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The notions of density, thinness, residue and ideal in a free monoid can all be expressed in terms 
of the infix order. Guided by these definitions we introduce the same notions with respect to 
arbitrary binary relations. We then investigate properties of these generalized notions and 
explore the connection to the theory of codes. We show that, under certain assumptions about 
the relation, density is preserved by an endomorphism or the inverse of an endomorphism if and 
only if - essentially - the endomorphism induces a permutation of the generators of the frc:e 
monoid. 
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1. INTRODUCTION 

A language L - a set of words - over an alphabet Xis said to be dense if 
every word u  over Xis the infix of some word v in L, that is, there are words 
x  and y over X such that v = x u  y. Suppose that X and Y are alphabets and 
that cp is a (homo-)morphism of the set X* of words over X into the set Y of 
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166 H. JURGENSEN et al. 

words over Y where the multiplication of words is their concatenation and 
where the empty word X acts as an identity element. The morphism cp is said 
to preserve density if cp(L) is dense for every dense language L over X; 
similarly, cp- ' preserves density if cp- '(L) is dense for every dense language 
over Y. It is a natural question to ask: which morphisms or inverse 
morphisms preserve density? 

The case of X= Y is of particular interest from the point of view of 
applications in language and coding theory as iteration of a morphism is a 
very common operation there - requiring X= Y of course. Hence, in this 
paper, we nearly always assume that X= Y. 

The case of 14 < I Y] is ruled out by Proposition 6.6 below as there are no 
density preserving morphisms in this case. On the other hand, the case of 
14 > 1 Y] seems to be quite different from that of 14 = I Y] - or X= Y - and 
characterizing those morphisms that preserve density is an open problem. 

A precursor to the present paper1 answered this question. During the 
revisions2 of that paper it was found that some of the main results had 
been proved independently in [12]. A careful analysis of the proofs indicated 
that an essentially identical characterization could be established for 
morphisms or inverse morphisms preserving other kinds of densities. These 
density notions arise naturally in the theory of codes (see [I]) as follows: 
Many interesting and useful classes of codes can be defined as classes of 
languages satisfying some independence property and, in many cases, this 
property can be expressed in terms of a binary relation. For example, the 
class of infix codes over the alphabet X consists of all languages L, such 
that X 4 L and no word u E L is an infix of a different word v E L. Writing 
u 5 iv to mean that u is an infix of v, the independence condition defining 
infix codes says: 

Vu, V E L  ( u s i  V +  u =  v). 

Similar characterizations by binary relations exist for many other classes of 
codes, some of which are provided further below.3 

Given a binary relation p on X* the case of 5 i = e suggests mechanisms 
for the definition of density, residues, ideals, closure, independence and 

'written by L. K, and G. T. and accepted a few years ago by Semigroup Forum, but 
withdrawn (and hence not published) by the authors as some of the main results had been 
proved independently in [12]. 

*NOW also involving H. J. 
'A detailed discussion of this type of connection is provided in [2,3]; for a summary see 111, 

where also error-detection and error-correction properties of such codes and their usability for 
information transmission over noisy channels are discussed. 
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THEORY OF CODES 167 

maximality with respect to Q. These notions turn out to be meaningful 
beyond just their obvious r6les as generalizations. For example, in [I l] and 
[4] meta-constructions are proposed to obtain maximal independent sets with 
respect to binary relations which expose the core properties of similar 
constructions known so far only for very few classes of codes. 

After establishing the notation and reviewing some basic notions in 
Section 2 of this paper and briefly discussing the usual notion of density in 
Section 3, we define density etc., with respect to an arbitrary binary relation 
Q and establish some of the basic properties of these notions in Section 4. A.s 
has already been noted in the context of the theory of codes (see [2,3,1]) the 
monoid structure of A"' plays no rcile in this part of the theory; hence the 
general theory is developed for relations on arbitrary sets. The interesting 
applications in the theories of languages and codes, of course, need to refer 
to the structure of A?. This connection is indicated in Section 5. Section 6 
contains the main results of this paper: Given Q, characterize the morphisms 
or inverse morphisms that preserve density with respect to Q. For many 
meaningful relations Q, these characterizations are simple - or even the 
same. Section 7 contains a few minor, but useful consequences. In Section 8 
we present some conclusions. 

A final remark in this Introduction: Some of the proofs in this paper may 
appear rather pedantic; we found that, at this level of generality, it was all 
too easy to jump to wrong conclusions just because they were so very 
obviously true. This made us build all the arguments in rather careful detail 
- admittedly at the risk of sometimes being "pedestrian". This attention to 
detail has eliminated several mistakes - that is, things obviously or trivially 
true, which were subtly wrong - and also helped removing unnecessary 
assumptions in many cases. 

2. NOTATION AND BASIC NOTIONS 

In this section we introduce the notation used throughout the paper and 
review some basic notions. 

The symbol N denotes the set of positive integers, and No = N U (0). For a 
set S, let IS1 denote the cardinality of S and let 2S denote the set of all subsets 
of S. Let S and T be sets and a a mapping of S into T. For a subset S' of S, 
als denotes the restriction of a to S'. 

For a binary relation Q c S x T, the set 
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is the domain of e. Moreover, 

is the inverse of e, and, for s E S, 

Consequently, 

for t E T. 
A closure operator on a set S is a mapping C of 2S into 2S with 

the following properties. For any L, LIES with LEL' one has CLECL', 
LE CL, and CCL = CL. 

Let X be an alphabet, that is, a finite non-empty set. Then X is the set of 
all words over X including the empty word A. Let w EX+ and a E X. Then Iwla 
is the number of occurrences of a in w and Iwl= Ca , lwla is the length of 
w. A language over Xis a subset of F. For a language L, the alphabet of L, 
alph(L), is the set of all a E X with Iwla > 0 for some w E L. 

A word x E X* is said to be primitive if x = yn for y E XS implies n = 1. Let 
Q be the set of all primitive words. For a word x e  X ,  let f i  denote the 
unique primitive word of which x is a power. For a language L, let 
&= {& IxEL). 

Let x, y E X*. The shufle product of x and y is the set 

that is, the shuffle product of x and y is the set of all words that can be 
obtained from x and y by shuffling them into each other while preserving the 
order of symbols in x and in y.  For languages L1, L2EX*, the shuffle product 
is defined as 

Most of the results of this paper become trivial when 14 = 1 or, in 
this case, require extra, but trivial treatment. For this reason, we assume 
throughout this paper that all alphabets have at least 2 elements. More- 
over, without loss of generality, we assume that the symbols a and b are 
distinct elements of any alphabet, unless this is explicitly or implicitly 
excluded. 
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THEORY OF CODES 169 

3. DENSITIES 

Let X be an alphabet. A language Z is an ideal if X*ZX*GZ. An ideal I is 
principal if I= PwX* for some w E X*; in this case w is the generator of I. 

A language L is said to be dense if, for every u E X*, there exist x, y E A" 
such that x u y ~ L .  A language that is not dense is said to be thin. The 
residue of a language L is the set 

Hence, L is dense if and only if W(L) = 0. Equivalently, L is dense if its 
intersection with every principal ideal of X* is non-empty. 

When the alphabet Xis a singleton set, then a language LEX* is dense if 
and only if L is infinite. To exclude such trivial cases, we assumed above that 

I4 > 1. 
On X* consider the injix-order 5 i given by 

x 5 i y if and only if y EFXX* 

for all x, YEP. We re-express the notions of density, residue, and ideal 
using the infix-order. A language L is dense if and only if, for every u E X*, 
there is a v E L such that u 5 i v. The residue of L is the set 

For a word w EX*, the ideal PwX* generated by w is the set 

{v I VEX*, w si  v). 

Thus, the definition of the notions of density, residue, and ideal follow a 
general schema, when defined in terms of a relation; this schema is to be 
explored in the rest of this paper. For some part of the analysis not even the 
multiplicative structure of X* is relevant. Therefore, we introduce and 
discuss the basic structural properties simply on sets, turning back to free 
monoids only when their properties play a r61e. However, much of the 
analysis is motivated by questions arising in the theory of codes. Hence the 
reader might want to keep in mind concrete examples from this theory. 

4. DENSITY, RESIDUE, IDEAL, CLOSURE, 
INDEPENDENCE, MAXIMALITY 

For this section, let S be an arbitrary, but fixed, non-empty set. We 
introduce abstract notions of density, thinness, residue, ideal, closure, and 
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170 H. JffRGENSEN el al. 

maximality with respect to a binary relation on S. Then we derive some 
properties of these notions depending on basic properties of the relation, but 
independent of any structure of the set S. 

DEFINITION 4.1 Let Q be a binary relation on S and let LGS. 

(1) The set L is said to be Q-dense if, for every x E S, there is a y E L such 
that (x, y) E Q. 

(2) The set L is pthin if it is not pdense. 
(3) The @-residue of L is the set 

(9) The set L is a pideal if, for every x E L and every y E S, the property 
(x, y) E e implies y EL. 

(5) The pclosure of L is the set 

(6) The set L is a principal pideal if it is an ideal and if there is an element 
w E L such that L = C,{w). 

(7) The set L is pindependent if, for any x, y E L, (x, y) E Q implies x = y. 
(8) The set L is pmaximal if it is pindependent and if no proper superset of 

L is pindependent. 

For S=X* and Q =  5 i, the notions of qdensity, @-thinness, @-residue, 
and pideal coincide with the usual ones of density, thinness, residue, and 
ideal; moreover, in this case the pclosure of L is the ideal generated by L; 
hence, the principal pideals are precisely the principal ideals; finally, for this 
choice of Q, the family of pindependent sets is the family of infix codes (see 
[I] for details). 

In the sequel, for a binary relation ,g and x, y E S we use, interchangeably, 
the notations (x, y) E Q and x ~ y .  If the relation Q is the infix order 5 i on 
S= X*, we use the terms dense, thin, residue, and ideal instead of 5 i-dense, 
5 i-thin, 5 i-residue and 5 i-ideal; moreover, instead of 5 i-closure we say 
ideal generated by . . . 

In the rest of this section we derive several elementary properties of the 
notions introduced in Definition 4.1. 

LEMMA 4.2 For any binary relation e on S, the operator C, is monotonic. 

Proof Consider L, L' E S with LSL' and y E C, L. Then there is x E L with 
(x,y)€@. B y L S L t , x ~ L ' .  Hencey€C,Lf. 
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THEORY OF CODES 1?1 

LEMMA 4.3 Let Q be a binary relation on S. The following statements are 
equivalent. 

(1) The relation Q is transitive. 
(2) For every set LCS, the set C, L is a @-ideal. 
(3) For every set LcS, the Q-residue of L is either empty or a pideal. 

Proof First suppose Q is transitive. Consider LCS, y E C, L, and z E S such 
that (y, z) E Q. There is an x E L such that (x, y) E Q. By transitivity, (x, z) E Q, 

hence z E C, L. This proves (2). 
For (3), assume that W,(L) is non-empty and consider X E  W,(L) and 

y E S with (x, y) E Q. Suppose y $ W,(L). Then there is a z E L with (y, z) E Q. 

By transitivity, (x, z) E e, hence x $ W,(L), a contradiction. This proves (3). 
For the converse, suppose that Q is not transitive. Then there are x, y, 

z E S such that (x, y) E Q, (y, z) E Q, and (x, z) $ e. 
For (2), let L =  {x). Then y E C, L, but z $ C, L and C, L is not a @-ideal. 

For (3), let L = {z). Then x E W,(L) and y $ W,(L), that is, W,(L) is non- 
empty and not a pideal. 

LEMMA 4.4 Let Q be a binary relation on S. The following statements hold 
true: 

(1) If Q is reflexive then, for every set LCS, LCC, L. 
(2) Ife is transitive then, for every set LCS, C, C&C, L with equality when p 

Q is reflexive. 
(3) If e is reflexive and transitive then C, is a closure operator. On the other 

hand, if Q is not transitive then C, is not a closure operator. 

Proof If Q is reflexive then (x, x) E Q for all x E S, hence LSC, L. 
We now assume that Q is transitive. Consider z E C, C, L. Then there is 

y E C, L with (y, z) E Q and, consequently, there is x E L with (x, y) E Q. By 
transitivity, (x, z) E Q and, therefore, z E C, L, that is, C,C, LCC, L. If Q is 
also reflexive then C&C,C, L. 

Using Lemma 4.2, this proves that C, is a closure operator when Q is 
reflexive and transitive. 

Finally, assume that Q is not transitive. Consider x, y, z E S with (x, y) E e, 
(y, z) E Q, and (x, z) $! Q. Let L = {x). Then z $ C, L, but z E C,C, L. 

In Lemma 4.4, reflexivity is essentially only needed to establish that a set 
L is contained in its closure. One could, of course, avoid the assumption of 
reflexivity by changing Definition 4.1(5), the definition of the pclosure, to 
include this condition. We opted for the simpler definition to make 
whichever assumptions would be needed explicit. 
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LEMMA 4.5 Let @ be a binary relation on S. The following statements hold 
true. 

(1) S is @-dense if and only if dom @ = S. 
(2) Let @ be repexive. Then S is @-dense and, for every set LES, one has 

W,(L)n L =  0. 

Proof For S to be pdense it is necessary and sufficient that, for every x E S, 
there exists a y E S with (x, y) E Q. This proves (1). 

Assume Q is reflexive. Then, in particular, dom Q = S, hence S is @-dense 
by (1). Now consider x E W,(L). Then there is no y E L such that (x, y) E @. 

As (x, x) E Q, it follows that x 4 L. This proves (2). 

(1) Let LES and let Q be a binary relation on S. The set L is @-dense if and 
only if W,(L) = 0. 

(2) Let LlCL2CS and let Q be a binary relation on S. Then W,(L2)s W,(Ll). 
If Ll is @-dense then L2 is pdense. 

(3) Let el and ~2 be two binary relations on S such that elEp2 and let LCS. 
Then W,(L) E W,, (L). I f  L is el-dense then it is e2-dense. 

Proof For the proof of (I), suppose that WJL) is non-empty. Consider 
x E W,(L). Then, for all y E L, (x, y) 4 Q; hence, L is not pdense. Conversely, 
if L is not pdense then there is a element x E S such that (x, y) 4 @ for all 
y E L and W,(L) is non-empty. 

For (2), consider x E W,(L2). Then, for all Y E  L2, one has (x, y) 4 Q. As 
LI G L2, one has (x, y) 4 Q for all y E L1. Thus x E W,(L1). If L1 is @-dense 
then W,(L1) = 0, hence W,(L2) = 0 and L2 is @-dense by (1). 

For (3), consider XEW,(L). Then, for all  EL, (x,y)4@2; 
hence (x, y) $ el, that is, x E W,, (L). The remaining statement follows 
by (1). 

For any binary relation Q on a set S, let V,(S) be the family of all pdense 
sets in S. We write V, instead of VJS) when S is understood. 

LEMMA 4.7 Let and e2 be binary relations on S. 

Proof For (I), consider L E D,,",. Then, for every u E S, there exists v E L 
such that (u, v) E el n ~ 2 ,  that is, (u, v) E el and (u, v) E ~ 2 .  This implies 
LEV,, nv,. 
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THEORY OF CODES 173 

For the proof of (2), first consider L  E V,, U 27,. Let u E S. There exists 
v E L such that (u, v) E or (u, v) E p2, which implies (u, v) E el U ~ 2 .  

Consequently, L  E V,,", . w 

The inclusions stated in Lemma 4.7 are strict in genera1 as proved by the 
following examples. 

(1) Let S= X ,  el = {(w, wa)lw E X*) and p2 = {(w, wa2)(w E X ) .  On the one 
hand, el n ~2 = 0 and, therefore, Vein, = 0. On the other hand, 

V,, n V, = {L 1 L E X*, X*a ux*a2  E L) 

is non-empty. 
(2) Let S = {a, b, c, 4 and el = {(a, b), (b, b)), .p2 = {(c, d), (d, d)). Then L = 

{b, d) E V,,ue, while V,, U 27, = 0. 

We now turn to some basic properties of pindependence. Let L, be the 
set of pindependent subsets of S. In the theory of languages and codes, 
independence is used to define classes of languages or codes; there the 
independence often models certain requirements for information transmis- 
sion - for a few examples see the next section of this paper; details can be 
found, for instance, in [I]. 

LEMMA 4.8 Let Q be a binary relation on S and let LES. I f L  E L, and L is 
qdense then L is pmaximal. 

Proof Suppose L is not pmaximal. Then there is an element x E S, such 
that x $ L and L  U {x) E L,. Hence, for all y EL, (x, y) $ Q and (y, x) $ @. In 
particular, as (x, y) $ Q for all y E L, L is not @-dense. W 

The converse of Lemma 4.8 is not true in general. The next lemma 
establishes a sufficient condition for the converse conclusion and provides 
the hints for the construction of counter-examples for the general case. 

LEMMA 4.9 Let @ be a reflexive and symmetric binary relation on S. I f  
L  5 L, is pmaximal then L is @-dense. 

Proof L G L, is qmaximal - for any binary relation Q- if and only if, for 
all xES, there is a y € L  such that x = y  or ( x , y ) ~ p  or ( y , x ) ~ @ .  

By reflexivity, if x = y then (x, y) E Q. By symmetry, if (y, x) E e then 
(x, y) E Q. Thus, L is @-dense. H 

On the basis of Lemma 4.9 we now show by example that the converse of 
Lemma 4.8 is not true in general. 
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1 T4 H. J~~RGENSEN et al. 

Example 4.10 

(1) Let S  be a set with at least two elements and let Q be a binary relation on 
S  which is not reflexive. Consider x E S such that (x, x) $ Q. Moreover, 
assume that (x, y) # Q for ally E S and that there is a z E S  \{x) such that 
also (z, x) ef e. Such a set S  and relation p exist. For example, S =  {x, z) 
and Q = 0 or Q = {(z, z)) satisfy these assumptions. Let L = {x, z). Then L 
is qindependent, that is, L E C,. Let L'E L, be qmaximal with LCLt. 
The existence of Lt is guaranteed by Zorn's lemma (see [I] for 
the details). As x # z and (x, y) ef Q for all y E L', the set L' is not @-dense. 

(2) Let S  be a Zelement set, say S= {x, y). Let Q be a binary relation on S 
which is not symmetric; for example, let (x, y) $ Q and (y, x) E e. Such a 
relation e exists. The set L =  b) is pindependent and even pmaximal, 
but not Q-dense. 

5. EXAMPLES: APPLICATION TO CODES AND LANGUAGES 

The abstract notions of density, ideal, residue, independence introduced in 
Section 4 are suggested by constructs investigated in the theory of codes. In 
this case S=X* and Q is a binary relation on X*. As candidates for Q we 
consider, in particular, the following relations, most of which play an 
important rBle in the definition of classes of codes or code-related languages 
[I, 91. Some of these as well as the relations defined further below correspond 
to various error-detection capabilities of codes [I]. 

Example 5.1 Let w and v be arbitrary words in X*. 

(1) Embedding order: w 5 ,  v if and only if there exist n E No and wl, . . . , wn 
and v0, v,, . . . , vn in X* such that w= wlw2.. .w, and V = V O W ~ V ~ W ~ .  . .wnvn. 

(2) Length order: w 5 .v if and only if w = v or Iwl< Ivl. 
(3) Prejx order: w 5 ,  v if and only if v = wx for some x E X*. 
(4) SuJix order: w 5 , v if and only if v = xw for some x E X. 
(5) OutJix relation: w wo v if and only if there are wl, u, w2 E X* such that 

v = wluw2 and w = wlw2. 
(6) Injx order: w 5 i v if and only if v = xwy for some x, y E X*. 
(7) Division order: w 5 d v if and only if v = wx = yw for some x, y E X*. 
(8) Commutation order: w 5 , v if and only if v = xw = wx for some x E A?. 
(9) Power order: w 5 f v  if and only if v = wn for some n 2 1. 

All the relations of Example 5.1 except wo are partial orders. The relation 
wo is not transitive. Its transitive closure is the embedding order. There are 
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THEORY OF CODES 175 

many more special relations of interest in the context of coding theory [ l ,  91. 
As before, for a binary relation Q one considers the class t, of pindependent 
languages. For Q according to Example 5.1(1)-(a), the classes t, are the 
classes of hypercodes, block codes (or uniform  code^),^ prefix codes, suffix 
codes, outfix codes, infix codes, 2-ps-codes, and 2-codes. Some of the 
languages in the classes of 2-ps-codes and 2-codes are not codes in the usual 
sense (see [l] for details). The class of 5 findependent languages is a prop- 
er superset of the class of Zcodes as the language {ababab,abab} is 
5 findependent, but not a Zcode, while, on the other hand, every 2-code is 
5 independent. 

If a language L in L, is @-dense then this means in essence that - with the 
use of L for information transmission over noisy channels in mind - L 
makes very good use of the set ;rC of all possible words; by Lemma 4.8, no 
words can be added to L without violating the condition of pindependence. 

While the assumption of reflexivity is not problematic in the context of the 
theory of codes (with a few exceptions), assuming symmetry is clearly 
unacceptable in that context as most of the important classes of codes would 
be excluded. Thus, Example 4.10 and Lemma 4.9 explain the basic reasons 
why, in the context of the theory of codes, maximality cannot usually be 
expected to imply density. 

The relations of Example 5.1 are ordered by inclusion as follows: 

We also consider the infinite chain 

of binary relations such that wi, = 5 i and 5 i U w, win for n > 1 which is 
defined as follows. 

DEFINITION 5.2 Let n E N. For u, v E X* let (u, v )  E win if and only if 

These relations are a natural generalization of the prefix, suffix, infix and 
outfix relations. They were introduced in [lo] and independently, together 
with three further related  chain^,^ in [5,6,8,7]. For a summary see [I], 

4 ~ e n c e  the subscript 'u' in 5 ,,. 
'T'hese three chains, while interesting in the context of codes, do not add to the present 

considerations as they are interleaved with the chain of the relations wi,. 
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176 H. JORGENSEN et al. 

p. 552 - 553. There the class ti,,= CWii is called the class of injix-shufle codes 
of index n or of in-codes. Note that 

The relations win are reflexive and anti-symmetric, but not transitive for 
n > 1. Their transitive closure is the relation 5 ,. The following example 
shows that, as a consequence of their non-transitivity, the wi,-residue of an 
win-thin language is not an win-ideal in general. 

Example 5.3 Let X =  {a, b) and L = {ababa). Then a3 E Wwi,, (a3, aba2) E 

wi,, (aba2, ababa) E wi,, hence aba2 4 W,*, that is, WWil is not an wi, -ideal. 
Similar examples can be constructed for every n > 2. The construction is 
based on the proof idea of Lemma 4.3. 

Finally, let wb = 5 ,,U 5 s. The class C, is the class of bifix codes (see 
[l, 91). The relation w,, is reflexive and anti-symmetric, but not transitive; 
its transitive closure is the infix order. 

PROPOSITION 5.4 A language L is w,-dense if and only if it is wb-dense. 

Proof Assume that L is wo-dense. Consider u E X" and let v = uu. There 
exists x E XS such that vlxv2 E L were v = vlvz. If lvl 1 5 lul, then lvzl 2 I u I  
and v2 = yu. If x'= vlxy, then x'u E L. If Ivll 2 lul, then similarly there exists 
x" such that ux" EL. Therefore L is wb-dense. 

Conversely, assume that L is wb-dense. We have w&w,; therefore, L is 
wo-dense by Lemma 4.6(3). 

To add some concrete intuition, we briefly discuss the notions of ideal 
and residue for some of the relations of Example 5 .1 .  Let L c P .  

The language L is a 5 ,-ideal if and only if it is a right ideal. Dually, it 
is a 5 Jdeal if and only if it is a left ideal. The <,-residue of L is the 
complement of the set of prefixes of words in L. 

Let n be the minimal length of a word in L. The language L is a 5 .-ideal 
if and only if L= LUX"+'X". The 5 .-residue of L is non-empty if and 
only if L is finite and, in this case, it consists of all the words that are 
strictly longer than the longest word in L. 

The language L is a 5 ,-ideal if and only if L = L I11 A?. The 5 ,-residue 
of L i s  the set Wwith(WII1 X")nL=$. 

, The language L is a 5 fideal if and only if L = L(+). If L is a 5 
ideal then W (L) = (Q\&)(+). Indeed, consider x E W (L). Then, for all 
y e  L and all n e  N, y#Y. We first show that no power of ,LC is in L. 
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THEORY OF CODES 177 

Assume, on the contrary, that there is a y E L and an m e  N such that 
y = (&)m and let x = ( a k .  Then (&"' = xm = yk.  AS L is a I rideal, 
yk E L and yk is a power of x, a contradiction; this proves that, for all y E L 
and all m~ N, y # ( a m .  Therefore, for all Y E  L, ,/j # &, that is, 
& E Q\& and x E (Q\&)(' I .  Conversely, if x E (Q\fi)(+) then & $a. 
Hence, for all y E L and n E N, y # ( a n  and this implies x f  n L = 0. 

We conclude this section with a result that relates e-ideals and e-density 
for reflexive relations Q satisfying the following condition: 

For any non-empty language LGXC which is not @-dense and for any x E L 
there is a y E X*\ L such that (x, y) E Q. 

We call a relation Q with this property an extensive relation. 

PROPOSITION 5.5 Let Q be a rejlexive and extensive binary relation on Xt. 
Then the following statements hold true. 

(1) Every non-empty pideal is e-dense. 
(2) The complement of any qthin language is e-dense. 

Proof Consider a non-empty @-ideal L. Suppose L is not e-dense. Then 
L #X* by Lemma 4.5; hence, the set M =  X*\ L is neither empty nor the 
whole set X*. Let x E L. As e is extensive, there is y E M such that (x, y) E e. 
As L is a e-ideal, y EL. But L n M = 0,  a contradiction. This proves (1). 

Now, for the proof of (2), consider a e-thin language LCX* and let 
M = X+\ L. If L = 0 then M = X*, and M is e-dense by Lemma 4.5 as p is 
reflexive. Thus, we may assume that Lf0. If M=O then L=X*, and L is 
@-dense by Lemma 4.5, a contradiction. Therefore, also M#0. By Lemma 
4.5, W,(L) c M. 

Suppose M is @-thin. Consider x E A? such that, for all y E P, (x ,  y) E e 
implies y $ L. As L is @-thin such an x exists. Then x E W,(L), hence x E M. 
As Q is extensive, there is an element y E X*\ M such that (x, y) E Q. But X*\ 
M = L, hence y E L, a contradiction. Thus, M is not p-thin. 

(1) If @ is a binary relation containing wb then e is extensive. 
(2) If el and @2 are binary relations on X* such that p 1 Q 2  and if el is 

extensive then also ~2 is extensive. 

Proof To prove (I), let L be a non-empty @-thin language. Thus M = P\ L 
is non-empty and not equal to X*. Consider x E L and y E W,(L). Then z E L 
implies (y, z) $ Q and, in particular, y $ z and y $ , z as wb = I, U I , EQ. 
Therefore, xy $ L. On the other hand x 5, xy, hence (x, xy) E Q. This shows 
that Q is extensive. 
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178 H. JORGENSEN et al. 

To prove (2), suppose is extensive and e2 is not extensive. Then there is 
a language L which is e2-thin such that, for some x E L and all y E X*\ L, 
(x,y)$@z. Then, by Lemma 4.6(3), L is also el-thin. Moreover, e l Q 2  
implies that (x, y) $ el for all y EX*\ L. Thus el is not extensive, a 
contradiction. rn 

COROLLARY 5.7 Let Q be a reflexive binary relation on XY such that w&p. 
The following statements hold true. 

(1) Every non-empty @-ideal is pdense. 
(2) I f  LSX* is @-thin then X*\ L is @-dense. 

Proof By Proposition 5.6 the relation Q is extensive. Hence the statements 
hold true by Proposition 5.5. rn 

Corollary 5.7 implies, in particular, that pideals for 

are pdense as these relations are extensive. On the other hand, the rela- 
tion 5 is not extensive. To see this, let p be a primitive word and let 
L =  X' \ pf  . Consider x~ L and y EX*\ L=p*. Then x 5 ,  y implies 
fi = fi, which is impossible. By Proposition 5.6(2), also 5  is not 
extensive. 

The relation 5, is not extensive. For example, consider X= {a, b) and 
L = u p .  Then L is a 5 ,-ideal. As b $, v for all v EL, the language L is not 
<,-dense. As 5, is reflexive it follows from Proposition 5.5(1) that the - 
relation is not extensive. A similar argument shows that not every 5 d-ideal 
is 5 d-dense, hence 5 d is not extensive. 

6. MORPHISMS AND INVERSE MORPHISMS 
PRESERVING DENSITIES 

An endomorphism a of X* is said to preserve @-density if, for any LGX*, 
a(L) is Q-dense whenever L is @-dense; similarly, a-' is said to preserve 
pdensity if, for any LCX*, a - ' ( ~ )  is pdense whenever L is pdense. The 
core problem of this paper is as follows: 

Under which conditions does an endomorphism or the inverse of an 
endomorphism of X* preserve pdensity? This study started with the 
following result, concerning density in the usual sense, found independently 
also in [12]. 
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THEORY OF CODES 179 

PROPOSITION 6.1 Let L be a dense language over the alphabet X, and let a be 
an endomorphism of X*. Then a(L) b dense ifand only galx is apermutation 
of x. 

Although the proof of Proposition 6.1 will be superseded by the proof of a 
more general result, we present it here because it exhibits some essential 
structural features. 

proof6 If alx is a permutation then a(L) is dense. 
For the converse implication, let m = 2 max{la(a)l la E x). If m = 0 then 

a(L) = A, which is not dense. Therefore, m > 0. 
As a(L) is dense, for each b EX, there exist u, v EX such that ubmv E a@). 

The alphabet X being finite, there exists a unique a E X  such that a(a) = bk 
for some positive integer k. 

Suppose that a(a) = bk and k # 1 for some a, b EX. Take c # b, c E X. 
Hence FcbcXL na(L) = 0 and n(L) is not dense, a contradiction. Therefore 
a(a) = b for all b E X and a(X) = X. 

Keeping in mind that density can be defined using the infix order, careful 
examination of the proof shows that very little of it depends on the infix 
order per se. Indeed, the idea of this proof can be carried over to the 
following far more general situation. To state the result, we need one 
auxiliary definition. 

DEFINITION 6.2 Let Q be a binary relation on X* and let a be an 
endomorphism of X*. 

(1) The relation Q is compatible with a if, for all x, y E A?, the inclusion 
(x,y) E e implies (a(x),a(y)) E e. 

(2) The relation Q is compatible with a- ' if, for all x, y E X* and x' E a- '(x), 
y' E a- ( x ,  y) E Q implies (2, y') E e. 

All the relations listed in Example 5.1, except 5 ,, are compatible with 
any endomorphism of XL. The relation 5 ,  is compatible with an endo- 
morphism7 a of XL if and only if a (X)cXn for some n E No. Compatibility 
with a-' is quite different. For each of the relations e of Example 5.1 there 
is an endomorphism a of X* such that p is not compatible with a-'. 

6 ~ h j s  proof is essentially just a paraphrase of the one of 1121. 
' ~ f  a(X)CXn then Ia(x)l =nlxl for every X E  A"; this implies that a is compatible with 5 .. 

For the converse, assume that there are x, y e  X such that < la(y)I. Let n= Ia(x)l, 
m = la(y)l. If n = 0 then y 5 ,, x2, but a(y) $ , a ( x 2 )  = A. Hence, assume that n > 0 and let 
k = 2n + 1 ,  and I= 2m. Then k < I and, therefore, . xi. On the other hand, Ia(fl)l= km = 
2mn+m > In= la(x')l, hence av) $ a(x') .  This proves that a is not compatible with a .  
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180 H. J~RGENSEN et al. 

Consider X= {a, b) and a(a) = ab, a(b) = abab. Let u = ab and v = abab. 
Then u 5 f v, hence (u, v )  E Q for any relation Q of Example 5.1. On the 
other hand, a-'(u) = {a) and aV'(v) = {az, b) and (a, b) 4 Q for any of 
these relations. The relation 5 ,  is compatible with a-' if and only if 
(a(X)( = (4 and a(X) is a prefix code.8 Similarly, the relation 5.  is com- 
patible with a-' if and only if Ia(X)I = 14 and a(X) is a block (or uni- 
form) code. For the other relations of Example 5.1 similar, but more 
complicated conditions arise. The following observation is needed further 
below. 

LEMMA 6.3 Let a be an automorphism of X'. Then each of the relations in 
Example 5.1, each win and also wb is compatible with a- '. 
Proof As a is an automorphism, also a-' is an automorphism. Each of 
the relations is compatible with automorphisms. 

LEMMA 6.4 Let a be an endomorphism of X" and let el and e2 be binary 
relations on X*. If e l Q 2  and a preserves @'-density then a preserves QZ- 
density. 

Proof Consider a @'-dense language L. By Lemma 4.6 L is also e2-dense. 
As a(L) is @,-dense, a(L) is also e2-dense by Lemma 4.6. 

THEOREM 6.5 Let a be an endomorphism of X' and let @ be a binary relation 
on X'. The following statements hold true. 

(1) If Q is reJexive and aJx is a permutation of X then a ( P )  is p-dense. 
(2) If Q is transitive and compatible with a and if a (J?) is e-dense then, for 

every LCX' which is e-dense, also a(L) is pdense. 
(3) If there is an LCX' such that a(L) is @-dense, then a ( F )  is @-dense. 
(4) If Q G w, for some n E N and a ( P )  is @-dense then aJX is a permutation 

of x. 
Proof For (I), as aIx is a permutation of X, a is an automorphism of X', 
hence a ( P )  = X'. Thus, for any x E A?, one has x E a ( F )  and (x, x) E p by 
reflexivity. 

'First suppose that a ( X )  is a prefix code with la(X)I = 14 and consider x, y E a ( F )  such that 
x 5  ? y.  It follows that a is injective; hence, instead of considering a- '  as a relation, we can 
conader it as a mapping of a ( F )  onto F .  If x = X then a- ' ( x )  = X I , a - ' ( y ) .  Hence assume 
that x#X. As a(X)  is a prefix code there are unique words X I , .  . . xn,xn+ 1, .  . . , x,+, E a ( X )  
such that x =  X I . .  ex, and y =xxn+  1. .xn+,. Hence a- ' ( x )  < , a - i (y) .  Conversely, if a ( X )  is 
not a prefix code then there are distinct x', y' E X  such that a(x') 5 ,  a(y') ,  but x' $, y'. 
Similarly, if (a ( X ) ( # ( q ,  then there distinct d ,  y' E X  such that a(x') = a(y'), hence agam 
& ' )  I , but 2 S , Y'. 
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THEORY OF CODES 1El 

For the proof of (2), consider X E P .  As a(X") is @-dense, there is 
z E a(X") with ( x ,  z )  E Q. Let z' E a-  '(z).  As L is Q-dense, there is y' E L with 
(2, y') E Q. Let y = a(y'). Hence y E a (L )  and, by compatibility, ( z ,  y) E Q. 

Transitivity implies ( x ,  y)  E @. 

(3)  Let LCX" be such that a(L )  is @-dense. Since a(L)Ga(X"), then 
Lemma 4.6(2) implies that a(X") is also @-dense. 

(4) Let m = max{la(x)( J x  E X) and t = 2n(m + 1) .  For a E X, consider 
at. As a ( X )  is qdense, there is V E  a(X") such that (a', V )  E Q C win. Thus, 
there are t l ,  . . . , t, and vo, v l ,  vz, . . . , v, E X" such that tl + . + t, = t and 
voatl vl . . . atnv, = v. There is an i such that ti 2 2(m+ 1 )  and therefore, as 
v E a(XL) there is b, E X such that a(b,) = for some k ,  1 5 k(a) < m.  
As this is true for every a, b, is uniquely determined by a. 

Thus, for every a E X there is a positive integer k(a) and a b, E X such that 
a(b,) = ak("). Both b, and k(a) are uniquely determined, that is, the corre- 
spondences a w b, and a w k(a) are mappings. Moreover, as X is finite and 
a is a mapping, the mapping awb ,  is a permutation of X; hence, for every 
b E X, a(b) is a power of some a E X and b = b,. We now show that the 
inverse of the mapping awb,  is equal to a/*, that is, that k(a) = 1 for all 
a E X .  

Assume that k(a) > 1 for some a G X. As 14 2 2, there is c E X  \{a). 
Consider the word u = (ca)"c. As a ( F )  is @-dense, there is v E a(X") such 
that (u ,  v) E Q C Win. Hence u = ul . .u, for some ui E X+ and v = voul v l .  . .u,v, 
for some v i€X" .  Thus, there is an i such that cac < i u i 5  v. This is 
impossible as a(b) is a power of an element of X for every b E Xand k(a) > 1. 
Hence, it follows that k(a) = 1 for all a E X. 

This completes the proof for m > 0. Assume m = 0. Then a ( P )  = {A)  
which is never @-dense. Hence m = 0 is impossible. 

One of the main arguments in the proof of Theorem 6.5(4) can be 
extended to morphisms involving two different alphabets as follows. 

PROPOSITION 6.6 Let X and Y be alphabets, let a : X L - t  Y be a morphism. 
Let Q be a binary relation on Y contained in win - considered on Y - for 
some n E N. I f a ( X " )  is @-dense then the following statements hold true: 

( 1 )  For every a E Y there is an element b E X and a positive integer ko,b such 
that a ( b )  = aka$. 

(2) lYlII4. 

Proof As in the proof of Theorem 6.5(4), define m to be the maximal 
length of a word in a(X) and let t = 2n(m+ 1 ) .  Again the case of m = 0 is 
impossible. 
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For a~ Y, consider at. As a ( F )  is @-dense there is a vca(X+) with 
(at, v) E e. By e G Win, for some VO, v1, . . . , V, E P and some tl, . . . , tn one has 
v = voatl vl . a%, and t = tl+. . + t,. Hence, for at least one ti, 
ti 2 2(m+ 1). The fact that v c a ( F )  implies that there is a b E X and a 
ka,b E N with a(b) = akorb. This proves (1). 

If )X) < ) Y) then (1) is impossible. This proves (2). H 

Thus, with e as in Proposition 6.6, a ( F )  is never @-dense when 14 < I q. 
The case of (4 = (Y) is covered by in essence Theorem 6.5. For the case of 
14 > Ill we conjectured that there is an alphabet X X such that alz is a 
bijection of X onto Y. This is not true as shown by the following example. 

Example 6.7 Let X= {a, b, c) and Y= { x ,  y). Consider the morphism 
a : P given by a(a) = x2, a(b) = y and a(c) = xy. Let Q = 5 i. Every 
word u c P has the form 

with nl, mk 2 0 and n ~ ,  . . . ,nk, ml,. . . ,mk-I> 0. For an integer n, let 
~ ( n )  = 0 if n is even and ~ ( n )  = 1 if n is odd. Let vu E X" be the word 

Then u 5 i a(vu). Thus a ( F )  is 5 i-dense. 
We now derive several immediate consequences of Theorem 6.5. 

COROLLARY 6.8 Let a be an endomorphism of F and let Q be a reflexive and 
transitive binary relation, compatible with a ,  such that Q E win for some n E N. 
The following statements are equivalent. 

(1) alX is a permutation of X. 
(2) a ( F )  is pdense. 
(3) a(L) iS @-dense for some pdense language L. 
(4) a(L) is pdense for all @-dense languages L. 
(5) a(X+) is dense. 
(6) a(L) is dense for some dense language L. 
(7) a(L) is dense for all dense languages L. 

Proof Statement (1) implies (2) by Theorem 6.5(1). Statements (3) and (4) 
follow from (2) by Theorem 6.5(2). Statement (3) and, hence, also Statement 
(4) implies (2) by Theorem 6.5(3). The equivalence of (1) and (6) is stated in 
Proposition 6.1. Statement (1) implies (5) and (7) by Theorem 6.5(1,2). 
Statement (1) is implied by (5) or (7) by Proposition 6.1; it is implied by (2) 
because of Theorem 6.5(4). H 
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THEORY OF CODES 183 

COROLLARY 6.9 Let a be an endomorphism of X*. The following statements 
are equivalent. 

(1) aIX is a permutation of X. 
(2) a preserves e-density for any e E { I 3 I ,, I d, I ,, I ., I i). 
COROLLARY 6.10 Let a be an endomorphism of X and let @ be a reflexive 
relation such that e c wi, for some n E N. The following statements are 
equivalent . 
(1) alx is a permutation of X. 
(2) a ( P )  is @-dense. 
(3)  a ( P )  is dense. 

From Corollary 6.10 we cannot conclude anything about e-density pre- 
servation of languages other than P ,  as, in general, transitivity of p would 
be required. The transitive closure of any reflexive relation ,Q satisfying w, c 
Q c win for some n E N, however, is the embedding order 5 ,; and for the 
embedding order Corollary 6.10 does not hold as shown further below. 

COROLLARY 6.1 1 Let @ be a reflexive and extensive binary relation on X* 
with e G win for some n E N. For an endomorphism a of X", a ( F )  is a @-ideal 
if and only if alx is a permutation of X. 

Proof Being a qideai, a(X*) is @-dense by Proposition 5.5. By Theorem 
6.5(4), alx is a permutation of X. This implies that a ( P )  =X. Clearly, F is 
a @-ideal. 

A language LCX* is said to be shufle-dense if it is 5 ,-dense. The shufle- 
residue of L is the set 

Wsh(L) = Wr,  = { u  I U E X * ,  (u I11 X * )  n L  = 0). 

The language L is shufle-thin if and only if Wsh(L) # 0. 
While, according to Theorem 6.5(4), for every n E N, the win-density of 

a(X*) is equivalent to aIx being a permutation of X, this result is not 
preserved as n - m .  For example, let X= {a, b }  with a(a) = a2, a(b) = b2. The 
language a ( P )  = {a2, b2}* is not win-dense9 for any n E N, but it is shuffle- 
dense. The condition for shuffle-density to be preserved is much weaker. 

LEMMA 6.12 A submonoid SEX* is shufle-dense if and only if alph(S) = A'. 
-- 

9 ~ o  see this take u= (ab)"+'. Any factorization of u into n factors contains at least one wold 
u, of length greater than 2, that is, a factor u, containing aba or bab. Thus, if (u, v) E win then 
aba 5 i v or bab 5 i v, which is impossible for v E a(X"). 
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184 H. JORGENSEN et al. 

Proof Assume that the submonoid SGX" is shuffle-dense. If a €  X, then 
(a 111 x) n S#0 for some x E X* and, hence, a E alph(S). 

Conversely, assume that the submonoid S satisfies alph(S) = X. Let u E XC 
and suppose that u = ala2. .a& with ai E X. Since ai E alph(S), then x,ajyi E S 
for some Xi,yi E A?. Hence w = xlalyl. . 'xkauk E S. Let v = xlyl. . 'xuk. Then 
w E u 111 v, thus u 5, w and w E S. Thus, S is shuffle-dense. H 

THEOREM 6.13 Let a be an endomorphism of X". The following statements 
are equivalent. 

(1) alph(a(X*)) = X, 
(2) a(X") is shuffle-dense. 
(3) If LEXC is shuffle-dense then also a(L) is shufle-dense. 

Proof As X' is shuffle-dense, (3) implies (2). Moreover, as a(X") is a 
submonoid of X*, statements (1) and (2) are equivalent by Lemma 6.12. 

Now consider a shuffle-dense language L, hence L#0, and assume that 
alph(a(X")) = X. Clearly, X 5, w for any w E L. Consider u = ala2. auk E X+ 
with a, E X. As alph(a(XC)) = alph(cr(X)) = X, there are xi, yi E X* and bi E X 
for i =  1,. . . , k such that a(bi) = xiajyi. Let v = blbz. -bk. As L is shuffle- 
dense, there is z E L such that v 5 ,z. The word z has the form 

with zieX" for i=O,. . . ,k .  Hence 

that is, u 5, a(z). Therefore, a(L) is shuffle-dense. 

For a language LGX*, let 

The set alph,(L) consists of those elements of X which occur in unbounded 
numbers in words in L; for its complement, the set X \ alph,(L), there is an 
integer n such that lwla 5 n for every w E L and every a E X \ alph,(L). The 
preservation of 5 .-density is characterized in terms of alph,(L). Recall 
that a language is 5 ,,-dense if and only if it is infinite. The following lemma 
is probably well-known. 

LEMMA 6.14 Let a be an endomorphism of XC and LEX* be an infinite 
language. The following statements are equivalent. 
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THEORY OF CODES 

Proof If a (alph,(L)) # {A} then alph,(a(L)) # 0, hence a(L) is infinite. 
On the other hand, assume that a(alph,(L)) = {A}. 

Consider the endomorphism al of P defined by 

for all a E X and the endomorphism a2 of P defined by 

if a E alph, (L) , 
a2(a) = if a E X\ alph, (L) , 

for all a €  X. Then, for every W E P ,  a(w)=a2(al(w)). Moreover, alph 
(aI(L)) = X \ alph,(L). This proves that al(L) is finite and, therefore, also 
a(L) is finite. 

PROPOSITION 6.15 Let a be an endomorphism of X". The following 
statements are equivalent. 

(1) a preserves I .-density. 
(2) a(L) is infinite for every infinite language L C  ;I". 
(3) a(a*) is infinite for every a E X. 
(4) a(a) # A for every a E X. 

Proof In view of Lemma 6.14 it suffices to observe that 
a(alph,(L)) # {A} for every infinite L C P if and only if a(a*) is infinit.e 
for every a E X. 

We now turn to the question of which kind of endomorphisms a have 
the property that their inverses a- '  preserve densities. We start with a set 
of examples showing that certain natural conjectures fail to be true. 

Example6.16 Let X={a,b). 

(1) Let a be the endomorphism of P defined by a(a) =a(b) = A. Then 
~ - ' ( L ) = X *  for any language L with AEL. Thus, a-'(L) can be a 
dense language when L is not. However, a- '  does not preserve density 
as a-'(x+) = 0 is thin whereas X+ is dense. 

(2) Consider the language 
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The language L is dense. Let the endomorphism a be defined by a(a)  = 
a(b) = a2. Then a- ' (b*)  = 0 and a- ' (L)  = {A). Thus, the pre-images of 
both the thin language b* and the dense language L are thin. 

(3) Let L be the language of (2), and let a(a) =a2 and a(b) = b2. Then 
a - ' (L)  = L is dense. 

(4) Consider the language L of (2) and the injective endomorphism a 
defined by a(a) = 2 and a(b) = ab. Then, a-'(L) = b*, that is, the pre- 
image of a dense language is thin. 

The phenomena exposed in Example 6.16 suggest that, for a-' to 
preserve density, we should again consider the condition of alx being a 
permutation of X. Moreover, with some limitations this turns out to carry 
over to the more general issue of preserving Q-density. 

THEOREM 6.17 Let a be an endomorphism of X". Then a - ' preserves density 
if and only if alx is a permutation of X. 

Proof If a J x i s  a permutation of X then a-  ' is an endomorphism of X" and 
preserves density by Proposition 6.1. 

Now consider an endomorphism a of X" such that a-' preserves density. 
Note first that a(X)#{A). Indeed, otherwise a-'(x+) = 0, contradicting the 
assumption that a-  ' preserves density. 

Assume that aJx  is not a permutation of X. In this case, a(X*)  2 X* is not 
dense by Proposition 6.1. Let T =  X"\ a(X"). According to Proposition 
5.5(2), T is nonempty and dense. Now 

which is not dense, a contradiction. 8 

For a generalization of Theorem 6.17 to relations different from the i n k  
order, the results of Proposition 5.5 turn out to be crucial. 

THEOREM 6.18 Let e be a binary relation on X" and let a be an 
endomorphism of X". The following statements hold true. 

(1) If e E win for some n E N, Q is extensive and rejlexive, X+ is @-dense, and 
if a -  ' preserves Q-density then aJX is permutation of X. 

(2) I f  Q is compatible with a -  ' and if alx is a permutation of X then a -  ' 
preserves Q-density. 

Proof For the proof of ( I ) ,  assume that a-' preserves @-density. If 
a(X) = {A) then a- ' (X+)  =0. As X+ is Q-dense and 0 is not, this case is 
excluded. Therefore, a(X) # {A}. 
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THEORY OF CODES 187 

Now assume that alxis not a permutation of X. By Theorem 6.5(4), a(X') 
is not @-dense. By Lemma 4.5, as p is reflexive, X' is @-dense, hence 
a(X*)S;X*. By Proposition 5.5(2), as @ is reflexive and extensive, X'\ a(X') is 
pdense. But a-'(P\ a ( F ) )  is empty, hence not @-dense, a contradiction. 

We turn to the proof of (2). Suppose alx is a permutation of X. Then a is 
an automorphism of X'; consequently, for every Y E  X', there is a unique 
z E X' such that a-'(y) = {z). Let L be @-dense. Consider x E X'. Then there 
is y E L such that (a(x), y)  E Q. Let z be the unique element of a-'(y); hence 
z ~ a - ' ( L ) .  Moreover a-'(a(x))= {x). As Q is compatible with a- ' ,  
(x, z) E Q. Thus a - '(L) is @-dense. 

Thus, surprisingly, for a and a-' the situation is quite similar. The 
endomorphism a or its inverse preserve @-density if and only if alx is a 
permutation of X - provided some conditions are satisfied, and the sets 
conditions are nearly the same. 

0 For the case of a ,  it suffices that Q be reflexive, transitive, contained in win 
for some n, and compatible with a. 
For the case of a- ' ,  it suffices that Q be reflexive, extensive, contained in 
wi, for some n, and compatible with a- '. 
The discussion following Definition 6.2 indicates that the condition of Q 

being compatible with a-' may be the hardest to satisfy. 
In the proof of Theorem 6.18 we use the fact that a - ' ( a  is empty for 

some pdense set SCX'. In some sense, this is a rather trivial situation. 
Hence, the proof of Theorem 6.18 suggests that it could be useful to exclude 
such trivial cases. The following modified notion could be interesting to 
explore: Let a be an endomorphism of X'. We say that a - ' weakly preserves 
pdensity if a-'(L) is either empty or pdense for every @-dense language 
LEX'. 

7. MORPHISMS, THIN LANGUAGES AND IDEALS 

The preceding section answered the question as to which endomorphisms 
preserve the density of a language. The property of languages to be thin 
behaves quite differently under morphisms. Let Q be a binary relation on X* 
and let a be an endomorphism of X*. We say that a preserves pthinness if 
a(L) is pthin whenever LCX' is pthin; Similarly, a-' is said to preserve 
pthinness if a-'(L) is pthin whenever L is @-thin. As is to be expected, 
many more endomorphisms preserve pthinness than @-density. 
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118 8 H. JORGENSEN et al. 

THEOREM 7.1 Let .Q S win for some n E N, and let a be an endomorphism of 
XL. The following statements hold true. 

(1) If Q is compatible with a-' then a preserves @-thinness. 
(2) If@ is one of the relations w,, wb, L i ,  5 d, 5 5 Wi, for some n E N 

then a preserves qthinness. 
(3) When alx is not a permutation of X then a(L) is @-thin for every LCXL. 

Proof To prove (1) and (2), assume that LSXL is @-thin and a(L) is 
qdense. By Lemma 4.6(2), a ( F )  is @-dense. By Theorem 6.5(4), atx is a 
permutation of X. This implies L = a- ' (a(~)) .  Consider x EX*. Then there 
is y ~ a ( L )  such that ( a ( x ) , y ) ~  Q. Let z be the unique word such that 
CY- ' (~)  = { z ) ;  hence, z E L. Moreover, a-'(a@)) = {x). 

For (I), as Q is compatible with a- ' ,  (x,z) E e. Hence, L is pdense, a 
contradiction. For (2), the statement follows by Lemma 6.3. 

For the proof of (3), assume that alx is not a permutation of X. Con- 
sider LgX" and assume that a(L) is qdense. By Lemma 4.6(2), also a ( F )  
is qdense. By Theorem 6.5(4), alx is a permutation of X, a contra- 
diction. 

The following example shows that a mere inclusion of Q in one of the 
relations listed in Theorem 7.1(2) is not sufficient in general; without 
equality, one might not be able to conclude (x, y) E e from (a(x), a(y)) E Q 
even when alx is a permutation of X. 

Example 7.2 Let X = {a, b) and let a(a) = b, a(b) = a. Let 

Thus @ E 5 i = wit. Then (a(&, a(akf')) E e, but ( d ,  2'') 4 Q for k, r E N. 
A set L is @-thin if and only if a*gL or bf n L  is finite. When L is @-thin, 
bt a(L) or a f  na(L) is finite. Hence, for instance, 

is @-thin while a(L) is pdense. 

8. CONCLUDING REMARKS 

Using the schema suggested by the definition of ideals we have defined the 
notions of density and thinness - and a few related ones - for arbitrary 
binary relations. For endomorphisms and relations bounded by the shuffle 
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THEORY OF CODES 169 

relations we have obtained a complete characterization of density-pre- 
servation and a partial one of thinness-preservation. When the source 
alphabet is smaller than the target alphabet, density is not preserved. When 
it is larger, very little is known. 

Most of our results apply to relations bounded by the shuffle relations, 
but do not hold when taking the limit of the shuffle relations, that is using 
the embedding order. We established some preliminary results for the 
embedding order. 

There are still many open questions before a complete characterization of 
density or thinness preservation by morphisms or inverse morphisms can be 
achieved. The case of different alphabet sizes as well as the case of relations 
containing the embedding order would, for instance, need to be resolved. 
The pattern suggested by the results of this paper looks promising. 
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