
Duplication in DNA Sequences�

Masami Ito1, Lila Kari2, Zachary Kincaid2, and Shinnosuke Seki2

1 Department of Mathematics, Faculty of Science, Kyoto Sangyo University,
Kyoto, Japan, 603-8555

ito@ksuvx0.kyoto-su.ac.jp
2 Department of Computer Science, University of Western Ontario, London,

Ontario, Canada, N6A 5B7
{lila,sseki}@csd.uwo.ca, zkincaid@uwo.ca

Abstract. Duplication and repeat-deletion are the basic models of er-
rors occurring during DNA replication from the viewpoint of formal lan-
guages. During DNA replication, subsequences of a strand of DNA may
be copied several times (duplication) or skipped (repeat-deletion). Iter-
ated duplication and repeat-deletion have been well-studied, but little is
known about single-step duplication and repeat-deletion. In this paper,
we investigate properties of these operations, such as closure properties of
language families in the Chomsky hierarchy, language equations involv-
ing these operations. We also make progress towards a characterization of
regular languages that are generated by duplicating a regular language.

1 Introduction

Duplication grammars and duplication languages have recently received a great
deal of attention in the formal language theory community. Duplication gram-
mars, defined in [12], model duplication using string rewriting systems. Several
properties of languages generated by duplication grammars were investigated in
[12] and [13]. Another prevalent model for duplication is a unary operation on
words [1], [2], [5], [7], [8], [9]. The biological phenomenon which motivates the
research on duplication is a common error occurring during DNA replication:
the insertion or deletion of repeated subsequences in DNA strands, [3].

A DNA single strand is a string over the DNA alphabet of bases {A, C, G, T}.
Due to the Watson-Crick complementarity A−T, C−G, two complementary DNA
single strands of opposite orientation can bind to each other to form a DNA
double strand. DNA replication is the process by which given a “template”
DNA strand, an enzyme called DNA polymerase creates a new “nascent” DNA
strand that is a complement of the template. To be more precise, a special short
DNA single strand called a “primer” is attached to the template as a toe-hold,
and then DNA polymerase adds complementary bases to the template strand,
one by one, until the entire template strand becomes double-stranded.
� This research was supported by Grant-in-Aid for Scientific Research No. 19-07810 by

Japan Society for the Promotion of Sciences and Research Grant No. 015 by Kyoto
Sangyo University to M. I., and The Natural Sciences and Engineering Council of
Canada Discovery Grant and Canada Research Chair Award to L.K.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 419–430, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

420 M. Ito et al.

It has been observed that errors can happen during this process, the most
common of them being repeat insertions and deletions of bases. The “strand
slippage model” that was proposed as an explanation of these phenomena sug-
gests that these errors are caused by misalignments between the template and
nascent strands during replication. DNA polymerase is not known to have any
“memory” to remember which base on the template has been just copied onto
the nascent strand, and hence the template and nascent strands can slip. As
such, the DNA polymerase may copy a part of the template twice (resulting in
an insertion) or forget to copy it (deletion). These errors occur most frequently
on repeated sequences so that they are appropriately modelled by the rewriting
rules u → uu and uu → u.

The rule u → uu is a natural model for duplication, and the rule uu → u mod-
els the dual of duplication, which we call repeat-deletion. Since strand slippage is
responsible for both these operations, it is natural to study both duplication and
repeat-deletion. Repeat-deletion has already been extensively studied, e. g. , in [6].
However, the existing literature addresses mainly the iterated application of both
repeat-deletionandduplication.Thispaper investigates theeffectsofa single dupli-
cation or repeat-deletion. This restriction introduces subtle new complexities into
languages that can be obtained as a duplication or repeat-deletion of a language.

The paper is organized as follows: In Section 2 we define the terminology and
notations we use. Section 3 is dedicated to the closure properties of language fam-
ilies of the Chomsky hierarchy under duplication and repeat-deletion. In Section
4, we present and solve language equations based on these operations, and give a
constructive method for obtaining maximal solutions. In Section 5 we introduce
a generalization of duplication, namely controlled duplication, and investigate
characterizations of regular languages that can be obtained by the duplication of
a regular language. Lastly, we present some results on the relationship between
duplication and primitive words.

2 Preliminaries

We provide definitions for terms and notations to be used throughout the paper.
For basic concepts in formal language theory, we refer the reader to [4], [16], [18].

Let Σ be a finite alphabet, Σ∗ be the set of words over Σ, and Σ+ = Σ∗\{λ},
where λ is the empty word. The length of a word w ∈ Σ∗ is denoted by |w|. For
a non-negative integer n ≥ 0, let Σn = {w ∈ Σ∗ | |w| = n} and Σ≤n =

⋃n
i=0 Σi.

A language over Σ is a subset of Σ∗. For a language L ⊆ Σ∗, the set of all
(internal) factors (resp. prefixes, suffixes) of L, are denoted by F(L) (Pref(L),
Suff(L)). The complement of a language L ⊆ Σ∗, denoted by Lc, is defined as
Lc = Σ∗ \ L. We denote the families of all finite languages, regular languages,
context-free languages, and context-sensitive languages by FIN, REG, CFL, and
CSL, respectively. Note that FIN � REG � CFL � CSL.

A word w ∈ Σ+ is said to be primitive if w = vn implies that n = 1, i.e.,
w = v. A word v ∈ Σ+ is called a conjugate of w if v = xy and w = yx for some
x, y ∈ Σ∗.

Duplication in DNA Sequences 421

For a finite automaton A = (Q, Σ, δ, s, F) (where Q is a state set, δ : Q×Σ →
2Q is a transition function, s ∈ Q is the start state, and F ⊆ Q is a set of final
states), let L(A) denote the language accepted by A. We extend δ to δ̂ : Q×Σ∗ →
2Q as follows: (1) δ̂(q, λ) = {q} for q ∈ Q and (2) δ̂(q, wa) = ∪p∈δ̂(q,w)δ(p, a) for
q ∈ Q, w ∈ Σ∗, and a ∈ Σ. For P1, P2 ⊆ Q, we define an automaton A(P1,P2) =
(Q ∪ s0, Σ, δ′, s0, P2), where s0 �∈ Q is a new start state and δ′ = δ ∪ (s0, λ, P1).
Hence, L(A(P1,P2)) = {w | δ̂(p1, w) ∩ P2 �= ∅ for some p1 ∈ P1}. If Pi is the
singleton set {pi}, then we may simply write pi for i ∈ {1, 2}.

The aim of this paper is to investigate two operations that are defined on
words and languages: duplication and repeat-deletion. The unary duplication
operation is defined for a word u ∈ Σ∗ as follows:

u♥ = {v | u = xyz, v = xyyz for some x, z ∈ Σ∗, y ∈ Σ+}.

The duplication operation is extended to a language L ⊆ Σ∗ as L♥ =
⋃

u∈L u♥.
Some authors, e.g., [2] require the duplicated factor y to be in a finite set of
words called the duplication scheme. We discuss a generalization of duplication
schemes which we call controlled duplication in Section 5.

We also define another unary operation based on the dual of the ♥ operation.
We call this operation repeat-deletion and denote it by ♠, which is defined for a
word v ∈ Σ∗ as follows:

v♠ = {u | v = xyyz, u = xyz for some x, z ∈ Σ∗, y ∈ Σ+}.

As above, for a given language L ⊆ Σ∗, we define L♠ =
⋃

v∈L v♠.
Previous work focused on the reflexive transitive closure of the duplication

operation, which we will refer to as duplication closure. In this paper, all oc-
currences of ♥ and ♠ refer to the single step variations of the duplication and
repeat-deletion, respectively.

3 Closure Properties

Much of the work on duplication closure has been concerned with determining
which of the families of languages on the Chomsky hierarchy are closed under this
operation. It is known that on a binary alphabet the family of regular languages
is closed under duplication closure. In contrast, on a bigger alphabet it is still
closed under n-bounded duplication closure for n ≤ 2 but not closed under n-
bounded operation closure for any n ≥ 4. The family of context-free languages is
closed under (uniformly) bounded duplication closure. The readers are referred
to [5] for these results.

It is a natural first step to determine these closure properties under (single
step) duplication. In this section, we show that the family of regular languages
is closed under repeat-deletion but not duplication, the family of context-free
languages is not closed under either operation, and the family of context-sensitive
languages is closed under both operations.

422 M. Ito et al.

The following two propositions are due to [17] (without proofs).

Proposition 1. REG is not closed under duplication.

Proposition 2. CFL is not closed under duplication.

The proof of Proposition 1 requires an alphabet that is at least binary. As we
shall see in Section 5, this bound is strict. That is, the family of regular languages
over a unary alphabet is closed under duplication. In addition, we have:

Proposition 3. CSL is closed under duplication.

In the following, we consider the closure properties of the language families on
the Chomsky hierarchy under repeat-deletion. Our first goal is to prove that the
family of regular languages is closed under repeat-deletion. For this purpose, we
define the following binary operation � on languages L, R ⊆ Σ∗:

L�R = {xyz | xy ∈ L, yz ∈ R, y �= λ}.

Proposition 4. REG is closed under �.

Proof. Let L1, L2 ∈ REG. Let # �∈ Σ and let h be defined by h(a) = a for
a ∈ Σ∗ and h(#) = λ. Let L′

1 = L1 ← {#} = {u#v | uv ∈ L1} (← denotes the
insertion operation) and L′

2 = L2 ← {#}. Moreover, let L1 = L′
1#Σ∗ and let

L2 = Σ∗#L′
2. Then L1�L2 = h(L1 ∩ L2). Since REG is closed under insertion,

concatenation, intersection, and homomorphism, L1�L2 is regular. ��

For a regular language L, there is a finite automaton A = (Q, Σ, δ, s, F) such
that L(A) = L. Recall that for any state q ∈ Q, L(A(s,q)) = {w | q ∈ δ̂(s, w)}
and L(A(q,F)) = {w | δ̂(q, w) ∩ F �= ∅}. Intuitively, L(A(s,q)) is the set of words
accepted “up to q”, and L(A(q,F)) is the set of words accepted “after q” so that
L(A(s,q))L(A(q,F)) ⊆ L is the set of words in L which have a derivation that
passes through state q.

Lemma 1. Let L be a regular language and A = (Q, Σ, δ, s, F) be a finite au-
tomaton accepting L. Then L♠ =

⋃
q∈Q L(A(s,q))�L(A(q,F)).

Proof. Let L′ =
⋃

q∈Q L(A(s,q))�L(A(q,F)). First we prove that L♠ ⊆ L′. Let
α ∈ L♠. Then there exists a decomposition α = xyz for some x, y, z ∈ Σ∗ such
that xyyz ∈ L and y �= λ. Since A accepts xyyz, there exists some q ∈ Q such
that q ∈ δ̂(s, xy) and δ̂(q, yz) ∩ F �= ∅. By construction, xy ∈ L(A(s,q)) and
yz ∈ L(A(q,F)). This implies that xyz ∈ L(A(s,q))�L(A(q,F)), from which we
have L♠ ⊆ L′.

Conversely, if α ∈ L′, then there exists q ∈ Q such that α∈L(A(s,q))�L(A(q,F)).
We can decompose α into xyz for some x, y, z ∈ Σ∗ such that xy ∈ L(A(s,q)),
yz ∈ L(A(q,F)), and y �= λ. Since L(A(s,q))L(A(q,F)) ⊆ L, we have that xyyz

belongs to L. It follows that α = xyz ∈ L♠ and L′ ⊆ L♠. ��

The following is an immediate consequence of Proposition 4 and Lemma 1.

Duplication in DNA Sequences 423

Proposition 5. REG is closed under repeat-deletion.

In contrast, the family of context-free languages is not closed under repeat-
deletion, despite the following proposition.

Proposition 6. CFL is closed under � with regular languages.

Lemma 2. CFL is not closed under �.

Proof. Let L1 = {ai#bi$ | i ≥ 0} and L2 = {#bj$cj | j ≥ 0}. Although L1 and
L2 are CFLs, L1�L2 = {ai#bi$ci | i ≥ 0}, which is not context-free. ��

Proposition 7. CFL is not closed under repeat-deletion.

Proof. Let L = {ai#bi#bjcj | i, j ≥ 0}, which is context-free. Then L♠ ∩
a∗#b∗c∗ = {ai#bjcj | i, j ≥ 0, i ≤ j}, which is not context free. Since CFL is
closed under intersection with regular languages, and since L♠ ∩ a∗#b∗c∗ is not
context-free, we conclude that L♠ is not context-free. ��

Proposition 8. CSL is closed under repeat-deletion.

In summary, the following closure properties of duplication, repeat-deletion, and
the � operation hold:

♥ ♠ � � with regular
FIN Y Y Y N
REG N Y Y Y
CFL N N N Y
CSL Y Y Y Y

4 Language Equations

We now consider the language equation problem posed by duplication: for a
given language L ⊆ Σ∗, can we find a language X ⊆ Σ∗ such that X♥ = L? In
the following, we show that if L is a regular language and there exists a solution
to X♥ = L, then we can compute a maximal solution. We note that the solution
to the language equation is not unique in general.

Example 1. {aaa, aaaa, aaaaa}♥ = {aaa, aaaaa}♥ = {ai : 4 ≤ i ≤ 10}

In view of the fact that a language equation may have multiple solutions, we
define an equivalence relation ∼♥ on languages as follows:

X ∼♥ Y ⇔ X♥ = Y ♥.

For the same reason, we define an equivalence relation ∼♠ as follows:

X ∼♠ Y ⇔ X♠ = Y ♠.

424 M. Ito et al.

Lemma 3. The equivalence classes of ∼♥ are closed under arbitrary unions.
That is, if [X] ∈ 2Σ∗

/ ∼♥ and if Ξ ⊆ [X] (Ξ �= ∅), then
⋃

L∈Ξ L ∈ [X].

Corollary 1. For an equivalence class [X] ∈ 2Σ∗
/ ∼♥, there exists a unique

maximal element Xmax with respect to the set inclusion partial order defined as
follows:

Xmax =
⋃

L∈[X]

L.

We provide a way to construct the maximum element of a given equivalence
class. First, we prove a more general result.

Proposition 9. Let L ⊆ Σ∗, and let f, g : Σ∗ → 2Σ∗
be any functions such

that u ∈ g(v) ⇔ v ∈ f(u) for all u, v ∈ Σ∗. If a solution to the language
equation

⋃
x∈X f(x) = L exists, then the maximum solution (with respect to the

set inclusion partial order) is given by Xmax =
(⋃

y∈Lc g(y)
)c.

Proof. For two languages X, Y ⊆ Σ∗ such that
⋃

x∈X f(x) = L and
⋃

y∈Y f(y) =
L,

⋃
z∈X∪Y f(z) = L holds. Hence the assumption implies the existence of Xmax.

(⊆) Suppose ∃w ∈ g(v) ∩ Xmax for some v ∈ Lc. This means that v ∈ f(w).
However, f(w) ⊆

⋃
x∈Xmax

f(x) = L, and hence v ∈ L, a contradiction. (⊇)
Suppose that ∃w ∈ Xc

max ∩ (
⋃

y∈Lc g(y))c. If f(w) ⊆ L, then w ∈ Xmax (by
the maximality of Xmax). Otherwise, ∃v ∈ f(w) ∩ Lc. This implies that w ∈
g(v) ⊆

⋃
y∈Lc g(y). In both cases, we have a contradiction. Therefore, we have

Xc
max =

⋃
y∈Lc g(y), i.e., Xmax = (

⋃
y∈Lc g(y))c. ��

Lemma 4. Let u, v ∈ Σ∗. Then u ∈ v♥ if and only if v ∈ u♠.

Proof. (⇒) If u ∈ v♥, then there exist x, z ∈ Σ∗ and y ∈ Σ+ such that v = xyz
and u = xyyz. Then u♠ contains xyz = v. (⇐) If v ∈ u♠, then there exist
x′, z′ ∈ Σ∗ and y′ ∈ Σ+ such that v = x′y′z′ and u = x′y′y′z′. Then x′y′y′z′ =
u ∈ v♥. ��

Proposition 9 and Lemma 4 imply the following corollaries.

Corollary 2. Let L ⊆ Σ∗. If there exists a language X ⊆ Σ∗ such that X♠ = L,
then the maximum element Xmax of [X]∼♠ is given by ((Lc)♥)c.

Corollary 3. Let L ⊆ Σ∗. If there exists a language X ⊆ Σ∗ such that X♥ = L,
then the maximum element Xmax of [X]∼♥ is given by ((Lc)♠)c.

Proposition 10. Let L, X be regular languages satisfying X♥ = L. Then it is
decidable whether X is the maximal solution for this language equation.

Proof. Since REG is closed under repeat-deletion and complement, the maxi-
mum solution of X♥ = L given in Corollary 3, ((Lc)♠)c, is regular. Since the
equivalence problem for regular languages is decidable, it is decidable whether a
given solution to the duplication language equation is maximal. ��

Duplication in DNA Sequences 425

Due to the fact that the family of regular languages is not closed under du-
plication, we cannot obtain a similar decidability result for the repeat-deletion
language equation, X♠ = L. This motivates our investigation in the next section
of a necessary and sufficient condition for the duplication of a regular language
to be regular.

5 Controlled Duplication

In Section 4 we showed that for a given language L ⊆ Σ∗, the maximal solution
of the repeat-deletion language equation X♠ = L is given by ((Lc)♥)c. However,
unlike the duplication language equation, we do not have an efficient algorithm
to compute this language due to the fact that the family of regular languages
is not closed under duplication. This motivates “controlling” the duplication in
such a manner that duplications can occur only for some specific words. In this
section, we first introduce a controlled duplication, together with some of its basic
properties. Then we propose a possible way of characterizing regular languages
whose duplication can be controlled so as to generate regular languages, and
give partial answers in several particular cases.

For languages L, C ⊆ Σ∗, we define the duplication of L using the control set
C as follows:

L♥(C) =
{
xyyz | xyz ∈ L, y ∈ C

}
.

Note that this “controlled” duplication operation can express two variants of du-
plication that appear in previous literature ([8], [9]), namely uniform and length-
bounded duplication. Indeed, using the notations in [8], we have D1

{n}(L) =

L♥(Σn) and D1
{0,1,...,n}(L) = L♥(Σ≤n).

The following two lemmata are basic properties of controlled duplication.

Lemma 5. Let L, C1, C2 ⊆ Σ∗. If C1 ⊆ C2, then L♥(C1) ⊆ L♥(C2).

Lemma 6. Let L, C1, C2 ⊆ Σ∗. Then L♥(C1∪C2) = L♥(C1) ∪ L♥(C2).

Let L be a language and C be a control set. We say that a word w ∈ C is useful
with respect to L if w ∈ F(L); otherwise, it is called useless with respect to L. The
control set C is said to contain an infinite number of useful words with respect
to L if |F(L) ∩ C| = ∞.

Lemma 7. Let L ⊆ Σ∗ be a language, C ⊆ Σ∗ be a control set, and C′ be the
set of all useless words in C with respect to L. Then L♥(C) = L♥(C\C′).

Proposition 11. For a regular language L ⊆ Σ∗ and a regular control set C ⊆
Σ∗, it is decidable whether C contains an infinite number of useful words with
respect to L.

For a regular language L and a control set C, we now investigate a necessary and
sufficient condition for L♥(C) to be regular. A sufficient condition is a corollary of
the following result in [2]. A family of languages is called a trio if it is closed under

426 M. Ito et al.

λ-free homomorphism, inverse homomorphisms, and intersections with regular
languages. Note that both the families of regular languages and of context-free
languages are trio.

Theorem 1 ([2]). Any trio is closed under duplication with a finite control set.

Corollary 4. Let L ⊆ Σ∗ be a regular language and C ⊆ Σ∗. If there exists a
finite control set C′ ⊆ Σ∗ such that L♥(C) = L♥(C′), then L♥(C) is regular.

Results in [15] that state that infinite repetitive languages cannot be even
context-free indicate that the converse of Corollary 4 may also be true. Hence,
in the remainder of this section we shall investigate the following claim:

Claim. Let L ⊆ Σ∗ be a regular language and C ⊆ Σ∗ be a control set. If L♥(C)

is regular then there exist a finite control set C′ ⊆ Σ∗ such that L♥(C) = L♥(C′).

As shown in the following example, this claim generally does not hold.

Example 2. Let Σ = {a, b}, L = ba+b, and C = ba+ ∪ a+b. We can duplicate a
prefix bai of a word bajb ∈ L (i ≤ j) to obtain a word baibajb ∈ L♥(C). In the
same way, the duplication of a suffix a�b of a word bakb (k ≥ �) results in a word
bakba�b ∈ L♥(C). Thus L♥(C) = ba+ba+b. Note that L and L♥(C) are regular.
However there exists no finite control set C′ satisfying L♥(C) = L♥(C′). This is
because ba+ba+b can have arbitrary long repetitions of a’s, and hence arbitrary
long control factors are required to generate it.

Nevertheless this claim holds for several interesting cases: the case where L is
finite or C contains at most a finite number of useful words with respect to L,
the case of a unary alphabet Σ = {a}, the case L = Σ∗, and the case where the
control set is “marked”, i.e. there exists a ∈ Σ such that C ⊆ a(Σ \ {a})∗a. In
the following, we prove the direct implication of the claim for these cases (the
reverse one is clear from Corollary 4).

The first case we consider is when L is finite. Then L♥(C) is finite and hence
regular. Since F(L) is finite, by letting C′ = C ∩F(L), L♥(C) = L♥(C′). Thus the
claim holds in this case. Moreover, even for an infinite L, we can reach the same
conclusion if C contains at most a finite number of useful words with respect to
L because C′, defined as above, is finite.

Next, we consider the case of a unary alphabet. We omit the proof that is
mainly based on number theory arguments.

Proposition 12. Let Σ = {a} be a unary alphabet, L ⊆ Σ∗ be a regular lan-
guage, and C ⊆ Σ∗ be an arbitrary language. Then L♥(C) is regular, and there
exists a finite control set C′ ∈ FIN such that L♥(C) = L♥(C′).

By letting C = Σ∗, Proposition 12 implies that the family of regular languages
is closed under duplication when Σ is unary.

Thirdly we prove that the claim holds for the case when L = Σ∗ (Corollary
5). This requires the following known two lemmata.

Lemma 8 ([10]). For a primitive word p, any conjugate word of p is primitive.

Duplication in DNA Sequences 427

Lemma 9 ([11]). Let p and q be primitive words with p �= q and let i, j ≥ 2.
Then piqj is primitive.

For a language C ⊆ Σ∗, we define Dup(C) = {ww | w ∈ C}.

Proposition 13. Let C ⊆ Σ∗. Then Σ∗Dup(C)Σ∗ is regular if and only if
there exists a finite language C′ such that Σ∗Dup(C′)Σ∗ = Σ∗Dup(C)Σ∗.

Proof. The proof of ’if’-part is obvious since Σ∗Dup(C′)Σ∗ is regular. Now con-
sider the proof of ’only if’-part. Assume L = Σ∗Dup(C)Σ∗ is regular and
consider the regular language L ∩ (Σ∗ \ LΣ+) ∩ (Σ∗ \ Σ+L). All words in
this language have a representation ww for some w ∈ C. Hence there exists
C′ ⊆ C such that Dup(C′) = L ∩ (Σ∗ \LΣ+)∩ (Σ∗ \Σ+L). Notice that for any
w ∈ C there exist w′ ∈ C′ and x, y ∈ Σ∗ such that ww = xw′w′y. Therefore,
Σ∗Dup(C)Σ∗ = Σ∗Dup(C′)Σ∗.

Suppose C′ is infinite. Then there exists a word uu ∈ Dup(C′) with length
twice that of the pumping lemma constant for Dup(C′). So by the pumping
lemma, there exists a decomposition uu = u1u2u3u1u2u3, of uu such that
u1, u3 ∈ Σ∗, u2 ∈ Σ+ and u1u

i
2u3u1u2u3 ∈ Dup(C′) for any i ∈ N. Notice

that for any i ∈ N, u1u
i
2u3u1u2u3 is not primitive because it is in Dup(C′). Con-

sider the case i ≥ 3. By Lemma 8, ui−1
2 (u2u3u1)2 is not primitive. Then Lemma

9 implies that u2 and u2u3u1 share a primitive root, say p ∈ Σ+. We may now
write u2 = pn and u2u3u1 = pm for some n, m ≥ 1. Hence ui−1

2 (u2u3u1)2 =
pn(i−1)+2m. From Lemma 8, it follows that u1u

i
2u3u1u2u3 = qn(i−1)+2m, where

q is a conjugate word of p. Now we have that u1u
i
2u3u1u2u3 = qn(i−1)+2m is a

proper prefix (and suffix) of u1u
i+1
2 u3u1u2u3 = qni+2m, which contradicts the

definition of Dup(C′). Thus C′ must be finite. ��
Lemma 10. Let C ⊆ Σ∗. Then (Σ∗)♥(C) = Σ∗Dup(C)Σ∗.

Proof. Let w ∈ (Σ∗)♥(C). Then there exist x, y, z ∈ Σ∗ such that y ∈ C and
w = xyyz. Thus, w ∈ Σ∗Dup(C)Σ∗. Conversely, let v ∈ Σ∗Dup(C)Σ∗. Then
v is of the form xyyz such that x, z ∈ Σ∗ and yy ∈ Dup(C) (so, y ∈ C). The
duplication of y in xyz ∈ Σ∗ results in xyyz = v, and hence v ∈ (Σ∗)♥(C). ��
The following corollary is a consequence of Proposition 13 and Lemma 10. In
fact, this corollary asserts the claim in the case when L = Σ∗.

Corollary 5. Let C ⊆ Σ∗. Then (Σ∗)♥(C) is regular if and only if there exists
a finite subset C′ ⊆ C such that (Σ∗)♥(C′) = (Σ∗)♥(C).

The last case we consider is that of marked duplication, where given a word w
in L♥(C), we can deduce or at least guess the factor whose duplication generates
w from a word in L according to some mark of a control set C. Here we consider
a mark which shows the beginning and end of a word in C, that is, C ⊆ #(Σ \
{#})∗# for some character #. For a strongly-marked duplication, where # /∈ Σ
and L ⊆ Σ∗#Σ∗#Σ∗, we can easily show that the existence of a finite control
set provided L♥(C) is regular using the pumping lemma for the regular language.
Hence we consider the case when the mark itself is a character in Σ, say # = a
for some a ∈ Σ.

428 M. Ito et al.

We introduce several needed notions related to controlled duplication. Let
L ⊆ Σ∗ be a language and C ⊆ Σ∗ be a control set. For a word w ∈ L♥(C), we
call a tuple (x, y, z) a dup-factorization of w with respect to L and C if w = xyyz,
xyz ∈ L, and y ∈ C. When L and C are clear from the context, we simply say
that (x, y, z) is a dup-factorization of w. For y ∈ C, if there are x, z ∈ Σ∗ such
that (x, y, z) is a dup-factorization of w, then we call y a dup-factor of w.

Proposition 14. Let Σ be a finite alphabet of more than one character, L ⊆ Σ∗

be a regular language, and C ⊆ a(Σ \ {a})∗a for some a ∈ Σ. Then L♥(C) is
regular if and only if there exists a finite language C′ such that L♥(C) = L♥(C′).

Proof. We consider following two syntactic equivalence relations:

≡L = {(u, v) | ∀x, y ∈ Σ∗, xuy ∈ L ⇔ xvy ∈ L},

≡♥ = {(u, v) | ∀x, y ∈ Σ∗, xuy ∈ L♥(C) ⇔ xvy ∈ L♥(C)},

and define ≡ = ≡L ∩ ≡♥. Since both L and L♥(C) are regular, C/ ≡ is finite.
Let Γ2 = {[c] ∈ C/ ≡ | |[c]| ≤ 2}. Using induction on the number of dup-
factorizations, we prove that (i) Γ2 �= ∅, and (ii) any word in L♥(C) has a
dup-factor which is in an equivalence class in Γ2.

Firstly, we consider a word w in L♥(C) which has the smallest number of
dup-factorizations among the elements of L♥(C). Suppose that no dup-factor
of w is in equivalence classes in Γ2. Let (x, aya, z) be a dup-factorization of
w for some x, y, z ∈ Σ∗. Then there exists ay′a ∈ C such that ay′a ≡ aya,
y′ �= y, and ay′a �∈ Suff(x). Let w′ = xay′aayaz. This is in L♥(C), and hence
w′ must have a dup-factorization, say (α, aβa, γ) for some α, β, γ ∈ Σ∗. Due to
the fact that y′, y, β do not contain any a, (aβa)2 is either (1) a factor of x, (2)
a factor of z, or (3) β = y and aβa ∈ Pref(z). Here we consider only the case
(1), and let x = α(aβa)2γ′, γ = γ′ay′aayaz. Then w′ = α(aβa)2γ ∈ L♥(C) ⇒
αaβaγ′ay′aayaz ∈ L ⇒ αaβaγ′(aya)2z ∈ L ⇒ α(aβa)2γ′(aya)2z = w ∈ L♥(C),
and hence α, aβa, γ′(aya)2z) is a dup-factorization of w. This means that a dup-
factorization (α, aβa, γ) of w′ induces a dup-factorization (α0, aβa, γ0) of w,
where a single occurrence of y′ in either α or γ is replaced by y to obtain α0 and
γ0. The original dup-factorization (x, aya, z) of w cannot be obtained this way.
Hence w′ has a smaller number of dup-factorizations than w, a contradiction.
Thus w has a dup-factor which is in an equivalence class in Γ2, and hence Γ2 �= ∅.

Now we assume that all words in L♥(C) with at most n dup-factorizations
have a dup-factor which is in an equivalence class in Γ2. Suppose that there
were v ∈ L♥(C) with n +1 dup-factorizations and without any dup-factor which
is in the equivalence class of size at most 2. Then we can construct a word
v′ as above which has at most n dup-factorizations but does not satisfy the
assumption, which is a contradiction. ��

Note that the property of a control set required in this proof is that none of its
elements “overlap” with each other. That is, we can use a similar proof to settle
a more general case where a control set is non-overlapping and an infix code.
(See [18] for definitions.)

Duplication in DNA Sequences 429

Corollary 6. Let L be a regular language and C be a control set such that L♥(C)

is regular. If C is non-overlapping and an infix code, then there exists a finite
control set C′ such that L♥(C) = L♥(C′).

Moreover, the proof of Proposition 14 shows that if we let m = |C/ ≡ |, the
size of finite control set C′ given there is at most 2|Γ2|, which is not bigger
than 2(m − 1) because at least one equivalence class in C/≡ must have infinite
cardinality. Finally, we provide a result slightly stronger than Corollary 6.

Corollary 7. Let L be a regular language and C be a control set. If there exists
a finite set C1 ⊂ C such that C \ C1 is non-overlapping and an infix code, then
the regularity of L♥(C) implies the existence of a finite control set C′ such that
L♥(C) = L♥(C′).

6 Duplication and Primitivity

There is evidently a connection between duplication, repeat-deletion, and primi-
tive words, but the nature of this relationship is unclear. This section elucidates
some of the properties of this relationship.

Proposition 15 (see, for instance, [14]). Let u, v ∈ Σ+ such that uv is
primitive. Then both u(uv)n and v(uv)n are primitive for any n ≥ 2.

Proposition 16. Let w ∈ Σ∗ be a non-primitive word. If we duplicate a factor
of w which is properly shorter than the primitive root of w, then the resulting
word is primitive.

We can derive the following proposition from Lemma 9.

Proposition 17. Let x, y, z ∈ Σ∗. If xyz is primitive and xyyz is not primitive,
then xz is primitive.

7 Discussion and Future Work

In this paper, we studied duplication and repeat-deletion, two formal language
theoretic models of insertion and deletion errors occurring during DNA replica-
tion. Specifically, we obtained the closure properties of the families of languages
in the Chomsky hierarchy under these operations, the language equations of
the form X♥ = L and X♠ = L for a given language L, and the operation of
controlled duplication. In addition, we made steps towards finding a necessary
and sufficient condition for a controlled duplication of a regular language to be
regular.

Two problems for further investigation are: the problem of how to decide for
a given language L whether the language equation X♥ = L has a solution, and
the problem of finding a necessary condition for the controlled duplication of a
regular language to be regular in the general case.

430 M. Ito et al.

Acknowledgements

We wish to express our gratitude to Dr. Zoltán Ésik for the concise proof of
Proposition 4. We would also like to thank Dr. Helmut Jürgensen for discussions
about the claim and Dr. Kathleen Hill for extended discussions on the biological
motivation for duplication and repeat-deletion.

References

1. Dassow, J., Mitrana, V., Păun, G.: On the regularity of duplication closure. Bull.
EATCS 69, 133–136 (1999)

2. Dassow, J., Mitrana, V., Salomaa, A.: Operations and language generating devices
suggested by the genome evolution. Theoretical Computer Science 270, 701–738
(2002)

3. Garcia-Diaz, M., Kunkel, T.A.: Mechanism of a genetic glissando: structural biol-
ogy of indel mutations. Trends in Biochemical Sciences 31(4), 206–214 (2006)

4. Ito, M.: Algebraic Theory of Automata and Languages. World Scientific Pub. Co.
Inc., Singapore (2004)

5. Ito, M., Leupold, P., S-Tsuji, K.: Closure of language classes under bounded dupli-
cation. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 238–247.
Springer, Heidelberg (2006)

6. Leupold, P.: Duplication roots. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.)
DLT 2007. LNCS, vol. 4588, pp. 290–299. Springer, Heidelberg (2007)

7. Leupold, P.: Languages generated by iterated idempotencies and the special case
of duplication. Ph.D. thesis, Department de Filologies Romaniques, Facultat de
Lletres, Universitat Rovira i Virgili, Tarragona, Spain (2006)

8. Leupold, P., Mitrana, V., Sempere, J.: Formal languages arising from gene repeated
duplication. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular
Computing. LNCS, vol. 2950, pp. 297–308. Springer, Heidelberg (2003)

9. Leupold, P., M-Vide, C., Mitrana, V.: Uniformly bounded duplication languages.
Discrete Applied Mathematics 146(3), 301–310 (2005)

10. Lothaire, M.: Combinatorics on Words, Encyclopedia of Mathematics and its Ap-
plications 17. Addison-Wesley Publishing Co., Reading (1983)

11. Lyndon, R.C., Schützenberger, M.P.: On the equation aM = bNcP in a free group.
Michigan Mathematical Journal 9, 289–298 (1962)

12. M-Vide, C., Păun, G.: Duplication grammars. Acta Cybernetica 14, 151–164 (1999)
13. Mitrana, V., Rozenberg, G.: Some properties of duplication grammars. Acta Cy-

bernetica 14, 165–177 (1999)
14. Reis, C.M., Shyr, H.J.: Some properties of disjunctive languages on a free monoid.

Information and Control 37, 334–344 (1978)
15. Ross, R., Winklmann, K.: Repetitive strings are not context-free. R.A.I.R.O infor-

matique théorique / Theoretical Informatics 16(3), 191–199 (1982)
16. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Hei-

delberg (1997)
17. Searls, D.B.: The computational linguistics of biological sequences. In: Hunter, L.

(ed.) Artificial Intelligence and Molecular Biology, pp. 47–120. AAAI Press, The
MIT Press (1993)

18. Yu, S.S.: Languages and Codes. Lecture Notes, Department of Computer Science,
p. 402. National Chung-Hsing University, Taichung (2005)

	Duplication in DNA Sequences
	Introduction
	Preliminaries
	Closure Properties
	Language Equations
	Controlled Duplication
	Duplication and Primitivity
	Discussion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

