On parallel deletions applied to a word ${ }^{1}$

Lila Kari*, Alexandru Mateescu*, Gheorghe Paun**, Arto Salomaa*
*Academy of Finland and Department of Mathematics, University of Turku, 20500 Turku, Finland
** Institute of Mathematics of the Romanian Academy of Sciences, Str.Academiei 14, 70109 Bucuresti, Romania

May 5, 2011

Abstract

We consider sets arising from a single word by parallel deletion of subwords belonging to a given language. The issues dealt with are rather basic in language theory and combinatorics of words. We prove that every finite set is a parallel deletion set but a strict hierarchy results from k bounded parallel deletions. We also discuss decidability, the parallel deletion number associated to a word and a certain collapse set of a language, as well as point out some open problems.

1 Introduction

The deletion of specific subwords from a word is an operation basic in language theory.

Left and right derivatives are special cases of this operation. Examples of the wide range of applications of this operation are bottom-up parsing (a subword is deleted and replaced by a nonterminal), developmental systems (deletion means the death of a cell or a string of cells) and cryptography (decryption may begin by deleting some "garbage" portions in the cryptotext). A systematic study of various types of deletion operations was begun in [1].

The reader is referred to [3] for unexplained notions in formal language theory. The empty word is denoted by λ and the length of a word w by $|w|$. Following [1], we define the deletion and parallel deletion of a language $L \subseteq V^{*}$

[^0]from a word $w \in V^{*}$ by
\[

$$
\begin{aligned}
(*) \quad(w \rightarrow L)= & \left\{u_{1} u_{2} \mid u_{1} v u_{2}=w, v \in L\right\} \\
(* *) \quad(w \Rightarrow L)= & \left\{u_{1} u_{2} \ldots u_{n+1} \mid n \geq 1, u_{i} \in V^{*}, 1 \leq i \leq n+1\right. \\
& w=u_{1} v_{1} u_{2} \ldots u_{n} v_{n} u_{n+1}, \text { for } v_{i} \in L, 1 \leq i \leq n \\
& \text { and } \left.u_{i} \notin V^{*}(L-\{\lambda\}) V^{*}, 1 \leq i \leq n+1\right\}
\end{aligned}
$$
\]

Sets of the forms $\left(^{*}\right)$ and $\left({ }^{* *}\right)$ are referred to as deletion (D_{-}) sets, [2], and parallel deletion (PD-) sets, respectively. Clearly, sets of the forms $\left(^{*}\right)$ and $\left({ }^{* *}\right)$ are always finite.

The operations of deletion and parallel deletion are naturally extended, [1], to the case where w is replaced with a language, but in this paper attention is restricted to $\left(^{*}\right)$ and $\left({ }^{* *}\right)$. We investigate problems arising from sets $\left({ }^{* *}\right)$ and their modifications, sometimes making comparisons with sets $\left(^{*}\right)$.

2 Universality of parallel deletion sets

Most of the finite sets are not deletion sets. For instance, it is easy to see that neither $\{a, b, c\}$ nor $\{a a, a b, b a, b b\}$ is a deletion set. Characterizations of deletion sets and algorithms for deciding whether or not a given set is a deletion set were given in [2]. It is somewhat unexpected that parallel deletion sets are universal in the sense that every finite language can be viewed as a parallel deletion set.

Theorem 1 Every finite language is a parallel deletion set, that is, can be represented in the form (${ }^{* *}$).

Proof. If $V=\{a\}$, and $F=\left\{a^{i_{1}}, a^{i_{2}}, \ldots, a^{i_{n}}\right\}$, then we denote

$$
p=\max \left\{i_{j} \mid 1 \leq i \leq n\right\}
$$

and we define

$$
\begin{aligned}
& w=a^{2 p+1} \\
& L=\left\{a^{2 p+1-i_{j}} \mid 1 \leq j \leq n\right\}
\end{aligned}
$$

As only one string of L can be deleted from w, we obtain $(w \Rightarrow L)=F$.
Consider now V with $\operatorname{card}(V) \geq 2$ and take

$$
F=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

We construct

$$
\begin{aligned}
w= & \left(x_{1} \#_{1}\right)^{2}\left(x_{2} \#_{2}\right)^{2} \ldots\left(x_{n-1} \#_{n-1}\right)^{2} x_{n} \#_{n}, \\
L= & \left\{\left(x_{j} \#_{j}\right)^{2} \mid 1 \leq j \leq n-1\right\} \cup\left\{\#_{n}\right\} \cup \\
& \left\{\#_{j} x_{j} \#_{j}\left(x_{j+1} \#_{j+1}\right)^{2}\left(x_{j+2} \#_{j+2}\right)^{2} \ldots\left(x_{n-1} \#_{n-1}\right)^{2} x_{n} \#_{n} \mid\right. \\
& 1 \leq j \leq n-1\},
\end{aligned}
$$

where $\#_{1}, \ldots, \#_{n}$ are new symbols not in V.
From the form of w and of strings in L, it is clear that in every deletion we have to erase either $\#_{n}$ or a string

$$
\#_{j} x_{j} \#_{j}\left(x_{j+1} \#_{j+1}\right)^{2}\left(x_{j+2} \#_{j+2}\right)^{2} \ldots\left(x_{n-1} \#_{n-1}\right)^{2} x_{n} \#_{n},
$$

as well as all the remaining substrings $\left(x_{i} \#_{i}\right)^{2}, 1 \leq i \leq j-1$. This implies all symbols $\#_{i}, 1 \leq i \leq n$, are erased and only a string x_{j} remains, $1 \leq j \leq n$. In conclusion, $(w \Rightarrow L)=F$.

Now, take $a, b \in V, a \neq b$ (remember that $\operatorname{card}(V) \geq 2$) and denote

$$
k=\max \left\{\left|x_{i}\right| \mid 1 \leq i \leq n\right\}
$$

We replace each occurrence of $\#_{i}$ in w and in strings of L by $b a^{k+i} b, 1 \leq$ $i \leq n$. We denote by w^{\prime}, L^{\prime} the string and the language obtained in this way, respectively. As no string in F can contain a substring $a^{k+i}, 1 \leq i \leq n$, the strings $b a^{k+i} b$ behave exactly as the markers $\#_{i}, 1 \leq i \leq n$, hence again we have $\left(w^{\prime} \Rightarrow L^{\prime}\right)=F$, which concludes the proof.

3 A general undecidability result

Because not every finite set is a deletion set, we face a decision problem that was settled in [2]. An analogous problem does not exist for parallel deletion sets. However, we can fix the nonempty finite set F in the equation

$$
(w \rightarrow L)=F,
$$

and ask for an algorithm deciding for a given context-free language L whether or not a solution w exists. If such an algorithm exists, we say that F is $C F$ decidable, otherwise CF-undecidable. Similarly, we fix F in the equation

$$
(w \Rightarrow L)=F
$$

and speak of $C F$-p-decidable ("p" from "parallel") and CF-p-undecidable sets F.

It was shown in [2] that $F=\{\lambda\}$ is the only CF-decidable set. Moreover, $\{\lambda\}$ is "CF-universal" in the sense that, for any (nonempty) context-free language L, there is a word w such that $(w \rightarrow L)=\{\lambda\}$. Obviously, the same result holds for parallel deletion as well. In fact, we have

Theorem 2 The set $\{\lambda\}$ is CF-p-universal and this is the only CF-p-universal set.

Proof. Given L context-free, we obtain $(w \Rightarrow L)=\{\lambda\}$ for w one of the shortest strings in L, therefore $\{\lambda\}$ is universal.

Moreover, no set $F \neq\{\lambda\}$ can be CF-p-universal, because for any w we have $\left(w \Rightarrow V^{*}\right)=\{\lambda\} \neq F$.

In spite of the fact that parallel deletion sets coincide with finite sets, we obtain the same undecidability result as for sequential deletion.

Theorem 3 Every finite nonempty set $F \neq\{\lambda\}$ is CF-p-undecidable.
Proof. Let $F \subseteq V^{*}$ be a finite language, $F=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, with $k=$ $\max \left\{\left|x_{i}\right| \mid 1 \leq i \leq n\right\} \geq 1$. If $V=\{a\}$, then we add the symbol b to V (we still denote by V the obtained alphabet), therefore, without loss of generality we may assume $\operatorname{card}(V) \geq 2$.

We now proceed as in the proof of Theorem 1 when dealing with alphabets V with $\operatorname{card}(V) \geq 2$, namely we construct the string w^{\prime} and the language L^{\prime} such that $\left(w^{\prime} \Rightarrow L^{\prime}\right)=F$.

Take now an arbitrary context-free language $L_{0} \subseteq V^{+}$and consider two new symbols c, d, not in V. We construct the context-free language

$$
M=L^{\prime \prime} \cup\{c\} L_{0}\{c\}
$$

where $L^{\prime \prime}$ is obtained from L^{\prime} by substituting the rightmost string $b a^{k+n} b$ corresponding to the marker $\#_{n}$ in the construction of Theorem 1 , by $\{c\} V^{*}\{c d\}$. More exactly, $L^{\prime \prime}=\sigma(L)$ where σ is the substitution defined by:

$$
\sigma\left(\#_{i}\right)=b a^{k+i} b, 1 \leq i \leq n-1, \sigma\left(\#_{n}\right)=\{c\} V^{*}\{c d\}, \sigma(\alpha)=\alpha \text { otherwise }
$$

Then there exists a string w such that $(w \Rightarrow M)=F$ if and only if $L_{0} \neq V^{*}$ (which is not decidable for arbitrary context-free languages).

Indeed, if $V^{*}-L_{0} \neq \emptyset$, then take $z \in V^{*}-L_{0}$ and consider the string

$$
w=\left(x_{1} b a^{k+1} b\right)^{2} \ldots\left(x_{n-1} b a^{k+n-1} b\right)^{2} x_{n} c z c d
$$

Now, the role of the rightmost marker $\#_{n}$ is played by $c z c d$. As no string of $\{c\} L_{0}\{c\}$ appears as a substring of w, in view of the proof of Theorem 1, we obtain $(w \Rightarrow M)=F$.

Assume now that $L_{0}=V^{*}$ and suppose that there is a string w such that $(w \Rightarrow M)=F$.

We distinguish more cases:
(i) w contains at least one ocurrence of d. Note that all occurrences of d from w have to be deleted, as otherwise we obtain in $(w \Rightarrow M)$ words which do not belong to F. As d can be deleted only by words from $L^{\prime \prime}$, we deduce that the subwords of w containing d have to be of the form $y c v c d, y, v \in V^{*}$. But, in this case, we can also erase from w the word $c v c$, which leads us to a word in $(w \Rightarrow M)$ still containing a letter d - a contradiction with the form of the strings in F.
(ii) w contains no occurrence of d but contains occurrences of c. Then we can delete from w only strings of $\{c\} L_{0}\{c\}$ and strings in $L^{\prime \prime}$ containing no occurrence of c (the strings in $L^{\prime \prime}$ containing c contain d, too). If w contains an odd number
of occurrences of c, then the strings in $(w \Rightarrow M)$ contain an odd number of occurrences of c, contradicting the form of strings in F. If w contains at least 4 occurrences of $c, w=u_{1} c u_{2} c u_{3} c u_{4} c u_{5}, u_{1}, u_{2}, u_{3}, u_{4} \in V^{*}, u_{5} \in(\{c\} \cup V)^{*}$, then we can remove $c u_{3} c$ as belonging to $\{c\} L_{0}\{c\}$, and irrespective of other deletions, the first occurrence of c in w remains. Hence we obtain a string not in F.

If $w=u_{1} c u_{2} c u_{3}, u_{1}, u_{2}, u_{3} \in V^{*}$, then in order to obtain strings in F we have to remove $c u_{2} c$ (and this can be done). This implies w is of the form

$$
\begin{gathered}
w=y_{0}\left(x_{i_{1}} b a^{k+i_{1}} b\right)^{2} y_{1}\left(x_{i_{2}} b a^{k+i_{2}} b\right)^{2} y_{2} \ldots\left(x_{i_{j}} b a^{k+i_{j}} b\right)^{2} y_{j} c u_{2} c \\
y_{j+1}\left(x_{i_{j+2}} b a^{k+i_{j+2}} b\right)^{2} \ldots y_{s}\left(x_{i_{s+1}} b a^{k+i_{s+1}} b\right)^{2} y_{s+1}
\end{gathered}
$$

with $1 \leq i_{t} \leq n, 1 \leq t \leq s$, and $y_{0} y_{1} \ldots y_{s+1} \in F$.
However the strings $b a^{k+i_{t}} b$ precisely identify the strings in $L^{\prime \prime}$ used in such deletions of substrings in w (in $y_{0} y_{1} y_{2} \ldots y_{s+1}$ we cannot have substrings a^{k+i}, $i \geq 1$) hence only one deletion is possible, that is $(w \Rightarrow M)$ contains only one string. The case $F=\{x\}, x \neq \lambda$, is handled below.
(iii) w contains no occurrence of c and d. Then, as in the last part of the previous case, we infer that $\operatorname{card}(w \Rightarrow M)=1$.

For the case $F=\{x\}, x \neq \lambda$, take again $L_{0} \subseteq V^{*}$ (for V assumed to contain at least two symbols) and construct

$$
M=\{c\} V^{*}\{c\} \cup V^{*}\{c\} L_{0}\{c\} V^{*}
$$

If $V^{*} \neq L_{0}$, then for $z \in V^{*}-L_{0}$ we obtain

$$
(x c z c \Rightarrow M)=\{x\}
$$

If $L_{0}=V^{*}$, then every w with $(w \Rightarrow M)=\{x\}$ must contain an even number of occurrences of $c, w=u_{1} c u_{2} c \ldots c u_{2 t+1}, t \geq 1$. By deleting strings in $V^{*}\{c\} L_{0}\{c\} V^{*}$ from w we can obtain $\lambda \in(w \Rightarrow M)$, contradicting the relation $x \neq \lambda$.

4 The parallel deletion number of a word

The deletion number, [2], associated to a word w equals the cardinality of the largest deletion set arising from w, that is

$$
d(w)=\max \left\{\operatorname{card}(w \rightarrow L) \mid L \subseteq V^{*}\right\}
$$

The parallel deletion number is defined analogously,

$$
\operatorname{pd}(w)=\max \left\{\operatorname{card}(w \Rightarrow L) \mid L \subseteq V^{*}\right\}
$$

Upper bounds for $d(w)$, best possible in the general case, were deduced in [2]. For instance, if $\operatorname{card}(V)=s$ and $n \equiv r(\bmod s)$, then

$$
\max \left\{d(w)||w|=n\}=n+1+\frac{(s-1) n^{2}-s r+r^{2}}{2 s}\right.
$$

It is clear that $d(w)=\operatorname{card}\left(w \rightarrow V^{*}\right)$. An analogous result does not hold for parallel deletion because, for every $w,\left(w \Rightarrow V^{*}\right)=\{\lambda\}$.

We now begin our investigation concerning the number $\operatorname{pd}(w)$. For the alphabet with only one element, $\operatorname{pd}(w)$ can be computed, but for the general case the question seems not to be simple at all.

Theorem 4 If $w=a^{n}, n \geq 1$, then $p d(w)=n$.
Proof. For $w=a$ we have

$$
\operatorname{card}(a \Rightarrow\{\lambda\})=\operatorname{card}(a \Rightarrow\{a\})=\operatorname{card}(a \Rightarrow\{\lambda, a\})=1
$$

For $w=a^{n}, n \geq 2$, consider

$$
L=\left\{\lambda, a^{2}, a^{3}, \ldots, a^{n}\right\}
$$

Because we can write $a^{n}=a \lambda a \lambda \ldots a \lambda a$ we obtain $a^{n} \in(w \Rightarrow L)$. Moreover, for each $a^{i}, 2 \leq i \leq n$, we have $a^{n}=a \lambda a \lambda \ldots a \lambda a^{i}$ which implies $a^{n-i} \in(w \Rightarrow L)$ for all $2 \leq i \leq n$. In conclusion,

$$
(w \Rightarrow L)=\left\{\lambda, a, a^{2}, \ldots, a^{n-2}, a^{n}\right\}
$$

that is $\operatorname{card}(w \Rightarrow L)=n$.
The previous proof makes essentially use of the existence of the empty string in L (and the non-existence of a in L). However, if we do not allow λ to be in L then computing $\operatorname{card}(w \Rightarrow L)$ is much more difficult. As an illustration of this, let us consider the following particular case: $w=a^{n}, L=\left\{a^{2}\right\}$. The reader can verify that we obtain

$$
\left(a^{n} \Rightarrow a^{2}\right)= \begin{cases}\left\{\lambda, a^{2}, a^{4}, \ldots, a^{2 t}\right\}, & \text { if } n=6 t, \\ \left\{a, a^{3}, \ldots, a^{2 t+1}\right\}, & \text { if } n=6 t+1, \quad t \geq 1, \\ \left\{\lambda, a^{2}, a^{4}, \ldots, a^{2 t}\right\}, & \text { if } n=6 t+2, \quad t \geq 0 \\ \left\{a, a^{3}, \ldots, a^{2 t+1}\right\}, & \text { if } n=6 t+3, \quad t \geq 0 \\ \left\{\lambda, a^{2}, a^{4}, \ldots, a^{2 t+2}\right\}, & \text { if } n=6 t+4, \quad t \geq 0 \\ \left\{a, a^{3}, \ldots, a^{2 t+1}\right\}, & \text { if } n=6 t+5, \quad t \geq 0\end{cases}
$$

hence

$$
\operatorname{card}\left(a^{n} \Rightarrow a^{2}\right)=\left\{\begin{array}{lll}
t+1, & \text { if } n=6 t, & t \geq 1 \\
t+1, & \text { if } n=6 t+1, & t \geq 1 \\
t+1, & \text { if } n=6 t+2, & t \geq 0 \\
t+1, & \text { if } n=6 t+3, & t \geq 0 \\
t+2, & \text { if } n=6 t+4, & t \geq 0 \\
t+1, & \text { if } n=6 t+5, & t \geq 0
\end{array}\right.
$$

(we delete a certain number of substrings a^{2} from a^{n} and two consecutive substrings a^{2} are either neighbouring or they are separated by one occurrence of a; if a^{r} is in $\left(a^{n} \Rightarrow a^{2}\right)$, then also a^{r-2} is in $\left(a^{n} \Rightarrow a^{2}\right)$ because we can arrange the deleted substrings a^{2} in such a way as to delete two more symbols a bounding them.)

In the case of arbitrary alphabets with at least two symbols we obtain the following surprising result.

Theorem 5 If $\operatorname{card}(V) \geq 2$, then there is no polynomial f such that for every $w \in V^{*}$ we have $p d(w) \leq f(|w|)$.

Proof. It suffices to show that, given a polynomial f (in one variable), there are strings w such that $\operatorname{pd}(w)>f(|w|)$.

Take a polynomial f of degree $n \geq 1$ and consider the strings

$$
w_{n, m}=\left(a^{m} b^{m}\right)^{n} .
$$

Moreover, take

$$
L_{m}=\left\{a^{i} b^{j} \mid 1 \leq i, j \leq m-1\right\}
$$

and evaluate the cardinality of $\left(w_{n, m} \Rightarrow L_{m}\right)$.
As each string in L_{m} contains at least one occurrence of a and one occurrence of b, we can delete from $w_{n, m}$ exactly n strings of L_{m}, which implies

$$
\begin{gathered}
\left(w_{n, m} \Rightarrow L_{m}\right)=\left\{a^{m-i_{1}} b^{m-j_{1}} a^{m-i_{2}} b^{m-j_{2}} \ldots a^{m-i_{n}} b^{m-j_{n}} \mid\right. \\
\left.1 \leq i_{s}, j_{s} \leq m-1,1 \leq s \leq n\right\}
\end{gathered}
$$

Consequently,

$$
\operatorname{card}\left(w_{n, m} \Rightarrow L_{m}\right)=(m-1)^{2 n}
$$

Clearly, because $2 n$ is a constant, for large enough m we have

$$
\operatorname{pd}\left(w_{n, m}\right) \geq(m-1)^{2 n}>f(2 n m)=f\left(\left|w_{n, m}\right|\right)
$$

which completes the proof.

5 The collapse set of a language

We observed in the previous section that, for every word $w,\left(w \Rightarrow V^{*}\right)=\{\lambda\}$. We can express this by saying that every word collapses to the empty word when subjected to parallel deletion with respect to V^{*}. We speak also of the collapse set of V^{*}. Thus, the collapse set of V^{*} equals V^{*}.

In general, we define the collapse set of a nonempty language $L \subseteq V^{*}$ by

$$
\operatorname{cs}(L)=\left\{w \in V^{*} \mid(w \Rightarrow L)=\{\lambda\}\right\}
$$

This language is always nonempty because it contains each of the shortest words in L.

We give first some examples.
(1) $\operatorname{cs}\left(\left\{a^{n} b^{n} \mid n \geq 1\right\}\right)=(a b)^{+}$,
(2) $\operatorname{cs}(\{a, b b\})=a^{*} b b\left(a^{+} b b\right)^{*} a^{*} \cup a^{+}$ (hence $\operatorname{cs}(L)$ can be infinite for finite L),
(3) $\operatorname{cs}\left(\{a b\} \cup\left\{a^{n} b^{m} a^{p} \mid n, m, p \geq 1\right\}\right)=\{a b\}$, (hence $\operatorname{cs}(L)$ can be finite for infinite L),
(4) $\operatorname{cs}\left(\left\{c a^{n} b^{n} \mid n \geq 1\right\}\right)=\left\{c a^{n} b^{n} \mid n \geq 1\right\}^{+}$, (hence $\operatorname{cs}(L)$ can be nonlinear for linear L).

Moreover, we have
Theorem 6 There is a linear language L such that $c s(L)$ is not context-free.
Proof. Take

$$
L=\left\{d d a^{n} b^{m} c^{n} \mid n, m \geq 1\right\} \cup\left\{d a^{n} b^{m} c^{p} \mid n, m, p \geq 1, m \geq p\right\}
$$

Clearly, L is linear. Moreover, we have

$$
\operatorname{cs}(L) \cap d^{2} a^{+} b^{+} c^{+}=\left\{d^{2} a^{n} b^{m} c^{n} \mid 1 \leq m<n\right\}
$$

and this is not a context-free language (mark the occurrences of b and use Ogden's lemma).

The equality follows from the next three remarks:
(i) all the strings in $\operatorname{cs}(L) \cap d^{2} a^{+} b^{+} c^{+}$are of the from $d^{2} a^{n} b^{m} c^{n}, n, m \geq 1$;
(ii) for $m \geq n \geq 1$, we have

$$
\left(d^{2} a^{n} b^{m} c^{n} \Rightarrow d a^{n} b^{m} c^{n}\right)=\{d\}
$$

hence $d^{2} a^{n} b^{m} c^{m}$ is not in $\operatorname{cs}(L) \cap d^{2} a^{+} b^{+} c^{+}$;
(iii) for $1 \leq m<n$, we have

$$
\left(d^{2} a^{n} b^{m} c^{n} \Rightarrow L\right)=\left(d^{2} a^{n} b^{m} c^{n} \Rightarrow\left\{d^{2} a^{n} b^{m} c^{n}\right\}\right)=\{\lambda\}
$$

Theorem 7 Let $L \subseteq V^{*}$ be an arbitrary language. Then

$$
c s(L)=L^{+}-M
$$

where

$$
M=\left(V^{*} L \cup\{\lambda\}\right)\left(V^{+}-V^{*} L V^{*}\right)\left(L V^{*} \cup\{\lambda\}\right)
$$

Proof. " \subseteq " Take $x \in \operatorname{cs}(L)$. Clearly, $x \in L^{+}$. Suppose $x \in M$, hence we can write

$$
x=x_{1} u v w x_{2}
$$

with

$$
\begin{aligned}
& x_{1} u=\lambda \text { or } x_{1} \in V^{*}, u \in L \\
& v \in V^{+}, v \notin V^{*} L V^{*} \\
& w x_{2}=\lambda \text { or } w \in L, x_{2} \in V^{*}
\end{aligned}
$$

As $v \neq \lambda$ and v contains no subword of L, there is a string in $(x \Rightarrow L)$ containing the substring v, which implies $x \notin \operatorname{cs}(L)$, a contradiction.
$" \supseteq "$ Take $x \in L^{+}-M$ and assume $x \notin \operatorname{cs}(L)$. Therefore there is $z \neq \lambda$, $z \in(x \Rightarrow L)$. Consequently, we can write $z=z_{1} z_{2} z_{3}, z_{2} \neq \lambda, z_{1}, z_{2} \in V^{*}, z_{2}$ containing no substring in L and

$$
\begin{array}{ll}
\text { with } & x=x_{1} u z_{2} v x_{3} \\
& x_{1} u=\lambda \text { or } x_{1} \in V^{*}, u \in L \\
& z_{2} \in V^{+}, z_{2} \notin V^{*} L V^{*} \\
& v x_{3}=\lambda \text { or } v \in L, x_{3} \in V^{*}
\end{array}
$$

such that $z_{1} z_{2} z_{3} \in(x \Rightarrow L), z_{1} \in\left(x_{1} \Rightarrow L\right), z_{3} \in\left(x_{3} \Rightarrow L\right)$. In conclusion, $x \in M$, hence $x \notin L^{+}-M$, a contradiction.

Corollary 1 If L is regular (context-sensitive), then $c s(L)$ is also regular (respectively context-sensitive).

Proof. Obvious, from the closure properties of the families of regular and contextsensitive languages.

Theorem 8 For $L \subseteq V^{*}$ we have $\operatorname{cs}(L)=V^{*}$ if and only if $V \cup\{\lambda\} \subseteq L$.
Proof. In general, $\operatorname{cs}(L) \subseteq V^{*}$. If $V \subseteq L$, then for every $w \in V^{+}$we have $(w \Rightarrow L)=\{\lambda\}$, hence $V^{+} \subseteq \operatorname{cs}(L)$. If $\lambda \in L$ then $(\lambda \Rightarrow L)=\{\lambda\}$, too. In conclusion, $\operatorname{cs}(L)=V^{*}$.

Conversely, if $\operatorname{cs}(L)=V^{*}$, then $V \cup\{\lambda\} \subseteq \operatorname{cs}(L)$. For $a \in V$ we can have $(a \Rightarrow L)=\{\lambda\}$ only if $a \in L$, therefore $V \subseteq L$. Similarly, $(\lambda \Rightarrow L)=\{\lambda\}$ only if $\lambda \in L$ (if $L \subseteq V^{+}$, then $(\lambda \Rightarrow L)=\emptyset$).

6 -parallel deletion

Another natural way to define a deletion operation, intermediate between the sequential and the parallel ones, is to remove exactly k strings, for a given k. Namely, for $w \in V^{*}, L \subseteq V^{*}, k \geq 1$, write

$$
\begin{aligned}
\left(w \Longrightarrow_{k} L\right)= & \left\{u_{1} u_{2} \ldots u_{k+1} \mid u_{i} \in V^{*}, 1 \leq i \leq k+1\right. \\
& \left.w=u_{1} v_{1} u_{2} v_{2} \ldots u_{k} v_{k} u_{k+1}, \text { for } v_{i} \in L, 1 \leq i \leq k\right\}
\end{aligned}
$$

Sets of this form will be referred to as k-deletion sets; for given $k \geq 1$ we denote by E_{k} the family of k-deletion sets.

Theorem 9 For all $k \geq 1, E_{k} \subset E_{k+1}$, strict inclusion.
Proof. Take $F \in E_{k}, F=\left(w \Longrightarrow_{k} L\right)$ and construct

$$
\begin{aligned}
w^{\prime} & =(w \#)^{k} w \$ \\
L^{\prime} & =\left\{v w_{2} \# w_{1} v \mid v \in L, w=w_{1} v w_{2}\right\} \cup\{\$\}
\end{aligned}
$$

We obtain

$$
\left(w^{\prime} \Longrightarrow_{k+1} L^{\prime}\right)=F
$$

Indeed, each string in L^{\prime}, excepting $\$$, contains one symbol $\#$, hence deleting $k+1$ strings means to remove k strings $v w_{2} \# w_{1} v$ and $\$$. When deleting $v w_{2} \# w_{1} v$ from $\ldots \# w_{1} v w_{2} \# w_{1} v w_{2} \# \ldots$, we get $\ldots \#_{1} w_{1} w_{2} \# \ldots$, hence (between the neighbour \#) exactly the result of removing v. The previous erasing removes the symbol $\#$ in the left of w_{1} and a prefix of w_{1}, the next erasing removes the symbol \# in the right of w_{2} and a suffix of w_{2}. What remains corresponds to the removing of k subwords which belong to L, hence we obtain a string in F. The converse inclusion is clearly true, hence $F \in E_{k+1}$.

Consequently, $E_{k} \subseteq E_{k+1}$.
This inclusion is proper. In order to prove this, consider the language

$$
L_{k}=\left\{a_{1}, a_{2}, \ldots, a_{k+1}\right\}, k \geq 1
$$

We have $L_{k}=\left(w \Longrightarrow_{k} L\right)$ for

$$
\begin{aligned}
& w=a_{1} a_{2} \ldots a_{k+1}, \\
& L=L_{k}
\end{aligned}
$$

(removing any k symbols from w we get a one-symbol string, in all possibilities).
Assume $L_{k} \in E_{k-1}$; let w, L be such that $L_{k}=\left(w \Longrightarrow_{k-1} L\right)$.
In order to obtain a symbol $a_{i}, 1 \leq i \leq k+1$, we have to write

$$
w=z_{1} \ldots z_{n_{i}} a_{i} z_{n_{i}+1} \ldots z_{k-1}, z_{j} \in L, 1 \leq j \leq k-1
$$

for some $n_{i} \geq 0$. Consider writings of w of this form (hence decompositions in $k-1$ strings in L and one symbol a_{i}) for all $i, 1 \leq i \leq k+1$. By changing the subscripts of the specified symbols a_{i}, we may assume that these distinguished occurrences of a_{1}, \ldots, a_{k+1} appear in w in the natural order,

$$
w=w_{1} a_{1} w_{2} a_{2} \ldots w_{k+1} a_{k+1} w_{k+2}
$$

for $w_{i} \in V^{*}, 1 \leq i \leq k+2, V$ being an alphabet including $\left\{a_{1}, \ldots, a_{k+1}\right\}$.
Therefore, for each $a_{i}, 1 \leq i \leq k+2$, we can decompose $w_{1} a_{1} \ldots w_{i}$ in $n_{i} \geq 0$ strings in L and $w_{i+1} a_{i+2} \ldots a_{k+1} w_{k+2}$ in $k-1-n_{i}$ strings in L.

If $n_{i} \geq n_{i+1}$, then $n_{i}+k-1-n_{i+1} \geq k-1$. Removing t strings from the n_{i} strings in the left of a_{i} and s strings from the $k-1-n_{i+1}$ strings in the right of a_{i+1}, with $t+s=k-1$ (this is possible, because we have at least $k-1$ strings
at our disposal), we get a string of the form $y_{1} a_{i} w_{i+1} a_{i+1} y_{2}, y_{1}, y_{2} \in V^{*}$, which must be in L_{k}, a contradiction.

Consequently, $n_{i}<n_{i+1}, 1 \leq i \leq k+1$. As $n_{1} \geq 0$, we obtain $n_{k+1} \geq k$.
The set L cannot contain the string λ, otherwise by erasing $k-1$ occurrences of λ we get the string w, a contradiction. Therefore, the string $w_{1} a_{1} \ldots w_{k+1}$ can be decomposed into $n_{k+1}>k-1$ non-empty strings in L. By removing the first $k-1$ of them, we obtain a string of the form $y a_{k+1} w_{k+2}, y \in L, y \neq \lambda$. Such a string is not in L_{k}, a contradiction. Consequently, $L_{k} \notin E_{k-1}$.

Remark The extra symbols in the first part of the proof cannot be avoided. For instance, consider the set

$$
F=\left\{a^{i} \mid 1 \leq i \leq k+1\right\}, k \geq 1
$$

We have $F=\left(w \Longrightarrow_{k} L\right)$ for

$$
\begin{aligned}
& w=a^{2 k+1} \\
& L=\{a, a a\}
\end{aligned}
$$

hence $F \in E_{k}$.
However, there is no $w \in a^{*}, L \subseteq a^{*}$ such that $F=\left(w \Longrightarrow_{j} L\right)$ for $j>k$.
Indeed, assume that such w, L exist and denote

$$
\begin{aligned}
& M=\max \left\{i \mid a^{i} \in L\right\} \\
& m=\min \left\{i \mid a^{i} \in L\right\}
\end{aligned}
$$

By removing j times a^{M} we must get the shortest string in F, that is a; by removing j times a^{m} we get the longest string, a^{k+1}. Therefore

$$
|w|=M \cdot j+1=m \cdot j+k+1
$$

Thus $(M-m) \cdot j=k$, which is impossible as $j>k$ and $M-m$ is a natural number.

On the other hand, $F=\left(w \Longrightarrow_{k+j} L\right), j \geq 1$, for

$$
\begin{aligned}
& w=a^{k+1} b^{k+j} \\
& L=\left\{a^{i} b \mid 0 \leq i \leq k\right\}
\end{aligned}
$$

hence using one extra symbol we get $F \in E_{k+j}$ for all $j \geq 1$.
Theorem 10 For every finite set F, there is a k such that $F \in E_{k}$.
Proof. If $\operatorname{card}(F)=1, F=\{x\}$, take $w=x, L=\{\lambda\}$, and we have $\left(w \Longrightarrow_{k}\right.$ $L)=F \in E_{k}$ for all $k \geq 1$.

Assume now

$$
F=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, k \geq 2
$$

and construct

$$
\begin{aligned}
& w=x_{1} \#_{1} x_{2} \#_{2} \ldots \#_{k-1} x_{k} \\
& L=\left\{x_{i} \#_{i}, \#_{i} x_{i+1} \mid 1 \leq i \leq k-1\right\}
\end{aligned}
$$

We have

$$
F=\left(w \Longrightarrow_{k-1} L\right)
$$

Indeed, we have to remove $k-1$ substrings of w; each string of L contains a symbol $\#_{i}$, hence all of them are removed from w; together with $\#_{i}$ either x_{i} or x_{i+1} is removed too, hence what remains is a complete string $x_{j}, 1 \leq j \leq k$. Consequently, $F \in E_{k-1}$.

For

$$
m=\max \left\{\left|x_{i}\right| \mid 1 \leq i \leq k\right\}
$$

we can replace the new symbols $\#_{i}$ by $b a^{m+i} b, 1 \leq i \leq k$. As such strings appear only once in w and they identify the strings x_{i}, x_{i+1} in pairs $x_{i} b a^{m+i} b, b a^{m+i} b x_{i+1}$, we obtain $\left(w \Longrightarrow_{k-1} L\right)=F$ for the modified w, L too.

In conclusion, we obtain an infinite hierarchy of families of finite languages, lying in between the deletion sets and the parallel deletion sets,

$$
D-\text { sets }=E_{1} \subset E_{2} \subset \ldots \subset \bigcup_{i \geq 1} E_{i}=P D-\text { sets }=F I N .
$$

Therefore, we can define a complexity measure for finite languages, say Del : $F I N \longrightarrow \mathbf{N}$, by

$$
\operatorname{Del}(F)=\min \left\{k \mid F \in E_{k}\right\} .
$$

From the previous theorem, if $\operatorname{card}(F) \geq 2$, then $\operatorname{Del}(F) \leq \operatorname{card}(F)-1$ and $\operatorname{Del}(F)=1$ for $\operatorname{card}(F)=1$.

In view of the next theorem, $\operatorname{Del}(F)$ is computable.
Theorem 11 Given a set F and a natural number k, it is decidable whether $F \in E_{k}$ or not.

Proof. For given F and k, denote

$$
\begin{aligned}
& m=\operatorname{card}(F) \\
& l=\quad \max \{|v| \mid v \in F\}
\end{aligned}
$$

It is enough to show that if F is in E_{k}, then it can be obtained from a string w whose length is at most $(l+1)(2 k m+1)$ by k-parallel deletion.

To show this, assume F is obtained from a string w whose length is greater than $(l+1)(2 k m+1)$ by deleting some language L.

Claim. There is a subword u of w with $|u|=l+1$ such that every word in F can be obtained from w by a deletion in which u is a subword of one of the deleted words in L.

Indeed, if we divide w into blocks of length $l+1$, we get at least $2 k m+1$ blocks. Choose for each word in F an arbitrary way it can be obtained from w and mark each block that contains either a prefix or a suffix of a deleted L-word. In this way at most $2 k$ blocks will be marked for each word in F, which means that altogether at most 2 km blocks will be marked. Therefore at least one block remains unmarked. This is the looked for u, hence we have the claim. (Note that u has to be either completely deleted or not deleted at all - the latter is impossible because u is longer than any of the words in F.)

Now, we can change w into w^{\prime} by replacing u by a new symbol \#. Simultaneously we add to L all words obtained from words of L by replacing one occurrence of u by $\#$. Let L^{\prime} be this new set. It is clear that the k-parallel deletion of L^{\prime} from w^{\prime} gives F : Every word in F is obtained because we can do the same deletion as above except that when deleting the word that removed the block u we use the word containing \# instead.

No more words are obtained. Any deletion that removes \# from w^{\prime} can be done also with w and F; any deletion that does not remove $\#$ from w^{\prime} uses only words of L^{\prime} not containing $\#$, which means that the same deletion can be done in w, leaving u in the result - a contradiction with the fact that the words of F are shorter than u.

So F can be obtained from a shorter word w^{\prime}. The shortest word from which F can be obtained has to be at most $(l+1)(2 k m+1)$ symbols long. Consequently, there are only finitely many strings w to be checked, hence the problem whether $F=\left(w \Longrightarrow_{k} L\right)$ or not for some w is decidable (L must be included in the set of subwords of w, hence it is also finite).

7 Final remarks

Besides k-parallel deletion, we can define $(\leq k)$-deletion, $(\geq k)$-deletion, and (k, k^{\prime})-deletion, removing at most k strings, at least k strings, and at least k but at most k^{\prime} strings, respectively. We leave the study of such cases to the reader.

Another possibility is to define the k-parallel deletion in the following "forced" way: for a string w and a language L, write

$$
\begin{aligned}
\left(w \Longrightarrow_{k}^{f} L\right)= & \left\{u_{1} u_{2} \ldots u_{k+1} \mid w=u_{1} v_{1} u_{2} v_{2} \ldots u_{k} v_{k} u_{k+1},\right. \\
& v_{i} \in L, 1 \leq i \leq k, \\
& \left.u_{i} \notin V^{*}(L-\{\lambda\}) V^{*}, 1 \leq i \leq k+1\right\}
\end{aligned}
$$

(the remaining strings u_{i} do not contain substrings in $L-\{\lambda\}$).
Denote by $E_{k}^{\prime}, k \geq 1$, the families of sets obtained in this way.
For a finite set

$$
F=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, n \geq 2
$$

define

$$
\begin{aligned}
w= & \#_{1} x_{1} \#_{2} x_{2} \ldots \#_{n} x_{n} \#_{n+1} \\
L= & \left\{\#_{1} x_{1} \ldots \#_{i-1} x_{i-1} \#_{i} \mid 1 \leq i \leq n\right\} \cup \\
& \left\{\#_{i} x_{i} \ldots x_{n} \#_{n+1} \mid 2 \leq i \leq n+1\right\} \cup \\
& \left\{\#_{i} \mid 1 \leq i \leq n+1\right\} .
\end{aligned}
$$

We have $F=\left(w \Longrightarrow{ }_{2}^{f} L\right)$ (no symbol $\#_{i}$ can remain, hence we must remove a prefix $\#_{1} x_{1} \ldots x_{i} \#_{i}$ and a suffix $\#_{i+1} x_{i+1} \ldots x_{n} \#_{n+1}$, hence we obtain the string $\left.x_{i+1}\right)$. Therefore, $F \in E_{2}^{\prime}$. If $F=\{x\}$, then we can put $w=x \#, L=\{\#\}$, and we obtain $F \in E_{1}^{\prime}$.

In conclusion, there is no hierarchy in this case.

References

[1] L.Kari. On insertion and deletion in formal languages. Ph.D. Thesis, University of Turku, 1991.
[2] L.Kari, A.Mateescu, Gh.Paun, A. Salomaa. Deletion sets. Fundamenta Informaticae, to appear.
[3] A.Salomaa. Formal Languages. Academic Press, London, 1973.

[^0]: ${ }^{1}$ Research supported by the Academy of Finland, grant 11281, and the Alexander von Humboldt Foundation. All correspondence to Lila Kari.

