
Some Properties of Ciliate Bio-operations�

Mark Daley and Lila Kari

Department of Computer Science,
University of Western Ontario,
London, ON, N6A 5B7 Canada,

{lila,daley}@csd.uwo.ca

Abstract. The process of gene unscrambling in ciliates (a type of unicel-
lular protozoa), which accomplishes the difficult task of re-arranging gene
segments in the correct order and deleting non-coding sequences from an
“encrypted” version of a DNA strand, has been modeled and studied
so far from the point of view of the computational power of the DNA
bio-operations involved. Here we concentrate on a different aspect of
the process, by considering only the linear version of the bio-operations,
that do not involve thus any circular strands, and by studying the re-
sulting formal operations from a purely language theoretic point of view.
We namely investigate closure operations of language families under the
mentioned bio-operations and study language equations involving them.
Among the problems addressed, we study the decidability of existence of
solutions to equations of the form L � Y = R, X � L = R where L and R
are given languages, X and Y are unknowns, and � signifies one of the
defined bio-operations.

1 Introduction

The stichotrichous ciliates are a group of primitive single-celled organisms which
have generated a great deal of interest due to their unique genetic mechanisms.
Most organisms store their genomic DNA in a linear sequence consisting of cod-
ing regions interspersed with non-coding regions. Several ciliate genes, however,
are stored in a scrambled form. For example, if a functional copy of a gene
consists of the coding regions arranged in the order 1-2-3-4-5, it may appear
in the order 3-5-4-1-2 in the genome. This presents an interesting problem for
the organism, who must somehow descramble these genes in order to generate
functional proteins required for its continued existence.

The details of the biological mechanism underlying the unscrambling process
are still unknown. For further information on the biology of the descrambling pro-
cess in ciliates the reader is referred to [12,13,14]. The two existing formal models
for gene unscrambling, by Kari and Landweber [5,10], respectively Ehrenfeucht,
Harju, Petre, Prescott and Rozenberg [11,3,15] are consistent with the existing
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biological data. Each proposes a set of two, respectively three, atomic opera-
tions the combination of which can lead to the unscrambling of an arbitrarily
scrambled gene. The bio-operations proposed by the first model are circular in-
sertions and deletions, i.e. insertions and deletions of circular strands into/from
linear strands, guided by the presence of certain pointers [5,10]. The second
model focuses more on the properties of pointers and proposes three operations:
hi(hairpin loop with inverted pointers) which reverses a substring between two
inverted pointer sequences, ld(loop with direct pointers)-excision which deletes
a substring between two pointers and dlad(double loop with alternating direct
pointers)-excision/reinsertion which swaps two substrings marked by pointer-
pairs. In both cases, the operations presented are based on real biological events
that can occur and change a DNA molecule.

This paper does not address the biological aspects and implications of the
proposed operations. Instead, we continue in the style of Dassow et. al’s work
on properties of operations inspired by general DNA recombination events [2]
and focus on some of their properties as word/language operations. We namely
consider, in Section 2, closure properties of languages in the Chomsky hierar-
chy under the defined operations. Moreover, in Section 3 we consider language
equations of the type L � Y = R, X �L = R where L and R are given languages
and X and Y are the unknowns. We study the decidability of the existence of
solutions to these equations as well as the existence of singleton solutions.

The notations used in the paper are summarized as follows. An alphabet Σ
is a finite non-empty set. A word w over Σ is an element of the free semigroup
(denoted Σ+) generated by the letters of Σ and the catenation operation. The
length of a word, written |w| is equal to the number of letters in the word. In
the free monoid Σ∗ we also allow the empty word λ where |λ| = 0. A language
L is a, possibly infinite, set of words over a given alphabet. The complement of
a language L is written Lc and is defined as Lc = Σ∗ \ L.

We will consider here the classic families of the Chomsky Hierarchy, that is,
the families of: regular languages (REG), context-free languages (CF), context-
sensitive languages (CS) and recursively enumerable languages (RE). For further
details on basic formal language theory, the reader is referred to [16].

2 Closure Properties

This section will define the two bio-operations of the [5,10] model and a general-
ization of an operation in the [11,3,15] model and investigate closure properties
of families in the Chomsky hierarchy under them.

2.1 Synchronized Insertion and Deletion

Two basic operations have been defined in [5,10] that model the processes of
intramolecular respectively intermolecular DNA recombinations that are thought
to accomplish gene unscrambling.

The operation modeling the intermolecular recombination accomplishes the
insertion of a circular sequence vx in a linear string uxw, resulting in a string
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uxvxw. If we ignore the fact that the inserted string is circular, the operation,
called synchronized insertion (the word “synchronized” points out that insertion
can only happen if the sequence x is present in both input strands), is formally
defined as follows.

Definition 1. Let α, β be two nonempty words in Σ∗. The synchronized in-
sertion of β into α is defined as: α ⊕ β = {uxvxw|α = uxw, β = vx, x ∈
Σ+, u, v, w ∈ Σ∗}.

The operation modeling intramolecular recombination accomplishes the dele-
tion of a sequence vx from the original strand uxvxw, in the form of a circular
strand. Ignoring the differences between the linear and circular strands, the re-
sulting operation, that of synchronized deletion , is defined as follows.

Definition 2. Let α, β be two nonempty words in Σ∗. The synchronized deletion
of β from α is defined as: α � β = {uxw|α = uxvxw, β = vx, x ∈ Σ+, u, v, w ∈
Σ∗}.

The operations differ from the original ones defined in [10] and [5] in that
no circular strands are present here. The above two definitions can be extended
to languages in the natural way. This section examines the closure properties of
the families of regular, context-free, context-sensitive and recursively enumerable
languages under the synchronized insertion and deletion.

We begin by recognizing that we can consider, without loss of generality, only
one-symbol contexts instead of arbitrarily-sized contexts.

Lemma 1. For any α, β ∈ Σ+, α ⊕ β = {u′av′aw′|α = u′aw′, β = v′a, a ∈
Σ, u′, v′, w′ ∈ Σ∗}.

Using the preceding result we can now show that the synchronized insertion
can be expressed in terms of the controlled sequential insertion, defined in [9]
as follows. Let L ⊆ Σ+ and, for each a ∈ Σ, let ∆(a) ⊆ Σ∗. The controlled
sequential insertion into L, according to ∆, is defined as L←− ∆ = ∪u∈L(u←−
∆), where u←− ∆ = {u1avau2| u = u1au2, va ∈ ∆(a)}.
Proposition 1. REG, CF, CS and RE are closed under synchronized insertion.

Proof. We claim that L1 ⊕ L2 = L1 ←− ∆ where ∆(a) = (L2{a}−1) {a}, and
the right quotient of two languages in Σ∗, denoted by L1L

−1
2 , is defined as

L1L
−1
2 = {u| uv ∈ L1, v ∈ L2}.

“⊆” Given γ ∈ L1 ⊕ L2, by Lemma 1 γ is of the form uavaw where uaw ∈
L1, va ∈ L2. As va ∈ L2, v ∈ L2{a}−1 and therefore va ∈ (L2{a}−1){a}.
Consequently, γ = uavaw ∈ L1 ←− ∆.

“⊇” Suppose γ ∈ L1 ←− ∆. Then γ is of the form uavaw where uaw ∈ L1
and va ∈ ∆(a). Since ∆(a) = (L2{a}−1){a}, va = va, v ∈ L2/{a} and therefore
va ∈ L2. Consequently, γ ∈ uaw⊕ va, uaw ∈ L1, va ∈ L2, a ∈ Σ+, u, v, w ∈ Σ∗.

Since REG, CF, CS, RE are closed under controlled sequential insertion [9],
they are closed under synchronized insertion as well.
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The closure of the family of regular languages under synchronized deletion
can be similarly ascertained by expressing synchronized deletion in terms of the
controlled sequential deletion, [9]. The controlled sequential deletion is defined
similarly to the controlled sequential insertion, with the difference that

u −→ ∆ = {u1au2| u = u1avau2, u1, u2 ∈ Σ∗, a ∈ Σ, va ∈ ∆(a)}.
By [9], REG are closed under controlled sequential deletion, while CF is not (but
it is closed under controlled sequential deletion with regular languages) and CS
is not even closed under controlled sequential deletion with regular languages
(but it is closed under controlled sequential deletion with singleton languages).
The first of these closure properties leads to the next closure result, preceded
by a lemma that simplifies synchronized deletion similarly to the synchronized
insertion.

Lemma 2. For any α, β ∈ Σ+ α � β = {u′aw|α = u′av′aw, β = v′a, a ∈
Σ, u′, v′, w ∈ Σ∗}.

We are now ready to address the closure properties of the families in the
Chomsky hierarchy under synchronized deletion.

Proposition 2. REG and RE are closed under synchronized deletion.

Proof. We claim that L1 � L2 = L1 −→ ∆ where ∆(a) = (L2{a}−1){a}.
“⊆” Given γ ∈ L1 � L2, by Lemma 2, we have γ = uaw where uavaw ∈ L1

and va ∈ L2. Given that ∆(a) = (L2{a}−1){a}, we have va ∈ ∆(a) and thus
γ = uaw ∈ L1 −→ ∆.

“⊇” Suppose γ ∈ L1 −→ ∆ where ∆(a) = (L2{a}−1){a}. Then γ is of the
form uaw where uavaw ∈ L1 and va ∈ (L2{a}−1){a}, thus γ ∈ L1 � L2. The
result follows as REG and RE are closed under controlled sequential deletion [9].

Proposition 3. CF is not closed under synchronized deletion.

Proof. Let L1, L2 be the context free languages:

L1 = #({aib2i|i > 0}∗ 
 {#}),
L2 = a{biai|i > 0}∗#,

where the shuffle operation is defined as

u
 v = {u1v1 . . . unvn| u = u1 . . . un, v = v1 . . . vn, ui, vi ∈ Σ∗, 1 ≤ i ≤ n}.
(Similar languages were used in [4] to show that CF is not closed under left

quotient).
The language

(L1 � L2) ∩#b∗ = {b2n |n > 0}
is not context-free and the result follows.
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Proposition 4. CS is not closed under synchronized deletion with regular lan-
guages.

Proof. Let L ⊆ Σ∗, with a, b /∈ Σ, be a recursively enumerable language which
is not context-sensitive.

There exists a context-sensitive language L1 such that L1 consists of words
of the form aibα where i ≥ 0 and α ∈ L. Furthermore, for all α ∈ L there exists
some i ≥ 0 such that aibα ∈ L1 [16].

Suppose # is a symbol not in Σ ∪ {a, b}. Consider the language

#(L1 
 {#})� a∗b#.

Clearly, a∗b# is regular and moreover, #(L1
{#})�a∗b# = #L which, by
the definition of L, is not context-sensitive.

Even though CS is not closed under synchronized deletion with regular lan-
guages, it is closed under synchronized deletion with singleton languages. Indeed,
this follows directly from Proposition 2 and the closure of context-sensitive lan-
guages under controlled sequential deletion with singleton languages [9].

2.2 Hairpin Inversion

We next consider a generalization of the hairpin inversion operation hi defined
in [11]. The name of the operation reflects the fact that it models the process
of a DNA strand forming a hairpin, having the end of the hairpin cleaved and
then re-attached with the sticky ends switched. This results in the sequence of
the cleaved and re-attached region now being the mirror image of what it was
prior to the operation.

If w = a1a2 . . . an, ai ∈ Σ, 1 ≤ i ≤ n is a word in Σ+ the reverse or mirror
image of w is denoted by w̃ and defined as w̃ = an . . . a2a1.

Definition 3. Let α be a word in Σ+. The hairpin inverse of α, denoted by
hi(α) is defined as hi(α) = {xpỹp̃z|α = xpyp̃z and x, y, z ∈ Σ∗, p ∈ Σ+}.

This definition can be extended to languages in Σ+ in the natural way.
Similarly to Lemma 1, we first show that it is enough to consider pointers of
length one only.

Lemma 3. If α ∈ Σ+, hi(α) = {xaỹaz|α = xayaz, a ∈ Σ, x, y, z ∈ Σ∗}.

The mirror image operation has the property that ˜̃L = L. The hairpin in-
version operation is a variation of the mirror image operation in that it inverts
subwords inside words of a language. The following lemma answers the question
of whether or not applying hairpin inversion twice to a language yields the orig-
inal language. As it turns out, while the hairpin invertible words of a language
L are included in hi(hi(L)), the reverse does not hold.

Lemma 4. If L ⊆ Σ+, then for all a ∈ Σ, L ∩ Σ∗aΣ∗aΣ∗ ⊆ hi(hi(L)) while
hi(hi(L)) is not included in L ∩Σ∗aΣ∗aΣ∗.
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The following propositions address the closure properties of families in the
Chomsky hierarchy under the operation of hairpin inversion.

Proposition 5. REG is closed under hairpin inversion.

Proof. Let L be the regular language accepted by an automaton A = (Σ, S, so,
sf , P ), where Σ is the alphabet, S is the set of states, s0 is the initial state, sf

is the final state, and P is the set of productions of the form sa −→ s′, s, s′ ∈ S,
a ∈ Σ. For every two states si, sj ∈ S, define Lsi,sj

= {w ∈ Σ∗|siw ⇒∗ sj}. In
other words, Lsi,sj consists of those words which will cause the automaton A to
move from state si to sj when read. We claim that

hi(L) =
⋃

si,sj ,sk,sl∈S

⋃
a∈Lsi,sj

∩Lsk,sl
∩Σ

Ls0,si{a}L̃sj ,sk
{a}Lsl,sf

.

“⊆” Let α ∈ hi(L). Then there exists xayaz ∈ L, a ∈ Σ, x, y, z ∈ Σ∗ such
that α = xaỹaz. As xayaz ∈ L(A) = L, there exists a derivation s0xayaz ⇒∗ sf ,
i.e. there exist si, sj , sk, sl ∈ S such that s0xayaz ⇒∗ siayaz ⇒∗ sjyaz ⇒∗

skaz ⇒∗ slz ⇒∗ sf .
This implies x ∈ Ls0,si

, a ∈ Lsi,sj , y ∈ Lsj ,sk
, a ∈ Lsk,sl

, z ∈ Lse, sf .

We then have ỹ ∈ L̃sj ,sk
and α ∈ Ls0,si

aL̃sj ,sk
aLsl,sf

⊆ RHS.

“⊇” Consider α ∈ RHS. Take x ∈ Ls0,si , ỹ ∈ L̃sj ,sk
, z ∈ Lsl,sf

and a = a.
This means xayaz ∈ Ls0,siLsi,sj Lsj ,sk

Lsk,seLsl,sf
which means there exists a

derivation s0xayaz ⇒∗ sf which implies xayaz ∈ L and xaỹaz ∈ hi(L). The
proposition now follows as REG is closed under finite union, catenation and
mirror image.

Proposition 6. CF is not closed under hairpin inversion.

Proof. Consider the language L = {wpcw̃dp|w ∈ {a, b}∗, p, c, d ∈ Σ} where
Σ = {a, b, p, c, d} and w̃ denotes the mirror image of w.

Clearly L is context-free. However,

hi(L) ∩Σ∗pdΣ∗cp = {wpdwcp|w ∈ {a, b}∗, p, c, d ∈ Σ}
which is a classic example of a non context-free language.

Proposition 7. CS is closed under hairpin inversion.

Proof. Let L = L(G) where G = (N, T, S, P ) is generated by a context-sensitive
grammar in a normal form where every production in P containing letters of T
is of the form X → a where X ∈ N∗, a ∈ T , [16].

We construct a context-sensitive grammar G′ = (N ′, T ′, S′, P ′) as follows:
N ′ = N ∪ {Xa, Ya, Za, Ba, a′′, a′|a ∈ T} ∪ {S′, $, C, C ′, C ′′, B, B′}, P ′ = {A →
Xa|A→ a ∈ P} ∪ {A→ Ya|A→ a ∈ P} ∪ (P \ {A→ a|A→ a ∈ P}) ∪ {Xa →
a, Ya → a, a′ → a}, T ′ = T ∪ {#}.
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In addition, for all a, d ∈ Σ, P ′ contains the following rules:

1. S′ → #BS#
2. Ba′ → a′B (B will have to check if the sentential form is in the correct form.

Here B traverses x′ in a sentential form #Bx′Xay′Yaz′# corresponding to
a word xayaz ∈ L(G)).

3. BXa → XaBa (B meets Xa, this change is registered by its transformation
in Ba which stores knowledge about a in its subscript.)

4. Bac′ → c′Ba (Ba reads y′)
5. BaYa → YaB′ (Ba reads Ya if Ya has same index with Xa)
6. B′a′ → a′B′ (B′ reads z′)
7. B′#→ C# (B′ reaches the end of the sentential form and changes to C)
8. αC → Cα, α ∈ Σ′ ∪ {Ya} (C moves left until it reaches Xa, when it will

start reversing y′)
9. XaC → XaC ′ (C ′ starts to reverse the word y′)

10. C ′d′ → ZdC
′ (Store d′ in Zd, where d′ is the first letter of y′)

11. ZdC
′b′ → b′ZdC

′ (ZdC
′ moves right until it reaches Ya)

12. ZdC
′Ya → d′′C ′′Ya (the move of the first letter d of y′ to the end of the word

has been completed)
13. αC ′′ → C ′′α, α ∈ {a′′, a′|a ∈ Σ} (C ′′ moves left until it reaches Xa)
14. XaC ′′ → XaC ′ (start again)
15. ZdC

′b′′ → b′′ZdC
′ (ZdC

′ should be able to move also over b′′)
16. XaC ′d′′ → Xa$d′′ (When there are no letters in y′ to invert anymore, trans-

form C ′ into $).
17. $α → α$, α ∈ {a′, a′′, Ya|a ∈ Σ}, $# → ## (the dollar sign moves to the

left until it reaches # when it changes into #).
18. Xa → a, Ya → a, a′ → a, a′′ → a.

We claim that L(G′) = #hi(L)##. Indeed, a derivation according to G′ can
only proceed as follows.

S′ 1⇒ #BS#
P

⇒∗ #Bx′Xay′Yaz′#
2
⇒∗ #x′BXay′Yaz′# 3⇒

#x′XaBay′Yaz′#
4
⇒∗ #x′Xay′BaYaz′# 5⇒ #x′Xay′YaB′z′#

6
⇒∗

#x′Xay′Yaz′B′# 7⇒ #x′Xay′Yaz′C#
8
⇒∗ #x′XaCy′Yaz′# 9⇒

#x′XaC ′y′Yaz′# = #x′XaC ′d′y′
1Yaz′# 10⇒ #x′XaZdC

′y′
1Yaz′#

11
⇒∗

#x′Xay′
1ZdC

′Yaz′# 12⇒ #x′Xay′
1d

′′C ′′Y az′#
13
⇒∗ #x′XaC ′′y′

1d
′′Yaz′# 14⇒

#x′XaC ′y′
1d

′′YaZ ′#
8−14
⇒∗ #x′XaC ′ỹ′′Yaz′# 16⇒ #x′Xa$ỹ′′Yaz′# 17⇒ #x′ỹ′′Yaz′$

# 17⇒ #x′Xaỹ′′Yaz′′##
18
⇒∗ #xaỹaz##. The proposition now follows as

#hi(L)## is a context-sensitive language and therefore hi(L) is a context-
sensitive language as it is the image of #hi(L)## through a homomorphism
that erases # and leaves all other letters unchanged.

3 Language Equations

We begin this section by investigating equations of the type hi(X) = R, where
R is a given language and X is the unknown.
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Proposition 8. Let R ⊆ Σ∗ be regular language. If there exists a language L ⊆
Σ∗ such that hi(L) = R then there exists a regular language R′, L ⊆ R′ ⊆ Σ∗,
with the same property.

Proof. Construct the language R′ = [hi(Rc)]c.
(i) We show that hi(R′) ⊆ R by way of contradiction. Assume there exists

some u ∈ hi(R′) such that u /∈ R. Since u /∈ R, it must be the case that u ∈ Rc.
As u ∈ hi(R′) it must be of the form u = xaỹaz where xayaz ∈ R′. However,
u = xaỹaz implies xayaz ∈ hi(u) ⊆ hi(Rc) a contradiction since R′ = [hi(Rc)]c.

(ii) We show now that every language L ⊆ Σ∗ such that hi(L) ⊆ R is
included in R′. Indeed, assume there exists L ⊆ Σ∗ with hi(L) ⊆ R but L �⊆ R′.
Then there must exist a word u ∈ L \ R′. As u /∈ R′, u ∈ hi(Rc) implies that
u = xaỹaz with xayaz ∈ Rc. However, as u ∈ L, by the definition of hairpin
inversion, xayaz ∈ hi(L) ⊆ R a contradiction.

Return now to the proof of the proposition. If there exists L with hi(L) = R
then, by (ii), L ⊆ R′. By (i) we have that R = hi(L) ⊆ hi(R′) ⊆ R which
means hi(R′) = R. By Proposition 5, and closure of REG under complement,
R′ is regular. Moreover, it follows from the proof that R′ can be effectively
constructed.

The preceding proposition aids us in deciding whether an equation hi(X) = R
has a solution X in case R is a regular language.

Proposition 9. If R ⊆ Σ∗ is a regular language, the problem of whether or not
the equation hi(X) = R has a solution X ⊆ Σ∗ is decidable.

Proof. Construct R′ = [hi(Rc)]c. If hi(X) = R has a solution then R′ is also, by
Proposition 8, a solution. An algorithm for deciding our problem will consist in
effectively constructing R′ and then checking whether or not hi(R′) = R. The
problem is thus decidable as the equality of regular languages is decidable.

We now investigate equations of the form X � L = R, L � Y = R where L
and R are given languages, X and Y unknowns, and � signifies the synchronized
insertion or deletion operation. To find their solutions, we proceed similarly to
solving algebraic equations x + a = b. Namely, we must employ an operation
“inverse” to addition (in this case subtraction) to determine the solution x =
b− a. As, unlike addition, the operations of synchronized insertion and deletion
are not commutative, we will need to define two separate notions: the notion of
a left inverse for solving equations X � L = R, and of right inverse for solving
equations of the form L � Y = R. In the interest of space, we will omit proofs in
the sequel.

Definition 4. Let �, ∗ be two binary word operations. The operation ∗ is said
to be the left-inverse of the operation � if, for all words u,v,w over the alphabet
Σ, the following relation holds:

w ∈ (u � v) iff u ∈ (w ∗ v).
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In other words, the operation ∗ is the left-inverse of the operation � if, given
a word w in u � v, the left operand u belongs to the set obtained from w and the
other operand v, by using the operation ∗. The relation “is the left-inverse of”
is symmetric.

Proposition 10. The left-inverse of the operation ⊕ of synchronized insertion
is the operation � of synchronized deletion.

We can now use Proposition 10 and the following theorem, [8], to investigate
solutions of language equations of the type X ⊕L = R where L and R are given
languages in Σ∗ and X is the unknown.

Theorem 1. Let L, R be languages over an alphabet Σ and �, ∗ be two binary
word (language) operations, left-inverses to each other. If the equation X �L = R
has a solution X ⊆ Σ∗, then also the language R

′
= (Rc ∗ L)c is a solution.

Moreover, R
′
includes all the other solutions of the equation (set inclusion).

Corollary 1. If the equation X⊕L = R (respectively X�L = R) has a solution,
then R

′
= (Rc � L)c (respectively R

′
= (Rc ⊕ L)c) is a maximal solution to the

equation.

We shall use the above results to investigate the decidability of the following
problems: Given languages L and R over Σ, R regular, Does there exist a solution
X to the equation X⊕L = R?, and Does there exist a singleton solution X = {w}
to the equation X ⊕ L = R?

Proposition 11. The problem “Does there exist a solution X to the equation
X ⊕ L = R?”, is decidable for regular languages L and R.

Proposition 12. The problem “Does there exist a singleton solution X = {w}
to the equation X ⊕ L = R?” is decidable for regular languages L and R.

The study of the existence of solutions to the equation X ⊕ L = R, when R
is regular, is completed by the following undecidability results.

Proposition 13. The problem “Does there exist a solution X to the equation
X⊕L = R?” is undecidable for context-free languages L and regular languages R.

If L is a language over an alphabet Σ, the word x ∈ Σ+ is called left-useful
with respect to � and L (shortly, left-useful) if there exists a y ∈ L such that
x � y �= ∅. A language X is called left-useful with respect to � and L (shortly,
left-useful), if it consists only of left-useful words. From the above definitions it
follows that the problem “Does there exist a solution X to the equation X�L =
R?” and its singleton version are equivalent to the corresponding problems where
the existence of a left-useful language or word are investigated. Therefore, in the
sequel, we will mean a left-useful language when referring to a language or word
whose existence is sought.
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An argument similar to Proposition 11, and based on the effectiveness of the
proofs of closure of REG under ⊕ and �, shows that the problem “Does there
exist a solution X to the equation X�L = R?” is decidable for regular languages
L and R. For the context-free case the following result holds.

Proposition 14. The problem “Does there exist a language X such that X �
L = R ” is undecidable for context-free languages L and regular languages R.

The following decidability result is basically a consequence of the fact that
the result of a synchronized deletion from a word is a finite set.

Proposition 15. The problem “Does there exist a word w such that w � L =
R?” is decidable for regular languages L and R.

To investigate symmetric equations of the type L ⊕ Y = R and L � Y = R
where L and R are given languages and Y is an unknown language, we shall
make use of the following result from [8], keeping in mind that, in the case of
synchronized deletion, we are actually investigating the existence of right-useful
solutions (the notion is defined similarly to that of left-useful solutions).

Theorem 2. Let L, R be languages over Σ and �, ∗ be two binary word (lan-
guage) operations right-inverses to each other. If the equation L � Y = R has a
solution Y , the language R

′
= (L ∗Rc)c is a maximal solution.

The notion of right-inverse in the preceding theorem, similar to the notion
of left-inverse, is formally defined in [8] as follows.

Definition 5. Let �, ∗ be two binary word operations. The operation ∗ is said
to be right-inverse of the operation � if, for all words u, v, w in Σ∗ the following
relation holds: w ∈ (u � v) iff v ∈ (u ∗ w).

By using Theorem 2 we could find solutions to equations of the form L ⊕ Y =
R, L� Y = R if we found the right inverses of ⊕ and �.

Definition 6. Let u, v ∈ Σ+. The synchronized bi-deletion of v from u is defined
as

u � v = {w | u = xayaz, v = xaz, w = ya, a ∈ Σ, x, y, z ∈ Σ∗}.

Definition 7. Let � be a binary operation. The word operation �r defined by
u �r v = v � u is called reversed �.

We can now find out the right inverses of synchronized insertion and deletion
and thus solutions to our language equations.

Proposition 16. The right-inverse of synchronized deletion � is synchronized
bi-deletion. The right-inverse of synchronized insertion is reversed synchronized
bi-deletion.
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Corollary 2. If the equation L ⊕ Y = R (respectively (L � Y = R)) has a
solution, then R′ = (Rc � L)c (respectively (L � Rc)c) is a maximal solution.

Before solving our decidability problems, we need to first determine the clo-
sure properties of the families in the Chomsky hierarchy under synchronized
bi-deletion.

Proposition 17. The family of regular languages is closed under synchronized
bi-deletion while the family of context-free language is not closed under synchro-
nized bi-deletion and the family of context-sensitive languages is not closed under
synchronized bi-deletion with regular languages.

The preceding results on synchronized bi-deletion lead to the following propo-
sition.

Proposition 18. The problem of whether or not there exists a solution Y to
the equations L ⊕ Y = R, L � Y = R is decidable for regular languages L and
R.

Proposition 19. The existence of a solution Y to the equations L⊕Y = R and
L� Y = R is undecidable for regular languages R and context-free languages L.

4 Conclusion

We have considered the properties of three operations used in the modeling of the
ciliate gene descrambling process: synchronized insertion, synchronized deletion
and hairpin inversion. We found that all the families of the Chomsky hierarchy
are closed under synchronized insertion while only the families of regular and
recursively enumerable languages are closed under synchronized deletion. Addi-
tionally we showed that only the family of context-free languages was not closed
under hairpin inversion. In order to consider language equations involving each
of the three operations we have also defined the operation of synchronized bi-
deletion (the right-inverse of synchronized deletion) and showed only the families
of regular and recursively enumerable languages to be closed under this opera-
tion.

We demonstrated that the existence of a solution X to the equation hi(X) =
R, where R is a regular language is decidable. Additionally, the existence of a
solution was shown to be decidable for equations of the form L � Y = R and
X � L = R where � is one of synchronized insertion or synchronized deletion
operations and L, R are regular languages. The same problems are undecidable
in the case that L is a context-free language.

By investigating the properties of these formal operations, we have provided
some insight into the nature of the bio-operations that must be present in the
ciliate gene descrambling mechanism. Continued theoretical study of the gene
descrambling problem combined with improved biological results will hopefully
lead to a better understanding of this fascinating process.
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