
On parallel deletions applied to a word1

Lila Kari∗, Alexandru Mateescu∗, Gheorghe Paun∗∗,
Arto Salomaa∗

∗Academy of Finland and Department of Mathematics,
University of Turku, 20500 Turku, Finland

∗∗Institute of Mathematics of the Romanian Academy
of Sciences, Str.Academiei 14, 70109 Bucuresti, Romania

May 5, 2011

Abstract

We consider sets arising from a single word by parallel deletion of sub-
words belonging to a given language. The issues dealt with are rather
basic in language theory and combinatorics of words. We prove that ev-
ery finite set is a parallel deletion set but a strict hierarchy results from k-
bounded parallel deletions. We also discuss decidability, the parallel dele-
tion number associated to a word and a certain collapse set of a language,
as well as point out some open problems.

1 Introduction

The deletion of specific subwords from a word is an operation basic in language
theory.

Left and right derivatives are special cases of this operation. Examples of the
wide range of applications of this operation are bottom-up parsing (a subword is
deleted and replaced by a nonterminal), developmental systems (deletion means
the death of a cell or a string of cells) and cryptography (decryption may begin
by deleting some ”garbage” portions in the cryptotext). A systematic study of
various types of deletion operations was begun in [1].

The reader is referred to [3] for unexplained notions in formal language
theory. The empty word is denoted by λ and the length of a word w by |w|.
Following [1], we define the deletion and parallel deletion of a language L ⊆ V ∗

1Research supported by the Academy of Finland, grant 11281, and the Alexander von
Humboldt Foundation. All correspondence to Lila Kari.

1

from a word w ∈ V ∗ by

(∗) (w → L) = {u1u2 | u1vu2 = w, v ∈ L}
(∗∗) (w ⇒ L) = {u1u2 . . . un+1 | n ≥ 1, ui ∈ V ∗, 1 ≤ i ≤ n + 1,

w = u1v1u2 . . . unvnun+1, for vi ∈ L, 1 ≤ i ≤ n,
and ui 6∈ V ∗(L− {λ})V ∗, 1 ≤ i ≤ n + 1}.

Sets of the forms (*) and (**) are referred to as deletion (D-) sets, [2], and
parallel deletion (PD-) sets, respectively. Clearly, sets of the forms (*) and (**)
are always finite.

The operations of deletion and parallel deletion are naturally extended, [1],
to the case where w is replaced with a language, but in this paper attention is
restricted to (*) and (**). We investigate problems arising from sets (**) and
their modifications, sometimes making comparisons with sets (*).

2 Universality of parallel deletion sets

Most of the finite sets are not deletion sets. For instance, it is easy to see
that neither {a, b, c} nor {aa, ab, ba, bb} is a deletion set. Characterizations of
deletion sets and algorithms for deciding whether or not a given set is a deletion
set were given in [2]. It is somewhat unexpected that parallel deletion sets are
universal in the sense that every finite language can be viewed as a parallel
deletion set.

Theorem 1 Every finite language is a parallel deletion set, that is, can be rep-
resented in the form (**).

Proof. If V = {a}, and F = {ai1 , ai2 , . . . , ain}, then we denote

p = max{ij | 1 ≤ i ≤ n},

and we define
w = a2p+1,
L = {a2p+1−ij | 1 ≤ j ≤ n}.

As only one string of L can be deleted from w, we obtain (w ⇒ L) = F .
Consider now V with card(V) ≥ 2 and take

F = {x1, x2, . . . , xn}.

We construct

w = (x1#1)2(x2#2)2 . . . (xn−1#n−1)2xn#n,
L = {(xj#j)2 | 1 ≤ j ≤ n− 1} ∪ {#n}∪

{#jxj#j(xj+1#j+1)2(xj+2#j+2)2 . . . (xn−1#n−1)2xn#n |
1 ≤ j ≤ n− 1},

2

where #1, . . . ,#n are new symbols not in V .
From the form of w and of strings in L, it is clear that in every deletion we

have to erase either #n or a string

#jxj#j(xj+1#j+1)2(xj+2#j+2)2 . . . (xn−1#n−1)2xn#n,

as well as all the remaining substrings (xi#i)2, 1 ≤ i ≤ j − 1. This implies all
symbols #i, 1 ≤ i ≤ n, are erased and only a string xj remains, 1 ≤ j ≤ n. In
conclusion, (w ⇒ L) = F .

Now, take a, b ∈ V , a 6= b (remember that card(V) ≥ 2) and denote

k = max{|xi| | 1 ≤ i ≤ n}.

We replace each occurrence of #i in w and in strings of L by bak+ib, 1 ≤
i ≤ n. We denote by w′, L′ the string and the language obtained in this way,
respectively. As no string in F can contain a substring ak+i, 1 ≤ i ≤ n, the
strings bak+ib behave exactly as the markers #i, 1 ≤ i ≤ n, hence again we
have (w′ ⇒ L′) = F , which concludes the proof.

3 A general undecidability result

Because not every finite set is a deletion set, we face a decision problem that
was settled in [2]. An analogous problem does not exist for parallel deletion
sets. However, we can fix the nonempty finite set F in the equation

(w → L) = F,

and ask for an algorithm deciding for a given context-free language L whether
or not a solution w exists. If such an algorithm exists, we say that F is CF-
decidable, otherwise CF-undecidable. Similarly, we fix F in the equation

(w ⇒ L) = F

and speak of CF-p-decidable (”p” from ”parallel”) and CF-p-undecidable sets
F .

It was shown in [2] that F = {λ} is the only CF-decidable set. Moreover, {λ}
is ”CF-universal” in the sense that, for any (nonempty) context-free language
L, there is a word w such that (w → L) = {λ}. Obviously, the same result
holds for parallel deletion as well. In fact, we have

Theorem 2 The set {λ} is CF-p-universal and this is the only CF-p-universal
set.

Proof. Given L context-free, we obtain (w ⇒ L) = {λ} for w one of the shortest
strings in L, therefore {λ} is universal.

Moreover, no set F 6= {λ} can be CF-p-universal, because for any w we have
(w ⇒ V ∗) = {λ} 6= F .

3

In spite of the fact that parallel deletion sets coincide with finite sets, we
obtain the same undecidability result as for sequential deletion.

Theorem 3 Every finite nonempty set F 6= {λ} is CF-p-undecidable.

Proof. Let F ⊆ V ∗ be a finite language, F = {x1, x2, . . . , xn}, with k =
max{|xi| | 1 ≤ i ≤ n} ≥ 1. If V = {a}, then we add the symbol b to V (we
still denote by V the obtained alphabet), therefore, without loss of generality
we may assume card(V) ≥ 2.

We now proceed as in the proof of Theorem 1 when dealing with alphabets
V with card(V) ≥ 2, namely we construct the string w′ and the language L′

such that (w′ ⇒ L′) = F .
Take now an arbitrary context-free language L0 ⊆ V + and consider two new

symbols c, d, not in V . We construct the context-free language

M = L′′ ∪ {c}L0{c},

where L′′ is obtained from L′ by substituting the rightmost string bak+nb cor-
responding to the marker #n in the construction of Theorem 1, by {c}V ∗{cd}.
More exactly, L′′ = σ(L) where σ is the substitution defined by:

σ(#i) = bak+ib, 1 ≤ i ≤ n− 1, σ(#n) = {c}V ∗{cd}, σ(α) = α otherwise.

Then there exists a string w such that (w ⇒ M) = F if and only if L0 6= V ∗

(which is not decidable for arbitrary context-free languages).
Indeed, if V ∗ − L0 6= ∅, then take z ∈ V ∗ − L0 and consider the string

w = (x1ba
k+1b)2 . . . (xn−1ba

k+n−1b)2xnczcd.

Now, the role of the rightmost marker #n is played by czcd. As no string
of {c}L0{c} appears as a substring of w, in view of the proof of Theorem 1, we
obtain (w ⇒ M) = F .

Assume now that L0 = V ∗ and suppose that there is a string w such that
(w ⇒ M) = F .

We distinguish more cases:
(i) w contains at least one ocurrence of d. Note that all occurrences of d

from w have to be deleted, as otherwise we obtain in (w ⇒ M) words which do
not belong to F . As d can be deleted only by words from L′′, we deduce that
the subwords of w containing d have to be of the form ycvcd, y, v ∈ V ∗. But,
in this case, we can also erase from w the word cvc, which leads us to a word
in (w ⇒ M) still containing a letter d – a contradiction with the form of the
strings in F .

(ii) w contains no occurrence of d but contains occurrences of c. Then we can
delete from w only strings of {c}L0{c} and strings in L′′containing no occurrence
of c (the strings in L′′ containing c contain d, too). If w contains an odd number

4

of occurrences of c, then the strings in (w ⇒ M) contain an odd number of
occurrences of c, contradicting the form of strings in F . If w contains at least
4 occurrences of c, w = u1cu2cu3cu4cu5, u1, u2, u3, u4 ∈ V ∗, u5 ∈ ({c} ∪ V)∗,
then we can remove cu3c as belonging to {c}L0{c}, and irrespective of other
deletions, the first occurrence of c in w remains. Hence we obtain a string not
in F .

If w = u1cu2cu3, u1, u2, u3 ∈ V ∗, then in order to obtain strings in F we
have to remove cu2c (and this can be done). This implies w is of the form

w = y0(xi1ba
k+i1b)2y1(xi2ba

k+i2b)2y2 . . . (xij ba
k+ij b)2yjcu2c

yj+1(xij+2ba
k+ij+2b)2 . . . ys(xis+1ba

k+is+1b)2ys+1

with 1 ≤ it ≤ n, 1 ≤ t ≤ s, and y0y1 . . . ys+1 ∈ F .
However the strings bak+itb precisely identify the strings in L′′ used in such

deletions of substrings in w (in y0y1y2 . . . ys+1 we cannot have substrings ak+i,
i ≥ 1) hence only one deletion is possible, that is (w ⇒ M) contains only one
string. The case F = {x}, x 6= λ, is handled below.

(iii) w contains no occurrence of c and d. Then, as in the last part of the
previous case, we infer that card(w ⇒ M) = 1.

For the case F = {x}, x 6= λ, take again L0 ⊆ V ∗ (for V assumed to contain
at least two symbols) and construct

M = {c}V ∗{c} ∪ V ∗{c}L0{c}V ∗.

If V ∗ 6= L0, then for z ∈ V ∗ − L0 we obtain

(xczc ⇒ M) = {x}.

If L0 = V ∗, then every w with (w ⇒ M) = {x} must contain an even
number of occurrences of c, w = u1cu2c . . . cu2t+1, t ≥ 1. By deleting strings in
V ∗{c}L0{c}V ∗ from w we can obtain λ ∈ (w ⇒ M), contradicting the relation
x 6= λ.

4 The parallel deletion number of a word

The deletion number, [2], associated to a word w equals the cardinality of the
largest deletion set arising from w, that is

d(w) = max{card(w → L) | L ⊆ V ∗}.

The parallel deletion number is defined analogously,

pd(w) = max{card(w ⇒ L) | L ⊆ V ∗}.

5

Upper bounds for d(w), best possible in the general case, were deduced in
[2]. For instance, if card(V) = s and n ≡ r(mod s), then

max{d(w) | |w| = n} = n + 1 +
(s− 1)n2 − sr + r2

2s
.

It is clear that d(w) = card(w → V ∗). An analogous result does not hold
for parallel deletion because, for every w, (w ⇒ V ∗) = {λ}.

We now begin our investigation concerning the number pd(w). For the
alphabet with only one element, pd(w) can be computed, but for the general
case the question seems not to be simple at all.

Theorem 4 If w = an, n ≥ 1, then pd(w) = n.

Proof. For w = a we have

card(a ⇒ {λ}) = card(a ⇒ {a}) = card(a ⇒ {λ, a}) = 1.

For w = an, n ≥ 2, consider

L = {λ, a2, a3, . . . , an}.

Because we can write an = aλaλ . . . aλa we obtain an ∈ (w ⇒ L). Moreover, for
each ai, 2 ≤ i ≤ n, we have an = aλaλ . . . aλai which implies an−i ∈ (w ⇒ L)
for all 2 ≤ i ≤ n. In conclusion,

(w ⇒ L) = {λ, a, a2, . . . , an−2, an},

that is card(w ⇒ L) = n.

The previous proof makes essentially use of the existence of the empty string
in L (and the non-existence of a in L). However, if we do not allow λ to be in L
then computing card(w ⇒ L) is much more difficult. As an illustration of this,
let us consider the following particular case: w = an, L = {a2}. The reader can
verify that we obtain

(an ⇒ a2) =



{λ, a2, a4, . . . , a2t}, if n = 6t, t ≥ 1,
{a, a3, . . . , a2t+1}, if n = 6t + 1, t ≥ 1,
{λ, a2, a4, . . . , a2t}, if n = 6t + 2, t ≥ 0,
{a, a3, . . . , a2t+1}, if n = 6t + 3, t ≥ 0,
{λ, a2, a4, . . . , a2t+2}, if n = 6t + 4, t ≥ 0,
{a, a3, . . . , a2t+1}, if n = 6t + 5, t ≥ 0.

hence

card(an ⇒ a2) =



t + 1, if n = 6t, t ≥ 1,
t + 1, if n = 6t + 1, t ≥ 1,
t + 1, if n = 6t + 2, t ≥ 0,
t + 1, if n = 6t + 3, t ≥ 0,
t + 2, if n = 6t + 4, t ≥ 0,
t + 1, if n = 6t + 5, t ≥ 0.

6

(we delete a certain number of substrings a2 from an and two consecutive sub-
strings a2 are either neighbouring or they are separated by one occurrence of a;
if ar is in (an ⇒ a2), then also ar−2 is in (an ⇒ a2) because we can arrange the
deleted substrings a2 in such a way as to delete two more symbols a bounding
them.)

In the case of arbitrary alphabets with at least two symbols we obtain the
following surprising result.

Theorem 5 If card(V) ≥ 2, then there is no polynomial f such that for every
w ∈ V ∗ we have pd(w) ≤ f(|w|).

Proof. It suffices to show that, given a polynomial f (in one variable), there are
strings w such that pd(w) > f(|w|).

Take a polynomial f of degree n ≥ 1 and consider the strings

wn,m = (ambm)n.

Moreover, take
Lm = {aibj | 1 ≤ i, j ≤ m− 1}

and evaluate the cardinality of (wn,m ⇒ Lm).
As each string in Lm contains at least one occurrence of a and one occurrence

of b, we can delete from wn,m exactly n strings of Lm, which implies

(wn,m ⇒ Lm) = {am−i1bm−j1am−i2bm−j2 . . . am−inbm−jn |

1 ≤ is, js ≤ m− 1, 1 ≤ s ≤ n}.
Consequently,

card(wn,m ⇒ Lm) = (m− 1)2n.

Clearly, because 2n is a constant, for large enough m we have

pd(wn,m) ≥ (m− 1)2n > f(2nm) = f(|wn,m|),

which completes the proof.

5 The collapse set of a language

We observed in the previous section that, for every word w, (w ⇒ V ∗) = {λ}.
We can express this by saying that every word collapses to the empty word when
subjected to parallel deletion with respect to V ∗. We speak also of the collapse
set of V ∗. Thus, the collapse set of V ∗ equals V ∗.

In general, we define the collapse set of a nonempty language L ⊆ V ∗ by

cs(L) = {w ∈ V ∗| (w ⇒ L) = {λ}}.

This language is always nonempty because it contains each of the shortest
words in L.

We give first some examples.

7

(1) cs({anbn| n ≥ 1}) = (ab)+,

(2) cs({a, bb}) = a∗bb(a+bb)∗a∗ ∪ a+

(hence cs(L) can be infinite for finite L),

(3) cs({ab} ∪ {anbmap| n, m, p ≥ 1}) = {ab},
(hence cs(L) can be finite for infinite L),

(4) cs({canbn| n ≥ 1}) = {canbn| n ≥ 1}+,
(hence cs(L) can be nonlinear for linear L).

Moreover, we have

Theorem 6 There is a linear language L such that cs(L) is not context-free.

Proof. Take

L = {ddanbmcn| n, m ≥ 1} ∪ {danbmcp| n, m, p ≥ 1,m ≥ p}.

Clearly, L is linear. Moreover, we have

cs(L) ∩ d2a+b+c+ = {d2anbmcn| 1 ≤ m < n}

and this is not a context-free language (mark the occurrences of b and use
Ogden’s lemma).

The equality follows from the next three remarks:
(i) all the strings in cs(L) ∩ d2a+b+c+ are of the from d2anbmcn, n, m ≥ 1;
(ii) for m ≥ n ≥ 1, we have

(d2anbmcn ⇒ danbmcn) = {d},

hence d2anbmcm is not in cs(L) ∩ d2a+b+c+;
(iii) for 1 ≤ m < n, we have

(d2anbmcn ⇒ L) = (d2anbmcn ⇒ {d2anbmcn}) = {λ}.

Theorem 7 Let L ⊆ V ∗ be an arbitrary language. Then

cs(L) = L+ −M,

where
M = (V ∗L ∪ {λ})(V + − V ∗LV ∗)(LV ∗ ∪ {λ}).

8

Proof. ”⊆” Take x ∈ cs(L). Clearly, x ∈ L+. Suppose x ∈ M , hence we can
write

x = x1uvwx2

with
x1u = λ or x1 ∈ V ∗, u ∈ L,
v ∈ V +, v 6∈ V ∗LV ∗,
wx2 = λ or w ∈ L, x2 ∈ V ∗.

As v 6= λ and v contains no subword of L, there is a string in (x ⇒ L) containing
the substring v, which implies x 6∈ cs(L), a contradiction.

”⊇” Take x ∈ L+ − M and assume x 6∈ cs(L). Therefore there is z 6= λ,
z ∈ (x ⇒ L). Consequently, we can write z = z1z2z3, z2 6= λ, z1, z2 ∈ V ∗, z2

containing no substring in L and

x = x1uz2vx3,
with x1u = λ or x1 ∈ V ∗, u ∈ L,

z2 ∈ V +, z2 6∈ V ∗LV ∗,
vx3 = λ or v ∈ L, x3 ∈ V ∗,

such that z1z2z3 ∈ (x ⇒ L), z1 ∈ (x1 ⇒ L), z3 ∈ (x3 ⇒ L). In conclusion,
x ∈ M , hence x 6∈ L+ −M , a contradiction.

Corollary 1 If L is regular (context-sensitive), then cs(L) is also regular (re-
spectively context-sensitive).

Proof. Obvious, from the closure properties of the families of regular and context-
sensitive languages.

Theorem 8 For L ⊆ V ∗ we have cs(L) = V ∗ if and only if V ∪ {λ} ⊆ L.

Proof. In general, cs(L) ⊆ V ∗. If V ⊆ L, then for every w ∈ V + we have
(w ⇒ L) = {λ}, hence V + ⊆ cs(L). If λ ∈ L then (λ ⇒ L) = {λ}, too. In
conclusion, cs(L) = V ∗.

Conversely, if cs(L) = V ∗, then V ∪ {λ} ⊆ cs(L). For a ∈ V we can have
(a ⇒ L) = {λ} only if a ∈ L, therefore V ⊆ L. Similarly, (λ ⇒ L) = {λ} only
if λ ∈ L (if L ⊆ V +, then (λ ⇒ L) = ∅).

6 k-parallel deletion

Another natural way to define a deletion operation, intermediate between the
sequential and the parallel ones, is to remove exactly k strings, for a given k.
Namely, for w ∈ V ∗, L ⊆ V ∗, k ≥ 1, write

(w =⇒k L) = {u1u2 . . . uk+1 | ui ∈ V ∗, 1 ≤ i ≤ k + 1,
w = u1v1u2v2 . . . ukvkuk+1, for vi ∈ L, 1 ≤ i ≤ k}

Sets of this form will be referred to as k-deletion sets; for given k ≥ 1 we denote
by Ek the family of k-deletion sets.

9

Theorem 9 For all k ≥ 1, Ek ⊂ Ek+1, strict inclusion.

Proof. Take F ∈ Ek, F = (w =⇒k L) and construct

w′ = (w#)kw$,
L′ = {vw2#w1v | v ∈ L,w = w1vw2} ∪ {$}.

We obtain
(w′ =⇒k+1 L′) = F.

Indeed, each string in L′, excepting $, contains one symbol #, hence delet-
ing k + 1 strings means to remove k strings vw2#w1v and $. When deleting
vw2#w1v from . . .#w1vw2#w1vw2# . . ., we get . . .#1w1w2# . . ., hence (be-
tween the neighbour #) exactly the result of removing v. The previous erasing
removes the symbol # in the left of w1 and a prefix of w1, the next erasing
removes the symbol # in the right of w2 and a suffix of w2. What remains
corresponds to the removing of k subwords which belong to L, hence we obtain
a string in F . The converse inclusion is clearly true, hence F ∈ Ek+1.

Consequently, Ek ⊆ Ek+1.
This inclusion is proper. In order to prove this, consider the language

Lk = {a1, a2, . . . , ak+1}, k ≥ 1.

We have Lk = (w =⇒k L) for

w = a1a2 . . . ak+1,
L = Lk

(removing any k symbols from w we get a one-symbol string, in all possibilities).
Assume Lk ∈ Ek−1; let w,L be such that Lk = (w =⇒k−1 L).
In order to obtain a symbol ai, 1 ≤ i ≤ k + 1, we have to write

w = z1 . . . zniaizni+1 . . . zk−1, zj ∈ L, 1 ≤ j ≤ k − 1.

for some ni ≥ 0. Consider writings of w of this form (hence decompositions in
k − 1 strings in L and one symbol ai) for all i, 1 ≤ i ≤ k + 1. By changing the
subscripts of the specified symbols ai, we may assume that these distinguished
occurrences of a1, . . . , ak+1 appear in w in the natural order,

w = w1a1w2a2 . . . wk+1ak+1wk+2,

for wi ∈ V ∗, 1 ≤ i ≤ k + 2, V being an alphabet including {a1, . . . , ak+1}.
Therefore, for each ai, 1 ≤ i ≤ k+2, we can decompose w1a1 . . . wi in ni ≥ 0

strings in L and wi+1ai+2 . . . ak+1wk+2 in k − 1− ni strings in L.
If ni ≥ ni+1, then ni + k− 1−ni+1 ≥ k− 1. Removing t strings from the ni

strings in the left of ai and s strings from the k−1−ni+1 strings in the right of
ai+1, with t + s = k − 1 (this is possible, because we have at least k − 1 strings

10

at our disposal), we get a string of the form y1aiwi+1ai+1y2, y1, y2 ∈ V ∗, which
must be in Lk, a contradiction.

Consequently, ni < ni+1, 1 ≤ i ≤ k + 1. As n1 ≥ 0, we obtain nk+1 ≥ k.
The set L cannot contain the string λ, otherwise by erasing k−1 occurrences

of λ we get the string w, a contradiction. Therefore, the string w1a1 . . . wk+1

can be decomposed into nk+1 > k − 1 non-empty strings in L. By removing
the first k− 1 of them, we obtain a string of the form yak+1wk+2, y ∈ L, y 6= λ.
Such a string is not in Lk, a contradiction. Consequently, Lk /∈ Ek−1.

Remark The extra symbols in the first part of the proof cannot be avoided.
For instance, consider the set

F = {ai | 1 ≤ i ≤ k + 1}, k ≥ 1.

We have F = (w =⇒k L) for

w = a2k+1,
L = {a, aa},

hence F ∈ Ek.
However, there is no w ∈ a∗, L ⊆ a∗ such that F = (w =⇒j L) for j > k.
Indeed, assume that such w,L exist and denote

M = max{i | ai ∈ L},
m = min{i | ai ∈ L}.

By removing j times aM we must get the shortest string in F , that is a; by
removing j times am we get the longest string, ak+1. Therefore

|w| = M · j + 1 = m · j + k + 1.

Thus (M − m) · j = k, which is impossible as j > k and M − m is a natural
number.

On the other hand, F = (w =⇒k+j L), j ≥ 1, for

w = ak+1bk+j ,
L = {aib | 0 ≤ i ≤ k},

hence using one extra symbol we get F ∈ Ek+j for all j ≥ 1.

Theorem 10 For every finite set F , there is a k such that F ∈ Ek.

Proof. If card(F) = 1, F = {x}, take w = x, L = {λ}, and we have (w =⇒k

L) = F ∈ Ek for all k ≥ 1.
Assume now

F = {x1, x2, . . . , xk}, k ≥ 2,

11

and construct
w = x1#1x2#2 . . .#k−1xk,
L = {xi#i,#ixi+1 | 1 ≤ i ≤ k − 1}.

We have
F = (w =⇒k−1 L).

Indeed, we have to remove k − 1 substrings of w; each string of L contains a
symbol #i, hence all of them are removed from w; together with #i either xi

or xi+1 is removed too, hence what remains is a complete string xj , 1 ≤ j ≤ k.
Consequently, F ∈ Ek−1.

For
m = max{|xi| | 1 ≤ i ≤ k},

we can replace the new symbols #i by bam+ib, 1 ≤ i ≤ k. As such strings appear
only once in w and they identify the strings xi, xi+1 in pairs xiba

m+ib, bam+ibxi+1,
we obtain (w =⇒k−1 L) = F for the modified w,L too.

In conclusion, we obtain an infinite hierarchy of families of finite languages,
lying in between the deletion sets and the parallel deletion sets,

D − sets = E1 ⊂ E2 ⊂ . . . ⊂
⋃
i≥1

Ei = PD − sets = FIN.

Therefore, we can define a complexity measure for finite languages, say Del :
FIN −→ N, by

Del(F) = min{k | F ∈ Ek}.

From the previous theorem, if card(F) ≥ 2, then Del(F) ≤ card(F) − 1 and
Del(F) = 1 for card(F) = 1.

In view of the next theorem, Del(F) is computable.

Theorem 11 Given a set F and a natural number k, it is decidable whether
F ∈ Ek or not.

Proof. For given F and k, denote

m = card(F),
l = max{|v| | v ∈ F}.

It is enough to show that if F is in Ek, then it can be obtained from a string w
whose length is at most (l + 1)(2km + 1) by k-parallel deletion.

To show this, assume F is obtained from a string w whose length is greater
than (l + 1)(2km + 1) by deleting some language L.

Claim. There is a subword u of w with |u| = l + 1 such that every word in
F can be obtained from w by a deletion in which u is a subword of one of the
deleted words in L.

12

Indeed, if we divide w into blocks of length l + 1, we get at least 2km + 1
blocks. Choose for each word in F an arbitrary way it can be obtained from w
and mark each block that contains either a prefix or a suffix of a deleted L-word.
In this way at most 2k blocks will be marked for each word in F , which means
that altogether at most 2km blocks will be marked. Therefore at least one block
remains unmarked. This is the looked for u, hence we have the claim. (Note
that u has to be either completely deleted or not deleted at all – the latter is
impossible because u is longer than any of the words in F .)

Now, we can change w into w′ by replacing u by a new symbol #. Simul-
taneously we add to L all words obtained from words of L by replacing one
occurrence of u by #. Let L′ be this new set. It is clear that the k-parallel
deletion of L′ from w′ gives F : Every word in F is obtained because we can do
the same deletion as above except that when deleting the word that removed
the block u we use the word containing # instead.

No more words are obtained. Any deletion that removes # from w′ can be
done also with w and F ; any deletion that does not remove # from w′ uses only
words of L′ not containing #, which means that the same deletion can be done
in w, leaving u in the result – a contradiction with the fact that the words of F
are shorter than u.

So F can be obtained from a shorter word w′. The shortest word from
which F can be obtained has to be at most (l + 1)(2km + 1) symbols long.
Consequently, there are only finitely many strings w to be checked, hence the
problem whether F = (w =⇒k L) or not for some w is decidable (L must be
included in the set of subwords of w, hence it is also finite).

7 Final remarks

Besides k-parallel deletion, we can define (≤ k)-deletion, (≥ k)-deletion, and
(k, k′)-deletion, removing at most k strings, at least k strings, and at least k
but at most k′ strings, respectively. We leave the study of such cases to the
reader.

Another possibility is to define the k-parallel deletion in the following ”forced”
way: for a string w and a language L, write

(w =⇒f
k L) = {u1u2 . . . uk+1 | w = u1v1u2v2 . . . ukvkuk+1,

vi ∈ L, 1 ≤ i ≤ k,
ui /∈ V ∗(L− {λ})V ∗, 1 ≤ i ≤ k + 1}

(the remaining strings ui do not contain substrings in L− {λ}).
Denote by E′

k, k ≥ 1, the families of sets obtained in this way.
For a finite set

F = {x1, x2, . . . , xn}, n ≥ 2,

13

define
w = #1x1#2x2 . . .#nxn#n+1,
L = {#1x1 . . .#i−1xi−1#i | 1 ≤ i ≤ n}∪

{#ixi . . . xn#n+1 | 2 ≤ i ≤ n + 1}∪
{#i | 1 ≤ i ≤ n + 1}.

We have F = (w =⇒f
2 L) (no symbol #i can remain, hence we must remove

a prefix #1x1 . . . xi#i and a suffix #i+1xi+1 . . . xn#n+1, hence we obtain the
string xi+1). Therefore, F ∈ E′

2. If F = {x}, then we can put w = x#, L = {#},
and we obtain F ∈ E′

1.
In conclusion, there is no hierarchy in this case.

References

[1] L.Kari. On insertion and deletion in formal languages. Ph.D. Thesis, Uni-
versity of Turku, 1991.

[2] L.Kari, A.Mateescu, Gh.Paun, A. Salomaa. Deletion sets. Fundamenta In-
formaticae, to appear.

[3] A.Salomaa. Formal Languages. Academic Press, London, 1973.

14

