ∈ S. The state complexity of an operation on regular languages is the
state complexity of the resulting languages from the operation as a function of
the state complexity of the operand languages. Thus, in a certain sense, the
state complexity of an operation is a worst-case complexity.

3. State complexity of (
k∪

i=1

Li)
∗

We first consider the state complexity of (
k∪

i=1

Li)
∗, where Li, 1 ≤ i ≤ k,

k ≥ 2 are regular languages accepted by ni-state DFAs. It has been proved
that the state complexity of L∗

i is 3
42

ni and the state complexity of Li ∪ Lj

is ninj [21, 29]. Their mathematical composition for the combined operation

(
k∪

i=1

Li)
∗ is 3

42

k∏
i=1

ni

. As we mentioned in Section 1, this upper bound is too high
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to be reached even when k = 2, that is, (L1∪L2)
∗ [25]. The combined operation

(L1 ∪ L2)
∗ can be viewed as not only a base case of (

k∪
i=1

Li)
∗ when k = 2, but

also its participating combined operation.

In the following, we show that the state complexity of (
k∪

i=1

Li)
∗ has a similar

form with that of (L1 ∪ L2)
∗. Note that although these two state complexities

look similar, the proofs for the general case k ≥ 2 is very different from those
for k = 2, especially the proof for the highest lower bound. This is because,
when k is arbitrarily many, a lot more questions need to be considered which
are easy to solve or do not exist for the case with only two operand languages,
e.g., how to update the ith component of a state of the resulting DFA without
interfering with the other k − 1 components, and so on.

Theorem 3.1. Let Li, 1 ≤ i ≤ k, k ≥ 2 be regular languages accepted by

ni-state DFAs. Then (
k∪

i=1

Li)
∗ is accepted by a DFA of no more than

k∏
i=1

(2ni−1 − 1) + 2

k∑
j=1

nj−k

states.

Proof. For 1 ≤ i ≤ k, let Li = L(Ai) and Ai = (Qi,Σ, δi, si, Fi) be a DFA
of ni states. Without loss of generality, we assume that the state sets of A1,
A2, . . ., Ak are disjoint. We construct a DFA A = (Q,Σ, δ, s, F ) to accept the

language (
k∪

i=1

Li)
∗ similarly with [25]. We define Q to be Q = {s}∪P ∪R where

P = {⟨P1, P2, . . . , Pk⟩ | Pi ⊆ Qi − Fi, Pi ̸= ∅, 1 ≤ i ≤ k},

R = {⟨R1, R2, . . . , Rk⟩ | (
k∪

j=1

Rj) ∩ (
k∪

h=1

Fh) ̸= ∅, si ∈ Ri ⊆ Qi, 1 ≤ i ≤ k}.

If si /∈ Fi for every DFA Ai, 1 ≤ i ≤ k, the initial state s of the DFA A is then

a new symbol, because the empty word is not in the language
k∪

i=1

Li. If there

exists an i such that si ∈ Fi, we choose s = ⟨{s1}, {s2}, . . . , {sk}⟩ to be the
initial state of A. In this case, s is clearly contained in the set R. Note that the
sets P and R are always disjoint.

We define the set of final states F to be R ∪ {s}. The transition function δ
of the DFA A is defined as follows.

For each letter a ∈ Σ,

δ(s, a) =

{
⟨{δ1(s1, a)}, . . . , {δk(sk, a)}⟩, if δi(si, a) /∈ Fi for all 1 ≤ i ≤ k;
⟨{δ1(s1, a)} ∪ {s1}, . . . , {δk(sk, a)} ∪ {sk}⟩, otherwise,
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and for each state p = ⟨P1, P2, . . . , Pk⟩ ∈ Q− {s},

δ(p, a) =

{
⟨δ1(P1, a), . . . , δk(Pk, a)⟩, if δi(Pi, a) ∩ Fi = ∅ for all 1 ≤ i ≤ k;
⟨δ1(P1, a) ∪ {s1}, . . . , δk(Pk, a) ∪ {sk}⟩, otherwise.

The DFA A can simulate the computation of the DFAs A1, A2, . . ., Ak and
when one of them enter a final state, the initial states s1, s2, . . ., sk are added.

It is easy to see that L(A) = (
k∪

i=1

L(Ai))
∗.

Now let us count the number of states of A which is an upper bound of the

state complexity of the combined operation (
k∪

i=1

Li)
∗.

For the DFAs A1, A2, . . ., Ak, denote |Fi| by ti. The resulting language

(
k∪

i=1

Li)
∗ =

{
Σ∗, if ti = ni;
(L1 ∪ L2 ∪ . . . ∪ Li−1 ∪ Li+1 . . . ∪ Lk)

∗, if ti = 0.

Both of the above cases are trivial. Therefore, we only need to consider the case

when 0 < ti < ni. There are
k∏

i=1

(2ni−ti − 1) states in the set P . The cardinality

of the set R is

|R| =

 2

k∑
j=1

nj−k

, if ∃p(sp ∈ Fp), 1 ≤ p ≤ k;

2

k∑
j=1

nj−k

− 2

k∑
j=1

nj−
k∑

r=1
tr−k

, otherwise.

There are 2

k∑
j=1

nj−k

states ⟨R1, R2, . . . , Rk⟩ in A such that si ∈ Ri for all 1 ≤
i ≤ k. When sp /∈ Fp for all 1 ≤ p ≤ k, the number of states ⟨R′

1, R
′
2, . . . , R

′
k⟩

such that sp ∈ Rp and Fp ∩Rp = ∅ is 2

k∑
j=1

nj−
k∑

r=1
tr−k

. In this case, these states
are contained in the set P rather than R according to the definition.

Since Q = {s} ∪ P ∪R, the size of the state set Q is

|Q| =


k∏

i=1

(2ni−ti − 1) + 2

k∑
j=1

nj−k

, if ∃p(sp ∈ Fp), 1 ≤ p ≤ k;

k∏
i=1

(2ni−ti − 1) + 2

k∑
j=1

nj−k

− 2

k∑
j=1

nj−
k∑

r=1
tr−k

+ 1, otherwise.

As we mentioned before, a new symbol is needed to be the initial state only
when si /∈ Fi for all 1 ≤ i ≤ k. Thus, the upper bound of the number of states
in A reaches the worst case when Ai has only one final state (ti = 1) for all
1 ≤ i ≤ k and at least one of the initial states of these DFAs is final. 2

Next, we show that this upper bound is reachable.
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Theorem 3.2. For any integer ni ≥ 3, 1 ≤ i ≤ k, there exist a DFA Ai of ni

states such that any DFA accepting (
k∪

i=1

L(Ai))
∗ needs at least

k∏
i=1

(2ni−1 − 1) + 2

k∑
j=1

nj−k

states.

Proof. For 1 ≤ i ≤ k, let Ai = (Qi,Σ, δi, 0, {0}) be a DFA, where Q1 =
{0, 1, . . . , ni − 1}, Σ = {ai | 1 ≤ i ≤ k} ∪ {bj | 1 ≤ j ≤ k} ∪ {c} and the
transitions of Ai are

δi(q, ai) = q + 1 mod ni, q = 0, 1, . . . , ni − 1,

δi(q, aj) = q, j ̸= i, q = 0, 1, . . . , ni − 1,

δi(q, bi) = 0, q = 0, 1, . . . , ni − 1,

δi(q, bj) = q, j ̸= i, q = 0, 1, . . . , ni − 1,

δi(0, c) = 1, δi(q, c) = q, q = 1, . . . , ni − 1.

The transition diagram of Ai is shown in Figure 1.

Figure 1: Witness DFA Ai for Theorems 3.2

Then we construct the DFA A = (Q,Σ, δ, s, F ) exactly as described in the
proof of Theorem 3.1, where

Q = P ∪R,

P = {⟨P1, P2, . . . , Pk⟩ | Pi ⊆ Qi − {0}, Pi ̸= ∅, 1 ≤ i ≤ k},
R = {⟨R1, R2, . . . , Rk⟩ | 0 ∈ Ri ⊆ Qi, 1 ≤ i ≤ k},
s = ⟨{0}, {0}, . . . , {0}⟩,
F = {⟨{0}, {0}, . . . , {0}⟩},

and for each state p = ⟨P1, P2, . . . , Pk⟩ ∈ Q,

δ(p, a) =

{
⟨δ1(P1, a), δ2(P2, a), . . . , δk(Pk, a)⟩, if 0 /∈ δi(Pi, a) for all 1 ≤ i ≤ k;
⟨δ1(P1, a) ∪ {0}, δ2(P2, a) ∪ {0}, . . . , δk(Pk, a) ∪ {0}⟩, otherwise.
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It is easy to see that A accepts (
k∪

i=1

L(Ai))
∗ and it has

k∏
i=1

(2ni−1 − 1) +

2

k∑
j=1

nj−k

states. Now we need to show that A is a minimal DFA.

(I) We first show that every state p = ⟨P1, P2, . . . , Pk⟩ ∈ Q is reachable from
the initial state s = ⟨{0}, {0}, . . . , {0}⟩.

1. |P1| ≥ 1, |P2| = |P3| = . . . = |Pk| = 1. According to the nature of
the combined operation of star of union, the order of |P1|, |P2|, . . .,
|Pk| does not matter. Thus, in this case, we just let |P1| ≥ 1 and
|P2|, . . ., |Pk| be 1 without loss of generality. Let us use induction on
the cardinality of P1 to prove this.

Base: We show that, when |P1| = |P2| = |P3| = . . . = |Pk| = 1, the
state p is reachable from the initial state. Assume that Pi = {qi} ⊆
Qi, 1 ≤ i ≤ k. Then

⟨P1, P2, . . . , Pk⟩ =
{

s, if q1 = 0;

δ(s, caq1−1
1 aq2−1

2 · · · aqk−1
k ), if q1 > 0.

Note that when q1 = 0, q2, . . . , qk must also be 0 according to the
construction of the DFA A. Similarly, when q1 > 0, all of q2, . . . , qk
must be greater than 0.

Induction step: Assume that all states in A such that |P1| = m1 ≥
1, |P2| = |P3| = . . . = |Pk| = 1 are reachable from s. Then we prove
any state p such that |P1| = m1 + 1, |P2| = |P3| = . . . = |Pk| = 1 is
also reachable.

Assume P1 = {q11, q12, . . . , q1m1 , q1(m1+1)} ⊆ Q1, q11 < q12 < . . . <
q1m1 < q1(m1+1), Pj = {qj1} ⊆ Qj , 2 ≤ j ≤ k. Then

p =

{
δ(p′, b2b3 · · · bk), if q11 = 0;

δ(p′′, caq11−1
1 aq2−1

2 aq3−1
3 · · · aqk−1

k ), if q11 > 0,

where

p′ = ⟨{q12, q13, q14, . . . , q1(m1+1)}, {1}, . . . , {1}⟩,
p′′ = ⟨{0, q12 − q11 + 1, . . . , q1(m1+1) − q11 + 1}, {0}, . . . , {0}⟩.

Since the state p′ is reachable according to the induction hypothesis
and p′′ has been proved to be reachable in the case when q11 = 0,
the state p can also be reached.

2. |P1| ≥ 1, |P2| ≥ 1, . . ., |Pt| ≥ 1, |Pt+1| = |Pt+2| . . . = |Pk| = 1,
2 ≤ t ≤ k. We use induction on t to prove that p is reachable in this
case. Case 1 can be used as the base of the induction.

Induction step: Assume all states in A such that |P1| = m1 ≥ 1,
|P2| = m2 ≥ 1, . . ., |Pt−1| = mt−1 ≥ 1, |Pt| = |Pt+1| . . . = |Pk| = 1,
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2 ≤ t ≤ k, can be reached from the initial state s. Let us prove any
state p such that |P1| = m1 ≥ 1, |P2| = m2 ≥ 1, . . ., |Pt| = mt ≥ 1,
|Pt+1| = |Pt+2| . . . = |Pk| = 1 can also be reached.

Assume Pi = {qi1, qi2, . . . , qimi} ⊆ Qi, qi1 < qi2 < . . . < qimi , 2 ≤
mi ≤ ni Pj = {qj1} ⊆ Qj , 1 ≤ i ≤ t, t+ 1 ≤ j ≤ k. In the following,
let us first consider the case when q11 > 0 this time.
(2.1) q11 > 0. If q11 > 0, then q21 > 0, q31 > 0, . . ., qk1 > 0 and
Pi ̸= Qi for all 1 ≤ i ≤ t. According to the induction hypothesis, the
state

p′ = ⟨P1, P2, . . . , Pt−1, {1}, {1}, . . . , {1}⟩

is reachable from s. We begin the computation from p′ by reading
qtmt − qt(mt−1) − 1 symbols at.

δ(p′, a
qtmt−qt(mt−1)−1
t ) = ⟨P1, . . . , Pt−1, {qtmt−qt(mt−1)}, {1}, . . . , {1}⟩.

Denote the resulting state by r. Next, we apply n1 − q1m1 symbols
a1 and the DFA A reaches the state

r′ = ⟨P ′
1, P2∪{0}, . . . , Pt−1∪{0}, {0, qtmt−qt(mt−1)}, {0, 1}, . . . , {0, 1}⟩

where

P ′
1 = {0, q11 + n1 − q1m1 , q12 + n1 − q1m1 , . . . , q1(m1−1) + n1 − q1m1}.

Now we apply an at-transition and the resulting state r′′ is

⟨P ′
1, P2∪{0}, . . . , Pt−1∪{0}, {0, 1, qtmt−qt(mt−1)+1}, {0, 1}, . . . , {0, 1}⟩.

We cycle using a1-transitions as long as elements of P ′
1 are consecu-

tively passing by 0. The last a1-transition increases the cardinality
of P ′

1 by 1 and after that we apply a c-transition which removes the 0
in every component of the state. We continue to apply a1-transitions
until a sequence of consecutive elements of P ′

1 passed by 0 and the
cardinality of P ′

1 is increased by 1. Then a c-transition is applied to
eliminate 0. Clearly, we can cyclicly shift the set P ′

1 back into P1 by
repeating these two steps. Now the DFA A reaches the state

p′′ = ⟨P1, P2, . . . , Pt−1, {1, qtmt
− qt(mt−1) + 1}, {1}, . . . , {1}⟩.

The state p′′ is the same as p except that qtmt −qt(mt−1)+1 is added
into the tth set. Therefore, we can continue in the same way to add
more elements to it. After the next loop, the state reached will be

⟨P1, . . . , Pt−1, {1, qt(mt−1)−qt(mt−2)+1, qtmt−qt(mt−2)+1}, {1}, . . . , {1}⟩.

In this way, we add all the mt elements of Pt but keep them in a
position that is shifted backwards qt1 − 1 steps so that qt1 is in the
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position 1, qt2 is in the position qt2 − qt1 + 1, and so on. Now we
use an input word aqt1−1

t to shift all the elements of Pt into correct
positions, which does not change the other elements of the state, and
the state is

p′′′ = ⟨P1, P2, . . . , Pt−1, Pt, {1}, . . . , {1}⟩.

Finally, by reading a word a
q(t+1)1−1
t+1 a

q(t+2)1−1
t+2 · · · aqk1−1

k , the DFA A
reaches the state p = ⟨P1, P2, . . . , Pk⟩.
(2.2) q11 = 0. When q11 = 0, we know that q21 = q31 = . . . = qk1 = 0.
Then the state p is

⟨{0, q12, . . . , q1m1}, . . . , {0, qt2, . . . , qtmt}, {0}, . . . , {0}⟩.

To prove p is reachable, we start from a state

p′ = ⟨{q12, . . . , q1m1}, . . . , {qt2, . . . , qtmt}, {1}, . . . , {1}⟩.

The state p′ has been proved to be reachable in the case (2.1). It is
easy to see that δ(p′, bt+1bt+2 · · · bk) = p. Thus, the state p can be
reached from the initial state s when q11 = 0.

Now we have proved that all the states in A are reachable.

(II) Any two different states p1 and p2 in Q are distinguishable.

Let p1 and p2 be ⟨P1, P2, . . . , Pk⟩ and ⟨P ′
1, P

′
2, . . . , P

′
k⟩, respectively. Since

p1 and p2 are different, without loss of generality we can assume that there
exists an integer 1 ≤ t ≤ k such that Pt ̸= P ′

t and x ∈ Pt − P ′
t .

1. x = 0. If x = 0, then 0 ∈ Pi for all 1 ≤ i ≤ k and the state p1 is
a final state of A. Oppositely, since x /∈ P ′

t , none of P ′
i contains 0,

which makes the state p2 a nonfinal state. Therefore, p1 and p2 are
distinguishable.

2. x > 0. For this case, we claim that δ(p1, a
mt−1−x
t ca) ∈ F . In the DFA

At, the transition function δt on the input word amt−1−x
t takes the

state x to mt−1. The input letter c does not change the state mt−1
and the letter a takes from mt − 1 to 0. The last a-transition also
adds 0 into the other components in p1 according to the definition of
A. Thus, the resulting state is final.

Next, we show that δ(p2, a
mt−1−x
t ca) /∈ F . Since x /∈ P ′

t , it is easy
to see that mt − 1 /∈ δ(P ′

t , a
mt−1−x
t ). Note that 0 may be added

into the other components in p2 if the state 0 in At is passed by
when processing the input word amt−1−x

t . However, since x > 0, it
is impossible for a computation from the newly added 0’s to reach
mt−1 on amt−1−x

t . Then the input letter c removes the 0 in P ′
i for all

1 ≤ i ≤ k. The last input letter a shifts the states in δ(P ′
t , a

mt−1−x
t c)

by 1 but none of its elements can reach 0 because it does not contain
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mt − 1. The a-transition does not change the other elements in P2.
Clearly, the resulting state is nonfinal. Thus, the states p1 and p2
are distinguishable.

Since all states in A are reachable and distinguishable, A is a minimal DFA. 2

This lower bound coincides with the upper bound in Theorem 3.1. Thus, it

is the state complexity of (
k∪

i=1

L(Ai))
∗.

4. State complexity of (
k∪

i=1

Li)
2

In this section, we consider the state complexity of (
k∪

i=1

Li)
2, where Li, 1 ≤

i ≤ k, k ≥ 2 are regular languages accepted by ni-state DFAs. As we mentioned
in Section 1, this combined operation can be viewed as a combination of (1)
union and square, or (2) union-catenation ((L1∪L2)L3) and union, or (3) union
and catenation-union (L1(L2 ∪L3)). It was shown that the state complexity of
L2
1 is n12

n1 − 2n1−1 [24] and the state complexity of L1 ∪ L2 is n1n2 [21, 29].
Thus, for combination (1), we can get an upper bound through mathematical
composition

k∏
h=1

nh · 2
k∏

i=1

ni

− 2

k∏
j=1

nj−1

Next, we consider (
k∪

i=1

Li)
2 as the second combination. The state complexity

of (L1 ∪ L2)L3 was proved to be n1n22
n3 − (n1 + n2 − 1)2n3−1 in [2]. Then its

naive mathematical composition with the state complexity of union is

k∏
h=1

nh · 2
k∏

i=1

ni

− (n1 +
k∏

j=2

nj − 1)2

k∏
l=1

nl−1

which is better than the first upper bound.
Now, let us consider the last combination. In [3], the state complexity of

L1(L2 ∪ L3) is shown to be

(n1 − 1)[(2n2 − 1)(2n3 − 1) + 1] + 2n2+n3−2

and its naive mathematical composition with the state complexity of union is

k∏
h=1

(nh − 1)[(2n2 − 1)(2
n1

k∏
i=3

ni

− 1) + 1] + 2

k∑
j=1

nj−2

which is the best among the three upper bounds.
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In the following, we will show that the state complexity of (
k∪

i=1

Li)
2 has a

similar form with the third bound. Again, although the two state complexities
look similar, the proofs vary a lot because one is a general combined operation
for k ≥ 2 and the other is a specific combined operation. Besides, the base
case of the combined operation when k = 2, that is, (L1 ∪L2)

2, has never been
studied. Its state complexity is obtained in this paper as a case of the general
operation.

Theorem 4.1. Let Li, 1 ≤ i ≤ k, k ≥ 2 be regular languages accepted by DFAs

of ni states and fi final states. Then (
k∪

i=1

Li)
2 is accepted by a DFA of no more

than

k∏
h=1

(nh − fh)[
k∏

i=1

(2ni − 1) + 1] + [
k∏

j=1

nj −
k∏

l=1

(nl − fl)]2

k∑
m=1

nm−k
.

states.

Proof. For 1 ≤ i ≤ k, let Li = L(Ai) and Ai = (Qi,Σ, δi, si, Fi) be a DFA of
ni states and fi final states. We construct a DFA A = (Q,Σ, δ, s, F ) to accept

the language (
k∪

i=1

Li)
2. We define the state set Q to be Q = P ∪R ∪ T , where

P = {⟨p1, p2, . . . , pk, P1, P2, . . . , Pk⟩ | pi ∈ Qi − Fi, Pi ∈ 2Qi − {∅}, 1 ≤ i ≤ k},
R = {⟨p1, p2, . . . , pk, ∅, . . . , ∅⟩ | pi ∈ Qi − Fi, 1 ≤ i ≤ k},
T = {⟨p1, p2, . . . , pk, {s1} ∪ P1, . . . , {sk} ∪ Pk⟩ | ∃pj(pj ∈ Fj), Pi ∈ 2Qi−{si}, 1 ≤ i, j ≤ k}.

The initial state s is

s =

{
⟨s1, s2, . . . , sk, ∅, ∅, . . . , ∅⟩, if si /∈ Fi, 1 ≤ i ≤ k;
⟨s1, s2, . . . , sk, {s1}, {s2}, . . . , {sk}⟩, otherwise.

We define the set of final states F to be

F = {⟨p1, p2, . . . , pk, P1, P2, . . . , Pk⟩ ∈ Q | ∃i(Pi ∩ Fi ̸= ∅), 1 ≤ i ≤ k}.

For any p ∈ Q and a ∈ Σ, the transition function δ is defined as:

δ(p, a) =

{
⟨p′1, p′2, . . . , p′k, P ′

1, P
′
2 . . . , P

′
k⟩, if p′i ∩ Fi = ∅ for all 1 ≤ i ≤ k;

⟨p′1, p′2, . . . , p′k, P ′
1 ∪ {s1}, P ′

2 ∪ {s2}, . . . , P ′
k ∪ {sk}⟩, otherwise,

where p′i = δi(pi, a) and P ′
i = δi(Pi, a), 1 ≤ i ≤ k.

An arbitrary state in A is a 2k-tuple whose first k components can be viewed

as a state in the DFA accepting
k∪

i=1

Li constructed through cross-product and

last k components components are subsets of Q1, Q2, . . ., Qk, respectively.

11



If the first k components of a state are non-final states in A1, A2, . . ., Ak,
respectively, then the last k components are either all empty sets or all nonempty
sets, because the last k components always change from the empty set to a non-
empty set at the same time. This is why P and R are subsets of Q.

Also, we notice that if at least one of the first k components of a state in
A is final in the corresponding DFA, then the last k components of the state
must contain the initial states of A1, A2, . . ., Ak, respectively. Such states are
contained in the set T .

It is easy to see that A accepts (
k∪

i=1

Li)
2. Now let us count the number of

states in A. The cardinalities of P , R and T are respectively

|P | =
k∏

h=1

(nh − fh)[
k∏

i=1

(2ni − 1)], |R| =
k∏

h=1

(nh − fh),

|T | = [
k∏

j=1

nj −
k∏

l=1

(nl − fl)]2

k∑
m=1

nm−k
.

Thus, the total number of states in A is |P |+ |R|+ |T | which is the same as the
upper bound shown in Theorem 4.1. 2

Next, we show this upper bound can be reached.

Theorem 4.2. For any integer ni ≥ 3, 1 ≤ i ≤ k, there exist a DFA Ai of ni

states such that any DFA accepting (
k∪

i=1

L(Ai))
2 needs at least

k∏
h=1

(nh − 1)[

k∏
i=1

(2ni − 1) + 1] + [

k∏
j=1

nj −
k∏

l=1

(nl − 1)]2

k∑
m=1

nm−k

states.

Proof. For 1 ≤ i ≤ k, let Ai = (Qi,Σ, δi, 0, {ni − 1}) be a DFA, where
Q1 = {0, 1, . . . , ni − 1}, Σ = {ai | 1 ≤ i ≤ k} ∪ {bj | 1 ≤ j ≤ k} ∪ {c} and the
transitions of Ai are

δi(q, ai) = q + 1 mod ni, q = 0, 1, . . . , ni − 1,

δi(q, aj) = q, j ̸= i, q = 0, 1, . . . , ni − 1,

δi(1, bi) = 0, δi(q, bi) = q, q = 0, 2, 3 . . . , ni − 1,

δi(q, bj) = q, j ̸= i, q = 0, 1, . . . , ni − 1,

δi(q, c) = q + 1 mod ni, q = 0, 1, . . . , ni − 1.

The transition diagram of Ai is shown in Figure 2.

Now we construct the DFA A = (Q,Σ, δ, s, F ) accepting (
k∪

i=1

L(Ai))
2 exactly

as described in the proof of Theorem 4.1. The number of states in A is clearly

k∏
h=1

(nh − 1)[
k∏

i=1

(2ni − 1) + 1] + [
k∏

j=1

nj −
k∏

l=1

(nl − 1)]2

k∑
m=1

nm−k
.

12



Figure 2: Witness DFA Ai for Theorems 4.2

Next, we will prove that A is a minimal DFA.

(I) We first need to show that every state

p = ⟨p1, p2, . . . , pk, P1, P2, . . . , Pk⟩ ∈ Q

is reachable from the initial state s = ⟨0, 0, . . . , 0, ∅, ∅, . . . , ∅⟩. The reacha-
bility of p can be proved by considering the following three cases.

1. pi /∈ Fi, Pi = ∅, 1 ≤ i ≤ k.

We can always find a string w = ap1

1 ap2

2 · · · apk

k such that δ(s, w) = p.
Therefore the state p is reachable in this case.

2. |P1| ≥ 1, |P2| = |P3| = . . . = |Pk| = 1.

Since the order of the operands of the union operation does not mat-
ter, we just assume |P1| ≥ 1 and |P2|, . . ., |Pk| be one without loss
of generality. The cases when |Pi| ≥ 1, |P1| = |P2| = . . . = |Pi−1| =
|Pi+1| = . . . = |Pk| = 1 are symmetric.

Assume P1 = {q11, q12, . . . , q1m1} ⊆ Q1, q11 < q12 < . . . < q1m1 ,
Pj = {qj1} ⊆ Qj , 2 ≤ j ≤ k. Let

U = {u11, . . . , u1m1} = {(q1l − p1) mod n1 | q1l ∈ P1, 1 ≤ l ≤ |P1|}.

and u11 < u12 < . . . < u1m1
. Then the state

p =

{
δ(s, w1w2), if pi /∈ Fi for all 1 ≤ i ≤ k;
δ(p′, w′

2w
′
3 · · ·w′

k), otherwise,

where

p′ = ⟨p′1, p′2, . . . , p′k, P1, P
′
2, . . . , P

′
k⟩,

w1 = an1
1 (a1b1)

u1m1−u1(m1−1)an1
1 (a1b1)

u1(m1−1)−u1(m1−2) · · · an1
1 (a1b1)

u12−u11

an1
1 (a1b1)

(u11−1)mod n1ap1

1 ,

w2 = (a2b2)
u21ap2

2 (a3b3)
u31ap3

3 · · · (akbk)uk1apk

k .

and for 1 ≤ i ≤ k, 2 ≤ j ≤ k

p′i =

{
pi, if pi /∈ Fi;
pi − 1, otherwise,
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P ′
j =

{
{0}, if pj /∈ Fj ;
{nj − 1}, otherwise,

w′
j =

{
ε, if pj /∈ Fj ;
ajbj , otherwise.

It is easy to see that

δ(s, w1) = ⟨p1, 0, . . . , 0, P1, {0}, . . . , {0}⟩

and
δ(⟨p1, 0, . . . , 0, P1, {0}, . . . , {0}⟩, w2) = p.

Note that the state p′ has been proved to be reachable from s because
p′i /∈ Fi for every 1 ≤ i ≤ k, and its (k+1)th component is P1 instead
of P ′

1.

3. |P1| ≥ 1, |P2| ≥ 1, . . . , |Pt| ≥ 1, |Pt+1| = . . . = |Pk| = 1, 2 ≤ t ≤ k.

For this case, we use induction on t to prove that p is reachable. Case
2 can be used as the base of the induction.

Induction step: Let |Pi| = mi, 1 ≤ i ≤ k. Assume any state in A
such that |P1| = m1 ≥ 1, |P2| = m2 ≥ 1, . . ., |Pt−1| = mt−1 ≥ 1,
|Pt| = |Pt+1| . . . = |Pk| = 1, 2 ≤ t ≤ k, can be reached from the initial
state s. Now we prove that any state p such that |P1| = m1 ≥ 1,
|P2| = m2 ≥ 1, . . ., |Pt| = mt ≥ 1, |Pt+1| = |Pt+2| . . . = |Pk| = 1 can
also be reached.

Assume Pi = {qi1, qi2, . . . , qimi} ⊆ Qi, qi1 < qi2 < . . . < qimi , 2 ≤
mi ≤ ni, Pj = {qj1} ⊆ Qj , 1 ≤ i ≤ t, t+ 1 ≤ j ≤ k. Let

U = {uh1, . . . , uhmh
} = {(qhl−ph) mod nh | qhl ∈ Ph, 1 ≤ h ≤ k, 1 ≤ l ≤ mh}.

and ui1 < ui2 < . . . < uimi .

In the following, we first consider the case when at least one of p1,
p2, . . ., pk is a final state in the corresponding DFA.

(3.1) ∃h(ph ∈ Fh), 1 ≤ h ≤ k

Consider the state

p′ = ⟨p′1, p′2, . . . , p′t−1, 0, p
′
t+1, . . . , p

′
k, P

′
1, P

′
2, . . . , P

′
t−1, {0}, P ′

t+1, . . . , P
′
k⟩

where

p′i =

 pi, if pi /∈ Fi, i ̸= t;
pi − 1, if pi ∈ Fi, i ̸= t;
0, if i= t;

P ′
i =


{0}, if pi /∈ Fi, i > t;
Pi, if pi /∈ Fi, i < t;
{ni − 1}, if pi ∈ Fi, i > t;
{ni − 1, qi2 − 1, qi3 − 1, . . . , qimi − 1}, if pi ∈ Fi, i < t;
{0}, if i = t;
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for 1 ≤ i ≤ k. Note that 0 ∈ Pj for all 1 ≤ j ≤ t and Pt+1 = Pt+2 =
. . . = Pk = {0} when ∃h(ph ∈ Fh), 1 ≤ h ≤ k and |Pt+1| = |Pt+2| =
. . . = |Pk| = 1. According to the induction hypothesis, the state p′ is
reachable from the initial state. Then

p = δ(p′, w3w
′
1w

′
2 · · ·w′

k)

where

w3 = ant
t (atbt)

utmt−ut(mt−1)ant
t (atbt)

ut(mt−1)−ut(mt−2) · · · ant
t (atbt)

ut2−ut1

ant
t (atbt)

(ut1−1)mod ntapt

t ,

w′
i =

 ε, if pi /∈ Fi or i = t;
aibi, if pi ∈ Fi, qi2 > 1, i ̸= t;
ai, if pi ∈ Fi, qi2 = 1, i ̸= t.

(3.2) ph /∈ Fh for all 1 ≤ h ≤ k

Let us consider the following state:

p′′ = ⟨n1 − 1, n2 − 1, . . . , nk − 1, P ′′
1 , P

′′
2 , . . . , P

′′
k ⟩

where

P ′′
i =

{
{0} ∪ {(uij − ui1) mod ni | 2 ≤ j ≤ mi}, if 1 ≤ i ≤ t;
{0}, if t+ 1 ≤ i ≤ k.

The state p′′ has been proved to be reachable in Case (3.1) because
pi ∈ Fi for all 1 ≤ i ≤ k. Then the state

p = δ(p′′, cw′′
1w

′′
2 · · ·w′′

k),

where
w′′

i = (aibi)
(ui1−1)mod niapi

i , 1 ≤ i ≤ k.

Now we have proved that all the states in A can be reached from s.

(II) Any two different states p and p′ in Q are distinguishable.

Assume that

p = ⟨p1, p2, . . . , pk, P1, P2, . . . , Pk⟩,
p′ = ⟨p′1, p′2, . . . , p′k, P ′

1, P
′
2, . . . , P

′
k⟩.

1. ∃t(Pt ̸= P ′
t ), 1 ≤ t ≤ k.

Let x ∈ Pt − P ′
t without loss of generality. Then there exists a word

w such that

δ(p, w) = ⟨0, . . . , 0, rt, 0, . . . , 0, {0}, . . . , {0}, Rt, {0}, . . . , {0}⟩ ∈ F,

δ(p′, w) = ⟨0, . . . , 0, r′t, 0, . . . , 0, {0}, . . . , {0}, R′
t, {0}, . . . , {0}⟩ /∈ F,
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where

w = ant−1−xw1w2 · · ·wt−1wt+1wt+2 · · ·wk,

wj = (ajbj)
nj , 1 ≤ j ≤ k, j ̸= t.

It is easy see that Rt ∩ Ft ̸= ∅ whereas R′
t ∩ Ft = ∅.

2. ∃t(pt ̸= p′t), 1 ≤ t ≤ k and Pi = P ′
i for all 1 ≤ i ≤ k.

For this case, there exists a word w′ such that

δ(p, w′) = ⟨0, . . . , 0, R1, {0}, . . . , {0}⟩ ∈ F,

δ(p′, w′) = ⟨0, . . . , 0, R′
1, {0}, . . . , {0}⟩ /∈ F,

where

w′ = w1w2 · · ·wt−1wt+1wt+2 · · ·wkwt,

wj = (ajbj)
nj , 1 ≤ j ≤ k, j ̸= t,

wt = ant+1−pt

t (atbt)
nt−2an1

1 atbt.

We can see that R1 ∩ F1 ̸= ∅ whereas R′
1 ∩ F1 = ∅.

Since all the states in A are reachable and pairwise distinguishable, A is a

minimal DFA. Therefore, any DFA that accepts (
k∪

i=1

L(Ai))
2 needs at least

k∏
h=1

(nh − 1)[

k∏
i=1

(2ni − 1) + 1] + [

k∏
j=1

nj −
k∏

l=1

(nl − 1)]2

k∑
m=1

nm−k

states. 2

Since this lower bound coincides with the upper bound in Theorem 4.1, it is

the state complexity of the combined operation (
k∪

i=1

Li)
2.

5. Conclusion

In this paper, we established the state complexities of two general combined

operations: (
k∪

i=1

Li)
∗ and (

k∪
i=1

Li)
2, where Li, 1 ≤ i ≤ k, k ≥ 2 are regular

languages. They both have a similar form with the state complexities of their
participating combined operations. It seems that considering combined opera-
tions as combinations of participating combined operations instead of individual
component operations can give better upper bounds.

The results are both proved with an alphabet of the size 2k + 1. It is
interesting to investigate if the size can be reduced. However, it is impossible
to design a worst-case example for the two combined operations for arbitrary
k ≥ 2 and ni ≥ 3 with a fixed alphabet. This is because there are a limited
number of different DFAs with a fixed number of states if the alphabet is fixed.
Therefore, when k is large enough, some of the operand DFAs with the same
number of states may be indeed the same according to pigeonhole principle [11].
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