
TlleOR?tical
Computer Science

ELSEVIER Theoretical Computer Science 141 (1995) 253-268

Multi-pattern languages*

Lila Kari”, Alexandru Mateescua, Gheorghe P6unb, Arto SalomaaaT*
‘Mathematics Department, Academy of Finland and University of Turku. SF-20500 Turku. Finland

b Mathematics Institute of the Romanian Academy of Sciences, Str. Academiei 14. 70109 Bucuresti, Romania

Received April 1993; revised January 1994
Communicated by G. Rozenberg

Abstract

We investigate languages consisting of words following one of the given finitely many

patterns. The issues concerning such multi-pattern languages are relevant in inductive infer-
ence, theory of learning and term rewriting. We obtain results about decidability, characteriza-
tion, hierarchies and special classes of multi-pattern languages. Some open problems are also
presented.

1. Introduction

A natural way of describing a given sample of words is to exhibit a common pattern

or patterns for the words. Such an approach is especially appropriate if the sample set

is growing, for instance, through some learning process. Finding patterns for sample

sets is a typical problem of inductive inference [S]. Languages defined by patterns are

also closely related to word rewriting systems with variables [lo].

Although the idea of patterns goes back to the seminal work of Thue [13] and was

afterwards studied for instance in [3], pattern languages in the sense investigated in

this paper were introduced by Angluin [2]. One starts with two disjoint alphabets, the

alphabet Z of terminals and the alphabet V of variables. A pattern u is a word over the

union Z u V. Thus, for Z = (0, l} and V = {x, y, z}, a = 0x1 lxy is a pattern. A pattern

defines a language consisting of words “following the pattern a”. This means words

obtained from Ed by uniformly substituting arbitrary terminal words for the variables.

According to [2], the terminal words must be nonempty. We refer to this as the

nonerasing or NE-case, a is then called also an NE-pattern. An essentially different

theory results in the erasing or E-case [S, 91. For instance, 01111 is in the language

*Research supported by the Academy of Finland, project 11281, and the Alexander von Humboldt
Foundation.
* Corresponding author. Email: asalomaa@sara.utu.ti.

0304-3975/95/$09.50 0 1995-El sevier Science B.V. All rights reserved
SSDI 0304-3975(94)00087-Y

254 L. Kari et al. / Theoretical Computer Science I41 (1995) 253-268

defined by the E-pattern c1= 0x1 lxy but not in the language defined by the NE-

pattern CI.
A natural way to generalize such pattern languages is to start with an arbitrary finite

number of patterns instead of just a single one. In this paper we will investigate such
multi-pattern languages. Indeed, in many cases no reasonable description of a sample
set can be obtained using one pattern only. For instance, such a case results when the
sample consists of lots of words with two different prefixes like 0001 and 1100. Then
two patterns describe the sample much more appropriately than one.

A brief description of the contents of the paper follows. The basic definitions, as well
as some initial results, are given in Section 2. Section 3 contains comparisons between
multi-pattern languages and some other language families, namely, languages of
simple matrix grammars [7] and languages of cooperating distributed grammar
systems [4]. Such comparisons give results about the generative capacity of multi-
patterns, as well as make it possible to transfer results concerning other languages to
concern multi-pattern languages. Section 4 establishes an important undecidability
result: it is undecidable whether or not a given context-free language is multi-pattern.
The decidability status of the reverse problem (whether or not a given multi-pattern
language is context-free) is open.

Section 5 deals with the hierarchy of language families obtained by increasing the
number of patterns, and Section 6 closure properties of the family of multi-pattern
languages. An important subclass, languages generated by repetition-free patterns, is
investigated in Section 7. The concluding Section 8 contains some remarks about the
ambiguity of pattern and multi-pattern languages.

This paper is largely self-contained. The reader is referred to [2,6,8-lo] for more
background and motivations, and to [12] for all unexplained notions in language
theory.

2. Basic notions and preliminary results

Let Z be an alphabet (of terminals) and let V be an alphabet (of variables) such that
C n I/ = 8. The set of words over C u V is denoted by (C u I’)* and the empty word is
denoted by II. A pattern u is word over C u V, i.e. CG(Z u V)*. Let Hz,” be the set of
morphisms h,h:(Z u V)* + (C u V)*.

We view patterns c1 as E-patterns (E from “erasing”) and NE-patterns (“noneras-
ing”). The language generated by the E-pattern uo(C u V)* is defined as

L E,P = {weC* 1 w = h(or) for some II~:H~,~ such that h(a) = a for each agC}.

The language generated by the NE-pattern tl, cre(C u V)* is

L NE.z = (wgZ* (w = h(a) for some R-free heH, v

such that h(a) = a for each a&}.

If C is understood, we use also the notations LE(~) and LNE(a).

L. Kari et al. / Theoreiical Computer Science 141 (1995) 253-268 255

A multi-pattern K is a finite set of patterns, rr = {tlI, az, . . . , a.}, aie(Z u I/)*,
i = 1,n.

The language generated by an E-multi-pattern {al,a2, a.), aie(Z u V)*,
i=l ,n. is

&s,z(al, a,) = i, Lkz(4).

i=l

The language generated by an NE-multi-pattern {aI, a2, . . . , a,}, aiE(Z u V)*,
i=l ,n. is

n
f&.,&r,a.) = tJ kd4.

i=l

We introduce the family of erasing multi-pattern languages of degree n as

MPLE(n) = {L 1 L = LE,z(aIr a,) for some multi-pattern {a,, a,}}

and the family of erasing multi-pattern languages as

MPLE = u MPLE(n).
It>0

Analogously, the family of nonerasing multi-pattern languages of degree n is defined as

MPLNE(n) = {LI LNE,I(aI, a,) for some multi-pattern {aI, a,>}

and the family of nonerasing multi-pattern languages as

MPLNE = u MPLNE(n).
iI20

We write also Ls,~(rr), LNE,z(71) for n = {aI, . . . ,a.}, aie(C U V)*, i = 1, . . . , n.

Lemma 1 (Jiang et al. [9]). Let V be a set of variables, Z be a terminal alphabet and
f2 z C. Consider a pattern a+ v V)*. Then there exist efectively m 2 1 and patterns

al,a.,&u V)* such that

L_Aa) = i, hkz.&i)~
i=l

Consequently,

MPLE = MPLNE.

When the model E/NE is not relevant we write Lz(a) instead of LE,z(~) or LNE,z(x).
We write also briefly MPL = MPLE (= MPLNE).

There are essential differences between languages generated by E-patterns and
NE-patterns, [8,9]. For instance, while the equivalence problem is trivially decidable
for NE-patterns (that is, the problem of whether two given NE-patterns generate the
same language), its decidability status is open for E-patterns. Lemma 1 shows that, as
far as the generated language families are concerned, there is no difference between
E- and NE-multi-patterns.

256 L. Kari et al. J Theoretical Computer Science 141 (1995) 253-268

Clearly, L.&z) E L.&I) iff L&Y) = &(a,/?). (This holds both for E- and NE-pat-
terns.) Since the inclusion is undecidable [9] for pattern languages (both E and NE)
and membership is NP-complete [2,8] we obtain the following result.

Theorem 1. The equivalence and the inclusion problems are undecidable for the family
MPLE = MPLNE. The membership problem is NP-complete for languages in this
family.

One may consider terminal-free patterns, that is, words over the alphabet of
variables. As regards single patterns, the inclusion problem is decidable in the E-case
but open in the NE-case. As regards multi-patterns, the decidability of both equiva-
lence and inclusion problems is open.

Instead of allowing arbitrary (uniform) substitutions for the variables, one may
restrict the substitutions in various ways. A generative approach was taken in [6].
Initially one has a finite set of words that can be used in the substitutions. Whenever
new words have resulted from the patterns, they become available for forthcoming
substitutions.

Another possibility is to associate to each variable x a language K(x), see also Cl];
only words from K(x) can be substituted for x. In the definitions above, K(x) = C* for
E-patterns, and K(x) = Z+ for NE-patterns.

If K(x) is regular for every variable x, we speak of multi-pattern languages with
regular substitutions. Their family is denoted by MPLREG. Clearly, we have the strict
inclusion.

MPLE c MPLREC .

3. Simulations of multi-patterns mechanisms

We now show that the family MPLE, in fact the family MPLEREG, is contained in
some other language families such as the well-known family ETOL [111. This gives an
idea of the generative capacity of the mechanism of multi-patterns, as well as the
possibility of applying to multi-pattern languages results concerning some other
languages.

We begin with some further definitions.

Definition. A cooperating distributed grammar system (shortly a CD grammar system)
is an (n + 2) tuple,

r = (T,G,G,,G.%

where (i) for 1 < i < n, each Gi = (Nip z’, Pi) is a context-free grammar with the set Ni of
nonterminals, the set z of terminals, the set Pi of context-free rules, and without an axiom.
(ii) T E U:= 1 T;:,

(iii) S~uy= 1 Ni.

L. Kari et al. / Theoretical Computer Science 141 (1995) 253- 268 257

The grammars Gi, 1 < i G n, are called the components of r. Further we set
K= Niuzand

Definition. Let r be a CD grammar system and let x, y be in v. The string x derives
in Gi the string y using the t-mode of derivation, denoted x =- fG, y, iff x =- 2, y and there
is no z, z # y, with y + 2, z.

Definition. If r is a CD grammar system then the language generated by r in the
t-mode of derivation, denoted L,(T), is defined as the set of all words ZE T * for which
there is a derivation

Denote by CD, the family of all languages generated by CD grammar systems in the
t-mode of derivation.

Theorem 2. MPL REG c CD, and the inclusion is proper.

Proof. First, assume that a is a pattern over Z u K Let L,,, be the regular language
corresponding to the variable x. For each XE V, let A, = (C, QX, qO,_ F,, 6,) be a finite
deterministic automaton such that L(A,) = Lx,..

If alph(a)r\ V= (xl,..., xk}, k 3 0, then consider the nonterminals: [q,j], qEQx,,

1 < j < k. Consider also, the morphism h defined by h(a) = a,aEZ and

h(xj) = C~o.x,A 1 <j < k.
Then construct the CD grammar system r with the terminal alphabet C, the axiom

S, and the nonterminal alphabet.

N = {S) u {CW~ 11 Gj G k FQ,,) L-J {(cdl 1 Gj G k CFQ,,)

and the components having all the same alphabets N, T and the following sets of
productions:

PO = {S + h(a)),

Pj.a = {CM -+ a(6,,(q,a),j)Iq~Q,), 1 Gi < k =C,

Pl,,. = { Cq,f + a I q@,,}, 1 < j < k, acZ,

Pj = {hi) + CCII I ~EQ,,}, 1 <j < k.

The component PO introduces a string h(a), obtained from a by replacing each variable
xj with [qO,X,.jJ The use of a component Pi,. in the t-mode (when an enabled
component works as long as possible) replaces all occurrences of [q,J by the same
symbol acZ. The components Pj return systematically the symbols (q,j) into [q,j].

258 L. Kari et al. / Theoretical Computer Science 141 (1995) 253-268

The derivation can be finished by components Pi... The determinism of the automa-
ton and the t-mode of the derivation ensure the fact that from each occurrence of
a variable xj in a we generate the same string. Consequently, Lr(crl, . . . , a,) = L,(T).

Note that the family CD, is closed under union (see [4]) and hence any language
from MPLREG is in CD,.

The above inclusion is proper. This assertion follows from the fact that the language

L = {a”b”ln 2 l>

is not in MPLREC. Indeed, assume that L = Lia,bj(q, a,) for some patterns

al, v--t IX,. For each XE V we have either L, E a* or Lx c b* or L, s a+b+. If in one
pattern ai we have a variable of one of the first two types, then strings a”bm, n # m, can
be produced. On the other hand, a variable x with L, E a+b+ cannot appear twice.
Consequently the obtained strings are of the form aia”bmbj for a”bmczLx, for some
i,j 2 0. Such languages are regular, hence we cannot have L = LIo,6J(tlI, . . . , a,). 0

Corollary. MPLREC c E TOL.

Proof. It is known (see [4]) that CD, = ETOL. 0

Definition (Zbarra [7]). A regular simple matrix grammar of degree n is an ordered
system G = (N,, N,, V, P, S), where Ni, 1 < i < n, are finite sets of nonterminals,
V is a terminal alphabet, S is the start symbol,

S$VuiJNi
i=l

and P is a finite set of n-dimensional vectors of rules, (rl, . . . , r,), such that each rule ri is
a regular rule over the alphabet Ni u V. Moreover, P contains also rules (S + u), with
urzV* and rules (S + uOXlul . . . Xnun), where UjE V*, j = O,l, n and XiENi,
i = 1,n.

Let G be a regular simple matrix grammar of degree n. G defines a relation of direct

derivation as

and uOXlul . . . X,,u,, * GUOtilU1 . . . u,u, iff (Xi + al, X, + u&P, where UjE V*,

j = O,l, n, XiEN~, i = 1, n,ukE(Vu Nk)*, k = 1, n.
The derivation relation induced by G, denoted * 2, is the reflexive and transitive

closure of * c.
The language generated by a regular simple matrix grammar G of degree n is

L(G)= (wEV*IS*EW}.

Notation. RLSM is the family of all regular simple matrix languages.

L. Kari et al. / Theoretical Computer Science 141 (1995) 253-268 259

Theorem 3. MPLREo E RLSM.

Proof. Assume that a is a pattern over C u V. For each XE V, let

A, = (LQx,qo,x, x, x F 6) be a finite deterministic automaton such that I&4,) = L,,,.

Ifa = BOXIBI . ..&lBm. where pjEC*, XiE V, 0 < j < m, 1 < i < m, then consider the
nonterminals: [q,j], qEQx,, 1 <j < m. Denote

a’ = BoC4lL,, lIPI ... C40,x,,~l/L*

Construct the right linear simple matrix grammar G = (Z, VI, V,,S, M) with

6 = { [q, j] 1 qEQx,}, 1 < j < m, and M containing the following matrices:
(1) (S --, cl’).

(2) (C41911 + YIc~(qI,Yd, 11, -**> Ca,,,ml + ~mC~(qm,~m),ml), where qjEQxj> yjE{a,A),
for some given UEC, 1 < j < m, such that yj, = yj2 = ... = yj, = a for
xj, = xj2 = . . . = xj,., X, # xj, for s 4 {jI, jr} and yS = 1 for s $ {jr, j,}.

(3) (C41,ll + A [qm, m] + A), where qjE Fx,, 1 < j < m.
The determinism of the involved finite automata, the mode of derivation in right

linear simple matrix grammars and the way of defining the matrices of G ensure the
equality L(G) = L,&).

The family of right linear simple matrix languages is closed under union and hence
any multi-pattern language is a right linear simple matrix language.

Moreover, the inclusion is proper. Consider again the language

L = {a”b” 1 n 2 l})

which is a right linear simple matrix language but is not a multi-pattern language (see
the second part of the proof of Theorem 3). q

Corollary. Every language in MPL REG is semilinear (hence the one-letter languages in

MPLnso are regular).

Proof. The property holds for languages in RLSM. 0

Corollary. The emptiness and thefiniteness of the intersection of a language in MPLsso
with a regular language is decidable. It is also decidable whether or not a language in
MPLREC is included in a regular language.

Proof. The family RLSM is closed under intersection with regular sets and the
emptiness and finiteness problems are decidable for RLSM. As L E R iff
L n (V* - R) = 0, also the inclusion in a regular language is decidable. 0

Remark. Consider now the particular case of the family MPL. From the preceding
theorem we have

MPLcCD, = ETOL,

MPLcRLSM.

260 L. Kari et al. / Theoretical Computer Science I41 (1995) 253-268

The properness of these inclusions follows from Theorem 3, but a stronger assertion is
true: there are regular languages not in MPL. For example L = a*b is not in MPL: the
language is infinite, hence patterns with at least one variable are used, therefore {a, b}*
must be included in Sub(L) which is not true. (Here Sub(L) denotes the set of subwords
of the words in L.)

Some necessary conditions for a language L to be in MPL are:
(i) The language L has to be semilinear (consequence of Theorem 3).

(ii) If L is infinite, L c Z*, then C* c Sub(L).
(iii) If L is infinite, L G Z*, card(C) >, 2, then L is not “slender”, that is, there is no

constant k such that, for all n, the set of words in L of length n is of cardinal-
ity < k.

4. Multi-pattern and context-free languages

In this section we investigate the interrelation between multi-pattern and context-
free languages. Repetitions of the same variable induce a noncontext-free feature in
pattern languages. On the other hand, very simple context-free (even regular) lan-
guages such as a*b are not multi-pattern.

We will prove in this section that it is in general undecidable whether or not a given
context-free language is multi-pattern. The proof, a reduction to the Post-Corres-
pondence Problem, has some novel features which we believe are applicable also in
similar situations elsewhere. In particular, our context-free languages associated to
the given instance of the Post-Correspondence Problem are somewhat unusual.

Theorem 4. It is not decidable whether or not an arbitrary given context-free language is
in MPL.

Proof. Take two arbitrary n-tuples of nonempty strings over the alphabet {a, b},

d = (61, 6.), z = (Zl, z,,), and consider the following languages:

LY = { br1ai1br2ai2 . . . brkaikcyik . . . yil 1 k > 3, 1 G ik < n, 1 < tj < 3,

tj Gj(mod3), 1 <j< k}

for YE{~, ~1,

Ls = {w,cw,czlt,clt, 1 wl, wd,zE{u, b}*},

Lb,4 = {a,hc)* - ((L,{c}{a,b}*{c}~~il,)nL~,).

(Here G2 denotes mirror image.) We just prove that L(a, z) is a context-free language
and that it is equal to {a, b, c}* if and only if PCP(a, z) has no solution.

Assertion I. The language L(a,7) is a context-free language.
It is easy to observe that the language

((L{c) {~,b)*(c)~J n Ls)

L. Kari et al. / Theoretical Computer Science 141 (1995) 253-268 261

is a deterministic context-free language and hence the complement of this language is
a context-free language. Therefore, it follows Assertion I.

Now, clearly, when L(a, r) = {a, b, c}*, then L(a, r) is a multi-pattern language.
We shall prove that, if L(o, r) # {a, b, c], then L(a, r) is not a multi-pattern language,

and this will end the proof.
Assume L(G, r) = Lio,b,ej(al, a,), where al, . . . , a, are patterns over {a, b, c} u I/.
For every solution (ii, . . . , ik) of PCP(o, r), the strings:

b&,2&,3&,&,2 . . . b’kaikcb. ,k . . . uilc8c~i”ilZi,Caikbtk . . . ailb (*)

are not in L(o, 7). On the other hand, for all values of m, the language L(o, r) contains
strings of the form

(btlail . . . bikaik)“’ . . . (uikbtk . . . ai’b”)m. (**)

In order to obtain the strings of the form (**) we need pattern a@ {a, b} u V)*,

lalv > 0.
Examine the possible form of these patterns.
(1) If there is a pattern ylxy2 with y1,y2e{a,b}* then we must have

@‘Iail . . . b’kaik)m = yIy;, (a’“b’” . . . dlb”)” = y;y2,

for some words y;,y; in (a, b}*. For x replaced by

(***)

we obtain a string of the form (*) (with 6 = A), a contradiction.
Therefore, all patterns used in generating strings of the form (**) are of the form

Y~XY~YY~, with yl, y2~{a, b}*, x, YE V, y3c(Vu {a, b})*. Again yl, y2 must satisfy the
condition (***).

(2) If there is such a pattern with x # y, then we can replace x with y;c(ai, . . . Gil)mC,

y with c(?ii, . . . ?c)“cy; and irrespective of the form of y3, we obtain a string of the type
(*) (with an arbitrary 6), a contradiction.

(3) In conclusion, all patterns used in generating strings of the form (**) are of the
form Y~XY~XY~, with yl,y2,y3 as above.

As yl,y2 are given (in a finite set of patterns) and m can be arbitrarily large, the
string which replaces the two specified occurrences of x will contribute one to
(bllail . . . btkaik)” and the other to (aikbtk ,.. uilb’l)m. However, the substrings b” appear
on the left side in the order b, b2, b3, b, . . . and in the reverse order b, b3, b2, b, . . . on the
right side. This implies that the two occurrences of x can introduce at most one
substring b” each, if we want to obtain a string of the form (**).

It follows that, in order to generate the strings (**), we have to essentially use the
part y3 of the pattern, namely with y,x generating a prefix and xy2 a suffix of a string

(**)*
We continue now by examining the possible forms of y3.
If it is of the forms considered in cases (l), (2) above, then we obtain a contradiction

in the same way.

262 L. Kari et al. / Theoretical Computer Science 141 (1995) 253- 268

If it is of the form in case (3) (y3 = y3,1zy,,,zy,,,,y,,,,~~,~~{~,~~*, z~V,
Y~E({a, b} u I’)*) then we continue the procedure. However, this can be done only
finitely many times (the set of patterns is finite), hence eventually we either reach one
of the cases (l), (2) - hence a contradiction - or we find a string over {a, b}, without
variables. In this last case, only strings (**) with a bounded m can be produced
- a contradiction which concludes the proof. 0

Theorem 5. It is not decidable whether or not an arbitrary given context-free language is
in MPLREC.

Proof. Similar to the proof of Theorem 4. 0

Open problems: Is it decidable whether or not: (1) a regular language is in MPL?
(2) a language in MPL is a regular (context-free) language?

5. Hierarchies

We will now prove that a strictly increasing hierarchy of language families is
obtained by increasing the number of generating patterns. This holds both in the E-
and NE-case. Observe that, in spite of the overall equality

MPLE = MPLNE(= MPL),

there are differences between E- and NE-cases if only a fixed number of patterns is
allowed. For instance, (card(C))’ E-patterns are needed to generate the language
generated by the single NE-pattern xy.

Theorem 6. The number of patterns dejnes an injinite hierarchy:

MPLE(n)c MPLE(n + l), n > 1,

MPLNE(n)c MPLNE(n + l), n > 1.

Proof. Consider the sequence of prime numbers

p1 = 2, p2 = 3, p3 = 5, p4 = 7, . . .

the alphabet C = {u} and the set of patterns

,rk = {xp1,xp2 ,..., xPr}, k 2 1.

Clearly, an + 1 is in Lz,.(nk+ 1) (replace x by a in xPr+ ‘), but up”+ 1 is not in &,(r&).
The strings in L&Q) are either 1, up1, . . ., am or their multiples (hence nonprime
exponents). It is easy to see that MPLE(k)cMPLE(k + l), MPLNE(k)c
MPLNE(k + l), k 2 1, and that the inclusions are strict. 0

L. Kari et al. / Theoretical Computer Science 141 (1995) 253- 268 263

6. Closure properties

We begin with the following simple observation.

Theorem 7. For L E {a}*, LEMPL if and only if L is regular.

Proof. If LEMPL, then L is regular, because the property holds for RLSM (see
Section 3).

If L E {a}*, L regular, then there is a finite set F and positive integers pl, . . . , pk and
q such that

L={a”InEForn=pi+qj,j>O,l<i<k}.

Therefore, L = LI,)(n) for

n={a”~n~F}u{aP*x~~l~i~k}. 0

The closure properties of MPL are summarized in the next theorem.

Theorem 8. Thefamily MPL is an anti-AFL, but it is closed under right/left derivatives.
It is not closed under right/left quotients with regular sets, intersection and complement.

Proof. The family MPL is not closed under any of the following operations:
Union: a+EMPL, {b}EMPL but a+ v {b} $ MPL. (Note that if L1, L,EMPL and

alph(L1) = alph(Lz), then L1 u L,EMPL, construct the union of the patterns generat-
ing the two languages.)

Concatenation: a+EMPL, {b}EMPL but a+(b) 4 MPL. Again, if alph(L1) =
alph(L,), then LIL,gMPL; rename the variable of the multi-pattern of Lz and
catenate each pattern corresponding to L1 to each pattern corresponding to Lz.

Kleene + : {ab}EMPL, but {ab}+ $ MPL.
Intersection with regular languages: Z*EMPL for all C; if card(Z) > 2, there are

regular languages over C which are not in MPL.
Morphisms: a+EMPL, but h(a+) = {ab)+ 4 MPL, for h(u) = ab.
Znverse morphisms: {b}EMPL, but h-‘(b) = a*ba* $ MPL for h(u) = 2, h(b) = b.
Left/right derivatives: Take al, a, patterns over C v V and BEC+. For every

variable XE V, consider the replacement rules

x -+ y, WC*, 0 G IYI < WI,

x + Y-% WC*, IYI = IA.

For every pattern ai consider all the patterns obtained by consistently applying an
arbitrary set of such rules to ai (every occurrence of some x is replaced by the same
string y or yx as above). We obtain in this way a set of patterns a;, . . . , a; such that

L&l, a,) = Lp(a;, ,.., a:) and each ai is either in C* or it has every variable

264 L. Kari et al. / Theoretical Computer Science 141 (1995) .253- 268

x with a left context in C* of length at least l/II. Then clearly

$#&r, a,)) = 4&(a~, . . . , c&J).

which proves the closure under left derivatives. The case of the right derivatives is
symmetric.

Left/right quotients by regular languages. Take a = xabax, C = {a, b} and the
regular language R = b’a+b’. Because

-%(a) = {BaWIBE{a,b)*},

we have

R-ILL(a) = {yabab’a”b’y 1 n 2 1, yE{a, b}*J

(the prefix b2a”b2 of a string flaba/ in L,(a) must be a prefix of /I, due to the presence of
the string aba).

Assume that R-IL,(a) = L,(aI, a,,,) for some patterns al, a,,, over {a, 6) u V.
In every pattern we can replace every variable with aba, hence every pattern must

contain at least two substrings b 2. At least one pattern must contain exactly two
strings b2, because

a”abab2aPb2a”ER-‘L,(a),

for all n, p > 1.
More exactly, there are patterns of the form wIabab2w2b2w3, with wi, w2,

W~E(VU {a})*. If all such patterns have w,~{a}*, then only finitely many strings of
the form a”abab2aPb2a” can be obtained, for a given n. Consequently, there is a pattern
w,abab2w2b2w3 with w2 containing a variable. Replace in this pattern all variables by
aba. The obtained string is of the form ~Iabab2j?2bj?3b2j?4 with /II, B2, /IS, /IqE(aba, c}*,
and such strings are not in R - 'L=(a), a contradiction. The case of the right quotients is
symmetric.

Intersection: Assume that: C = {a, b}, a1 = xxab, a2 = xbax. Then

L,(al) n Lz(a2) = {/Id* 1 there are y, &C* such that /I = yyab = abaa}.

Take the equation yyab = 6baS. It follows that either S = 6, y = b (hence
bbabeL,(a,)n L,(a2)) or 6 = al ab, hence yyab = Glabbadlab, yy = GIabbadI. This
implies y = dlab, y = ba&, hence &ab = badl. Therefore, 6, = (ba)kb, for k 2 0. Thus
we obtain 6 = (ba)‘bab = (ba)k+ ‘b, y = (barbab = (ba)k+ ‘b.

In conclusion,

L,(a,) n L,(a2) = {(bar+‘b(ba)k+‘bab I k 2 0} u {bbab} = {(ba)kb(barbab I k 2 01.

This language is not in MPL because, for instance, aa is not a subword of its strings.
Complement: The language L = {a, b}*ab(a, b}* is in MPL but {a, b}* - L = b*a*

does not contain the substring ab, hence it is not in MPL. 0

L. Kari et al. / Theoretical Computer Science 141 (1995) 253-268 265

Theorem 9. The family MPLnso is closed under union, concatenation morphisms,
intersection with regular languages, but not closed under Kleene + and inverse
morphisms.

Proof. Union: Consider two multi-patterns

~1 = {al,aJ. =2 = {Sl,bJ

and take 7r2 = (aI, a,fll, @,,J with the same languages Lx,,,, Lx,,. Then

L,(%) = LZ(14 u Lzb2).

Concatenation: Assume that x1 = (ar, a,}, x2 = { /3t, /I,,,}, replace all vari-
ables in 7t2 with primed symbols and take rr3 = {ai/3J 11 < i G n, 1 < j < m}, with the
same languages L,,_ and with Lx,,s, = Lx,,. We have Lz(x3) = L,(a,)L,(n,).

Morphisms: Consider that IL = (at,a.) and h:C* + C+. Take

44 = {h(ar), Ma,)} and G,., = h(L,,.,), 1 < i < n. Clearly, h(L,(z)) = L,(h(lc)).
Intersection with regular languages: Let rr = {aI, a,) be a multi-pattern over

Vu .Z with the regular languages associated to variables L,,.,, 1 < i < n, XE V. For
R E C* a regular language, consider a deterministic finite automaton A =
(Q,z,go,F,G). For a pattern ai=Bi,lxi,l...xi,~,Bi,~,+I,Bi,l~~*, Xi,jEf’for all i,j,
consider all the strings of the following form

P = Bi,l(419xi.174;)...(4~r,Xi.kt,q;i)Bi,ki+l,

where

41 = s(q09 Pi, lh 4j+ 1 = 6(qj9 Pi, j+ 119 l<j<ki-1, d(& 7 Bi.k,+ I)EF-

For each such string p and for each XE V appearing in it, let M be

M = {(s, s’) 1 (s, x, s’) appears in p}

and define

Z! = n (yELx/6(s,y) = s’}.
(S.S’)EM

Note that these languages are all regular.
For each string p consider now the pattern obtained by replacing again all triples

(s, x, s’) with x. (For a given ai we have more strings p, but for each p we obtain now
only one pattern with languages Lx associated as above.)

Denote by rr’ the set of all patterns obtained in this way. We have
L=(x) n R = Lr(n’).

Kleene + : The following language L = {ca”ca”c 1 n 2 l} is in MPL because L =
Ls(cxcxc) with L, = a+. But, L+ 4 RLSM, hence L’ $ MPLREC.

Inverse msrphisms: Assume that Z = {a, b}, a = cxcx, with Lx = (ab)+, that is
L,(a) = (c(ab)“c(ab)” 1 n 2 11. Consider also h: (a, b,c,d) + (a, b,c)* defined by
h(a) = ca, h(b) = ba, h(c) = bc, h(d) = ab. We obtain h-‘(L,(a)) = {ab"-'cd" 1 n 2 l},
which is not in MPLREG (the substrings b”- ‘, d” must be obtained using different
variables, hence the powers cannot be related). 0

266 L. Kari et al. / Theoretical Computer Science 141 (1995) 253-268

7. Repetition-free multi-patterns

The study of multi-patterns is closely related to the study of word rewriting
systems with variables (WRSV), see for instance, [lo]. In particular, questions con-
cerning the set Red(R) of words reducible by a WRS V, R, can be expressed as questions
concerning multi-pattern languages. For instance, the ground reducibility problem
amounts to the problem of inclusion of a certain pattern language in a certain
multi-pattern language. Usually, this leads to undecidable situations. However, many
problems became decidable if the patterns involved are repetition-free, meaning that
no variable appears twice in any given pattern. (The corresponding WRSV’s are often
referred to as “linear”.)

The following result is obvious.

Theorem 10. Every repetition-free MPL is regular.

We say that (a, . . . , a,) is a minimal representation for an MPL L = L(aI, . . . , a,,) if, for
no i, L(aJ E uj + i L(aj). (Thus, every tli is needed.) We do not know any instances of
regular MPL languages not having a minimal repetition-free representation.

By Theorem 7, all decidability properties of regular languages concern also
repetiton-free MPL languages. Particularly interesting from the point of view of
pattern languages is the decidability ofjniteness of the complement. It is also likely that
every regular MPL language is effectively regular. (That is, if we know that an MPL,
L, is regular, we can construct a regular expression for L.)

The following result is very interesting, in view of the undecidability of the inclusion
for ordinary pattern languages.

Theorem 11. The inclusion K E L is decidable for pairs (K, L), where K and L
are MPL and L is regular. Hence, it is decidable for MPL pairs (K, L), where L is
repetition-free.

Proof. (1) By the corollary of Theorem 3, K is ETOL. Hence, K E L if and only if
Kf-l - L = 8, where N L means the complement of L. K n - L is in ETOL, by the
closure properties of ETOL. Hence, its emptiness is decidable.

The next proof provides an idea of a straight algorithm for the above problem.
(2) The proof uses the idea of ajnite test set. We prove that we can compute from

K and L a bound B such that if every work of K, obtained by assigning to each of the
variables a word of length < B, is in L, then also K E L. Indeed, we claim that we can
choose B = qr, where q is the number of states in a deterministic finite automaton,
DFA, accepting the complement of L, and p is the maximal number of occurrences of
a single variable in one of the patterns defining K.

We proceed indirectly and assume that this test does not work. This means that
K Q L but we do not find out this using words in the test set. In other words, there

L. Kari et al. / Theoretical Computer Science 141 (1995) 253- 268 261

exists some string w~L(a) n w L, where u is one of the patterns in K, but in order to
get w, we have substituted a variable x in c1 by a word u with k = JuI 2 qP + 1. We
prove that we could as well use a shorter word U’ for x and get a word W’E L(a) n w L.

The variable x occurs in w altogether n < p times. We are interested in the
corresponding n occurrences of the subword u in w:

w= . ..u...u...u...

When reading w from left to right, we observe after each letter the state DFA
is in. When considering the n occurrences of u, we obtain in this way the n-tuples of
states

(d I ,..., s;), l<i< k.

Thus, the n-tuple (s:, . . . , sl) gives the state DFA is in after reading the last letter of each
of the n occurrences of u.

Since k > qp 2 q”, there are i and j, i < j, such that s! = sj, s; = ~3. This means
that if the letters with numbers i + 1 , . . . , j (inclusive) are omitted from u, the resulting
word u’ satisfies the requirements states above. 0

We consider repetition-free MPL’s. The terminal words occurring in the patterns
are finite in number but the patterns tell also the ordering of these terminal words. In
some cases such an ordering is not necessary. We consider here the E-interpretation.

We say that an MPL language L has ajnite subword characterization if L is defined
by patterns of the form xwy, weC*. For example, the MPL language C*aC*bZ*,
C = {a, b}, has the finite subword characterization C*abZ*. The MPL language
C*aC*bZ*aZ* has no finite subword characterization.

Theorem 12. It is decidable whether or not a given regular (hence, a given repetition-
free) MPL language L has a finite subword characterization.

Proof. If w i, . . . , wk are the words used in the finite subword characterization, we may
assume that none of them is a proper subword of the other. This follows because if
wj is a proper subword of wi, then

LE(xwiY)c LE(xwjY)

and thus wi can be omitted. Thus, we have to find out whether L contains infinitely
many words with this property. This is the case iff

LnC(w L)n(w L)C

is infinite. For a regular L, this is a decidable property. 0

The preceding theorem appears in [lo] in a formulation dealing with linear
WRS y’s.

268 L. Kari et al. 1 Theoretical Computer Science 141 (1995) 253-268

8. Conclusion. Ambiguity

Numerous other aspects of multi-pattern languages remain to be investigated. Of
particular interest and importance are issues concerning ambiguity. We hope to return
to this topic in a forthcoming contribution.

Ambiguity can be defined in the natural way both for patterns and multi-patterns,
as well as for the generated languages. Thus, an NE-pattern a is unambiguous iff, for
every word we&(a), there is a unique substitution for the variables in o! giving rise to
w. A pattern (resp. multi-pattern) language is unambiguous iff it can be generated by an
unambiguous pattern (resp. multi-pattern). Degrees of ambiguity can be introduced in
the usual way.

An NE-pattern a is unambiguous iff the language L = LNE(a) is unambiguous. This
follows because every NE-pattern p satisfying L = L&3) results from a by a renam-
ing of the variables. An analogous statement does not hold for E-patterns. For
instance, the E-pattern xy is ambiguous (of degree infinity), whereas the language
L,(xy) = LE(x) is unambiguous.

It is easy to see that every pattern containing occurrences of a single variable is
unambiguous. On the other hand, a pattern is ambiguous if it contains occurrences of at
least two variables but at most one terminal, or occurrences of at least two variables,
one of which occurs only once in the pattern. We conjecture that all problems dealing
with the ambiguity of multi-patterns and their languages are decidable.

References

[1] J. Albert and L. Wegner, Languages with homomorphic replacements, in: ICALP-80 Proc., Lecture
Notes in Computer Science, Vol. 85 (Springer, Berlin, 1980) 19-29.

[Z] D. Angluin, Finding patterns common to a set of strings, J Comput. System Sci. 21 (1980) 46-62.
[3] J. Bean, A. Ehrenfeucht and G. McNulty, Avoidable patterns in strings of symbols, Pacific J. Math. 85

(1979) 261-294.
[4] E. Csuhaj-Vaju, J. Dassow, J. Kelemen and Gh. PHun, Grammar Systems (Gordon and Breach,

London, 1994).
[S] J. Dassow and Gh. PBun, Regulated Rewriting in Formal Language Theory (Springer, Berlin, 1989).
[6] J. Dassow, Gh. PHun and A. Salomaa, Grammars based on patterns, Internat. J. Found. Comput. Sci.

4 (1993) l-14.
[7] 0. Ibarra, Simple matrix grammars, Inform. and Control 17 (1970) 359-394.
[S] T. Jiang, E. Kinber, A. Salomaa, K. Salomaa and S. Yu, Pattern languages with and without erasing,

Internat. J. Comput. Math., to appear.
[9] T. Jiang, A. Salomaa, K. Salomaa and S. Yu, Inclusion is undecidable for pattern languages in:

ZCALP-93 Proc., Lecture Notes in Computer Science (Springer, Berlin) to appear.
[lo] G. Kucherov and M. Rusinowitch, On ground reducidibility problem for word rewriting systems with

variables, Report CRIN 93-R-012, Centre de Recherhe en Informatique de Nancy.
[1 1) G. Rozenberg and A. Salomaa, The Mathematical Theory ofL Systems (Academic Press, New York, 1980).
1121 A. Salomaa, Formal Languages (Academic Press, New York, 1973).
[13] A. Thue, ijber unendliche Zeichenreihen, Norske Vid. Selsk. Skr., I Mat. Nat. Kl. Kristiania 7 (1906)

l-22.

