
0

Contents

1 Introduction 9

1.1 Synopsis . 9
1.2 Basic definitions and notations 13
1.3 Background: a broader view 19

2 Sequential and parallel insertion 23

2.1 Insertion . 23
2.2 Iterated insertion . 28
2.3 Permuted insertion . 37
2.4 Controlled insertion . 40
2.5 Scattered sequential insertion 49

3 Sequential and parallel deletion 55

3.1 Deletion . 55
3.2 Iterated deletion . 70
3.3 Permuted deletion . 78
3.4 Controlled deletion . 84
3.5 Scattered sequential deletion 95

4 Operations: power and restrictions 105

4.1 Power of operations . 105
4.2 Modifying the operands . 116
4.3 Derivatives . 125
4.4 The singleton case . 135

5 Decidability 147

5.1 Basic decision problems . 147
5.2 The right operand problem for insertion 152

8 CONTENTS

5.3 The left operand problem for insertion 157
5.4 The right operand problem for deletion 162
5.5 The left operand problem for deletion 171

Appendix A. Operations: abbreviations and notations 183

Appendix B. Closure properties 185

Appendix C. Decision problems 187

Bibliography 191

Chapter 1

Introduction

1.1 Synopsis

Operations on languages are intensively studied in formal language theory.
One of the main goals of the theory is to represent a family of languages
as the closure of some atomic languages with respect to some operations.
The theory of abstract families of languages (AFL) deals with operations,
many operations appear in formal language theory applications, and so on.

The operations studied so far can be roughly divided into three classes:
set operations (union, intersection, complementation), algebraic operations
(morphism, substitution) and purely language theoretical operations (cate-
nation, quotient, Kleene closure). In one of the author’s papers, [13], some
”arithmetic” operations like compact, literal and generalized subtraction,
multiplication, power and factorial are defined and studied. The so-called
subtraction operations turn out to be generalizations of the right and left
quotient of languages.

This Thesis continues and enlarges the work in [13] which mainly con-
sisted of the closure properties of the families in the Chomsky hierarchy
under the defined operations. Here we study in detail some generalizations
of both catenation and quotient together with their variants. The gener-
alizations of catenation will be referred to as insertion operations and the
generalizations of quotient as deletion operations.

As an example, the simplest and most natural generalization of cate-
nation is the sequential insertion. Given two words u and v, instead of

10 INTRODUCTION

catenating v at the right extremity of u, the new operation inserts v in an
arbitrary place in u. Notice that the sequential insertion of two words is
a finite set of words and their catenation is an element of this set. The
operation is extended to languages in the natural fashion.

Besides considering insertion in addition to deletion operations, the
main novelty in this work, when compared to [13], is that for each de-
fined operation, a parallel variant will be (whenever possible) defined. For
example, the parallel insertion of a word v into a word u consists of the
word obtained by simultaneously inserting v in between all the letters and
also at the extremities of u.

The iterated version of catenation is the catenation (Kleene) closure.
It is natural to define a counterpart for insertion. The iterated insertion
proves to be more powerful than the catenation closure. For example, all
families in the Chomsky hierarchy are closed under catenation closure but
the iterated parallel insertion of a letter into itself already produces a non-
context-free language.

A more exotic variant of insertion is obtained if we combine the ordinary
insertion with the commutative variant. The commutative variant of a word
v is the set consisting of all words obtained by arbitrarily permuting the
letters of v. The permuted insertion of v into u will then consist of inserting
into u all the words from the commutative variant of v.

Observe that even though the above operations generalize the catena-
tion, catenation cannot be obtained as a particular case of any of them.
This happens because we cannot force the insertion to take place at the
right extremity of the word. This brings up the notion of controlled inser-
tion: each letter determines what can be inserted after it. The catenation
can be now obtained by using a marker and the controlled insertion next
to the marker.

Notice, finally, that all the previously defined types of insertion were
”compact”. The word to be inserted was treated ”as a whole”. A ”scat-
tered” type of insertion can be considered as well. Instead of inserting a
word, we sparsely insert its letters. If the inserted letters are in the same
order as in the original, we obtain the well-known shuffle operation. Else,
the permuted scattered insertion is obtained.

For each of the aboved mentioned variants of insertion, the dual deletion
operation is also investigated.

Take, for example, the sequential deletion which is the dual of the se-
quential insertion. The sequential deletion is the simplest and most natural
generalization of left (right) quotient. The sequential deletion of v from u

1.1 SYNOPSIS 11

consists of erasing v not only from the left (right) extremity of u, but from
an arbitrary place in u. If v is not a subword of u the result of the deletion is
the empty set. The insertion of a language into another is a total operation
in the sense that essentially all words from both languages contribute to
the result. The deletion of a language from another is a partial operation
in this sense. The words from the second language which are not subwords
of any word in the first, as well as the words from the first language which
do not contain any words from the second as subwords, do not contribute
to the result.

Some words about the organization of the Thesis.
Section 1.2 contains some basic formal language notions and notations.

The section is to be consulted only when need arises.
Section 1.3 contains some background and motivations of the work.
In Chapters 2 and 3, the insertion and deletion operations are formally

defined and investigated. These chapters mainly contain closure properties
of the families in the Chomsky hierarchy under the above operations. Some
other results are presented as well. For example, certain ways in which the
operations can be expressed in terms of other classical operations are inves-
tigated. Somewhat unexpected results are obtained in connection with the
deletion operations. The language obtained by sequentially (resp. iterated
sequentially) deleting an arbitrary language from a regular one is always
regular. An open problem occurs in connection with the iterated parallel
deletion: It is not yet known whether or not the family of regular languages
is closed under this operation. Moreover, it is not even known if the same
family is closed under iterated parallel deletion with singletons.

Chapter 4 is dedicated to the in-depth study of some operations and
their restrictions.

Section 4.1 analyzes the generative power of some operations. We focus
on classes of languages which contain the singleton letters, λ and ∅ and are
closed under some of the previously defined operations. The operations are
controlled ones and include one insertion operation, one deletion operation
and an iterative one. Finally, the mirror image operator and the union
with λ are added for technical reasons. The classes thus obtained properly
contain the family of regular languages. Moreover, the one whose opera-
tions are sequential is included in the family of context-free languages, and
the one whose operations are parallel is included in the family of context-
sensitive languages and contains non-context-free languages.

Section 4.2 focuses on the particular case where the result of the inser-
tion of two languages is regular. The main theorem of the section states

12 INTRODUCTION

that if there exists a language L2 such that the result of the sequential
insertion of L2 into L1 is a regular language R, then L2 can be replaced
by a regular R′. The language R′ can be obtained from R and L1 by us-
ing a deletion operation. Moreover, the regular language R′ is the largest
language which, when inserted into L1, gives R, and it can be effectively
constructed if L1 is regular or context-free.

An analogous result holds if the languages L2 and regular R are given,
and there exists L1 such that the sequential insertion of L2 into L1 equals
R. Similar theorems are true also for catenation.

Section 4.3 contains an analysis of the particular case of the sequential
deletion, where the language to be deleted is a singleton. The operation
thus obtained is called the derivative. The derivative of a language L by the
word w is the sequential deletion of w from L. It is a generalization of the
notions of the left and the right derivative. Section 4.3 contains a sufficient
condition under which a language gives rise to the same derivative with
respect to two different words. Moreover, it is shown that the language
consisting of all words, with respect to which a given regular language has
the same derivative, is regular. Finally, languages with the maximal number
of derivatives are studied. The main result shows that for each integer n
there exists a minimal finite deterministic automaton with n states, which
recognizes a language with the maximal number of derivatives.

In Section 4.4 the special case of operations where all the operands
involved are singletons is focused on. Necessary and sufficient conditions
under which the result of sequential insertion or deletion of two words is a
singleton set, are given. Also the situation when the insertion and deletion
are inverse to each other, which is not generally the case, is studied. Namely,
necessary and sufficient conditions under which, after inserting u into w and
then deleting u from the result we obtain again w, are given.

Chapter 5 deals with decidability results concerning insertion and dele-
tion. For ⋄ denoting an insertion or deletion operation, problems of the
following type are considered:

1 Given a regular language R and languages L1, L2, is L1 ⋄ L2 = R?

2 Given languages L1, L2, is L1 ⋄ L2 regular?

3 Given a regular language R and a language L1, does there exists a lan-
guage L2 such that L1 ⋄ L2 = R?

4 Given a regular language R and a language L2, does there exist a lan-
guage L1 such that L1 ⋄ L2 = R?

1.2 BASIC DEFINITIONS AND NOTATIONS 13

Problems of the type 1 and 2 are studied in Section 5.1. In the cases where
the problems turn out to be decidable, the closure properties of the family
of regular languages under ⋄ and the effectiveness of the proofs are invoked.
In the other cases, a reduction to well-known undecidable problems is used.

Problems 3 for insertion (resp. deletion) operations are studied in Sec-
tion 5.2 (resp. 5.4). Problems 4 for insertion (resp. deletion) are investi-
gated in Section 5.3 (resp. 5.5). For the problems 3 and 4 also the existence
of a singleton language is investigated. In the cases where the problems turn
out to be decidable, the method for showing their decidability is based on
theorems similar to the ones proved in Section 4.2. Consider, for example,
problem 3 for sequential insertion. The algorithm for deciding it will start
with the construction of the language R′, mentioned above in the paragraph
concerning Section 4.2. As the family of regular languages is closed under
sequential deletion, R′ is regular and can be effectively constructed. The
algorithm then decides whether or not L1 ⋄ R′ = R and the answer is the
answer to our problem.

For the problems shown to be undecidable, different methods depending
on the operation have been applied, in order to reduce the problems to
known undecidable ones.

Appendix A contains the names of the operations that occur throughout
the Thesis, together with their abbreviations and notations.

Appendix B presents in a concise form the closure results obtained in
Chapters 2, 3 and 4.

Appendix C summarizes the decidability results obtained in Chapter 5.

1.2 Basic definitions and notations

The aim of this section is to present the basic formal language notions
and notations used in the sequel. For details, the reader is referred to the
monographs listed in Bibliography and especially to [12].

For a set S, card(S) denotes its cardinality. We often identify a singleton
{v} with its element v. The family of subsets of S is denoted by P(S) or
2S .

An alphabet is a finite nonempty set; its elements are called letters
or symbols. If Σ = {a1, . . . an} is an alphabet then any sequence w =
ai1 . . .aik

, k ≥ 0, aij
∈ Σ, 1 ≤ j ≤ k is called a string (word) over Σ.

The length of the word w is denoted with lg(w) and, by definition, equals
k. The word ”consisting” of zero letters is denoted by λ and is called the

14 INTRODUCTION

empty word. Obviously, lg(λ) = 0. The word consisting of repeating the
letter ai j times is abbreviated aj

i , with the convention a0
i = λ. The set of

all words over Σ is denoted Σ∗ and the set of all nonempty words, Σ∗−{λ},
is denoted Σ+. For a word u over an alphabet Σ and a letter a ∈ Σ, Na(u)
will denote the number of occurrences of the letter a in u.

The set Σ∗ is a monoid under the operation of catenation defined by:

uv = ai1 . . . air
aj1 . . .ajs

,

u = ai1 . . . air
, v = aj1 . . . ajs

, r, s ≥ 0, aiq
, ajp

∈ Σ for 1 ≤ q ≤ r, 1 ≤ p ≤ s.
The fact that r, s can be also zero means that the words u and v can be
empty. The catenation operation is associative and λ is the neutral element
of the monoid.

A language (over Σ) is any subset of Σ∗.
Language operations. Since languages are sets, we may define the set-

theoretic operations of union, intersection, difference, and complement in
the usual fashion:

L1 ∪ L2 = {w| w ∈ L1 or w ∈ L2},
L1 ∩ L2 = {w| w ∈ L1 and w ∈ L2},
L1 − L2 = {w| w ∈ L1 and w 6∈ L2},
Lc = Σ∗ − L,

where L is over the alphabet Σ.
The catenation of two languages L1 and L2, denoted L1L2, is defined

by

L1L2 = {uv| u ∈ L1, v ∈ L2}.

Catenation of languages is associative because catenation of words is asso-
ciative. Consequently, we may define Li, i ≥ 1, to be the language obtained
by catenating i copies of L. Furthermore, we define L0 to be the language
{λ} consisting of the empty word λ. For any language L,

L∅ = ∅L = ∅, Lλ = λL = L.

The catenation closure (or iteration) of a language L is defined to be
the union of all the powers of L:

L∗ =
∞
⋃

i=0

Li.

1.2 BASIC DEFINITIONS AND NOTATIONS 15

The λ-free catenation closure of L is defined to be the union of all positive
powers of L:

L+ =

∞
⋃

i=1

Li.

Clearly, L+ equals either L∗ or L∗ − λ, depending on whether λ ∈ L or
λ 6∈ L. A language that does not contain λ is termed λ-free.

The left quotient of a language L1 by a language L2 is defined by

L2\L1 = {v| uv ∈ L1 for some u ∈ L2}.

The right quotient is defined similarily:

L1/L2 = {v| vu ∈ L1 for some u ∈ L2}.

The mirror image of a language is the collection of the mirror images
of its words, that is,

Mi(L) = {Mi(w)| w ∈ L},

where Mi(a1a2 . . .an) = an . . . a2a1, n ≥ 0, ai ∈ Σ, 1 ≤ i ≤ n.
We now define the operations of substitution and morphism. For each

letter a of an alphabet Σ, let σ(a) be a language over an alphabet Σa.
Define, furthermore,

σ(λ) = λ, σ(uv) = σ(u)σ(v) for u, v ∈ Σ∗.

Such a mapping σ of Σ∗ into 2Σ′∗

, where Σ′ is the union of the alphabets
Σa is called a substitution. For a language L over Σ, we define

σ(L) = {w| w ∈ σ(u) for some u ∈ L}.

A substitution is regular iff each of the languages σ(a) is regular. A sub-
stitution is λ-free iff none of the languages σ(a) contains the empty word.
A family of languages is closed under substitution iff whenever L is in the
family and σ is such that each σ(a) is in the family, then σ(L) is in the
family.

A substitution σ such that each σ(a) consists of a single word wa is
called a morphism. Thus, a morphism is a mapping of Σ∗ into Σ′∗. A
morphism is λ-free iff none of the words wa is λ.

16 INTRODUCTION

Assume that L is a language over an alphabet Σ. A morphism h of Σ∗

is termed a k-linear erasing with respect to L iff for each w ∈ L:

lg(w) ≤ k lg(h(w)).

A family L of languages is said to be closed under linear erasing iff h(L) ∈ L
whenever L ∈ L, k is an integer and h is a k-linear erasing with respect to
L.

A Chomsky grammar is an ordered quadruple

G = (N, T, S, P),

where N and T are disjoint alphabets, S ∈ N and P is a finite set of ordered
pairs (u, v) such that v is a word over the alphabet N ∪ T and u is a word
over N∪T containing at least one letter of N . The elements of N are called
nonterminals and those of T terminals; S is called the initial letter or the
axiom. Elements (u, v) of P are called rewriting rules or productions and
are written u−→v.

In general, the nonterminals will be denoted by upper case letters from
the English alphabet, the terminals by lower case letters from the beginning
of the English alphabet and the words by lower case letters from the end
of the English alphabet or with lower case Greek letters.

The following relation with respect to the grammar G is defined over
(N ∪ T)∗: for u, v ∈ (N ∪ T)∗ we write u=⇒Gv (or simply u=⇒v if there
is no danger of confusion) iff u = αxβ, v = αyβ, α, β ∈ (N ∪ T)∗ and
x−→y ∈ P . We say that u directly derives v with respect to the grammar
G. The reflexive and transitive closure of =⇒ is denoted =⇒∗. The word
u derives v in the grammar G iff u=⇒∗v.

The language generated by G is

L(G) = {w ∈ T ∗| S=⇒∗w}.

The words v ∈ (N ∪ T)∗ which satisfy S=⇒∗v are called sentential forms.
Two grammars are called equivalent iff they generate the same language.

For i = 0, 1, 2, 3, a grammar G = (N, T, S, P) is of the type i iff the
restrictions (i) on the set P , as given below, are satisfied:

(0) No restrictions;

(1) Each rule in P is of the form uAv−→uwv, u, v, w ∈ (N ∪ T)∗, A ∈ N ,
w 6= λ, with the possible exception of the rule S−→λ whose occur-
rence in P implies, however, that S does not occur on the right side
of any rule in P ;

1.2 BASIC DEFINITIONS AND NOTATIONS 17

(2) Each rule in P is of the form A−→w, A ∈ N , w ∈ (N ∪ T)∗;

(3) Each rule of P is of one of the two forms A−→aB, A−→a, A, B ∈ N ,
a ∈ T .

For i = 0, 1, 2, 3, a language is of type i iff it is generated by a grammar
of type i. The type i languages i = 0, 1, 2, 3 will be called respectively
recursively enumerable, context-sensitive, context-free, regular languages.
The family of all languages of type i will be denoted respectively RE, CS,
CF, REG. The following inclusion chain, called the Chomsky hierarchy,
holds:

REG ⊂ CF ⊂ CS ⊂ RE ,

where every inclusion is proper. The families RE, CS, CF, REG are the
basic families of the hierarchy.

A grammar is called length-increasing iff every production u−→v satis-
fies the condition lg(u) ≤ lg(v), with the possible exception of the produc-
tion S−→λ whose occurrence in P implies, however, that S does not occur
on the right side of any production.

Automata. The grammars generate strings, starting from the axiom.
The automata recognize strings, the definitional method being thus the
inverse one. They start from an arbitrary string and, after processing it,
conclude whether or not it belongs to the language defined.

A finite deterministic automaton A is a 5-tuple A = (S, Σ, s0, F, P),
where:

(i) S is a finite nonempty set of states.

(ii) Σ is a finite nonempty set of inputs.

(iii) s0 ∈ S is the initial state.

(iv) F ⊆ S is the set of final states.

(v) P is the set of rules having the form

sia−→sj si, sj ∈ S, a ∈ Σ. (∗)

Furthermore, for each pair (si, a) where si ∈ S and a ∈ Σ, there is
exactly one production (*) in P .

18 INTRODUCTION

The following derivation relation with respect to the automaton A is
defined over SΣ∗: for s, s′ ∈ S, a ∈ Σ, u ∈ Σ∗ we write s au=⇒s′u iff
sa−→s′ is a production in P . The reflexive and transitive closure of =⇒ is
denoted =⇒∗. The language accepted or recognized by the automaton A is
defined by

L(A) = {w ∈ Σ∗| s0w=⇒∗s1 for some s1 ∈ F}.

A finite nondeterministic automaton is defined as a deterministic one
with the exception that in (v) the second sentence is omitted. The language
accepted by a finite nondeterministic automaton is defined as before.

Since the finite deterministic and nondeterministic automata accept the
same languages, that is, the regular languages (see [12], pp.27-29 or [5],
pp.22-24), we shall not distinguish between them unless it becomes neces-
sary, but shall simply refer to both as finite automata.

A generalized sequential machine (shortly, gsm) is a 6-tuple

g = (Σ1, Σ2, S, s0, F, P),

where

(i) S is a finite nonempty set of states.

(ii) Σ1 is a finite nonempty input alphabet.

(iii) Σ2 is a finite nonempty output alphabet.

(iv) s0 ∈ S is the initial state.

(v) F ⊆ S is the set of final states.

(vi) The productions in P are of the form

sia−→wsj , si, sj ∈ S, a ∈ Σ1, w ∈ Σ∗

2. (∗∗)

If, in addition, w 6= λ in all productions, then we speak of a λ-free gsm.
A gsm which is not λ-free is sometimes called gsm with erasing. For a gsm
g and a word u over its input alphabet Σ1, we denote

g(u) = {w| s0u=⇒∗ws′ for some s′ ∈ F}.

Let L be a language over Σ1. Then g translates or maps L into the language

g(L) = {w| w ∈ g(u) for some u ∈ L}.

1.3 BACKGROUND: A BROADER VIEW 19

We say that the mapping thus defined is a gsm mapping.
If in the preceding definition the symbol a in relation (**) is allowed to

denote also the empty word then the 6-tuple is called a sequential trans-
ducer. The image of a word and the image of a language through a sequen-
tial transducer are defined similarily as for gsm’s. Mappings of languages
thus defined are referred to as rational transductions.

Decidability. A decision problem consists of an infinity of instances,
to each of which the answer is either ”yes” or ”no”. Such a problem is
decidable iff there exists an algorithm (effective procedure) which for any
instance of the problem outputs the answer for that instance. If no such
algorithm exists, the problem is undecidable.

Consider a class G of devices for defining languages. Such a G might
consist, for example, of all grammars of some type. Here are some typical
decision problems for a class G of grammars:

The equivalence problem. Given two grammars G1, G2 in G, is L(G1) =
L(G2)?

The emptiness (resp. infinity) problem. Given a grammar G in G, is the
language L(G) empty (resp.infinite)?

The inclusion problem. Given two grammars G1, G2 in G, is L(G1) in-
cluded in L(G2)?

The membership problem. Given a grammar G in G and a word w, does
the word w belong to the language L(G)?

1.3 Background: a broader view

The basic notions used for specifying languages are of algorithmic or op-
erational character: automata (accepting devices) or grammars (generating
devices). This duality reflects the original motivations coming from com-
puter science or linguistics. A deeper theory and more involved proofs
called for alternative definitional devices, where the operations have a clas-
sical mathematical character. Early examples of such definitional devices
are the sequential functions for automata (see [11], pp.48-53) or substitu-
tions and morphisms for grammars.

This Thesis goes into the fundamentals of the substitution operation,
aiming thus to throw light on the mechanisms of generating languages. So
far in the literature a substitution has been defined as an operation on an

20 INTRODUCTION

alphabet. A substitution is never applied to λ (except for the convention
that λ is always mapped into λ). Our work can be viewed as an attempt
to understand the substitution on the empty word.

Let L1, L2 be two languages over an alphabet Σ. The operation of
sequential insertion of a language L2 into a language L1, can be viewed
as a nonstandard modification of the notion of substitution. It maps all
letters of Σ into themselves and the empty letter into L2, with the following
additional convention. For each word w, only one of the empty words
occurring in it is substituted. The result of applying this ”substitution”
to L1 consists of words obtained from words in L1 in which an arbitrary
word from L2 has been inserted. Note that the sequential insertion is also
a generalization of the catenation operation.

The operation of parallel insertion is closer to the classical notion of
substitution. It is defined as the substitution above, but with a modified
convention: For each word w, between all the letters and also at the ex-
tremities, only one λ occurs. The effect of the substitution applied to L1

will be the insertion of words belonging to L2 between all letters and also
at the extremities of words belonging to L1.

The exact effect of the classical substitution that maps all letters into
themselves and λ into a language L2 would be the insertion of arbitrary
many words of L2 between letters and at the extremities of words in L1.
According to the definitions mentioned above, this would amount to the
parallel insertion of L∗

2 into L1.
Another way to look at operations of controlled insertion is the following.

Such an insertion can be viewed as a production of the form a−→aw, where
the word w comes from the language to be inserted next to a. The mode of
controlled insertion determines how the productions are going to be applied.
The controlled parallel insertion resembles, thus, the rewriting process of
OL systems (see [10]). However, it gives rise to something different from
OL systems because the productions are always of the special form and,
on the other hand, there may be infinitely many productions. The relation
between controlled sequential insertion and OS systems (see, for instance,
[6]) is similar.

It will be seen in Chapter 5 that some of the decidability issues involved
are connected with certain basic questions dealing with the combinatorics
of words. In general, we introduce many new types of decision problems
when dealing with insertion and deletion. The problems provide a suitable
testing ground for many classical proof methods and techniques.

Many of the issues dealt with are also connected with cryptography (see

1.3 BACKGROUND: A BROADER VIEW 21

[1], [2], [9]). The connection of Section 4.4 with cryptography is evident. It
studies necessary and sufficient conditions under which the original word w
results, after first inserting a word u into w and then deleting u from the
result. The cryptographic connotations are obvious: after encrypting the
message with a key, the decryption has to provide the original message.

Chapter 2

Sequential and parallel

insertion

2.1 Insertion

We will define in the following the operation of sequential insertion between
words and languages, which is a generalization of the catenation operation.
Given two words u and v, instead of catenating v at the right extremity of
u, we are allowed to insert it in any place of u. The result of the sequential
insertion will be thus a set of words instead of a single word. The cardinality
of the set is at most n + 1, where n is the length of u. The catenation uv
is an element of this set, corresponding to the particular case where the
insertion is done at the right extremity of u.

Definition 2.1 Let L1, L2 be languages over the alphabet Σ. The sequen-
tial insertion (SIN) of L2 into L1 is defined as:

L1< L2 =
⋃

u∈L1,v∈L2

(u< v)

where
u< v = {u1vu2| u = u1u2}.

Example 2.1 Let u = cd, v = a. The sequential insertion of v into u is
u< v = {acd, cad, cda}. Notice that uv = cda is an element of the set
u< v.

24 SEQUENTIAL AND PARALLEL INSERTION

The sequential insertion operation is not associative, as shown by the
following example.

Example 2.2 Let us consider the languages {a}, {b}, {c}. We have

(a< b)< c = {ab, ba}< c = {cab, acb, abc, cba, bca, bac},

whereas
a< (b< c) = a< {cb, bc} = {cba, acb, bca, abc}.

In general, the following result holds:

Theorem 2.1 If L1, L2, L3 are languages over an alphabet Σ, then

L1< (L2< L3) ⊆ (L1< L2)< L3.

Proof. Let α be a word in L1< (L2< L3). There exist words u ∈ L1,
β ∈ L2< L3 such that α = u1βu2, u = u1u2. This further implies that
there exist v ∈ L2, w ∈ L3 such that β = v1wv2, v = v1v2. According to the
definition of SIN, the word u1vu2 belongs to the set L1< L2. Consequently,
α which is an element of the set u1vu2< w belongs to (L1< L2)< L3.

The sequential insertion operation is not commutative. For example,
a< bc = {bca, abc}, whereas bc< a = {abc, bac, bca}.

A parallel variant of the sequential insertion will be defined in the se-
quel. The parallel insertion of a word v into a word u is the word obtained
after inserting v between all the letters of u and at the right and left ex-
tremities of u. The definition can be easily transferred to languages. The
result of the parallel insertion of a language L into a word u is obtained
by simultaneously inserting words from L between all the letters of u, and
also at its extremities.

Definition 2.2 Let L1, L2 be languages over the alphabet Σ. The parallel
insertion (PIN) of L2 into L1 is defined as:

L1< L2 =
⋃

u∈L1

(u< L2)

where

u< L2 = {v0a1v1a2v2 . . .akvk| k ≥ 0, aj ∈ Σ, 1 ≤ j ≤ k,
vi ∈ L2, 0 ≤ i ≤ k and u = a1a2 . . . ak}.

2.1 INSERTION 25

The case k = 0 corresponds to the situation u = λ, when only one word
v0 ∈ L2 is inserted.

Example 2.3 Let L1 = {cd }, L2 = {a, b}. The parallel insertion of L2

into L1 is:

L1< L2 = {acada, acadb, acbda, acbdb, bcada, bcadb, bcbda, bcbdb}.

Theorem 2.2 The parallel insertion operation induces a monoid structure
on P(Σ∗).

Proof. The parallel insertion is an associative operation. The proof of this
fact being straightforward but long, we will consider in the following only
the singleton case. Let u, v, w be words in Σ∗. Assume that u and v are of
the form:

u = a1a2 . . . an, n ≥ 0, ai ∈ Σ, 1 ≤ i ≤ n,
v = b1b2 . . . bm, m ≥ 0, bj ∈ Σ, 1 ≤ j ≤ m.

Then, the following equalities hold:

(u< v)< w = (b1 . . . bma1b1 . . . bm b1 . . . bmanb1 . . . bm)< w =
wb1w . . .wbmwa1wb1w . . .wbmw wb1w . . .wbmwanwb1w . . .wbmw
= (v< w)a1(v< w) . . . (v< w)an(v< w) = u< (v< w).

The neutral element of the monoid is {λ}. Indeed, for any language L we
have λ< L = L< λ = L.

The monoid (P(Σ∗), <) is not commutative. For example, a< b =
{bab} whereas b< a = {aba}.

We establish in the following the closure properties of the families in
the Chomsky hierarchy under sequential and parallel insertion.

Theorem 2.3 The families of regular, context-free and context-sensitive
languages are closed under sequential insertion.

26 SEQUENTIAL AND PARALLEL INSERTION

Proof. Let Σ be an alphabet and let # be a letter which does not occur in
Σ. Consider the λ-free gsm:

g = (Σ, Σ ∪ {#}, {s0, s}, s0, {s}, P),
P = {s0a−→as0| a ∈ Σ} ∪ {s0a−→a#s| a ∈ Σ}∪

{sa−→as| a ∈ Σ} ∪ {s0a−→#as| a ∈ Σ}.

Claim. For any language L ⊆ Σ+ we have g(L) = L< {#}.

Intuitively, the gsm g works as follows: given a nonempty word u as an
input, g leaves its letters unchanged, but inserts a marker # in an arbitrary
position in u.

”⊆” Let v be a word in g(L). There exist a word u in L and a derivation
s0u=⇒∗vs according to the rules of P . During the derivation only one
marker-producing rule can be applied. Depending on whether this rule is
of the type s0a−→a#s or s0a−→#as, a ∈ Σ, the derivation s0u=⇒∗vs will
have the form:

s0u = s0u1au2=⇒∗u1s0au2=⇒
u1a#su2=⇒

∗u1a#u2s = vs,
respectively

s0u = s0u1au2=⇒∗u1s0au2=⇒
u1#asu2=⇒∗u1#au2s = vs,

where a ∈ Σ, u1, u2 ∈ Σ∗ and u = u1au2 ∈ L. For scanning u1 only rules
of the type s0b−→bs0, b ∈ Σ, have been used. These rules are not needed if
u1 = λ. Afterwards, the rule s0a−→a#s (respectively the rule s0a−→#as)
has been applied. Finally, for scanning u2, rules of the type sb−→bs, b ∈ Σ,
have been used. They are not needed if u2 = λ. According to the definition
of the SIN, in both cases the word v belongs to the set (u1au2< {#}) ⊆
L< {#}. We conclude that g(L) ⊆ L< {#}.

”⊇” Let v be a word in L< {#}. Then v is of the form v = u1#u2

where u = u1u2 ∈ L.
If u1 = λ then u2 6= λ and we can construct the derivation:

s0u2 = s0au′

2=⇒#asu′

2=⇒
∗#au′

2s = vs,

where a ∈ Σ, u′

2 ∈ Σ∗. After applying the rule s0a−→#as, rules of the type
sb−→bs, b ∈ Σ, have been used. If u′

2 = λ, such rules are not needed. The
existence of the above derivation shows that v ∈ g(u) ⊆ g(L).

2.1 INSERTION 27

If u1 6= λ we can construct the derivation:

s0u1u2 = s0u
′

1au2=⇒
∗u′

1s0au2=⇒
∗u′

1a#su2=⇒
∗u1#u2s = vs,

where a ∈ Σ, u′

1 ∈ Σ∗. For scanning u′

1 rules s0b−→bs0, b ∈ Σ, have
been used. They do not appear in the derivation if u′

1 is empty. After the
application of the rule s0a−→a#s, only rules of the type sb−→bs, b ∈ Σ,
have been used. They are not needed if u2 = λ. The derivation shows that
v ∈ g(u) ⊆ g(L).

Since we have shown in both cases that v belongs to g(L), the proof of
the second inclusion and therefore of the claim is complete.

Return to the proof of the theorem. Let L1, L2 ⊆ Σ∗ be two languages
belonging to one of the families REG, CF, CS. Consider the λ-free substi-
tution:

s′ : (Σ ∪ {#})∗−→2Σ∗

, s′(#) = L2 − {λ}, s′(a) = a, ∀a ∈ Σ.

Using the above Claim it is easy to prove that the following relations hold:

L1< L2 = s′(g(L1)) ∪ L1 ∪ L2, if λ ∈ L1 ∩ L2,
L1< L2 = s′(g(L1)) ∪ L1, if λ ∈ L2 − L1,
L1< L2 = s′(g(L1)) ∪ L2, if λ ∈ L1 − L2,
L1< L2 = s′(g(L1)), if λ 6∈ L1 ∪ L2.

The families REG, CF, CS are closed under λ-free gsm mappings, λ-
free substitutions and union. Consequently, they are closed also under
sequential insertion.

Note. We have proved, in fact, a stronger result than the one stated in
Theorem 2.3: Any family of languages closed under λ-free gsm mappings, λ-
free substitutions and union is closed under sequential insertion. However,
the statement of Theorem 2.3 was preferred, as we are concerned here only
with the closure of the Chomsky families under the defined operations.

This will often be the case in Chapters 2 and 3: even though stronger
results are actually proved, the theorems state only the closure properties
of the Chomsky families under the defined operations.

Theorem 2.4 The families of regular, context-free and context-sensitive
languages are closed under parallel insertion.

28 SEQUENTIAL AND PARALLEL INSERTION

Proof. Let L1, L2 be languages over the alphabet Σ. Then, L1< L2 =
L2s(L1), where s is the λ-free substitution defined by:

s : Σ∗−→2Σ∗

, s(a) = aL2, for every a ∈ Σ.

The theorem now follows from the closure of the families of regular, context-
free and context-sensitive languages under catenation and λ-free substitu-
tion.

2.2 Iterated insertion

In the same way as the sequential and parallel insertion are generalizations
of the catenation operation, the iterated sequential and parallel insertion
are generalizations of the catenation closure operation. However, the iter-
ated SIN and PIN prove to be more powerful than the iterated catenation.
Indeed, the family of regular (context-free) languages is closed under cate-
nation closure, whereas it is not closed under iterated SIN (iterated PIN)
of a language into itself.

Definition 2.3 Let L1, L2 be languages over the alphabet Σ.The insertion
of order n of L2 into L1 is inductively defined by the equations:

L1<
0L2 = L1,

L1<
i+1L2 = (L1<

iL2)< L2, i ≥ 0.

The iterated sequential insertion (iterated SIN) of L2 into L1 is then defined
as:

L1<
∗L2 =

⋃∞

n=0
(L1<

nL2).

Example 2.4 Let L1 = {λ, ()}. The result of iterated SIN of L1 into itself
will be the Dyck language of order one.

The iterated SIN is not a commutative operation. For example, λ<
∗b =

b∗ whereas b<
∗λ = b.

The iterated SIN is not an associative operation. In general, for L1, L2,
L3 arbitrary languages over an alphabet Σ, the sets L1<

∗ (L2<
∗L3) and

(L1<
∗L2)<

∗ L3 are incomparable. This is illustrated by the following
two examples.

Example 2.5 Let L1 = {a}, L2 = {b} and L3 = {cd}. The word abcbd
belongs to the set a<

∗ (b<
∗cd) but not to the set (a<

∗b)<
∗ cd.

2.2 ITERATED INSERTION 29

Example 2.6 Let L1 = {ab}, L2 = {cd}, L3 = {f}. The word afbcd
belongs to the set (ab<

∗cd)<
∗ f , but does not belong to the set ab<

∗

(cd<
∗f).

The iterated parallel insertion of a language L2 into a language L1 is defined
by replacing in the previous definition the sequential insertion ”< ” with
the parallel insertion ”< ”.

Example 2.7 If b is a singleton letter, the result of iterated PIN of b into

itself is b<
∗b = {b2k

−1| k > 0}.

The example used to show the noncommutativity of the iterated SIN
can be used to prove that the iterated PIN is not a commutative operation.
Indeed, the word bbb belongs to λ<

∗b but not to b<
∗λ.

The iterated PIN is not associative. Moreover, for L1, L2, L3 arbitrary
languages over an alphabet Σ, the sets L1<

∗ (L2<
∗L3), (L1<

∗L2)<
∗

L3 are incomparable. This is shown by the following example.

Example 2.8 Let L1 = {a}, L2 = {b}, L3 = {c}. The word cbcab belongs
to the set a<

∗(b<
∗c) but not to the set (a<

∗b)<
∗c. On the other hand,

the word cac belongs to (a<
∗b)<

∗c but not to a<
∗(b<

∗c).

The folllowing results show the ”range” of the iterated SIN operation:
it can produce non-regular languages starting from finite ones, but CF and
CS are still closed under it.

Theorem 2.5 There exist a finite language L1 and a word w such that
L1<

∗w is not a regular language.

Proof. The iterated SIN of {()} into {λ, ()} is the Dyck language of order
one, which is a non-regular context-free language.

Corollary 2.1 The family of regular languages is not closed under iterated
sequential insertion.

The following lemma proves a fact already exemplified by the languages
in Example 2.4 and Theorem 2.5. Adding the empty word to a λ-free
language to be inserted does not change the result of the iterated SIN.

Lemma 2.1 If L1, L2 are languages over an alphabet Σ then:

L1<
∗L2 = L1<

∗(L2 − {λ}).

30 SEQUENTIAL AND PARALLEL INSERTION

Proof. The inclusion ” ⊇ ” is obvious.
For the reverse inclusion it can be proved by induction on n that:

L1<
nL2 ⊆ L1<

∗(L2 − {λ}).

n = 0. L1 ⊆ L1<
∗(L2 − {λ}).

n 7→ (n + 1). Assume that the inclusion holds for numbers up to n and
show that:

(L1<
nL2)< L2 ⊆ L1<

∗(L2 − {λ}).

Using the induction hypothesis, all that remains to be shown is that:

[L1<
∗(L2 − {λ})]< L2 ⊆ L1<

∗(L2 − {λ}),

which holds because:

[L1<
∗(L2 − {λ})]< L2 =

{[L1<
∗(L2 − {λ})]< (L2 − {λ})} ∪ [(L1<

∗(L2 − {λ}))< {λ}] ⊆
L1<

∗(L2 − {λ}).

Hence, both inclusions hold.

Theorem 2.6 The family of context-free languages is closed under iterated
sequential insertion.

Proof. Let L1, L2 be languages generated by the context-free grammars
Gi = (Ni, Σi, Si, Pi), i = 1, 2. We can assume, without loss of generality,
that N1 ∩ N2 = ∅.

Assume further that Gi, i = 1, 2, satisfy the following properties (see,
for example [12], pp.55-56):

• Si does not appear on the right side of any production of Pi ;

• if λ ∈ L(Gi), the only production of Pi with λ as the right side is
Si −→ λ;

• all the productions of Pi (except eventually Si −→ λ) are of the form
A −→ BC, A −→ a, A, B, C ∈ Ni, a ∈ Σi.

According to the previous lemma, we can assume that L2 is λ-free, that
is, P2 does not contain the rule S2−→λ.

2.2 ITERATED INSERTION 31

Let G = (N, Σ, S, P) be the context-free grammar whose components
are:

N = N1 ∪ N2,
Σ = Σ1 ∪ Σ2,
S = S1,
P = P1 ∪ P2 ∪ {S1−→S2| S1−→λ ∈ P1}∪

{A−→S2a, A−→aS2| A−→a ∈ P1 ∪ P2}.

Claim. L1<
∗L2 = L(G).

” ⊆ ” We will prove by induction on n that L1<
nL2 ⊆ L(G).

n = 0. Obvious, because L1<
0L2 = L1 and S = S1, P1 ⊆ P .

n 7→ (n + 1). Assume the claim true for n and let α be a word in
L1<

(n+1)L2 = (L1<
nL2)< L2. There exist words uv ∈ L1<

nL2 and
w ∈ L2 such that α = uwv. According to the induction hypothesis, uv ∈
L(G), therefore a derivation S1=⇒∗uv exists in G.

Because of the properties satisfied by G we can assume –without loss of
generality– that during the derivation, first all the nonterminal and after-
wards all the terminal rules have been applied. Depending on which of the
words u, v is empty, the derivation has one of the following forms:

(i) S1=⇒∗X1X2 . . .XkY1Y2 . . .Ym=⇒∗a1a2 . . .akb1b2 . . . bm,
where u = a1a2 . . .ak and v = b1b2 . . . bm, k ≥ 1 , m ≥ 0 (v can be also the
empty word), ai, bj are terminals and Xi, Yj are nonterminals for 1 ≤ i ≤ k,
1 ≤ j ≤ m .

We can construct the derivation, according to G:

S1=⇒
∗X1X2 . . . XkY1Y2 . . . Ym=⇒∗a1a2 . . . ak−1Xkb1b2 . . . bm=⇒∗

a1a2 . . . ak−1akS2b1b2 . . . bm=⇒∗uwv = α,

where we have used the derivations S1=⇒∗uv and S2=⇒∗w, replacing in
the first one the step Xk−→ak with Xk−→akS2. The existence of this
derivation assures us that α ∈ L(G).

(ii) S1=⇒Y1Y2 . . . Ym=⇒∗b1b2 . . . bm, where u = λ, m ≥ 1, v = b1 . . . bm,
Yj are nonterminals and bj are terminals for 1 ≤ j ≤ m. In this case we
can construct:

S1 =⇒∗ Y1Y2 . . .Ym=⇒∗Y1b2 . . . bm=⇒
S2b1 . . . bm=⇒∗wb1b2 . . . bm = α.

32 SEQUENTIAL AND PARALLEL INSERTION

obtained from the previous derivation by replacing the rule Y1−→b1 with
Y1−→S2b1 and adding the derivation S2=⇒∗w. This shows that α ∈ L(G).

(iii)S1=⇒∗λ, where uv = λ, that implies λ ∈ L1. The derivation

S1=⇒S2=⇒
∗w = α

where we have used the rule S1−→S2 which is in P because λ ∈ L1, shows
that α ∈ L(G).

The inductive step and therefore the inclusion has been proved.
” ⊇ ” Let u be a word in L(G). We will show, by induction on n that

u ∈ L1<
∗L2, where n is the number of rules that contain S2 on their right

side, used in the derivation of u.
n = 0. If no such rule has been used, u ∈ L1 ⊆ L1<

∗L2.
n 7→ (n + 1). Assume the statement true for values up to n, and let u

be a word such that S1=⇒∗u in G and (n + 1) rules containing S2 on their
right side have been used in the derivation.

Let us separate the last occurrence of such a rule.
If the rule is S1−→S2, the derivation is S1=⇒S2=⇒∗u, with u ∈ L2 and

S1−→λ ∈ P1. Because λ ∈ L1, L2 ⊆ L1<
∗L2 and therefore u ∈ L1<

∗L2.
If the rule is A−→aS2, then the derivation is:

S1 =⇒∗ u1Au2=⇒u1aS2u2=⇒∗

u′

1avu′

2 = u,

where S2=⇒∗v in G2. By replacing the rule A−→aS2 with A−→a and ap-
plying the induction hypothesis, we deduce that u′

1au′

2 belongs to L1<
∗L2.

That implies further u ∈ ({u′

1au′

2}< {v}), that is u ∈ (L1<
∗L2)< L2 ⊆

L1<
∗L2.

If the rule is A−→S2a, the proof is similar with the preceding.
In all cases we have obtained that u ∈ L1<

∗L2, which proves the second
inclusion and therefore the claim. The closure of the family of context-
free languages under iterated sequential insertion follows as L1<

∗L2 is
generated by the context-free grammar G.

Theorem 2.7 The family of context-sensitive languages is closed under
iterated sequential insertion.

Proof. Let L1 = L(G1), L2 = L(G2) be two languages generated by the
context-sensitive grammars Gi = (Ni, Σi, Si, Pi), i = 1, 2. Assume that
N1 ∩ N2 = ∅. Assume further that Gi , i = 1, 2 satisfy the conditions (see,
for example, [12], pp.19-20):

2.2 ITERATED INSERTION 33

• Si does not occur on the right side of any production of Pi ;

• if λ ∈ L(Gi) then the only rule which has the right side equal with λ
is Si −→ λ;

• every rule of Pi containing a terminal letter is of the form A −→ a
where A ∈ Ni and a ∈ Σi.

According to Lemma 2.1 we can also assume that λ does not belong to L2.
Let # be a new symbol which does not occur in any of the considered al-

phabets. Consider the context-sensitive grammar G = (N, Σ, S1, P) whose
components are:

N = N1 ∪ N2,
Σ = Σ1 ∪ Σ2 ∪ {#},
P = P1 ∪ P2 ∪ {S1−→S2| S1−→λ ∈ P1}∪

{A−→#S2#a, A−→a#S2#| A−→a ∈ P1 ∪ P2}.

Define now the morphism h : Σ∗−→(Σ1 ∪ Σ2)
∗ by h(#) = λ, h(a) = a,

∀a ∈ Σ1 ∪Σ2. The role of the morphism h being obvious, it can be proved
as in the preceding theorem, that h(L(G)) = L1<

∗L2.
From the form of the rules of P we notice that the number of markers

in a word u ∈ L(G) depends on the number of terminals. More precisely,
we have N#(u) ≤ 2 × lg(h(u)), for every word u ∈ L(G). Consequently,
lg(u) ≤ 3× lg(h(u)), ∀u ∈ L(G), that is, h is a 3-linear erasing with respect
to L(G).

The theorem now follows as the family of context-sensitive languages is
closed under linear erasing.

The next result shows that the iterated PIN is more powerful than the
iterated SIN: starting only with two one-letter words, the iterated PIN
can produce a non-context-free language. However the family of context-
sensitive languages is still closed under iterated PIN.

Theorem 2.8 There exists a singleton language L such that L<
∗L is not

a context-free language.

Proof. See Example 2.7.

Corollary 2.2 The families of regular and context-free languages are not
closed under iterated parallel insertion.

34 SEQUENTIAL AND PARALLEL INSERTION

Theorem 2.9 The family of context-sensitive languages is closed under
iterated parallel insertion.

Proof. Let L1, L2 be languages generated by the context-sensitive gram-
mars Gi = (Ni, Σi, Si, Pi), i = 1, 2. Assume that the grammars satisfy the
conditions stated in Theorem 2.7. Assume further that λ does not belong
to L2.

Let G = (N, Σ, S, P) be the context-sensitive grammar whose compo-
nents are:

N = N1 ∪ N2 ∪ {S, X},
Σ = Σ1 ∪ Σ2 ∪ {$, #},
P = (P1 − {S1−→λ}) ∪ P2∪

{S−→XS, S−→$S1#}∪
{X$−→$S2X} ∪ {X$#−→$S2#| S1−→λ ∈ P1}∪
{Xa−→aS2X | a ∈ Σ1 ∪ Σ2}∪
{Xa#−→aS2#| a ∈ Σ1 ∪ Σ2}∪
{S−→$#| S1−→λ ∈ P1},

where S, X, $, #, are new symbols which do not occur in any of the given
vocabularies. Intuitively, the grammar works as follows. Xn represents the
number of iterations, $ and # are markers. After a sentential form of the
type Xn$u#, u ∈ L1 is reached, X starts to move to the right, producing
an S2 at the left extremity of u, and after every letter in u. When it reaches
the right extermity of the sentential form, X dissapears. The introduced
S2’s produce words of L2. Thus, a word from L1<

∗L2 is obtained. After
n iterations of the process, we obtain a word in $(L1<

nL2)#.

Claim. $(L1<
∗L2)# = L(G).

” ⊆ ” We will show, by induction on n, that:

$(L1<
nL2)# ⊆ L(G).

n = 0. Let $u# ∈ $L1#. We can construct the derivations according
to G:

S=⇒$S1#=⇒∗$u#, if u 6= λ,

or

S =⇒$#, if u = λ,

2.2 ITERATED INSERTION 35

which prove that $u# ∈ L(G).
n 7→ (n + 1). Assume the claim true for n and let $u# be a word in

$(L1<
n+1L2)# = $((L1<

nL2)< L2)#. According to the definition of
<

n, there exist words w ∈ L1<
nL2, vi ∈ L2 such that:

u = v0a1v1 . . . akvk, w = a1a2 . . . ak, k ≥ 0,
aj ∈ Σ1 ∪ Σ2, 1 ≤ j ≤ k, vi ∈ L2, 0 ≤ i ≤ k.

Taking into account the induction hypothesis, the word $w# belongs to
L(G), therefore there exists a derivation S=⇒∗$w# in G. We can construct
now either the derivation:

S =⇒ XS=⇒∗X$a1a2 . . . ak#=⇒∗

$S2a1S2 . . . akS2#=⇒∗

$v0a1v1 . . . akvk# = $u#,

if w 6= λ, or the derivation:

S=⇒XS=⇒X$#=⇒$S2#=⇒∗$v0# = $u#

if w = λ, which prove that $u# ∈ L(G).
” ⊇ ” Let $u# be a word in L(G), and S=⇒∗$u# a derivation that

produces it.
We will show by induction on n that $u# is in $(L1<

∗L2)#, where n
is the number of applications of the rule S−→XS during the derivation.

n = 0. If this rule has not been applied, the derivation has one of the
folowing forms:

• S=⇒$#, where u = λ and S1−→λ ∈ P1;

• S=⇒$S1#=⇒∗$u#, where u ∈ L1.

In both cases we have that $u# ∈ $L1# ⊆ $(L1<
∗L2)#.

n 7→ (n + 1). Assume the statement true for n and let $u# be a
word in L(G) such that (n + 1) rules S−→XS have been applied during
the derivation S=⇒∗$u#. The first rule used during this derivation is
necessarily S−→XS.

If the next rule to be used is S−→$#, then the derivation is:

S=⇒XS=⇒X$#=⇒$S2#=⇒∗$u#, u ∈ L2.

The existence of S−→$# in P implies that λ ∈ L1 and therefore $u# ∈
$(L1< L2)# ⊆ $(L1<

∗L2)#.

36 SEQUENTIAL AND PARALLEL INSERTION

Else, the derivation continues as explained in the following. The non-
terminal S can produce only sentential forms whose left extremity is $ or
X . As our X can be rewritten only if it is followed by a terminal in Σ1∪Σ2

or $, we deduce that the derivation has the form:

S=⇒XS=⇒∗X$u′#=⇒∗$u#, u′ ∈ (N1 ∪ N2 ∪ {X} ∪ Σ1 ∪ Σ2)
+.

Because, after crossing $, X can jump only over terminal letters of Σ1∪Σ2,
we can assume that u′ ∈ (Σ1 ∪ Σ2)

+. This further implies that S=⇒∗$u′#
is a terminal derivation in L(G), and we can apply now the induction
hypothesis, which assures that u′ ∈ L1<

∗L2. The only way the derivation

X$u′#=⇒∗$u#

can develop is that X produces an S2 when crossing every terminal letter,
and when it reaches the end marker # it disappears. In turn, every S2

produces a word of L2. The terminal letters act as separators, preventing
illegitimate contexts. We can conclude that:

S =⇒ XS=⇒∗X$u′# = X$a1a2 . . . ak#=⇒∗

$v0a1v1 . . . akvk# = $u#.

where k ≥ 1, vi ∈ L2, 0 ≤ i ≤ k, aj ∈ (Σ1 ∪ Σ2), 1 ≤ j ≤ k, u′ ∈ L1<
∗L2,

which implies $u# ∈ $((L1<
∗L2)< L2)# ⊆ $(L1<

∗L2)#.
This completes the proof of the inclusion L(G) ⊆ $(L1<

∗L2)# and
therefore, the proof of the claim.

If we consider now the morphism h : Σ∗−→Σ∗ defined by h($) = h(#) =
λ and h(a) = a, ∀a ∈ Σ1 ∪ Σ2, it is easy to see that,

L1<
∗L2 =

{

h(L(G) − {$#}) ∪ {λ}, if $# ∈ L(G),
h(L(G)), if $# 6∈ L(G).

It is obvious that h is a 3-linear erasing with respect to L(G) − {$#}.
As the family of context-sensitive languages is closed under linear erasing
and union, it follows that L1<

∗L2 is context-sensitive.
We have assumed until now that the language L2 is λ-free. If the empty

word belongs to L2, it will be proved in the following that:

L1<
∗L2 = L1<

∗L2.

2.3 PERMUTED INSERTION 37

” ⊆ ” This inclusion is obvious as any parallel insertion can be simulated
by a sequence of sequential insertions and therefore:

L1< L2 ⊆ L1<
∗L2,

which implies L1<
∗L2 ⊆ L1<

∗L2.
” ⊇ ” It can be showed, by induction on n, that

L1<
nL2 ⊆ L1<

∗L2.

n = 0. Obvious because L1 ⊆ (L1<
∗L2).

n 7→ (n+1). Let α be a word in (L1<
nL2)< L2. Using the induction

hypothesis we deduce that

α ∈ (L1<
∗L2)< L2, α = u1vu2, u1u2 ∈ (L1<

∗L2), v ∈ L2.

As λ ∈ L2, it follows that α belongs also to (u1u2< L2). Indeed, one can
choose, with the exception of v, all the inserted words to be equal to λ.
This further implies that:

α ∈ (L1<
∗L2)< L2 = L1<

∗L2,

and the proof of the equality L1<
∗L2 = L1<

∗L2 when λ ∈ L2, is com-
pleted.

This completes the proof of the theorem as the family of context- sen-
sitive languages is closed under iterated sequential insertion.

2.3 Permuted insertion

Two words over Σ∗ are called letter-equivalent iff, for every letter a ∈ Σ,
both words contain the same number of occurrences of a. A language L
is called commutative iff, whenever w ∈ L, all the words which are letter-
equivalent to w belong to L. The commutative closure of a language L is
the smallest commutative language containing L. The commutative closure
can be viewed as a unary operation associating to every language L its
commutative closure com(L).

The permuted sequential (respectively parallel) insertion, which will be
introduced in the sequel, is a combination between ordinary sequential (re-
spectively parallel) insertion and the commutative closure (called also com-
mutative variant in [7], p.363) operation. More precisely, given two words
u and v, we will insert in u (instead of only v) all the words which are
letter-equivalent to v.

38 SEQUENTIAL AND PARALLEL INSERTION

Definition 2.4 Let L1, L2 be two languages over the alphabet Σ. The per-
muted sequential insertion (permuted SIN) of L2 into L1 is defined as:

L1< L2 =
⋃

u∈L1,v∈L2

(u< com(v)).

Thus, the permuted SIN of L2 into L1 consists of the words obtained by
inserting into words of L1 all the words which are letter-equivalent to the
words of L2. Obviously, the permuted SIN can be expressed as L1< L2 =
L1< com(L2).

Example 2.9 Let L1 = {λ} and L2 = (ab)∗. The permuted sequential
insertion of L2 into L1 is:

L1< L2 = L1< (com(L2)) = com(L2) =

{w ∈ {a, b}∗| Na(w) = Nb(w)}.

The permuted SIN is not a commutative operation. For example, a< bc
= a< {bc, cb} = {abc, bca, acb, cba}, whereas bc< a = {abc, bac, bca}.

The permuted SIN is not associative. In general, for languages L1, L2,
L3, the sets (L1< L2)< L3 and L1< (L2< L3) are not comparable.
For example, the word adbe belongs to a< (b< de) but not to the set
(a< b)< de. We can use the languages from Example 2.2 to show that
also the other inclusion does not hold.

Analogously with the permuted sequential insertion one can define the
permuted parallel insertion, and a similar remark concerning its represen-
tation in terms of PIN and the commutative closure holds:

L1< L2 = L1< (com(L2)).

Example 2.10 Let L1 = {λ} and L2 = (abc)∗. Then the permuted PIN
of L2 into L1 is the same as the permuted SIN between them:

L1< L2 = L1< L2 = L1< (com(L2)) = com(L2) =

{w ∈ {a, b, c}∗| Na(w) = Nb(w) = Nc(w)}.

2.3 PERMUTED INSERTION 39

The permuted PIN is not commutative. For example, a< bc = a<

{bc, cb} = {bcabc, bcacb, cbabc, cbacb}, whereas bc< a = bc< a = abaca.
As concerning associativity, the following result holds:

Theorem 2.10 If L1, L2, L3 are languages over an alphabet Σ, then

(L1< L2)< L3 ⊆ L1< (L2< L3).

Proof. The statement to be proved can be rewritten as:

(L1< com(L2))< com(L3) ⊆ L1< com(L2< com(L3)).

Applying the associativity of the parallel insertion, all that remains to be
shown is that:

com(L2)< com(L3) ⊆ com(L2< com(L3)).

Let α be a word in the left member of the inclusion. Then α is of the form:

α = w0a1w1a2 . . . akwk,

where k ≥ 0, wi ∈ com(L3), 0 ≤ i ≤ k, and β = a1 . . . ak ∈ com(b1 . . . bk),
b1 . . . bk ∈ L2, aj , bj ∈ Σ, 1 ≤ j ≤ k. The case k = 0 corresponds to the
situation where β is empty. The word α′, obtained from α by permuting
the letters ai, 1 ≤ i ≤ k, in order to obtain b1 . . . bk,

α′ = w0b1w1b2 . . . bkwk,

belongs to L2< com(L3). This further implies that α is a word in the set
com(L2< com(L3)).

However, the reverse inclusion does not always hold. For example, consider
the languages L1 = {a}, L2 = {bc}, L3 = {d}. The word dddbcadddbc
belongs to L1< (L2< L3) but not to (L1< L2)< L3. Consequently, the
permuted parallel insertion is not associative.

As expected, the fact that REG and CF are not closed under the com-
mutative closure implies that they are not closed under permuted SIN. The
next two theorems follow from Examples 2.9 and 2.10.

Theorem 2.11 The family of regular languages is closed under neither
permuted sequential nor permuted parallel insertion.

40 SEQUENTIAL AND PARALLEL INSERTION

Theorem 2.12 The family of context-free languages is closed under nei-
ther permuted sequential nor permuted parallel insertion with regular lan-
guages.

Corollary 2.3 The family of context-free languages is closed under neither
permuted sequential nor permuted parallel insertion.

On the other hand, if the language to be inserted is a singleton, per-
muted SIN and PIN are family preserving for the families of the Chomsky
hierarchy.

Theorem 2.13 The families of regular, context-free and context-sensitive
languages are closed under permuted sequential and permuted parallel in-
sertion with singletons.

Proof. Since the permuted insertion (sequential and parallel alike) with
a singleton language amounts to the insertion of a finite language, our
theorem follows by Theorems 2.3, 2.4.

The family of context-sensitive languages is closed under SIN, PIN and
the commutative closure. Consequently, it is closed also under permuted
SIN and PIN.

Theorem 2.14 The family of context-sensitive languages is closed under
permuted sequential and permuted parallel insertion.

2.4 Controlled insertion

We have dealt so far with operations where the insertion took place in arbi-
trary places of a word. As a consequence, catenation is not a particular case
of any of these operations, because one cannot fix the position where the
insertion takes place. A natural idea of controlling the position where the
insertion is performed is that every letter determines what can be inserted
after it. The catenation operation will be obtained then using a particular
case of controlled sequential insertion.

Definition 2.5 Let L be a language over the alphabet Σ. For each letter
a of the alphabet, let ∆(a) be a language over an alphabet Σa. The ∆-
controlled sequential insertion into L (shortly, controlled SIN), is defined
as:

L< ∆ =
⋃

u∈L

(u< ∆),

2.4 CONTROLLED INSERTION 41

where
u< ∆ = {u1avau2| u = u1au2, va ∈ ∆(a)}.

The function ∆ : Σ−→2Σ′∗

, where Σ′ =
⋃

a∈ΣΣa is called a control func-
tion.

In the sequel, the control functions will be denoted by capital Greek
letters.

Example 2.11 Let L = {a3b, bc, λ, d2} and let ∆ be the control function
defined by ∆(a) = {e, λ}, ∆(b) = {f}, ∆(c) = ∅, ∆(d) = {d}. Then,

L< ∆ = {a3b, aea2b, a2eab, a3eb, a3bf, bfc, d3}.

All the insertion operations defined in the previous sections have been
binary operations between languages. The controlled insertion is an (n+1)-
ary operation, where n is the cardinality of Σ, the domain of the control
function.

If we impose the restriction that for a distinguished letter b ∈ Σ, ∆(b) =
L2, and ∆(a) = ∅ for any letter a 6= b, we obtain a special case of controlled

SIN, the sequential insertion next to the letter b, denoted L
b

< L2. The
SIN next to a letter is a binary operation. The words from L which do not

contain the letter b do not contribute to the result. A word in L
b

< L2 is
obtained from u ∈ L which contains b, by inserting a word of L2 after one
of the occurrences of b in it.

Example 2.12 If we consider the language and the control function de-
fined in Example 2.11, then

L
a

< {e, λ} = {a3b, aea2b, a2eab, a3eb},

L
b

< {f} = {a3bf, bfc},

L
c

< ∅ = ∅,

L
d

< {d} = {d3}.

In general, the following relation holds: L< ∆ =
⋃

a∈Σ(L
a

< ∆(a)).

42 SEQUENTIAL AND PARALLEL INSERTION

Example 2.13 Let L1, L2 be the languages L1 = {ancn| n ≥ 1}, L2 =
{dm| m ≥ 1}. The sequential insertion of L2 into L1, next to c, is:

L1
c

< L2 = {ancpdmcq| n, m, p ≥ 1, p + q = n}

whereas the uncontrolled sequential insertion between L1 and L2 is:

L1< L2 = (L1
c

< L2) ∪ (L1
a

< L2) ∪ L2L1.

In general, if L1, L2 are languages over an alphabet Σ, then the sequen-
tial insertion of L2 into L1 can be expressed as:

L1< L2 =
⋃

a∈Σ
(L1

a
< L2) ∪ L2L1.

Note that the sequential insertion L1< L2 can be obtained from the
controlled SIN by using a marker # and a control function ∆ which has
the value L2 for every letter of Σ ∪ {#}. Indeed,

L1< L2 = h(#L1< ∆),

where ∆(#) = ∆(a) = L2, ∀a ∈ Σ and h is the morphism defined by
h(#) = λ, h(a) = a, ∀a ∈ Σ.

The catenation of the languages L1 and L2 can be obtained using a
marker and the sequential insertion next to the marker. Indeed,

L1L2 = h(L1#
#

< L2),

where h is the morphism that erases the marker.
Note that in both the controlled SIN and the SIN next to a letter, the

empty word does not occur in the result of the operation. Indeed, the
notion of control implies the presence of at least one letter in the word in
which the insertion is performed. Therefore, even if the word to be inserted
is λ, the result contains at least the ”control” letters. As it does not contain
any control letter, the presence of λ in L1 does not affect the result of the
controlled SIN,

(L1< ∆) = (L1 − {λ})< ∆.

In the case of controlled sequential insertion we cannot talk about com-
mutativity or associativity. Hovever, these notions can be studied in the
case of SIN next to a letter.

2.4 CONTROLLED INSERTION 43

Theorem 2.15 If L1, L2, L3 are languages over Σ and a, b are letters in
Σ, then

L1
a

< (L2
b

< L3) ⊆ (L1
a

< L2)
b

< L3.

Proof. We can assume, without loss of generality, that a occurs in some
words of L1 and b occurs in some words of L2. Indeed, if this is not the
case, the left member of the inclusion is empty and the theorem holds.

Let α be a word in L1
a

< (L2
b

< L3). There exist words u ∈ L1, β ∈

L2
b

< L3 such that α = u1aβu2, u = u1au2. As β belongs to L2
b

< L3,
there exist words v ∈ L2, w ∈ L3 such that β = v1bwv2, v = v1bv2.
According to the definition of the SIN next to a letter, α is a word of the

set u1avu2
b

< w. As u1avu2 belongs to u
a

< v ⊆ L1
a

< L2, we conclude

that α ∈ (L1
a

< L2)
b

< L3.

The reverse inclusion does not hold. Indeed, for example, a
a

< (ba
a

<

c) = abac, while (a
a

< ba)
a

< c = {acba, abac}. Consequently, the SIN
next to a letter is not an associative operation.

The SIN next to a letter is also not commutative. For example, a
a

<

b = ab whereas b
a

< a = ∅.
The control that we have defined is actually a ”right ” control: a letter

defines what can be inserted at its right side. However, a similar ”left” con-
trolled SIN can be defined, replacing in Definition 2.5 u1avau2 by u1vaau2.
The left ∆-controlled SIN into a language L is denoted by L< < ∆. The
left-SIN next to a letter can be similarily defined.

Example 2.14 Let us consider the language and the control function de-
fined in Example 2.11. Then we have:

L< < ∆ = {a3b, ea3b, aea2b, a2eab, a3fb, fbc, d3},

L
a

< < {e, λ} = {a3b, ea3b, aea2b, a2eab},

L
b

< < {f} = {a3fb, fbc},

L
c

< < ∅ = ∅,

L
d

< < {d} = {d3}.

All the closure properties which will be proved in this section hold also
for the left-controlled SIN because we have:

44 SEQUENTIAL AND PARALLEL INSERTION

Theorem 2.16 Let L be a language over Σ and ∆ : Σ−→2Σ′∗

be a control
function. Then,

L′
< < ∆′ = Mi(L< ∆),

where L′ = Mi(L) and, for all a ∈ Σ, ∆′(a) = Mi(∆(a)).

Proof. In order to prove the requested equality, the following facts will be
used:

(i) Mi(Mi(x)) = x, ∀x ∈ Σ∗,
(ii) Mi(xy) = Mi(y)Mi(x), ∀x, y ∈ Σ∗.
Using (i), the equality to be proved can be rewritten as:

Mi(Mi(L)< < ∆′) = L< ∆.

” ⊆ ” Let α be a word in Mi(Mi(L)< < ∆′). This implies that there exist
u ∈ Mi(L), u = a1a2 . . .ak, k ≥ 1, aj ∈ Σ, 1 ≤ j ≤ k, an index i, 1 ≤ i ≤ k
and v ∈ ∆′(ai) = Mi(∆(ai)), such that α = Mi(a1a2 . . . ai−1vai . . . ak). As
u is a word in Mi(L) and v a word in Mi(∆(ai)), from (i) it follows that
akak−1 . . . a1 ∈ L and that Mi(v) ∈ ∆(ai). Using (ii) we deduce that

α = akak−1 . . . aiMi(v)ai−1 . . . a2a1,

akak−1 . . . a2a1 ∈ L, Mi(v) ∈ ∆(ai),

that is, α ∈ L< ∆.
” ⊇ ” Let α be a word in L< ∆. There exist u ∈ L, u = a1a2 . . .ak,

k ≥ 1, aj ∈ Σ, 1 ≤ j ≤ k, an index i, 1 ≤ i ≤ k and v ∈ ∆(ai), 1 ≤ i ≤ k,
such that α = a1a2 . . . aivai+1 . . . ak. As akak−1 . . . a1 is a word in Mi(L)
and Mi(v) ∈ ∆′(ai), using (ii) and (i) we deduce that:

Mi(α) = akak−1 . . . ai+1Mi(v)ai . . . a2a1

is a word in Mi(L)< < ∆′, therefore α belongs to Mi(Mi(L)< < ∆′).

In the following we shall define the parallel variants of controlled in-
sertion. The definitions originate from the parallel insertion, but in the
controlled case every letter defines the language that may be inserted after
it.

Definition 2.6 Let L be a language over Σ and ∆ : Σ−→2Σ′∗

a control
function satisfying ∆(a) 6= ∅, ∀a ∈ Σ. The ∆-controlled parallel insertion
into L (shortly, controlled PIN) is defined as:

2.4 CONTROLLED INSERTION 45

L< ∆ =
⋃

u∈L

(u< ∆),

where

u< ∆ = {a1v1a2v2 . . .akvk| u = a1 . . .ak, k ≥ 1, ai ∈ Σ,

and vi ∈ ∆(ai), 1 ≤ i ≤ k}.

Example 2.15 Let L = {cd, λ, bdc, f2} and ∆ be the control function
defined by ∆(c) = {a}, ∆(d) = {λ, e}, ∆(b) = {λ}, ∆(f) = {f}. Then,

L< ∆ = {cad, cade, bdca, bdeca, f4}.

The parallel insertion of a nonempty language L2 into a language L1

can be obtained using a marker # and a control function ∆(a) = L2,
∀a ∈ Σ ∪ {#}. Indeed,

L1< L2 = h(#L1< ∆),

where h is the morphism that erases the marker.
Note that in the previous definition the control function cannot have

the empty set as its value. This condition has been introduced because
of the following reasons. If there would exist a letter a ∈ Σ such that
∆(a) = ∅, then all the words of u ∈ L which contain a would give u< ∆ =
∅. This means that these words would not contribute to the result of the
controlled PIN. Consequently, we can introduce, without loss of generality,
the condition ∆(a) 6= ∅, ∀a ∈ Σ.

If we impose the restriction that for a distinguished letter b ∈ Σ we
have ∆(b) = L2, L2 ⊆ Σ′∗, and ∆(a) = λ for every letter a 6= b, we obtain
a particular case of controlled PIN: parallel insertion next to the letter b.
It is a binary language operation, whereas the arity of the ∆-controlled
PIN equals card(Σ) + 1. The parallel insertion of L2 into L1, next to b, is

denoted by L1
b

< L2. It retains all the nonempty words from L1 which
do not contain b (we inserted λ after each letter). The other words from

L1
b

< L2 are obtained from words u ∈ L1 containing the letter b. After
each occurrence of b in u, a word from L2 is inserted.

46 SEQUENTIAL AND PARALLEL INSERTION

Example 2.16 If one considers the language and the control function de-
fined in Example 2.15, we have:

L
c

< {a} = {cad, bdca, f2},

L
d

< {λ, e} = {cd, cde, bdc, bdec, f2},

L
b

< {λ} = {cd, bdc, f2},

L
f

< {f} = {cd, bdc, f4}.

The catenation between two languages L1 and L2 6= ∅ can be obtained
by using a marker and the parallel insertion next to it. Indeed,

L1L2 = h(L1#
#

< L2),

where h is the morphism that erases the marker.

Note that also in the parallel variant, the presence of λ in L1 does not
change the result of the operation:

(L1< ∆) = (L1 − {λ})< ∆,

L1
a

< L2 = (L1 − {λ})
a

< L2.

In the case of controlled PIN, we cannot speak about associativity or
commutativity. However, these notions can be studied when we restrict to
the parallel insertion next to a letter. For arbitrary languages L1, L2, L3,

the sets L1
a

< (L2
b

< L3) and (L1
a

< L2)
b

< L3 are not comparable.

For example, bb
b

< (ab
b

< c) = babcbabc, while (bb
b

< ab)
b

< c =
bcabcbcabc. Consequently, the parallel insertion next to a letter is not an
associative operation. It is also not a commutative operation. For example,

a
a

< b = ab, whereas b
a

< a = b.

Analogously to the sequential case, a ”left” control can be defined
for parallel insertion, by replacing in Definition 2.6 a1v1a2v2 . . . akvk by
v1a1v2a2 . . . vkak. The left ∆-controlled PIN into the language L is denoted
by L< < ∆. The left-PIN next to a letter is defined in a similar way.

2.4 CONTROLLED INSERTION 47

Example 2.17 If we consider the language and the control function de-
fined in Example 2.15, we have:

L< < ∆ = {acd, aced, bdac, bedac, f4},

L
c

< < {a} = {acd, bdac, f2},

L
d

< < {λ, e} = {cd, ced, bdc, bedc, f2},

L
b

< < {λ} = L − {λ},

L
f

< < {f} = {cd, bdc, f4}.

The following theorem shows the similarity of the left and right con-
trolled PIN.

Theorem 2.17 Let L be a language over the alphabet Σ and ∆ : Σ−→2Σ′∗

be a control function such that ∆(a) 6= ∅, ∀a ∈ Σ. Then,

(L′
< < ∆′) = Mi(L< ∆),

where L′ = Mi(L) and, for all a ∈ Σ, ∆′(a) = Mi(∆(a)).

Proof. Similar to the proof of the Theorem 2.16.

In the sequel we shall prove the closure properties of the families of the
Chomsky hierarchy under controlled sequential and parallel insertion.

Theorem 2.18 The families of regular, context-free and context-sensitive
languages are closed under controlled sequential insertion.

Proof. Consider a family of languages L ∈ { REG, CF, CS}. Let Σ be an
alphabet and L ⊆ Σ∗ be a language in L. According to an earlier remark,
we can assume that L is λ-free. Let ∆ : Σ−→2Σ′∗

be a control function
such that ∆(a) ∈ L for all a ∈ Σ.

For every a ∈ Σ for which ∆(a) 6= ∅ consider the marker #a not in Σ.
Let g be the λ-free gsm:

g = (Σ, Σ ∪ {#a| a ∈ Σ, ∆(a) 6= ∅}, {s0, s}, s0, {s}, P),
P = {s0a−→as0| a ∈ Σ} ∪ {s0a−→a#as| a ∈ Σ, ∆(a) 6= ∅}∪

{s0a−→as| a ∈ Σ and λ ∈ ∆(a)} ∪ {sa−→as| a ∈ Σ}.

48 SEQUENTIAL AND PARALLEL INSERTION

Intuitively, the gsm g works as follows. Given a word u ∈ Σ+ as an input, g
puts after an arbitrary letter a occurring in u the marker #a, provided ∆(a)
is nonempty. All the letters from u are left unchanged. The entire word u
may remain unchanged in case it contains a letter a with λ ∈ ∆(a). The
construction is similar to that of Theorem 2.3 with the following differences:

• No marker is put at the beginning of the word;

• There exists a different marker for every letter a with ∆(a) 6= ∅;

• The situation λ ∈ ∆(a), a ∈ Σ, is taken care of in the construction of
P .

In a similar way as in the Claim of Theorem 2.3 it can be showed that:

g(L) = {u1a#au2| u1au2 ∈ L, ∆(a) 6= ∅} ∪ {u1au2| u1au2 ∈ L, λ ∈ ∆(a)}.

Consider now the λ-free substitution:

s′ : (Σ ∪ {#a| a ∈ Σ, ∆(a) 6= ∅})∗−→2(Σ∪Σ′)∗ ,

defined by s′(#a) = ∆(a) − {λ} if a ∈ Σ, ∆(a) 6= ∅ and s′(a) = a, for all a
in Σ.

It is easy to show that s′(g(L)) = L< ∆. The family L is closed under
λ-free gsm mappings and under λ-free substitutions. Consequently, it will
be closed also under controlled sequential insertion.

Theorem 2.19 The families of regular, context-free and context-sensitive
languages are closed under controlled parallel insertion.

Proof. Let L be a language over the alphabet Σ and ∆ : Σ−→2Σ′∗

a control
function such that ∆(a) 6= ∅, ∀a ∈ Σ. Assume further that L and ∆(a), a ∈
Σ are languages belonging to the same family L ∈ { REG, CF, CS}. Then,

L< ∆ = σ(L − {λ}),

where σ is the λ-free substitution defined by:

σ : Σ∗−→2(Σ∪Σ′)∗ , σ(a) = a∆(a), ∀a ∈ Σ.

The theorem now follows from the closure of the families REG, CF, CS
under λ-free substitution.

2.5 SCATTERED SEQUENTIAL INSERTION 49

2.5 Scattered sequential insertion

In the operations defined in the previous sections, the insertion was per-
formed in a compact way. Always when performing an insertion operation
of a language L2 into L1 one (in the sequential case) or more (in the parallel
case) words from L2 were compactly inserted into words of L1. Some of
the insertion operations can be defined in a scattered sense as well. More
precisely, instead of inserting a compact word, the letters which form it will
be sparsely inserted. In the case of sequential insertion, this modification
from the compact sense to the scattered sense yields the well known shuffle
operation (see, for example [7], p.156, [3], pp.175-180).

Definition 2.7 Let L1, L2 be languages over the alphabet Σ. The shuffle
of L2 into L1 is defined as:

L1 ∐ L2 =
⋃

u∈L1,v∈L2

(u ∐ v),

where

u ∐ v = {u1v1u2v2 . . .ukvk| u = u1u2 . . . uk, v = v1v2 . . . vk,
k ≥ 1, ui, vi ∈ Σ∗, 1 ≤ i ≤ k}.

Example 2.18 Let L1 = {abb}, L2 = {cd}. The shuffle of L2 into L2 is:

L1 ∐ L2 = {cdabb, cadbb, cabdb, cabbd, acdbb,
acbdb, acbbd, abcdb, abcbd, abbcd},

and the shuffle of L1 into L2 is L2 ∐ L1 = L1 ∐ L2.

The shuffle operation is commutative and associative. (P(Σ∗),∐) is a
commutative monoid with {λ} the neutral element. The families of regular
and context-free languages are closed under shuffle with regular languages.
The family of context-free languages is not closed under shuffle. A construc-
tive argument of the fact that the family of context-sensitive languages is
closed under shuffle is given below.

Theorem 2.20 The family of context-sensitive languages is closed under
shuffle.

50 SEQUENTIAL AND PARALLEL INSERTION

Proof. Let L1, L2 be two languages over Σ, generated by the context-
sensitive grammars Gi = (Ni, Σi, Si, Pi), i = 1, 2, which satisfy the require-
ments of Theorem 2.7. Assume that the empty word belongs to neither L1

nor L2.
Let us construct the context-sensitive grammar G = (N, Σ, S, P) whose

components are respectively,

N = N1 ∪ N2 ∪ {S} ∪ {a′| a ∈ Σ2},
Σ = Σ1 ∪ Σ2,
P = P1 ∪ P ′

2 ∪ {S−→S1S2}∪
{ba′−→a′b| a ∈ Σ2, b ∈ Σ1}∪
{a′−→a| a ∈ Σ2},

where P ′

2 contains the rules of P2 with all the terminals a replaced by their
nonterminal versions a′, and S is a symbol which does not occur in any of
the given vocabularies.

For a word v = a1 . . . ak, k ≥ 0, ai ∈ Σ2, 1 ≤ i ≤ k, we denote by v′ the
corresponding word where all letters have been primed, v′ = a′

1 . . . a′

k .

Claim. L1 ∐ L2 = L(G).

” ⊆ ” Let α be a word in L1 ∐ L2. There exist non-empty words u ∈ L1,
v ∈ L2 such that α = u1v1u2v2 . . . ukvk, u = u1u2 . . . uk, v = v1v2 . . . vk,
k ≥ 1, ui, vi ∈ Σ∗, 1 ≤ i ≤ k. That further implies that the following
derivations exist :

S1=⇒
∗u, in G1,

S2=⇒
∗v, in G2.

We can now construct the derivation according to G:

S=⇒ S1S2=⇒
∗uS2=⇒

∗uv′ = u1u2 . . . ukv′1v
′

2 . . . v′k=⇒∗

u1v
′

1u2v
′

2 . . . ukv′k=⇒∗u1v1u2v2 . . . ukvk.

After applying the rule S−→S1S2, the derivation S1=⇒∗u was used. Af-
terwards, the derivation S2=⇒∗v, where all the terminal rules X−→a have
been replaced by X−→a′, has been applied. Rules of the type ba′−→a′b
have been used until v′1, . . . v

′

k have reached the desired places. Finally,
the productions a′−→a, a ∈ Σ2, have transformed the nonterminals into
terminals.

The existence of this derivation shows that α ∈ L(G).

2.5 SCATTERED SEQUENTIAL INSERTION 51

” ⊇ ” Let α be a word in L(G).
There exists a derivation S=⇒S1S2=⇒∗α according to G. As the ter-

minal rules are context-free, we can rearrange the derivation in the form:

S=⇒S1S2=⇒
∗uv′=⇒∗α, u ∈ Σ∗

1, v ∈ Σ∗

2.

Moreover, as the rules from P1 and P2 do not mix, the nonterminal vocab-
ularies being disjoint, we have:

S1=⇒
∗u, in G1,

S2=⇒
∗v, in G2.

The only way the derivation can develop after reaching the word uv′ is that
some rules ba′−→a′b are applied, and rules a′−→a transform the remaining
nonterminals into terminals. We can rewrite the derivation of α as:

S=⇒ S1S2=⇒∗uv′ = u1u2 . . . ukv′1v
′

2 . . . v′k=⇒∗

u1v1u2v2 . . . ukvk = α,
S1=⇒∗ u = u1u2 . . . uk, in G1,
S2=⇒∗ v = v1v2 . . . vk, in G2.

That implies that α ∈ (u ∐ v) ⊆ L1 ∐ L2, and the proof of the claim is
complete.

The theorem holds also if λ is a word in L1 or L2 because:

L1 ∐ L2 = [(L1 − {λ}) ∐ (L2 − {λ})] ∪ L1, if λ ∈ L2 − L1,
L1 ∐ L2 = [(L1 − {λ}) ∐ (L2 − {λ})] ∪ L2, if λ ∈ L1 − L2,
L1 ∐ L2 = [(L1 − {λ}) ∐ (L2 − {λ})] ∪ L1 ∪ L2, if λ ∈ L1 ∩ L2,

and because the family CS is closed under union.

The parallel as well as the controlled variants of insertion do not have
their natural scattered counterparts. However, for the permuted sequential
insertion, a scattered version can be defined.

Definition 2.8 Let L1, L2 be languages over Σ. The permuted scattered
sequential insertion (permuted scattered SIN) of L2 into L1 is defined as:

L1< L2 =
⋃

u∈L1,v∈L2

(u< v),

where u< v = u ∐ com(v).

52 SEQUENTIAL AND PARALLEL INSERTION

As in the case of permuted sequential insertion, when performing the
operation u< v, only the amounts of letters contained in v matter; their
order, that is, the structure of v is irrelevant. The difference is that while
in the compact variant the whole word v was inserted, now the letters of v
are sparsely inserted into u.

Example 2.19 Let L1 = {ab2}, L2 = {cd}.

ab2
< cd = {cdab2, cadb2, cabdb, cab2d, acdb2,

acbdb, acb2d, abcdb, abcbd, ab2cd,
dcab2, dacb2, dabcb, dab2c, adcb2,
adbcb, adb2c, abdcb, abdbc, ab2dc}.

By combining the shuffle with the com operation, the commutativity
property is lost. For example, ab< c = {cab, acb, abc}, whereas c< ab =
{cab, abc, acb, cba, bac, bca}. However, the associativity property is pre-
served and therefore we have:

Theorem 2.21 The permuted scattered SIN induces a monoid structure
on P(Σ∗).

Proof. The neutral element of the monoid is λ.
For showing that the permuted scattered SIN is associative we have to

prove that
L1< (L2< L3) = (L1< L2)< L3,

for languages L1, L2, L3 over Σ.
If one of the languages is empty, the equality holds, both members being

equal to the empty set.
Else, the two members of the equality can be rewritten as follows:

L1< (L2< L3) = L1 ∐ com(L2 ∐ com(L3)),
(L1< L2)< L3 = (L1 ∐ com(L2)) ∐ com(L3) =

L1 ∐ (com(L2) ∐ com(L3)).

(we have used the associativity of the shuffle operation). The theorem now
follows as we obviously have:

com(L2 ∐ com(L3)) = com(L2) ∐ com(L3).

2.5 SCATTERED SEQUENTIAL INSERTION 53

As in the case of permuted sequential insertion, the mixture with the
commutative closure implies the nonclosure of REG and CF under the new
operation.

Theorem 2.22 The family of regular and the family of context-free lan-
guages are not closed under permuted scattered SIN with regular languages.

Proof. Let L1, L2 be two languages over an alphabet Σ. If L1 = {λ}, then
the permuted scattered SIN amounts to permuted SIN, therefore we can
use Examples 2.9, 2.10 to prove the theorem.

Corollary 2.4 The family of regular and the family of context-free lan-
guages are not closed under permuted scattered SIN.

On the other hand, if the inserted language is a singleton, its commu-
tative closure is a finite set and therefore we have:

Theorem 2.23 The family of regular and the family of context-free lan-
guages are closed under permuted scattered SIN with singletons.

Proof. Let L1 and w be a language, respectively a word over the same
alphabet Σ. The theorem follows because

L1< w = L1 ∐ com({w}),

and REG, CF are closed under shuffle with regular languages.

The closure of the family CS under both commutative closure and shuffle
implies the following:

Theorem 2.24 The family of context-sensitive languages is closed under
permuted scattered SIN.

Bibliography

[1] M.Andraşiu, A.Atanasiu, Gh.Păun, A.Salomaa. A new cryptosystem
based on formal language theory. Bull.Math.Soc.Sci.Math.Roumanie, to
appear.

[2] M.Andraşiu, Gh.Păun, A.Salomaa. Language-theoretical problems aris-
ing from Richelieu cryptosystems. Submitted for publication.

[3] S.Ginsburg. Algebraic and Automata-Theoretic Properties of Formal
Languages. North-Holland, Amsterdam, 1975.

[4] M.A.Harrison. Introduction to Formal Language Theory. Addison Wes-
ley, Reading, Massachusetts, 1978.

[5] J.Hopcroft, J.Ulmann. Introduction to Automata Theory, Languages,
and Computation. Addison Wesley, Reading, Massachusetts, 1979.

[6] H.C.M.Kleijn, G.Rozenberg. Context-free like restrictions on selective
rewriting. Theoretical Computer Science, vol.16, no.3(1981), pp.237-
269.

[7] W.Kuich, A.Salomaa. Semirings, Automata, Languages. Springer Ver-
lag, Berlin, 1986.

[8] R.C.Lyndon, M.P.Schutzenberger. The equation aM = bNcP in a free
group, Michigan Math.J., no.9(1962) pp.289-298.

[9] Gh.Păun, A.Salomaa. Semi-commutativity sets – a cryptographically
grounded topic. Bull.Math.Soc.Sci.Math.Roumanie, to appear.

[10] G.Rozenberg, A.Salomaa. The Mathematical Theory of L Systems.
Academic Press, London, 1980.

56 BIBLIOGRAPHY

[11] A.Salomaa. Theory of Automata. Pergamon Press, Oxford, 1969.

[12] A.Salomaa. Formal Languages. Academic Press, London, 1973.

[13] L.Sântean1. Six arithmetic-like operations on languages. Revue
Roumaine de Linguistique, Tome XXXIII, 1988, Cahiers de linguistique
theorique et applique, Tome XXV, 1988, No.1, Janvier-Juin, pp.65-73.

[14] H.J.Shyr. Free Monoids and Languages. Lecture Notes, Institute of
applied mathematics, National Chung-Hsing University, Taichung, Tai-
wan, 1991.

[15] H.J.Shyr, G.Thierrin, S.S.Yu. Monogenic e-closed languages and dipo-
lar words. To appear.

1The maiden name of the author of this Thesis

