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Chapter 3

Sequential and parallel

deletion

3.1 Deletion

In this section the operations of sequential deletion (introduced in [13])
and parallel deletion will be studied. The deletion of the word v from
u is a generalization of the right and left quotients u/v, v\u: instead of
extracting the word v from the right or left extremity of u, we extract it
from an arbitrary place in u.

Definition 3.1 Let L1, L2 be languages over the alphabet Σ. The sequen-
tial deletion (abbreviated SD in the sequel) of L2 from L1 is defined as:

L1 >L2 =
⋃

u∈L1,v∈L2

(u >v)

where

u >v = {w ∈ Σ∗| u = w1vw2, w = w1w2, w1, w2 ∈ Σ∗}.

While the sequential insertion operation is a total operation in the sense
that essentially all the words from both languages contribute to the result,
the sequential deletion is a partial operation in this sense. The words from
L1 which do not contain any word of L2 as a subword, as well as the words
from L2 which are not subwords of any word of L1, do not contribute to the
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result. Indeed, the pairs of words u ∈ L1, v ∈ L2 where v is not a subword
of u, give the empty set as their contribution to the union.

The sequential insertion and the sequential deletion are not inverse
operations. In general, if L1< L2 = L3 then L1 ⊆ L3 >L2 and if
L′

1
>L′

2 = L′
3 then L′

1 ⊆ L′
3

< L′
2, but the reverse inclusions do not hold.

Some particular cases in which the sequential insertion and deletion are
inverse to each other are studied in Section 4.4.

Example 3.1 Let L1 = {abababa, ab, ba2, aba}, L2 = {aba}. The sequen-
tial deletion of L2 from L1 is:

L1 >L2 = {baba, abba, abab, λ},

which is the union of the sets:

{abababa} >{aba} = {baba, abba, abab},
{ab} >{aba} = ∅,
{ba2} >{aba} = ∅,
{aba} >{aba} = {λ}.

The left and right quotient can be obtained using the sequential dele-
tion and a marker which forces the position of the deletion. If L1, L2 are
languages over Σ then,

L2\L1 = (#L1) >(#L2),

L1/L2 = (L1#) >(L2#),

where # is a new symbol which does not belong to Σ.
A parallel variant of the deletion can be defined as follows. Given words

u and v, the parallel deletion of v from u consists of the words obtained
by simultaneously erasing from u all the non-overlapping occurrences of v.
The definition is extended to languages in the natural way. Given a word
u and a language L2, the parallel deletion u >L2 consists of the words
obtained by erasing from u all the non-overlapping occurrences of words in
L2.

Definition 3.2 Let L1, L2 be languages over the alphabet Σ. The parallel
deletion (shortly, PD) of L2 from L1 is:
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L1 >L2 =
⋃

u∈L1

(u >L2)

where

u >L2 = {u1u2 . . . ukuk+1| k ≥ 1, ui ∈ Σ∗, 1 ≤ i ≤ k + 1 and
∃vi ∈ L2, 1 ≤ i ≤ k such that u = u1v1 . . . ukvkuk+1,
where {ui} ∩ [Σ∗(L2 − {λ})Σ∗] = ∅, 1 ≤ i ≤ k + 1}.

The parallel deletion u >L2 erases from u the non-overlapping occur-
rences of words from L2. Moreover, a supplementary condition has to be
fulfilled: between two occurrences of words of L2 to be erased, no nonempty
word from L2 appears as a subword. This assures that all occurrences of
words from L2 have been erased from u, and is taken care of by the last
line of the definition. The reason why λ had to be excluded from L2 is ob-
vious. If this wouldn’t be the case and λ would belong to L2, the condition
{ui} ∩ Σ∗L2Σ

∗ = ∅ would imply {ui} ∩ Σ∗ = ∅ – a contradiction. Note
that words from L2 can still appear as subwords in u >L2, as the result
of catenating the remaining pieces of u.

Example 3.2 Let L1 = {abababa, aababa, abaabaaba}, L2 = {aba}. The
parallel deletion of L2 from L1 is:

L1 >L2 = {b, abba, aba, aab, λ},

being the union of the sets:

{abababa} >{aba} = {b, abba},
{aababa} >{aba} = {aba, aab},

{abaabaaba} >{aba} = {λ}.

The right and left quotient can be obtained by using the parallel deletion
and a marker which forces the operation to become sequential and also fixes
the position of the deletion. If L1, L2 are languages over the alphabet Σ,

L1/L2 = (L1#) >(L2#),

L2\L1 = (#L1) >(#L2),

where # is a new symbol which does not belong to Σ.
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The sequential and parallel deletion are not commutative operations.
Indeed, take L1 = {ab} and L2 = {b}. Then we have:

(ab >b) = (ab >b) = a 6= (b >ab) = (b >ab) = ∅.

The sequential and parallel deletion are not associative operations. For
example, take L1 = {aab}, L2 = {b} and L3 = {a}. Then we have:

(aab >b) >a = aa >a = a, whereas
aab >(b >a) = aab >∅ = ∅,
and
(aab >b) >a = aa >a = λ, whereas
aab >(b >a) = aab >∅ = ∅.

In general, the sets L1 >(L2 >L3) and (L1 >L2) >L3 are not compa-
rable and the same thing can be said about the sets L1 >(L2 >L3) and
(L1 >L2) >L3. This fact can be proved by using the preceding and the
following examples:

ab >(bc >c) = ab >(bc >c) = a,

(ab >bc) >c = (ab >bc) >c = ∅.

The following result is known for the right and left quotient of regular
languages (see, for example, [4], p.50):

Theorem 3.1 If L1 is a regular language and L2 is an arbitrary one, then
the left quotient of L1 by L2 is a regular language.

Proof. Let L1, L2 be languages over an alphabet Σ and let A = (S, Σ,
s0, F, P ) be a finite automaton that accepts L1. For every two states s, s′

in S define:
Ls,s′ = {w ∈ Σ∗| sw=⇒∗s′ in A}.

Consider now the finite automaton A′ = (S, Σ ∪ {#}, s0, F, P ′) where:

P ′ = P ∪ {s0#−→s′| L2 ∩ Ls0,s′ 6= ∅}

and # is a new symbol which does not occur in Σ.
If one now defines the morphism h : (Σ ∪ {#})∗−→Σ∗, h(#) = λ,

h(a) = a, ∀a ∈ Σ, it is easy to show that:

L2\L1 = h(L(A′) ∩#Σ∗).

The theorem follows as the family of regular languages is closed under
intersection and morphism.
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Corollary 3.1 The language L2\L1 from the preceding theorem can be ef-
fectively constructed if L2 is a regular or a context-free language.

Proof. The family of context-free (regular) languages is closed under inter-
section with regular languages. Consequently, all languages L2∩Ls0,s′ from
the previous theorem are context-free (regular) and can be effectively con-
structed. As the emptiness problem is decidable for context-free (regular)
languages, the automaton A′ can be effectively constructed.

Corollary 3.2 If L1 is a regular language, there exist finitely many differ-
ent languages that can be obtained from L1 by left quotient.

Proof. The claim follows from the preceding theorem, by the fact that the
automaton A is finite. There exist finitely many different possibilities of
constructing the automaton A′. The languages that can be obtained from
L1 by left quotient will be among the languages:

LS′ = h(L(AS′) ∩#Σ∗),

where h is defined as in the theorem, S′ ⊆ S and AS′ is the finite automaton:

AS′ = (S, Σ ∪ {#}, s0, F, PS′ ),

PS′ = P ∪ {s0#−→s′| s′ ∈ S′}.

Consequently, there exist at most 2card(S) different languages that can be
obtained from L1 by left quotient.

Results similar to Theorem 3.1, Corollary 3.1 and Corollary 3.2 can be
proved also for the right quotient, as we have:

L1/L2 = Mi(Mi(L2)\Mi(L1)).

In order to show the closure of REG under sequential deletion, we will prove
a lemma which generalizes these results. It will be shown that a regular
language results when an arbitrary language is sequentially deleted from a
regular one.

Lemma 3.1 If L1, L2 are languages over the alphabet Σ, L1 a regular one,
then L1 >L2 is a regular language.
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Proof. Let L1, L2 be languages over Σ and let A = (S, Σ, s0, F, P ) be a
finite automaton that accepts L1. For two states s, s′ in S denote:

Ls,s′ = {w ∈ Σ∗| sw=⇒∗s′ in A}.

The language Ls,s′ is regular for each s, s′ ∈ S. Consider the automaton:

A′ = (S, Σ ∪ {#}, s0, F, P ′)
P ′ = P ∪ {s#−→s′| s, s′ ∈ S and L2 ∩ Ls,s′ 6= ∅},

where # is a new symbol which does not occur in Σ.

Claim.

L1 >L2 = h(L(A′) ∩ Σ∗#Σ∗)

where h is the morphism h : (Σ∪{#})∗−→Σ∗, h(#) = λ, h(a) = a, ∀a ∈ Σ.

” ⊆ ” Let u be a word in L1 >L2. There exist w ∈ L1, v ∈ L2 such
that w = u1vu2, u = u1u2.

The following derivation exists in A:

s0w = s0u1vu2=⇒
∗s1vu2=⇒

∗s′1u2=⇒
∗sf , sf ∈ F.

As v ∈ L2 ∩ Ls1,s′

1
, the rule s1#−→s′1 exists in P ′ and one can construct

in A′ the derivation:

s0u1#u2=⇒
∗s1#u2=⇒s′1u2=⇒

∗sf , sf ∈ F,

which proves that u1#u2 ∈ L(A′) ∩ Σ∗#Σ∗.
As u = h(u1#u2), one deduces that u belongs to h(L(A′) ∩ Σ∗#Σ∗).
” ⊇ ” Let w be a word in h(L(A′) ∩ Σ∗#Σ∗). There exists a word

w′ ∈ L(A′) ∩Σ∗#Σ∗ such that h(w′) = w.
The word w′ is of the form u1#u2, u1, u2 ∈ Σ∗, and there also exists a

derivation
s0u1#u2=⇒

∗sf , sf ∈ F,

in the automaton A′.
The derivation has the form:

s0u1#u2=⇒
∗s1#u2=⇒s′1u2=⇒

∗sf , sf ∈ F,

where the rule s1#−→s′1 has been applied that is, L2 ∩ Ls1,s′

1
6= ∅. This

further implies that there exists v ∈ L2 such that a derivation s1v=⇒∗s′1
exists in A.
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Because w′ contains only one marker, only one rule from P ′ − P has
been used in the derivation, all the other rules being from P . Therefore the
following derivation exists in A:

s0u1vu2=⇒
∗s1vu2=⇒

∗s′1u2=⇒
∗sf , sf ∈ F,

which shows that u1vu2 ∈ L1. As v ∈ L2 one concludes that w = u1u2 =
h(u1#u2) ∈ (u1vu2 >v) ⊆ (L1 >L2), which proves the second inclusion.
The theorem follows as REG is closed under morphism and intersection
with regular languages.

Corollary 3.3 The family of regular languages is closed under sequential
deletion.

Corollary 3.4 The language L1 >L2 can be effectively constructed if L1

is a regular language and L2 a regular or context-free language.

Proof. If L2 is a regular or context-free language, the emptiness of the
intersection L2 ∩ Ls,s′ is decidable. Consequently, the automaton A′ can
be effectively constructed.

Corollary 3.5 For any regular language L1 there exist finitely many lan-
guages that can be obtained from L1 by sequential deletion.

Proof. The claim follows from the preceding lemma by the fact that the
automaton A is finite. This implies that there are finitely many different
possibilities of constructing the automaton A′. The languages that can be
obtained from L1 by sequential deletion will be among the languages:

LS′ = h(L(AS′) ∩ Σ∗#Σ∗),

where S′ is an arbitrary subset of S × S and AS′ is the automaton:

AS′ = (S, Σ ∪ {#}, s0, F, PS′ ),
PS′ = P ∪ {s#−→s′| (s, s′) ∈ S′}.

Consequently, the number of distinct languages that can be obtained from

L1 by sequential deletion is at most 2card(S×S).

If the language to be deleted is a regular one, the sequential deletion
can be simulated by a generalized sequential machine with erasing.
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Theorem 3.2 If L and R are languages over the alphabet Σ, R a regular
one, there exists a gsm g such that

L >R = g(L) ∪ {λ| λ ∈ L ∩R}.

Proof. Let A = (S, Σ, s0, F, P ) be a finite automaton that recognizes the
language R. Construct the gsm with erasing,

g = (Σ, Σ, S ∪ {s′0, sf}, s′0, {sf}, P ′),
P ′ = P ∪ {s′0a−→as′0| a ∈ Σ} ∪ {s′0a−→s| s0a−→s ∈ P}∪

{sa−→sf | sa−→s′ ∈ P, s′ ∈ F} ∪ {sfa−→asf | a ∈ Σ}∪
{s′0a−→sf | s0a−→s ∈ P, s ∈ F} ∪ {s′0a−→asf | a ∈ Σ, λ ∈ R},

which satisfies the requested equality.
Given a word v ∈ L as an input and a word w ∈ R, the gsm g works

as follows: the rules of P erase the word w from v while the ones of the
type s′0a−→as′0 and sfa−→asf cross over the letters which will remain in
v >w.

Indeed, let u ∈ L >R. There exist words v ∈ L, w ∈ R such that
v = u1wu2, u = u1u2. As w belongs to R, it is accepted by the automaton
A and therefore there exists:

s0w=⇒∗s′, s′ ∈ F, in A.

It will be shown in the following that u ∈ g(v) ∪ {λ| λ ∈ L ∩R}. Indeed,
(i) If w 6= λ, u ∈ g(v) as

s′0v = s′0u1wu2=⇒
∗u1s

′
0wu2=⇒

∗u1sfu2=⇒
∗u1u2sf

is a derivation according to g. In the scanning of u1 and u2 rules of the type
s′0a−→as′0 and respectively sfa−→asf have been used. If lg(w) = 1 then,
for scanning w, the rule s′0w−→sf alone is used. Else, while scanning w, the
derivation s0w=⇒∗s′ has been used, with the first rule s0a−→s′′ replaced
by s′0a−→s′′ and the last rule sa−→s′ replaced by sa−→sf . Note that if
u1 = λ (respectively u2 = λ) no rule of the type s′0a−→as′0 (respectively
sfa−→asf) is needed.

(ii) If w = λ and u 6= λ, u ∈ g(v) as

s′0v = s′0u=⇒asfu′=⇒∗au′sf , u = au′,

is a derivation according to g. The first rule applied is s′0a−→asf and in
the rest rules sfa−→asf have been used (if u′ = λ, no rule sfa−→asf is
needed).
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(iii) If w = λ and u = λ no derivation in g can be constructed but, as
λ ∈ L ∩R, λ belongs also to the second member of the equality.

In all cases it resulted that u ∈ g(L) ∪ {λ|λ ∈ L ∩R}, therefore one of
the inclusions is proved.

In order to prove the reverse inclusion, let u be a word in g(L)∪ {λ| λ ∈
L ∩ R}. If u belongs to the second set of the union then u ∈ L >R as
λ ∈ L ∩R and u = λ. Else, if u ∈ g(L), there exists v ∈ L such that

s′0v=⇒∗usf

according to the rules of P ′.
If during the derivation a rule of the type s′0a−→asf has been applied,

then λ ∈ R and the derivation has the form:

s0
′v = s′0u1au2=⇒∗u1s

′
0au2=⇒u1asfu2=⇒∗

u1au2sf = usf = vsf .

This implies that u ∈ (v >λ) ⊆ (L >R).
If no rule s′0a−→asf has been applied during the derivation, sf can be

reached only by using a rule s′0a−→sf (originating from s0a−→s′ ∈ P, s′ ∈
F ) or sa−→sf (originating from sa−→s′ ∈ P, s′ ∈ F ). In the first case the
derivation is:

s′0v = s′0u1au2=⇒∗u1s
′
0au2=⇒u1sfu2=⇒∗

u1u2sf = usf , where a ∈ R.

In the second case, we notice that a state from S can be introduced only
by a rule s′0a−→s′′ (originating from s0a−→s′′ ∈ P ). Moreover, between
the application of the rules s′0a−→s′′ and sa−→sf only rules from P can
be used. Notice finally that before the application of s′0a−→s′′ only rules
s′0a−→as′0 are possible and, after sa−→sf , only rules sfa−→asf can be
applied.

From the previous observations one can conclude that the derivation
has to be of the form:

s′0v = s′0u1wu2=⇒∗u1s
′
0wu2=⇒∗u1sfu2=⇒∗

u1u2sf = usf ,

where s0w=⇒∗s′, s′ ∈ F is a derivation in P .
Both cases led to the conclusion that v = u1wu2 ∈ L, w ∈ R, u = u1u2

that is, u ∈ (v >w) ⊆ (L >R), and the proof of the theorem is thus
complete.
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Corollary 3.6 The family of context-free languages is closed under sequen-
tial deletion with regular languages.

Proof. The claim follows from the preceding theorem and the fact that CF
is closed under union and gsm mapping.

If the language to be deleted is regular, the parallel deletion L >R
can be expressed as a morphic image of the intersection between a regular
language and the image of L under a rational transduction.

Theorem 3.3 Let L, R be languages over the alphabet Σ, L a λ-free lan-
guage and R a regular one. There exist a rational transducer g, a morphism
h and a regular language R′ such that:

L >R = h(g(L) ∩R′).

Proof. Let A = (S, Σ, s0, F, P ) be a finite automaton that accepts the lan-
guage R. Let us consider the rational transducer:

g = (Σ, Σ ∪ {#}, S ∪ {s′0}, s
′
0, {s

′
0}, P

′),

P ′ = P ∪ {s′0a−→as′0| a ∈ Σ}∪
{s′0a−→s| s0a−→s ∈ P, a ∈ Σ}∪
{s′0a−→#s′0| s0a−→s ∈ P, a ∈ Σ, s ∈ F}∪
{sa−→#s′0| sa−→s′ ∈ P, a ∈ Σ, s′ ∈ F}∪
{s′0−→#s′0| λ ∈ R}.

The rational transducer g performes the following task: given a word
of L as an input, it replaces arbitrary many words of R from it with the
marker #.

Claim.

g(L) = L ∪ {u1#u2#. . . uk#uk+1| k ≥ 1, ui ∈ Σ∗, 1 ≤ i ≤ k + 1
and ∃u ∈ L, vi ∈ R, 1 ≤ i ≤ k : u = u1v1 . . . ukvkuk+1}.

” ⊇ ” Let w be a word in the right member of the equality.
If w ∈ L, then one can construct the derivation according to g:

s′0w=⇒∗ws′0,

where only rules of the type s′0a−→as′0 have been applied. This shows that
w ∈ g(L).
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Else, w = u1#. . . #uk#uk+1 and there exist u ∈ L, v1, . . . vk ∈ R such
that u = u1v1 . . .ukvkuk+1. For every i, 1 ≤ i ≤ k there exists a derivation
s0vi=⇒∗si, si ∈ F according to A. The following derivation according to g
can be constructed:

s0
′u = s′0u1v1 . . .ukvkuk+1=⇒∗u1s

′
0v1u2v2 . . .ukvkuk+1=⇒∗

u1#s′0u2v2 . . .ukvkuk+1=⇒∗u1#u2s
′
0v2 . . . ukvkuk+1=⇒∗

u1#u2#. . . uk#s′0uk+1=⇒∗u1#u2#. . .uk#uk+1s
′
0 = ws′0.

Rules of the type s′0a−→as′0 have been used to scan ui 6= λ, 1 ≤ i ≤ k+1.
They are not needed if ui = λ. When scanning vi, 1 ≤ i ≤ k, if vi = λ, the
rule s′0−→#s′0 has been applied. If lg(vi) = 1 then, for scanning vi, only
the rule s′0a−→#s′0 has been used. If vi contains more than one letter,
the derivation s0vi=⇒∗si, si ∈ F has been used, with the rule s0a−→s′

replaced by s′0a−→s′ and the rule s′′b−→si by s′′b−→s′0.
This shows that w ∈ g(u) ⊆ g(L).
” ⊆ ” Let w be a word in g(L). There exist u ∈ L and a derivation

s′0u=⇒∗ws′0 according to g.
If during the derivation only rules of the type s′0a−→as′0 have been

applied then w ∈ L which is included in the right member of the equality.
Else, at least one subderivation which leads to a marker has been used.

The word w has then the form w = u1#u2#. . .uk#uk+1, ui ∈ Σ∗, 1 ≤ i ≤
k + 1. We have to show that there exist u ∈ L and vi ∈ R, 1 ≤ i ≤ k such
that u = u1v1u2v2 . . . ukvkuk+1.

Analyzing the rules of g one notices that they do not produce anything
except the marker #. Except the rules that produce #, the others just leave
the input letters unchanged, or erase them. This means that the word u
has the form:

u = u1v1u2v2 . . . ukvkuk+1, vi ∈ Σ∗, 1 ≤ i ≤ k,

and its derivation is:

s′0u1v1u2v2 . . . ukvkuk+1=⇒
∗u1#u2#. . .#uk+1s

′
0.

Moreover, it follows from the previous observations that in scanning
ui 6= λ only rules s′0a−→as′0 have been applied. While parsing vi, 1 ≤ i ≤ k
no such rules have been used, as no letter appears between ui’s. Instead,
while parsing every vi, 1 ≤ i ≤ k, a marker # has been produced.

All that remains to be proved is that vi ∈ R, ∀1 ≤ i ≤ k.
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Let us examine the parsing of a word vi, 1 ≤ i ≤ k. It will start with
the current state being s′0 (the scanning of u begins with s′0 and that of
ui ends also in s′0). For a marker to appear, one of the rules s′0−→#s′0,
s′0a−→#s′0 or sa−→#s′0 has to be used.

– If the rule s′0−→#s′0 has been applied, it is also the last rule of the
subderivation as otherwise undesired letters appear between ui and ui+1.
This means that vi = λ and it belongs to R because this is the condition
under which the rule s′0−→#s′0 was introduced in P ′.

– If the rule s′0a−→#s′0 has been applied, one can deduce as before that
this is also the last rule of the subderivation, which has the form:

s′0vi = s′0a=⇒#s′0, s0a−→s ∈ P, s ∈ F.

The existence of the derivation in A proves that vi ∈ R.

– If the rule sa−→#s′0 (where sa−→s′′ ∈ P , s′′ ∈ F ) has been applied,
we notice that a state s ∈ S can be reached only if a rule s′0a−→s′, s′ ∈ S,
followed by some rules from P have been used. As the production s′0a−→s′

originates from the rule s0a−→s′ ∈ P , the derivation has the form:

s′0vi = s′0a1a2 . . . ap=⇒s′a2 . . . ap=⇒∗sap=⇒#s′0,

where

s0a1a2 . . . ap=⇒s′a2 . . . ap=⇒
∗sap=⇒s′′, s′′ ∈ F,

is a derivation in A, that is, vi ∈ R.

In all the considered cases we have reached the conclusion that vi belongs
to R, therefore the proof of the claim is complete.

Let us return now to the proof of the theorem. Let h be the morphism
h : (Σ ∪ {#})∗−→Σ∗ defined by h(#) = λ, h(a) = a, a ∈ Σ and R′ the
regular set:

R′ = [(Σ ∪ {#})∗(R − {λ})(Σ ∪ {#})∗]c ∩ (Σ∗#Σ∗)+.

It will be proved in the following that h, g and R′ satisfy the requested
equality. The first set of the intersection takes care that between two erased
words (marked with #) no other candidate for erasing occurs. The second
set takes care of that the words from L which do not contain any candidate
for erasing are not retained in the final result. This is done retaining only
those words in which at least one erasing (marker) occurs.
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”⊆” Let α be a word in L >R. There exist u ∈ L, vi ∈ R, 1 ≤ i ≤ k
such that:

u = u1v1u2v2 . . . ukvkuk+1,
α = u1u2 . . . ukuk+1,

ui ∈ Σ∗, 1 ≤ i ≤ k + 1,
{ui} ∩ Σ∗(R− {λ})Σ∗ = ∅, 1 ≤ i ≤ k + 1. (∗)

According to the previous claim, w = u1#u2#. . . uk#uk+1 is in g(L). The
word w belongs also to R′. If this wouldn’t be the case, w would be a word
in (Σ ∪ {#})∗(R − {λ})(Σ ∪ {#})∗, which would imply that w contains a
nonempty word from R as a subword. This, in turn, would mean that for
some 1 ≤ i ≤ k + 1, ui contains a nonempty word from R as a subword– a
contradiction with (*). Finally it is obvious that h(w) = α, w ∈ (g(L)∩R′)
that is, α ∈ h(g(L) ∩R′).

For showing the reverse inclusion, let α be a word in h(g(L) ∩ R′)).
There exists w ∈ (g(L) ∩ R′) such that h(w) = α. As w contains at least
one marker, according to the previous claim,

w = u1#u2#. . .uk#uk+1,
∃u ∈ L, vi ∈ R, 1 ≤ i ≤ k :
u = u1v1u2v2 . . .ukvkuk+1.

Because w ∈ [(Σ∪{#})∗(R−{λ})(Σ∪{#})∗]c, none of the ui’s contains
any nonempty word from R as a subword that is,

{ui} ∩ [(Σ ∪ {#})∗(R − {λ})(Σ ∪ {#})∗] = ∅, 1 ≤ i ≤ k + 1.

We can conclude that α = h(w) = u1u2 . . .uk+1 belongs to L >R, all the
conditions of the definition being satisfied.

Corollary 3.7 The family of regular and the family of context-free lan-
guages are closed under parallel deletion with regular languages.

Proof. If λ is not a subword of L, the claim follows from the preceding the-
orem as REG and CF are closed under intersection with regular languages,
rational transductions and morphism.

If λ belongs to L but not to R, then L >R = ((L−{λ}) >R) and we
can apply the previous proof for L− {λ} and R.

If λ belongs to L ∩ R, then L >R = [(L− {λ}) >R] ∪{λ}. We can
use the same proof to show that (L − {λ}) >R is regular, respectively
context-free.
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The following results show that CF and CS are closed under neither
sequential nor parallel deletion. Moreover, in the context-sensitive case,
there exists a language from which the PD of a single word produces a non-
context-sensitive language.

Theorem 3.4 The family of context-free languages is closed under neither
sequential nor parallel deletion.

Proof. Let L1, L2 be the context- free languages:

L1 = #{aib2i| i > 0}∗,

L2 = #a{biai| i > 0}∗.

(Similar languages have been used in [3], p.40, to show that CF is not closed
under left quotient.)

The language L1 >L2 is not context-free. Indeed, if this wouldn’t be
the case, then also the language

(L1 >L2) ∩ b+ = {b2n

| n > 0}

would be context-free, which is a contradiction.
The same example can be used to prove that CF is not closed under par-

allel deletion, because the presence of the marker assures us that L1 >L2 =
L1 >L2.

Theorem 3.5 The family of context-sensitive languages is not closed un-
der sequential deletion with regular languages.

Proof. If L1, L2 are languages over the alphabet Σ, we notice that :

#L1 >#L2 = L2\L1,

where # is a symbol which does not belong to Σ and ”\” denotes the left
quotient.

As the family CS is not closed under left quotient with regular languages,
it follows that it is not closed under SD with regular languages either.

Corollary 3.8 The family of context-sensitive languages is not closed un-
der sequential deletion.

Theorem 3.6 The family of context-sensitive languages is closed under
sequential deletion with singletons.
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Proof. Let L be a context-sensitive language and w be a word over the
same alphabet Σ. If w ∈ L then

L >{w} = [(L− {w}) >{w}] ∪ {λ}.

If w = λ then L >{λ} = L. Therefore the theorem will hold if we prove
that L >{w} is context-sensitive for w nonempty and not belonging to L.

Let A = (S, Σ, s0, F, P ) be a finite automaton that accepts the word w.
We can modify the proof of Theorem 3.2 such that the constructed gsm

is λ-free. Indeed, let # be a new symbol which does not occur in Σ and
consider the gsm:

g = (Σ, Σ ∪ {#}, S ∪ {s′0, sf}, s′0, {sf}, P ′),
P ′ = {sa−→#s′| s, s′ ∈ S, a ∈ Σ, sa−→s′ ∈ P}∪

{s′0a−→as′0| a ∈ Σ} ∪ {s′0a−→#s| s0a−→s ∈ P}∪
{sa−→#sf | sa−→s′ ∈ P, s′ ∈ F} ∪ {sfa−→asf | a ∈ Σ}∪
{s′0a−→#sf | s0a−→s ∈ P, s ∈ F}.

It is easy to see that if h : (Σ∪{#})∗−→Σ∗ is the morphism defined by
h(#) = λ, h(a) = a, ∀ a ∈ Σ then:

h(g(L)) = L >{w}.

If lg(w) = n then, for every word α ∈ g(L) the following inequality
holds:

lg(α) ≤ (n + 1)lg(h(α))

which proves that h is an (n + 1)- linear erasing with respect to g(L).
As CS is closed under λ-free gsm mapping and under linear erasing, it

follows that it is closed under sequential deletion with singletons, too.

Theorem 3.7 There exist a context-sensitive language L1 and a word w
over an alphabet Σ such that L1 >w is not a context-sensitive language.

Proof. Let L be a recursively enumerable language (which is not context-
sensitive) over an alphabet Σ and let a, b be two letters which do not belong
to Σ. Then there exists a context-sensitive language L1 such that (see [12],
p.89):

(i) L1 consists of words of the form aibα where i ≥ 0 and α ∈ L;

(ii) For every α ∈ L, there is an i ≥ 0 such that aibα ∈ L1.
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It is easy to see that:

aL1 >{a} = bL

which is not a context-sensitive language. We have concatenated a to the
left of L1 in order to avoid the case i = 0, when the corresponding words
from L would have been lost.

Corollary 3.9 The family of context-sensitive languages is not closed un-
der parallel deletion.

3.2 Iterated deletion

A natural step following the definition of the sequential and parallel deletion
is to consider their iterated versions. The iterated sequential and parallel
deletion have somewhat unexpected properties. While the result of iterated
SD from a regular language is regular regardless of the complexity of the
deleted language, the families CF and CS are not even closed under iterated
SD with singletons. It is an open problem whether REG is closed under
iterated PD or iterated PD with singletons.

Definition 3.3 Let L1, L2 be languages over the alphabet Σ. The iter-
ated sequential deletion of order n, L1 >

nL2, is defined inductively by the
equations:

L1 >
0L2 = L1,

L1 >
i+1L2 = (L1 >

iL2) >L2, i ≥ 0.

The iterated sequential deletion (iterated SD) of L2 from L1 is then defined
as:

L1 >
∗L2 =

⋃∞

n=0
(L1 >

nL2).

The iterated parallel deletion (iterated PD) of L2 from L1 is defined by
replacing in the preceding definition the sequential deletion ” >” with the
parallel deletion ” >”.

Example 3.3 Let L1 = {anbncn| n ≥ 0} and L2 = {ab}. Then,

L1 >
∗L2 = {ambmcn| n, m ≥ 0, n ≥ m} = L1 >

∗L2.
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However, in general, the results of the iterated SD and iterated PD do
not coincide.

Example 3.4 Let L1 = {w ∈ {a, b}∗| Na(w) = Nb(w)} and L2 = {a, b}.
Then,

L1 >
∗L2 = {a, b}∗,

L1 >
∗L2 = L1, whereas

L1 >L2 = {λ}.

Given two languages L1 and L2 over the alphabet Σ, the following
inclusions hold:

L1 >L2 ⊆ L1 >
∗L2 ⊆ L1 >

∗L2.

Indeed, any parallel deletion can be simulated by a string of sequential
deletions. On the other hand, the preceding example shows that the reverse
inclusions do not hold.

The iterated sequential and parallel deletion are not commutative op-
erations. For example,

ab >
∗b = ab >

∗b = {ab, a} 6= b >
∗ab = b >

∗ab = b.

The iterated sequential and parallel deletion are not associative. Take, for
example, L1 = {aab}, L2 = {b} and L3 = {a}. We have:

(aab >
∗b) >

∗a = {aab, aa} >
∗a = {aab, aa, ab, b, a, λ},

aab >
∗(b >

∗a) = aab >
∗b = {aab, aa},

and
(aab >

∗b) >
∗a = {aab, aa} >

∗a = {aab, aa, b, λ},
aab >

∗(b >
∗a) = aab >

∗b = {aab, aa}.

In general, the sets L1 >
∗(L2 >

∗L3) and (L1 >
∗L2) >

∗L3 are incom-
parable and the same can be said about the sets L1 >

∗(L2 >
∗L3) and

(L1 >
∗L2) >

∗L3. This can be proved by using the preceding and the fol-
lowing examples:

ab >
∗(bc >

∗c) = ab >
∗(bc >

∗c) = {ab, a},

(ab >
∗bc) >

∗c = (ab >
∗bc) >

∗c = {ab}.

Let L1, L2 be languages over the alphabet Σ. The following lemma
shows that the iterated deletion L1 >

∗L2 amounts to the erasing from the
words of L1 of arbitrary numbers of non-overlapping words from L2<

∗L2.
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Lemma 3.2 Let L1, L2 be languages over an alphabet Σ. Then,

L1 >
∗L2 = L1∪ {u1u2 . . .ukuk+1| k ≥ 1, ui ∈ Σ∗, 1 ≤ i ≤ k + 1,

and ∃u ∈ L1, vi ∈ (L2<
∗L2), 1 ≤ i ≤ k :

u = u1v1u2v2 . . . ukvkuk+1}.

Proof. Let us denote by B the right member of the equality.
” ⊆ ” We will show by induction on n that L1 >

nL2 ⊆ B.
n = 0. L1 >

0L2 ⊆ B.
n 7→ (n + 1). Assume the statement true for numbers up to n and let α

be a word in L1 >
n+1L2. There exist w ∈ L2 and xwy ∈ L1 >

nL2 such
that α equals xy. According to the induction hypothesis, xwy belongs to
B.

If xwy is a word in L1 we are through as α = xy satisfies the properties
required by B.

Else, xwy is of the form

xwy = u1u2 . . .ukuk+1, k ≥ 1, ui ∈ Σ∗, 1 ≤ i ≤ k + 1
and
∃u ∈ L1, vi ∈ (L2<

∗L2), 1 ≤ i ≤ k : u = u1v1 . . .ukvkuk+1.

Let us analyze the position from where w has been erased. There are
two possibilities:

(i) There exists i, 1 ≤ i ≤ k + 1 such that w has been erased from ui,
ui = u′

iwu′′
i . Then α can be written as

α = u1u2 . . . ui−1u
′
iu

′′
i ui+1 . . .ukuk+1

where there exist

v1, v2, . . . , vi−1, w, vi, . . . vk ∈ (L2<
∗L2), u ∈ L1,

such that

u = u1v1u2v2 . . . ui−1vi−1u
′
iwu′′

i vi . . .ukvkuk+1,

which implies α ∈ B.
(ii) The word w is extracted from two or more ui’s. That implies that

xwy can be rewritten as:

xwy = u1u2 . . . u′
iu

′′
i . . .u′

ju
′′
j . . .ukuk+1, i < j,

ui = u′
iu

′′
i , uj = u′

ju
′′
j , w = u′′

i ui+1 . . . u′
j,
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Note that ui+p, p > 0, does not occur in case j equals i + 1. The word α
can be further expressed as:

α = u1u2 . . .u′
iu

′′
j . . . ukuk+1.

The word u′′
i viui+1vi+1 . . . vj−1u

′
j = w′ is in (w< (L2<

∗L2)) ⊆ L2<
∗L2.

(We have used the results from Theorem 2.1.) Therefore we have found
now the words v1, v2, . . . vi−1, w′, vj , . . . , vk from L2<

∗L2 and u ∈ L1 such
that

u = u1v1u2v2 . . .u′
iw

′u′′
j vj . . . ukvkuk+1,

which means that α = u1u2 . . . u′
iu

′′
j . . .ukuk+1 is in B.

” ⊇ ” We first prove that for all languages L1, L2, L3 ⊆ Σ∗ the following
relation holds:

L1 >(L2< L3) ⊆ (L1 >L3) >L2. (1)

Indeed, let α be a word in L1 >(L2< L3). There exist words u ∈ L1 and
v ∈ L2< L3 such that u = u1vu2, α = u1u2. As v belongs to L2< L3

there exists words w ∈ L3 and v1v2 ∈ L2 such that v = v1wv2. We conclude
that u equals u1v1wv2u2. This implies that u1v1v2u2 ∈ u >w belongs
to L1 >L3 and, further, that α = u1u2 ∈ u1v1v2u2 >v1v2 belongs to
(L1 >L3) > L2.

Using the relation (1) we can prove that

L1 >(L2<
∗L3) ⊆ (L1 >

∗L3) >L2. (2)

Indeed, one can show, by induction on n, that

L1 >(L2<
nL3) ⊆ (L1 >

nL3) >L2.

For n = 0 the inclusion holds as both members equal L1 >L2.
Assume that the inclusion holds for all languages L1, L2, L3 ⊆ Σ∗ and

all numbers up to n. Then,

L1 >(L2<
n+1L3) = L1 >[(L2<

nL3)< L3] ⊆
(L1 >L3) >(L2<

nL3) ⊆
[(L1 >L3) >

nL3] >L2,

where for the first inclusion we have used the relation (1), and for the second
the induction hypothesis with L1 >L3 in the role of L1.
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The relation to be proved holds as we have:

(L1 >L3) >
nL3 = L1 >

n+1L3.

Return to the proof of the theorem. If we take L3 = L2 in (2), we obtain

L1 >(L2<
∗L2) ⊆ (L1 >

∗L2) >L2 ⊆ L1 >
∗L2. (3)

Next we show that,

L1 >
∗(L2<

∗L2) ⊆ L1 >
∗L2. (4)

Using induction on k we prove that,

L1 >
k(L2<

∗L2) ⊆ L1 >
∗L2.

Indeed, for k = 0 the relation holds as L1 ⊆ L1 >
∗L2. Assume the relation

true for k. We have:

L1 >
k+1(L2<

∗L2) = [L1 >
k(L2<

∗L2)] >(L2<
∗L2) ⊆

(L1 >
∗L2) >(L2<

∗L2) ⊆
(L1 >

∗L2) >
∗L2 ⊆

L1 >
∗L2,

where for the first inclusion we use the induction hypothesis and for the
second one the relation (3) with L1 >

∗L2 in the role of L1.
From the relation (4) and as we obviously have

B ⊆ L1 >
∗(L2<

∗L2),

we conclude that B ⊆ L1 >
∗L2.

The lemma helps in proving that if L1 is regular then L1 >
∗L2 is regular

no matter how complex the language L2 is. Moreover, if L2 is regular or
context-free, the language L1 >

∗L2 can be effectively constructed.
A finite automaton with λ-transitions is a finite automaton in which also

rules of the type s−→s′, where s, s′ are states, are allowed. If a language L
is accepted by a finite automaton with λ-transitions then L is accepted by
a finite automaton without λ-transitions (see, for example, [5], pp.24-27).

Theorem 3.8 Let L1, L2 be languages over the alphabet Σ, L1 a regular
one. Then the iterated deletion L1 >

∗L2 is a regular language.
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Proof. Let L1, L2 be two languages over Σ and A = (S, Σ, s0, F, P ) a finite
automaton that recognizes L1. Let us consider the finite automaton with
λ-transitions:

A′ = (S, Σ, s0, F, P ′),
P ′ = P ∪ {s−→s′| ∃w ∈ (L2<

∗L2) : sw=⇒∗s′ in A}.

It will be proved in the following that L(A′) = B, where B is the set defined
in the preceding lemma.

” ⊆ ” Let α be a word in L(A′) and s0α=⇒∗sf , sf ∈ F , a derivation
for α. If no rule from P ′ − P has been applied during the derivation, then
α ∈ L1 ⊆ B.

Else, assume that k rules from P ′−P have been applied. The derivation
has the form:

s0α = s0u1 . . .ukuk+1=⇒∗s1u2 . . . ukuk+1=⇒s′1u2 . . . ukuk+1=⇒∗

skuk+1=⇒∗s′kuk+1=⇒∗sf , sf ∈ F,

where ui ∈ Σ∗, 1 ≤ i ≤ k + 1.

According to the definition of P ′ − P the following derivation exists in
A, for some words v1, . . . vk:

s0u = s0u1v1u2v2 . . . ukvkuk+1=⇒∗s1v1u2v2 . . . ukvkuk+1=⇒∗

s′1u2v2 . . .ukvkuk+1=⇒
∗skvkuk+1=⇒

∗s′kuk+1=⇒
∗sf .

The existence of this derivation shows that u ∈ L1 and the definition
of P ′ − P that vi ∈ (L2<

∗L2), 1 ≤ i ≤ k. The conditions required by B
being satisfied, α belongs to B.

” ⊇ ” Let α be a word in B. If α ∈ L1 then obviously α belongs also to
L(A′).

Else, assume that

α = u1u2 . . . ukuk+1, k ≥ 1, ui ∈ Σ∗, 1 ≤ i ≤ k + 1 and
∃u ∈ L1, vi ∈ (L2<

∗L2), 1 ≤ i ≤ k :
u = u1v1u2v2 . . . ukvkuk+1.

As u ∈ L1, the following derivation exists in A:

s0u = s0u1v1u2v2 . . . ukvkuk+1=⇒∗s1v1u2v2 . . . ukvkuk+1=⇒∗

s′1u2v2 . . . ukvkuk+1=⇒∗skvkuk+1=⇒∗s′kuk+1=⇒∗sf , sf ∈ F.
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One can construct now the following derivation in A′:

s0α = s0u1u2 . . . ukuk+1=⇒∗s1u2 . . . ukuk+1=⇒s′1u2 . . . ukuk+1=⇒∗

skuk+1=⇒s′kuk+1=⇒
∗sf , sf ∈ F.

All the subderivations sivi=⇒∗s′i have been replaced with the rules si−→s′i,
as vi ∈ (L2<

∗L2), 1 ≤ i ≤ k. The existence of this derivation shows that
α ∈ L(A′) and the proof of the inclusion is complete.

The theorem now follows because, according to the preceding lemma,
the equality L1 >

∗L2 = B holds.

Corollary 3.10 The family of regular languages is closed under iterated
SD.

Corollary 3.11 For any regular language L1 there exist finitely many lan-
guages that can be obtained from L1 by iterated SD.

Proof. The claim follows from the preceding theorem by the fact that the
automaton A is finite similarily as, for instance, in Corollary 3.5.

Corollary 3.12 The proof of the preceding theorem is constructive if L2 is
a regular or a context-free language.

Proof. The emptiness problem is decidable for REG and CF. Therefore one
can decide whether or not the intersection

(L2<
∗L2) ∩ {w| sw=⇒∗s′}

is empty, where s, s′ ∈ S. Recall that CF is closed under iterated SIN, by
Theorem 2.6, and also under intersection with regular languages.

One can construct now the set of rules of the automaton A′ as follows.
For every two states s, s′, the above intersection is formed. If the inter-
section is not empty, the transition s−→s′ is added to P ′, else nothing
happens. As S is a finite set, the process terminates.

Open problem. Is the family of regular languages closed under it-
erated parallel deletion? What about the case where the language to be
deleted is a singleton?

The answer to both of the previous questions is negative in the context-
free and context-sensitive case.
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Theorem 3.9 There exist a context-free language L over {a, b, #} and a
word w over {a, b} such that

L >
∗{w} and L >

∗{w}

are not context-free languages.

Proof. Let L be the language

L = {ai#b2i| i > 0}∗,

and w = ba.
The following equalities hold:

(L >
∗ba) ∩ a#+b+ = {a#nb2n

| n > 0},

(L >
∗ba) ∩ a#+b+ = {a#nb2n

| n > 0}.

Let us prove, for example, the first equality.
” ⊆ ” Let u be a word in (L >

∗ba)∩a#+b+. There exists a word v ∈ L
such that u ∈ v >

∗ba, where

v = ai1#b2i1ai2#b2i2 . . . aik#b2ik .

As u ∈ a#+b+, everything from between the markers has been erased from
v and i1 = 1. This implies

2i1 = i2, 2i2 = i3, . . . , 2ik−1 = ik.

Taking into account that i1 = 1, one deduces that u = a#kb2k

, k > 0.

” ⊇ ” Let u = a#kb2k

, k > 0. There exists v ∈ L,

v = a#b2a2#b4 . . . a2k−1

#b2k

,

such that u ∈ (v >
∗ba) ⊆ (L >

∗ba). As u belongs also to a#+b+, the
proof of the second inclusion is completed.

The theorem follows because the language {a#nb2n

| n > 0} is not a
context- free language.

Corollary 3.13 The family of context-free languages is closed under nei-
ther iterated SD nor iterated PD.
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Theorem 3.10 Let Σ be an alphabet and a, b letters which do not occur in
Σ. There exist a context-sensitive language L1 over Σ ∪ {a, b} and a word
w over {a, b} such that

L1 >
∗w and L1 >

∗w

are not context-sensitive languages.

Proof. Let L be the recursively enumerable (which is not context- sensitive)
language and L1 the context-sensitive language defined in Theorem 3.7.

It is obvious that

(L1 >
∗{a}) ∩ bΣ∗ = bL,

(L1 >
∗{a}) ∩ bΣ∗ = bL,

and bL is not a context-sensitive language.

Corollary 3.14 The family of context-sensitive languages is closed under
neither iterated SD nor iterated PD.

3.3 Permuted deletion

In this section the permuted variants of the sequential and parallel deletion
will be investigated. The permuted SD of the word v from the word u,
(u >v), is the set obtained by erasing from u arbitrary occurrences (but
one at a time in the sequential case) of words which are letter-equivalent
to v. The permuted PD, (u >v), is the set obtained by erasing from u all
the non-overlapping occurrences of words which are letter-equivalent to v.
If none of the words letter-equivalent to v is a subword of u, the result of
the permuted SD, as well as of the permuted PD is the empty set.

Definition 3.4 Let L1, L2 be two languages over the alphabet Σ. The per-
muted sequential deletion (shortly, permuted SD) of L2 from L1 is defined
as:

L1 >L2 =
⋃

u∈L1,v∈L2

(u >v)

where u >v = u >com(v).
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Example 3.5 Let L1, L2 be the languages:

L1 = {a3b3a3, ba2, b2a},
L2 = {aba}.

The permuted sequential deletion of L2 from L1 is:

L1 >L2 = L1 >{aab} = L1 >{baa} = {ab2a3, a3b2a, λ},

being the union of the sets:

a3b3a3
>aba = {ab2a3, a3b2a},

ba2
>aba = {λ},

b2a >aba = ∅.

Replacing in the previous definition the sequential deletion > with the
parallel deletion, >, one obtains the definition for the permuted parallel
deletion.

Example 3.6 Let L1, L2 be the languages:

L1 = {abababa, ba3b, ba3baba},
L2 = {aba}.

The permuted parallel deletion of L2 from L1 is:

L1 >L2 = {b, abba, ab, ba},

being the union of the sets:

abababa >aba = {b, abba},
ba3b >aba = {ab, ba},

ba3baba >aba = {ab, ba}.

It becomes obvious from the definition that, if one replaces the language
to be deleted by a letter-equivalent one, the result of the permuted SD, as
well as of the permuted PD does not change.

The permuted sequential deletion is not commutative. For example,
ab >b = a, whereas b >ab = ∅. The same languages can be used to prove
that the permuted parallel deletion is not commutative.
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The permuted sequential and parallel deletion are not associative. In
general, the sets L1 >(L2 >L3) and (L1 >L2) >L3 are incomparable
and a similar statement holds in the parallel case. Indeed, this is proved
by the following examples:

ab >(bc >c) = ab >(bc >c) = a while

(ab >bc) >c = (ab >bc) >c = ∅,

(ab >b) >a = (ab >b) >a = λ while

ab >(b >a) = ab >(b >a) = ∅.

In the sequel, the closure properties of the families in the Chomsky
hierarchy under permuted SD and PD will be investigated.

Theorem 3.11 The family of regular languages is closed under permuted
sequential deletion.

Proof. The claim follows from Definition 3.4 and from Lemma 3.1.

Note that, unlike all other closure results presented in Chapters 2, 3,
the above one is not effective. Indeed, Lemma 3.1 states that the result of
the sequential deletion from a regular language is always regular. However,
Corollary 3.4 emphasises that the result of the sequential deletion from a
regular language can be effectivelly constructed only in case the language
to be sequentially deleted is regular or context-free. As we have seen in
Example 2.10, there exist regular languages whose commutative closure is
not context-free. Consequently, Corollary 3.4 cannot be applied in the case
of permuted SD. In the particular case where the language to be (permuted
sequentially) deleted is a singleton, Corollary 3.4 is applicable. Therefore
the proof of the closure of REG under permuted sequential deletion with
singletons is effective.

In the parallel case one obtains the following non-closure result.

Theorem 3.12 The family of regular languages is not closed under per-
muted parallel deletion.

Proof. Let L1, L2 be the regular languages:

L1 = $a∗b∗##a∗b∗$,
L2 = #$(ab)∗.
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Then the permuted PD of L2 from L1 is:

L1 >L2 = {$anbm#| m, n ≥ 0, m 6= n}∪
{#anbm$| m, n ≥ 0, m 6= n} ∪ {λ}.

Indeed, let u = $anbm##apbq$ be a word in L1 and w a word in
com(L2).

Because of the presence of the markers, the result of the permuted PD

$anbm##apbq$ >w, w ∈ com(L2)

is not empty iff

w = $arbr#, r ≥ 0 and m = n = r,

or
w = #asbs$, s ≥ 0 and p = q = s.

The situations being similar, let us assume that the first case holds.
Then, if p = q, the result of the operation will be {λ}, as the word

#apbp$ ∈ com(L2) will be deleted in parallel with w from u ∈ L1. In order
to obtain a nonempty word, the condition p 6= q must be satisfied.

In the second case, reasoning similarily, one deduces that the condition
m 6= n must be fulfilled in order to get a nonempty word in the result of
the deletion.

It has therefore been shown that the words v in the language L1 >L2

have one of the following forms:

v = $anbm#, n, m ≥ 0, n 6= m,
v = #apbq$, p, q ≥ 0, p 6= q,
v = λ.

As words of this form can be obtained in L1 >L2 for any numbers
n, m, p, q ≥ 0, the equality is proved.

The theorem now follows because the language

{$anbm#| n, m ≥ 0, n 6= m} ∪ {#anbm$| n, m ≥ 0, n 6= m} ∪ {λ}

is not a regular one.

The family of context-free languages is not closed even under permuted
SD with regular languages as shown below.
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Theorem 3.13 The family of context-free languages is closed under nei-
ther permuted sequential nor permuted parallel deletion with regular lan-
guages.

Proof. Let L1 be the context-free language:

L1 = {an
1 bm

1 cl
1#cl

2b
m
2 an

2 #| n, m, l ≥ 0}

and L2 the regular language:

L2 = ##(a2b2c2)
∗.

Then the permuted SD of L2 from L1 is:

L1 >L2 = L1 >com(L2) = {an
1 bn

1 cn
1 | n ≥ 0}.

Indeed, let u = an
1 bm

1 cl
1#cl

2b
m
2 an

2# and w ∈com(L2). The set

an
1 bm

1 cl
1#cl

2b
m
2 an

2# >w

is not empty iff w = #cr
2b

r
2a

r
2# and m = n = l = r. This, in turn, implies

that the only word in u >w is ar
1b

r
1c

r
1.

As such a word can be obtained in L1 >com(L2) for every r ≥ 0, the
requested equality follows.

Because of the presence of the markers, the permuted SD and PD coin-
cide,

L1 >L2 = L1 >L2.

The theorem now follows as the language {an
1 bn

1 cn
1 | n ≥ 0} is not a

context-free one.

Corollary 3.15 The family of context-free languages is closed under nei-
ther permuted SD nor permuted PD.

In the particular case when the language to be deleted is a singleton,
the permuted SD and PD preserve the families of regular and context-free
languages.

Theorem 3.14 The family of regular and the family of context-free lan-
guages are closed under permuted SD and permuted PD with singletons.
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Proof. Let L be a regular (respectively context-free) language and w a word
over the same alphabet Σ. Then,

L >{w} = L >com(w),

L >{w} = L >com(w).

As the set com(w) is finite and the families of regular and context-
free languages are closed under SD and PD with regular languages (see
Corollaries 3.3, 3.6, 3.7), the theorem is proved.

The family of context-sensitive languages will not be closed under per-
muted SD and permuted PD as it is not closed under permuted SD with
regular languages and under permuted PD with singletons.

Theorem 3.15 There exist a context-sensitive language L1 over the alpha-
bet Σ∪{a, b} and a regular language R over {a, b} such that L1 >R is not
context-sensitive.

Proof. Let L be a recursively enumerable (which is not context-sensitive)
language over Σ and L1 the context-sensitive language over Σ ∪ {a, b},
defined in Theorem 3.7.

It is easy to see that

(L1 >a∗b) ∩ Σ∗ = L,

which implies that L1 >a∗b is not context-sensitive.

Corollary 3.16 The family of context-sensitive languages is not closed un-
der permuted SD.

Theorem 3.16 The family of context-sensitive languages is closed under
permuted SD with singletons.

Proof. Let L be a language and w be a word over the same alphabet Σ.
Then,

L >{w} =
⋃

u∈com(w)
(L >{u}).

As the family of context-sensitive languages is closed under SD with single-
tons (see Theorem 3.6) and under finite union, it is closed under permuted
SD with singletons too.



84 SEQUENTIAL AND PARALLEL DELETION

Theorem 3.17 There exists a context-sensitive language L1 over Σ∪{a, b}
and a word w = a such that L1 >w is not a context-sensitive language.

Proof. As w = a, the permuted PD amounts to ordinary PD and the same
proof as for Theorem 3.7 holds.

Corollary 3.17 The family of context-sensitive languages is not closed un-
der permuted PD.

3.4 Controlled deletion

In all the previous variants of deletion no restriction was made concerning
the position where the deletion was performed. One can apply also for
deletion the notion of control introduced in Section 2.4 for insertion: every
letter determines what can be deleted after it.

Definition 3.5 Let L be a language over the alphabet Σ. For each letter a
of the alphabet, let ∆(a) be a language over Σ. The ∆-controlled sequential
deletion from L (shortly, controlled SD) is defined as:

L >∆ =
⋃

u∈L
(u >∆),

where
u >∆ = {u1au2 ∈ Σ∗| u = u1avu2 for some

u1, u2 ∈ Σ∗, a ∈ Σ and v ∈ ∆(a)}.

The function ∆ : Σ−→2Σ∗

is called a control function.

As a language operation, the ∆-controlled SD has the arity card(Σ)+1.

If one imposes the restriction that for a distinguished b ∈ Σ, ∆(b) = L2,
and ∆(a) = ∅ for any letter a 6= b, a special case of controlled SD is

obtained: the sequential deletion next to the letter b, denoted by L
b
> L2.

The SD next to a letter is a binary operation. The words in L
b
> L2 are

obtained by erasing from words in L one occurrence of a word of L2 which
appears immediately next to a letter b. The words from L which do not
contain the letter b followed by a word from L2 do not contribute to the
result.
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Example 3.7 Let L be the language L = {abba, aab, bba, aabb} and ∆ the
control function ∆(a) = b, ∆(b) = a. Then we have:

L >∆ = {aba, abb, aa, bb, aab},

L
a

> {b} = {aba, aa, aab},

L
b
> {a} = {abb, bb}.

In general, if L is a language over Σ and ∆ : Σ−→2Σ∗

a control function,

L >∆ =
⋃

a∈Σ
(L

a
> ∆(a)) =

⋃

u∈L

⋃

a∈Σ
(u

a
> ∆(a)).

The sequential deletion L1 >L2 can be expressed in terms of controlled
SD by using a control function which has the value L2 for all letters in Σ
and a marker. Indeed,

L1 >L2 = h(#L1 >∆),

where ∆(#) = ∆(a) = L2, ∀a ∈ Σ and h is the morphism that erases the
marker #.

The left quotient can be obtained from the SD next to a letter by using
a marker and the morphism h which erases the marker:

L2\L1 = h(#L1

#
> L2).

Notice that if the letter a does not occur in the word u then u
a

>

∆(a) = ∅. This happens also if a occurs in u but no word of the form av,
v ∈ ∆(a) exists in u. In particular, if λ belongs to L, λ does not contribute
to the result of the controlled SD:

L >∆ = (L− {λ}) >∆, ∀ L ⊆ Σ∗, ∆ : Σ−→2Σ∗

.

The kind of control that has been defined above is a right control: a
letter determines what may be deleted from its right. A left ∆-controlled
SD from L, denoted L >> ∆, can be analogously defined by replacing in
Definition 3.5 ”u1avu2” by ”u1vau2”. The left-SD next to a letter can be
defined in a similar way.
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Example 3.8 If we consider the language and the function from Example
3.7 then:

L >> ∆ = {aba, bba, ab, ba, abb},

L
a

>> {b} = {aba, ba},

L
b
>> {a} = {bba, ab, abb}.

The right quotient can be obtained from the left-SD next to a letter in
the following way.

L1/L2 = h(L1#
#

>> L2),

where h is the morphism erasing the marker #.
The left controlled SD is similar to the right controlled SD as we have:

Theorem 3.18 Let L be a language over Σ and ∆ : Σ−→2Σ∗

be a control
function. Then

L >∆ = Mi(L′
>> ∆′),

where L′ =Mi(L) and, for every a ∈ Σ, ∆′(a) =Mi(∆(a)).

Proof. ” ⊆ ” Let w be a word in L >∆. Then w = u1au2 where u =
u1avu2 ∈ L, v ∈ ∆(a).

As Mi(v) belongs to ∆′(a) we have:

Mi(w) = Mi(u2)aMi(u1) ∈Mi(u2)Mi(v)aMi(u1) >> ∆′ =
Mi(u1avu2) >> ∆′ = Mi(u) >> ∆′ ⊆ L′

>> ∆′,

which implies that w ∈Mi(L′
>> ∆′).

” ⊇ ” Conversely, if w ∈ Mi(L′
>> ∆′) then Mi(w) ∈ L′

>> ∆′, that is:

Mi(w) = u1au2,
v ∈ ∆′(a) = Mi(∆(a)),
u1vau2 ∈ Mi(L).

As Mi(v) belongs to ∆(a) we have:

w = Mi(u1au2) ∈Mi(u2)aMi(v)Mi(u1) >∆ =
Mi(u1vau2) >∆ ⊆ L >∆ ,

and the second inclusion is proved.
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A parallel variant of the controlled deletion will be defined in the sequel.
Let u ∈ Σ∗ be a word and ∆ : Σ−→2Σ∗

be a control function which does
not have ∅ as its value. The set u >∆ is obtained by finding all the non-
overlapping occurrences of ava, va ∈ ∆(a), in u, and by deleting va from
them. Between any two occurrences of words of the type ava, va ∈ ∆(a),
in u, no other words of this type may remain.

Definition 3.6 Let L be a language over an alphabet Σ and ∆ : Σ−→2Σ∗

be a control function such that ∆(a) 6= ∅, ∀a ∈ Σ. The ∆- controlled parallel
deletion from L (shortly, controlled PD) is defined as:

L >∆ =
⋃

u∈L
(u >∆),

where

u >∆ = {u1a1u2a2 . . . ukakuk+1| k ≥ 1, aj ∈ Σ, 1 ≤ j ≤ k,
ui ∈ Σ∗, 1 ≤ i ≤ k + 1, and there exist vi ∈ ∆(ai), 1 ≤ i ≤ k,
such that u = u1a1v1 . . .ukakvkuk+1,where
{ui} ∩Σ∗(∪a∈Σa∆(a))Σ∗ = ∅, 1 ≤ i ≤ k + 1.}

The last line is a formalization of the condition that no word ava, va ∈
∆(a), may occur in u between aivi, 1 ≤ i ≤ k, vi ∈ ∆(ai).

The arity of the ∆-controlled parallel deletion is card(Σ) + 1. A binary
variant of it is defined in the sequel.

If one imposes the restriction that for a distinguished letter b ∈ Σ we
have ∆(b) = L2, and ∆(a) = λ for any letter a 6= b, a special case of
controlled PD is obtained: parallel deletion next to the letter b. The parallel

deletion next to b is denoted by
b
>. Let us examine the set u

b
> L2,

where u is a nonempty word and L2 is a language over an alphabet Σ. If
u = bk, k > 0, and no word of the form bv, v ∈ L2 occurs as a subword

in u, the set u
b
> L2 equals the empty set. If u contains at least one

letter different from b, u is retained in the result as we can erase λ near

that letter. The other words in u
b
> L2 are obtained by finding all the

nonoverlapping occurrences of words of the type bvi, vi ∈ L2, in u, and
deleting vi from them. There may exist more than one possibility of finding
such a decomposition of u into subwords.

Example 3.9 Let L = {abababa, a3b3, abab} and ∆(a) = b, ∆(b) = a.
Then:

L >∆ = {a4, ab3, a2b2, ab2a2, a3b, a3b2, a2, ab2},
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being the union of the sets:

abababa >∆ = {a4, ab3, a2b2, ab2a2, a3b},
a3b3

>∆ = {a3b2},
abab >∆ = {a2, ab2}

whereas

L
a

> {b} = {a4, a3ba, a2ba2, aba3, a2baba,
aba2ba, ababa2, abababa, a3b2,
a3b3, a2, a2b, aba, abab},

L
b
> {a} = {ab3, ab3a, ab2ab, abab2, ab2aba, abab2a,

ababab, abababa, a3b3, ab2, abab}.

As in the sequential case, if the empty word belongs to L, this does not
influence the result of the controlled PD:

L >∆ = (L − {λ}) >∆, ∀L ⊆ Σ∗, ∆ : Σ−→2Σ∗

, ∆(a) 6= ∅, ∀a ∈ Σ.

The left ∆-controlled PD from L, denoted L >> ∆, can be defined by
replacing in Definition 3.6

”u = u1a1v1 . . .ukakvkuk+1” with ”u = u1v1a1 . . . ukvkakuk+1”

and

”{ui} ∩Σ∗(∪a∈Σa∆(a))Σ∗ = ∅” with ”{ui} ∩ Σ∗(∪a∈Σ∆(a)a)Σ∗ = ∅”.

The left PD next to a letter can be defined in a similar way.

Example 3.10 Let L be the language and ∆ the control function defined
in Example 3.9. Then we have:

L >> ∆ = {a4, b2a2, ba3, b3a, a2b2a, a2b3, b2, a2b},

being the union of the sets

abababa >> ∆ = {a4, b2a2, b3a, ba3, a2b2a},
a3b3 >> ∆ = {a2b3},
abab >> ∆ = {b2, a2b},
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whereas

L
a

>> {b} = {a4, a2baba, aba2ba, ababa2, a3ba, aba3,
a2ba2, abababa, a3b3, a2b, abab},

L
b
>> {a} = {b3a, b2aba, bab2a, ab3a, bababa,

ab2aba, abab2a, abababa, a2b3,
a3b3, b2, bab, ab2, abab}.

The left controlled PD proves to be similar to the right controlled PD
as shown below.

Theorem 3.19 Let L be a language over Σ and ∆ : Σ−→2Σ∗

be a control
function, ∆(a) 6= ∅, ∀a ∈ Σ. Then,

L >∆ = Mi(L′
>> ∆′),

where L′ =Mi(L) and, for every a ∈ Σ, ∆′(a) =Mi(∆(a)).

Proof. Similar to the sequential case proved already in this section.

In the general case of controlled SD and controlled PD, we cannot speak
about commutativity and associativity. However, in the case of SD next to
a letter and PD next to a letter, these notions can be defined and studied.

Obviously, the SD next to a letter and PD next to a letter are not

commutative operations. For example, (ab
a

> b) = a, (b
a

> ab) = ∅ and

(ab
a

> b) = {a, ab}, while (b
a

> ab) = b.
The SD next to a letter and PD next to a letter are not associative

operations either. In general, the sets L1
a

> (L2
b
> L3) and (L1

a
>

L2)
b
> L3 are incomparable, and the same can be said about the sets

L1
a

> (L2
b
> L3) and (L1

a
> L2)

b
> L3. This is proved by the

following examples:

bb
b
> (ba

b
> a) = b whereas (bb

b
> ba)

b
> a = ∅,

(aab
a

> b)
a

> a = a whereas aab
a

> (b
a

> a) = ∅,
and

(aab
a

> b)
a

> a = {a, ab} whereas aab
a

> (b
a

> a) = {aa, aab}.

If the control function has as values regular languages for every letter
of the alphabet, the controlled SD can be simulated by a gsm with erasing.
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Theorem 3.20 Let L be a language over Σ and ∆ : Σ−→2Σ∗

a control
function whose values are regular languages. There exists a gsm g such
that:

L >∆ = g(L).

Proof. According to a previous remark, one can assume that L is λ-free. For
every a ∈ Σ, let Aa = (Sa, Σ, sa, Fa, Pa) be a finite automaton that accepts
the language ∆(a). Assume further that all the state sets Sa, a ∈ Σ, are
pairwise disjoint.

Consider the gsm with erasing:

g = (Σ, Σ, S, s0, {sf}, P ),
S = (∪a∈ΣSa) ∪ {s0, sf},
P = (∪a∈ΣPa) ∪ {s0a−→as0| a ∈ Σ}∪

{s0a−→asa| a ∈ Σ} ∪ {sfa−→asf | a ∈ Σ}∪
{sb−→sf | b ∈ Σ and ∃a ∈ Σ, s′ ∈ Fa : sb−→s′ ∈ Pa}∪
{s0a−→asf | a ∈ Σ, λ ∈ ∆(a)},

where s0, sf are new symbols of states. The construction of g and the
proof that L >∆ = g(L) are similar to that of Theorem 3.2. The only
difference is that, in the controlled case, words from ∆(a) are erased only
if they occur after the letter a.

Corollary 3.18 The family of regular and the family of context-free lan-
guages are closed under controlled SD with regular languages.

Proof. The claim follows from the preceding theorem as REG and CF are
closed under gsm mapping.

The family of context-free languages is closed under neither controlled
SD nor controlled PD as it is not closed under SD and PD next to one
letter.

Theorem 3.21 There exist two context-free languages L1, L2 over an al-

phabet Σ and a letter # in Σ such that L1

#
> L2 and L1

#
> L2 are not

context-free languages.

Proof. Let Σ = {a, b, #} and L1, L2 be the context-free languages:

L1 = #{aib2i| i > 0}∗,
L2 = a{biai| i > 0}∗.
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Then,

(L1

#
> L2) ∩#b+ = {#b2n

| n > 0},

which is not a context-free language.
Because of the presence of the marker, in this case

(L1

#
> L2) ∩#b+ = (L1

#
> L2) ∩#b+.

Corollary 3.19 The family of context-free languages is closed under nei-
ther controlled sequential nor controlled parallel deletion.

If the control function has as values only nonempty regular languages
then the controlled PD, L >∆, can be expressed as a morphic image of an
intersection between a regular language and the image of L through a gsm
with erasing.

Theorem 3.22 Let L be a language over Σ and ∆ : Σ−→2Σ∗

a control
function whose values are nonempty regular languages. There exist a gsm
g, a morphism h and a regular language R′ such that:

L >∆ = h(g(L) ∩R′).

Proof. We can assume, without loss of generality, that L is a λ-free lan-
guage. For every letter a ∈ Σ, let Aa = (Sa, Σ, sa, Fa, Pa) be a finite
automaton that accepts the language ∆(a). Assume that all the state sets
Sa, a ∈ Σ, are pairwise disjoint.

Consider the gsm with erasing:

g = (Σ, Σ ∪ {#}, S, s0, F, P ),
where
S = (∪a∈ΣSa) ∪ {s0},
F = {s0},
P = (∪a∈ΣPa) ∪ {s0a−→as0| a ∈ Σ}∪

{s0a−→asa| a ∈ Σ} ∪ {s0a−→a#s0| a ∈ Σ, λ ∈ ∆(a)}∪
{sb−→#s0| b ∈ Σ, s ∈ Sa, s′ ∈ Fa and sb−→s′ ∈ Pa},

where s0, # are symbols which do not occur in any of the given sets. The
construction is similar to that of Theorem 3.3. The only difference is that
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the input letters determine to which automaton the derivation is switched,
that is, words of which language are to be erased.

One can prove as in Theorem 3.3 that:

g(L) = L ∪ {u1a1#u2a2#. . . ukak#uk+1| k ≥ 1,
aj ∈ Σ, 1 ≤ j ≤ k, ui ∈ Σ∗, 1 ≤ i ≤ k + 1
and ∃u ∈ L, vi ∈ ∆(ai), 1 ≤ i ≤ k :
u = u1a1v1u2a2v2 . . .ukakvkuk+1}.

Considering now the morphism h : (Σ∪{#})∗−→Σ∗, h(#) = λ, h(a) =
a, ∀a ∈ Σ and the regular language

R′ = [(Σ ∪ Σ#)∗(∪a∈Σa∆(a))(Σ ∪ Σ#)∗]c ∩ (Σ∗#Σ∗)+,

the equality

L >∆ = h(g(L) ∩R′)

holds. Indeed, the first set of the intersection takes care that between two
markers (representing erased words), no other candidate for erasing occurs.
The second set assures that words from L which contain no candidate for
erasing are excluded. This is done by retaining only the words in which at
least one marker (erasing) occurrs.

Corollary 3.20 The family of regular and the family of context-free lan-
guages are closed under controlled parallel deletion with regular languages.

Proof. The claim follows from the preceding theorem as REG and CF are
closed under intersection with regular languages, gsm mapping and mor-
phism.

The family of context-sensitive languages is not closed under controlled
SD and controlled PD. However, in the particular case when the control
function has as values only singletons, CS is closed under these operations.

Theorem 3.23 Let Σ be an alphabet and a, b, # symbols which do not be-
long to Σ. There exists a context-sensitive language L′

1 over the alphabet

Σ∪ {a, b, #} and a regular language R over {a, b}∗ such that L′
1

#
> R and

L′
1

#
> R are not context-sensitive languages.
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Proof. Let L be the recursively enumerable language (which is not context-
sensitive) over Σ and L1 the context-sensitive language over Σ ∪ {a, b},
defined in Theorem 3.7.

Because # is a symbol which does not belong to Σ ∪ {a, b} then

(#L1)
#

> (a∗b) = [(#L1)
#

> (a∗b)] ∩#Σ∗ = #L.

Corollary 3.21 The family of context-sensitive languages is not closed un-
der controlled SD and controlled PD.

Theorem 3.24 The family of context-sensitive languages is closed under
controlled sequential and controlled parallel deletion with singletons.

Proof. We can assume, without loss of generality, that L is a λ-free language
over the alphabet Σ. Let ∆ : Σ−→2Σ∗

be a control function and, for every
a ∈ Σ, let Aa = (Sa, Σ, sa, Fa, Pa) be a finite automaton that accepts the
word ∆(a). Assume that the state sets Sa, a ∈ Σ, are pairwise disjoint.
One can modify the construction found in Theorem 3.3 such that g is not
a rational transducer (CS is not closed under rational transductions) but a
λ-free gsm (CS is closed under λ-free gsm’s).

Indeed, let g be the following gsm:

g = (Σ, Σ ∪ {#}, S, s′0, {s
′
0}, P ),

where
S = (∪a∈ΣSa) ∪ {s0

′},
P = {s′0a−→as′0| a ∈ Σ} ∪ {s′0a−→asa| a ∈ Σ, ∆(a) 6= λ}∪

{s′0a−→a#s′0| a ∈ Σ, ∆(a) = λ}∪
{sb−→#s′| ∃a ∈ Σ : sb−→s′ ∈ Pa}∪
{sb−→#s′0| ∃a ∈ Σ, s′ ∈ Fa : sb−→s′ ∈ Pa}.

The construction differs from that of Theorem 3.3 in the following way:

• the marker # has been introduced in order to transform every erasing
rule into a non- erasing one;

• during a derivation, a switch to the rules of the automaton Aa can be
made only immediately after scanning the letter a in the input.
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One can prove, analogously to the claim in Theorem 3.3 that:

g(L) = L ∪ {u1a1#
l1u2a2#

l2 . . . ukak#lkuk+1| k ≥ 1,
aj ∈ Σ, 1 ≤ j ≤ k, ui ∈ Σ∗, 1 ≤ i ≤ k + 1 and ∃u ∈ L :
u = u1a1∆(a1)u2a2∆(a2) . . . ukak∆(ak)uk+1},

where li is the length of ∆(ai), 1 ≤ i ≤ k, with the following exception. If
∆(ai) = λ then li = 1. If one considers now the morphism

h : (Σ ∪ {#})∗−→Σ∗, h(#) = λ, h(a) = a, ∀a ∈ Σ,

and the regular languages

R1 = Σ∗#+Σ∗,
R2 = [(Σ ∪ Σ#+)∗(∪a∈Σa∆(a))(Σ ∪ Σ#+)∗]c ∩ (Σ∗#Σ∗)+,

then:

L >∆ = h(g(L) ∩R1),
L >∆ = h(g(L) ∩R2).

The intersection with the language R1 imposes that only words in which
exactly one erasing is performed are retained in the result. The intersection
with the language R2 takes care of that between two sequences of markers
(erased words) no other candidate for erasing appears, and that at least
one erasing is performed. As the proof of the above equalities is similar to
that of Theorem 3.3, the only thing that remains to be shown is that h is
a q- linear erasing with respect to g(L), for some integer q.

Denote, for every a ∈ Σ, la = lg(∆(a)) and p = max{la| a ∈ Σ}.
Let w be a word in g(L). If w ∈ L then h(w) = w.
Else,

w = u1a1#
l1u2a2#

l2 . . . ukak#lkuk+1, k ≥ 1,
aj ∈ Σ, 1 ≤ j ≤ k, ui ∈ Σ∗, q1 ≤ i ≤ k + 1 and ∃u ∈ L :
u = u1a1∆(a1)u2a2∆(a2) . . . ukak∆(ak)uk+1.

The length of the word w is :

lg(w) =
k+1∑

i=1

lg(ui) + k +
k∑

i=1

li
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and, as h(w) = u1a1u2a2 . . . ukakuk+1, its length is:

lg(h(w)) =

k+1∑

i=1

lg(ui) + k.

For any word w ∈ g(L), the following inequalities hold:

lg(w) =
k+1∑

i=1

lg(ui) + k +
k∑

i=1

li ≤
k+1∑

i=1

lg(ui) + k + k · p ≤

(p + 1)(

k∑

i=1

lg(ui) + k) = (p + 1)lg(h(w)).

Taking q = p + 1, this proves that h is a q- linear erasing with respect
to g(L).

As CS is closed under linear erasing, λ-free gsm mapping and intersec-
tion with regular languages, it follows that it is closed also under controlled
sequential and controlled parallel deletion with singletons.

3.5 Scattered sequential deletion

The various variants of deletion dealt with so far have been considered
only from the compact point of view. A scattered variant of the sequential
deletion has been defined in [13]. Given two words u and v, if the letters of
v can also be found in u, in the same order, the scattered sequential deletion
erases them from u without taking into account their places; else, the result
of the scattered sequential deletion of v from u is the empty set.

Definition 3.7 Let L1, L2 be languages over the alphabet Σ. The scattered
sequential deletion of L2 from L1 (shortly, scattered SD) is defined as:

L1 >L2 =
⋃

u∈L1,v∈L2

(u >v),

where

u >v = {u1u2 . . . uk+1 ∈ Σ∗| k ≥ 1, u = u1v1u2v2 . . . ukvkuk+1,
v = v1v2 . . . vk, ui ∈ Σ∗, 1 ≤ i ≤ k + 1, vi ∈ Σ∗, 1 ≤ i ≤ k}.
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The parallel variants of deletion do not have their natural scattered
counterparts. Therefore we shall often use in the sequel the term scattered
deletion instead of scattered sequential deletion.

Example 3.11 Let L1, L2 be the languages:

L1 = {anbncn| n ≥ 1},
L2 = {ab2c3}.

The scattered deletion of L2 from L1 is:

L1 >L2 = {an+2bn+1cn| n ≥ 0},

whereas the ordinary sequential deletion is L1 >L2 = ∅.

Indeed, we notice that the necessary condition for a set u > v to be
nonempty is much weaker than in the case of sequential deletion. The
word v does not need to be a subword of u but u has to contain the letters
of v, in the same order.

In general,
L1 >L2 ⊆ L1 > L2

for every two languages L1, L2 over an alphabet Σ.
Obviously, the scattered deletion is not a commutative operation. In-

deed, for example, ab >b = a whereas b >ab = ∅. The scattered SD is
not an associative operation either. In general, the sets L1 > (L2 > L3)
and (L1 > L2) > L3 are incomparable. For example,

ab > (bc > c) = a while (ab >bc) > c = ∅,

(aab > b) > a = a while aab > (b >a) = ∅.

As expected, the families of regular and context-free languages are closed
under scattered deletion with regular languages because we have:

Theorem 3.25 If L, R are languages over the alphabet Σ, R a regular one,
the scattered deletion L >R is the image of L through a gsm mapping.

Proof. Let A = (S, Σ, s0, F, P ) be a finite automaton that recognizes the
language R. We construct the gsm with erasing:

g = (Σ, Σ, S, s0, F, P ′)
where
P ′ = P ∪ {sa−→as| s ∈ S, a ∈ Σ}.



3.5 SCATTERED SEQUENTIAL DELETION 97

Given u ∈ L as an input and v ∈ R, the gsm works as follows: the rules
of P erase the symbols which come from v, in the correct order, whereas
those of the form sa−→as cross the symbols that will remain in u > v.

We claim that g satisfies the equality requested by the theorem that is,
L > R = g(L).

” ⊆ ” Let α be a word in L >R,

α = u1u2 . . . uk+1, k ≥ 1, ui ∈ Σ∗, 1 ≤ i ≤ k + 1,
and ∃u ∈ L, v ∈ R such that v = v1v2 . . . vk, vi ∈ Σ∗, 1 ≤ i ≤ k,
u = u1v1u2v2 . . . ukvkuk+1.

The following derivation according to A exists:

s0v1v2 . . . vk=⇒∗s1v2 . . . vk=⇒∗sk−1vk=⇒∗sk, sk ∈ F.

Consequently, one can construct the following derivation according to
g:

s0u = s0u1v1u2v2 . . . ukvkuk+1=⇒
∗u1s0v1u2v2 . . .ukvkuk+1=⇒

∗

u1s1u2v2 . . . ukvkuk+1=⇒∗u1u2s1v2 . . .ukvkuk+1=⇒∗

u1u2 . . . sk−1vkuk+1=⇒∗u1u2 . . . skuk+1=⇒∗u1u2 . . . uk+1sk =
αsk.

We have used the rules of the derivation s0v=⇒∗sk to scan vi, 1 ≤ i ≤ k,
and rules of the type sa−→as to cross over ui, 1 ≤ i ≤ k + 1.

This proves that α ∈ g(u) ⊆ g(L).
” ⊇ ” Let α be a word in g(L). There exists u ∈ L and a derivation

s0u=⇒∗αsk, sk ∈ F according to g. If we separate the rules of P from the
ones in P ′ − P , the derivation has the form:

s0u = s0u1v1u2v2 . . . ukvkuk+1=⇒∗u1s0v1u2v2 . . .ukvkuk+1=⇒∗

u1s1u2v2 . . . ukvkuk+1=⇒∗u1u2s1v2 . . .ukvkuk+1=⇒∗

u1u2 . . . sk−1vkuk+1=⇒∗u1u2 . . . skuk+1=⇒∗u1u2 . . . uk+1sk =
αsk.

In scanning ui, 1 ≤ i ≤ k+1, rules of P ′−P have been used and in scanning
vj , 1 ≤ j ≤ k, rules of P have been applied.

If no rule of P has been applied then s0 ∈ F . This implies that λ ∈ R
and therefore u = u1uk+1 ∈ (u >λ) ⊆ (L > R).

Else, gathering together the rules of P which have been used, the fol-
lowing derivation according to A can be constructed:

s0v1v2 . . . vk=⇒∗s1v2 . . . vk=⇒∗sk−1vk=⇒∗sk, sk ∈ F,
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which implies that the word v = v1v2 . . . vk belongs to R.
This further implies that

α = u1u2 . . . uk+1 ∈ (u > v) ⊆ L > R

and the theorem is proved.

Corollary 3.22 The family of regular and the family of context-free lan-
guages are closed under scattered deletion with regular languages.

Proof. The claim follows from the preceding theorem, as REG and CF are
closed under gsm mapping.

However, in general, the family of context-free languages is not closed
under scattered deletion. In fact a stronger result holds.

A linear grammar is a grammar G = (N, Σ, S, P ) whose productions are
of one of the two forms A−→w, A−→uBv, A, B ∈ N , u, v, w ∈ Σ∗. The
family of linear languages strictly includes REG and is strictly included in
CF.

Theorem 3.26 There exist two linear languages L1 and L2 such that the
scattered deletion of L2 from L1 is not a context-free language.

Proof. Let L1, L2 be the linear languages

L1 = {an(bc)n(df)m| n, m ≥ 1},
L2 = {cndn| n ≥ 1}.

One can easily see that:

(L1 > L2) ∩ a∗b∗f∗ = {anbnfn| n ≥ 1}.

As CF is closed under intersection with regular sets but {anbnfn|n ≥ 1}
is not a context-free language, it follows that the language L1 > L2 is not
context-free.

Corollary 3.23 The family of context-free languages is not closed under
scattered deletion.

As it is not closed under right and left quotient with regular languages,
CS is not closed under scattered deletion either.
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Theorem 3.27 The family of context-sensitive languages is not closed un-
der scattered deletion with regular languages.

Proof. Let Σ be an alphabet and denote Σ′ = {a′| a ∈ Σ}. To every word
w ∈ Σ∗ corresponds a word w′ ∈ Σ′∗, obtained from w by changing every
letter a into a′.

A λ-free gsm g can be easily constructed to satisfy:

g(L) = {w1w
′
2| w1, w2 ∈ Σ∗, w1w2 ∈ L}, (∗)

where L is an arbitrary λ-free language over Σ.

If we define now the λ-free morphism h : Σ∗−→Σ′∗, h(a) = a′, ∀a ∈ Σ,
the following equality holds:

L1/L2 = {[g(L1) > h(L2)] ∩ Σ∗} ∪ {λ| λ ∈ L1 ∩ L2}

for every two languages L1, L2 over Σ.

” ⊆ ” Let u be a word in L1/L2. There exist α ∈ L1 and v ∈ L2 such
that α = uv.

If α = u = v = λ then u belongs to the right member of the equality.

Else, according to (*), uv′ ∈ g(α) ⊆ g(L1) and as v′ ∈ h(L2) we have:

u ∈ (g(uv) > h(v)) ∩ Σ∗ ⊆
[g(L1) > h(L2)] ∩ Σ∗.

” ⊇ ” If u ∈ Σ∗ is a word in g(L1) > h(L2), there exist α ∈ L1,
v ∈ L2 such that u ∈ (g(α) > v′). This further implies that there exists a
decomposition of α in α = w1w2 such that u ∈ w1w

′
2

> v′. As u does not
contain marked letters we deduce that w1 = u, w2 = v and, consequently,
α = uv ∈ L1, v ∈ L2 that is, u ∈ L1/L2.

If u = λ and λ ∈ L1 ∩ L2 then u ∈ L1/L2 too, and the proof of the
equality is finished.

As CS is closed under λ-free gsm mapping, λ-free morphism, union and
intersection but it is not closed under right and left quotient with regular
languages, it follows that it is not closed under scattered deletion with
regular languages either.

Corollary 3.24 The family of context-sensitive languages is not closed un-
der scattered deletion.
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In the particular case when the language to be deleted is a singleton,
CS is closed under scattered deletion. This follows because the amount of
erasing is limited to the letters of a single word.

Theorem 3.28 The family of context-sensitive languages is closed under
scattered deletion with singletons.

Proof. Let L be a context-sensitive language and w a word over the same
alphabet Σ.

If w belongs to L then

L >{w} = [(L− {w}) >{w}] ∪ {λ}.

If w = λ, then L >{w} = L.
Consequently, the theorem will follow if we prove that L >{w} is

context-sensitive for a context-sensitive L and a nonempty w not in L.
Let A = (S, Σ, s0, F, P ), s0 6∈ F , be a finite automaton that accepts

the word w = a1 . . . ak, ai ∈ Σ, 1 ≤ i ≤ k. One can easily modify the
construction of Theorem 3.25 such that the gsm considered is a λ-free gsm.
Indeed, let g be the gsm:

g = (Σ, Σ ∪ {#}, S, s0, F, P ′),
P ′ = {sa−→#s′| a ∈ Σ, s, s′ ∈ S, sa−→s′ ∈ P}∪

{sa−→as| a ∈ Σ, s ∈ S}.

Given a word y ∈ L as an input, the gsm g works as follows: if the
letters of w can be found in u, in the same order, they are replaced with
the marker #, the rest of the word remaining unchanged; else, a final state
cannot be reached. It can easily be proved that:

g(L) = {u1#u2#. . . #uk+1| k ≥ 1, and ∃ u ∈ L :
u = u1a1u2a2 . . .ukakuk+1, ui ∈ Σ∗, 1 ≤ i ≤ k + 1, }.

Note that, as we assumed that w does not belong to L, u1u2 . . . uk+1 is a
nonempty word.

If one considers now the morphism h : (Σ ∪ {#})∗−→Σ∗, h(#) = λ,
h(a) = a, ∀a ∈ Σ it is obvious that

h(g(L)) = L >{w}.

As, for every u ∈ g(L) we have:

lg(u) = lg(u1u2 . . .uk+1) + k ≤ (k + 1)lg(u1u2 . . .uk+1) =
(k + 1) lg(h(u)),
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h is a (k + 1)-linear erasing with respect to g(L).
The family of context-sensitive languages is closed under linear erasing

and under λ-free gsm mapping and, consequently, under scattered deletion
with singletons.

The controlled variant of deletion does not have its natural scattered
counterpart. However, a scattered variant of the permuted sequential dele-
tion (see Section 3.3) has been defined in [13]. Given two words u and v,
if the letters of v can also be found in u, they are erased without taking
into account their places or their order; else, the result of the permuted
scattered SD of v from u is the empty set.

Definition 3.8 Let L1, L2 be languages over the alphabet Σ. The permuted
scattered sequential deletion of L2 from L1 (shortly, permuted scattered SD)
is defined by:

L1 >L2 =
⋃

u∈L1,v∈L2

(u >v),

where u >v = u >com(v).

As we refer all the time to the sequential case, the term permuted scattered
deletion will be used in the sequel instead of permuted scatterred sequential
deletion.

The permuted scattered deletion is a generalization of SD and scattered
SD. In general,

L1 >L2 ⊆ L1 > L2 ⊆ L1 >L2,

for all languages L1, L2 over an alphabet Σ.
As L1 >L2 = L1 >com(L2), if one replaces the language to be deleted

with a letter-equivalent language, the result of the permuted scattered SD
remains unchanged.

Example 3.12 Let L1, L2 be the languages :

L1 = {a3b, b2a2, b3a3, ab4}
L2 = {ab2}.

The result of the permuted scattered deletion is:

L1 >L2 = {a, ba2, b2},

whereas the results of the scattered deletion and deletion are:

L1 > L2 = L1 >L2 = {b2}.
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The permuted scattered deletion is neither a commutative nor an asso-
ciative operation. In order to prove this one can use the languages chosen
to show that the scattered deletion is neither commutative nor associative.

None of the families REG, CF, CS is closed under permuted scattered
SD. The operation is still family preserving if the language to be erased is
a singleton.

Theorem 3.29 The family of regular languages is not closed under per-
muted scattered deletion.

Proof. Let L1, L2 be the regular languages:

L1 = {(bc)m(df)p| m, p ≥ 1},
L2 = {(cd)n| n ≥ 0}.

One can prove that

(L1 >L2) ∩ b∗f∗ = {bmfm| m ≥ 1}.

Theorem 3.30 The family of context-free languages is not closed under
permuted scattered deletion with regular languages.

Proof. Let L1, L2 be the context-free respectively regular languages:

L1 = {an(bc)n(df)m| n, m ≥ 1},
L2 = {(cd)n| n ≥ 1}.

The relation

(L1 >L2) ∩ a∗b∗f∗ = {anbnfn| n ≥ 1}

is obvious.

Corollary 3.25 The family of context-free languages is not closed under
permuted scattered deletion.

Theorem 3.31 The family of context-sensitive languages is not closed un-
der permuted scattered deletion with regular languages.
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Proof. Let L be the recursively enumerable language (which is not context-
sensitive) over an alphabet Σ and L1 the context-sensitive language over
Σ ∪ {a, b} defined in Theorem 3.7. Then,

(L1 >a∗b) ∩ Σ∗ = L.

Corollary 3.26 The family of context-sensitive languages is not closed un-
der permuted scattered deletion.

Theorem 3.32 The families of regular context-free and context-sensitive
languages are closed under permuted scattered deletion with singletons.

Proof. Let L be a language and w be a word over an alphabet Σ. Then,

L >{w} =
⋃

u∈com(w)
(L > u).

As REG, CF, CS are closed under scattered deletion with singletons and
under finite union, it follows that they are closed under permuted scattered
deletion, too.





Chapter 4

Operations: power and

restrictions

4.1 Power of operations

This section is devoted to the study of classes of languages which contain
simple ones and are closed under some of the operations previously defined.
Each of the studied classes is closed under an insertion operation, a deletion
operation and an iterative insertion one. The operations are controlled and
have been chosen as stated in order to allow an increase as well as a decrease
of the length of the words in the operands. The iterative operation has been
included in each class to provide an infinite growth of the strings. Finally,
the mirror image and the union with lambda have been introduced for
technical reasons.

The iterated controlled SIN, needed in the sequel, can be defined starting
from the controlled SIN. The formal definition of the iterated controlled SIN
can be obtained from Definition 2.3 by replacing SIN with controlled SIN.
If the control function is ∆ : Σ−→2Σ′∗

and Σ′ − Σ 6= ∅, we put ∆(a) = ∅
for a ∈ Σ′ − Σ.

Lemma 4.1 The family of context-free languages is closed under iterated
controlled SIN.

Proof. Let L be a language generated by the context-free grammar G =
(N, Σ, S, P ) and ∆ : Σ−→2Σ′∗

be a control function. The fact whether or
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not λ ∈ L is irrelevant to the result of the controlled SIN into L. Therefore,
if λ ∈ L then L<

∗∆ = [(L − {λ})<
∗∆] ∪ {λ}. Consequently we can

assume, without loss of generality, that L is a λ-free language. Assume
that, for every a ∈ Σ, the language ∆(a) is generated by the context-free
grammar Ga = (Na, Σa, Sa, Pa), that the nonterminal sets N, Na, a ∈ Σ,
are pairwise disjoint and Σ′ = ∪a∈ΣΣa. Assume further that the grammars
G, Ga, a ∈ Σ, satisfy the requirements of Theorem 2.6.

Construct the context-free grammar:

G′ = (N ′, Σ ∪ Σ′, S, P ′),
N ′ = N ∪ (∪a∈ΣNa),
P ′ = P ∪ (∪a∈ΣPa)∪

{A−→aSa| A ∈ N ′, a ∈ Σ, A−→a ∈ P ∪ (∪a∈ΣPa)}.

The construction and the proof that

L(G′) = L<
∗∆

are similar to that of Theorem 2.6. The only differences are that:
• We need not consider the case where λ appears in L;
• Every letter a determines the language whose words can be inserted

next to it;
• The insertions are made only to the right of the control letters.

Lemma 4.2 The family of regular languages is not closed under iterated
controlled SIN.

Proof. Take L = {ab} and the control function ∆ defined by:

∆ : {a, b}−→2{a,b}∗ , ∆(a) = ∆(b) = {ab}.

Then L = {ab}<
∗∆ equals the Dyck language of order one, which is not

a regular language.

Let S be the smallest class of languages which contains ∅, the language
{λ}, the singleton letters and is closed under union with the empty word,
mirror image, controlled SIN, iterated controlled SIN and controlled SD
with singletons. The union with lambda has been added because λ cannot
occur in the result of controlled SIN and SD. If this operation wouldn’t
have been used, the class S would not contain any language L with λ ∈ L,
except {λ}.
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Theorem 4.1 S is contained in the family of context-free languages and
properly contains the family of regular languages.

Proof. In order to show that REG ⊆ S we will prove the closure of S under
catenation, union and catenation closure.

Catenation. Let L1, L2 be two languages in S, over the alphabet Σ. If
# is a new symbol which does not belong to Σ, let ∆1, ∆2 be the control
functions:

∆1 : {#}−→2Σ∗

, ∆2 : Σ ∪ {#}−→2Σ∗

,
∆1(#) = L2, ∆2(#) = L1, ∆2(a) = ∅, ∀a ∈ Σ.

The following equality holds:

#L1L2 = ({#}< ∆1)< ∆2.

The ∆1-controlled SIN performs the task of catenating the symbol # and
the language L2. The ∆2-controlled SIN inserts the language L1 in the
language #L2, at the right of #, realizing thus the catenation #L1L2.

If we define now the control function:

∆3 : Σ ∪ {#}−→2(Σ∪{#})∗ , ∆3(#) = ∅, ∆3(a) = #, ∀a ∈ Σ,

we have that:

L1L2 = Mi(Mi(#L1L2) >∆3), if λ 6∈ L1 ∩ L2,
L1L2 = Mi(Mi(#L1L2) >∆3) ∪ {λ}, if λ ∈ L1 ∩ L2.

The role of the ∆3-controlled SD is to delete the symbol # in every word of
Mi(#L1L2). This operation could be performed only after Mi transferred
the symbol # to the right extremity of the words. This transfer was needed
because the first letter of a word cannot be erased by controlled deletion.
Finally, Mi was used again, in order to obtain the desired language from
its mirror image.

The catenation L1L2 has been obtained from L1, L2, {#}, ∅ ∈ S by us-
ing the operations union with lambda, mirror image, controlled SIN and
controlled SD with singletons. Therefore, the class S is closed under cate-
nation.

Union. We will show first that the union of two letters is a language
belonging to S. Indeed, let {a}, {b} be two singleton letters. Let # be a
letter different from a and b and define the control function ∆4 by:

∆4 : {a, b, #}−→2{a,b,#}∗ , ∆4(#) = a, ∆4(a) = b, ∆4(b) = ∅.
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The following relation holds:

{#a, #b} = {#ab} >∆4.

The ∆4- controlled SD was used to obtain a set of two elements from a
singleton. The additional symbol # was needed in order to make possible
the deletion at the left extremity of the word ab.

If we define now the control function:

∆5 : {a, b, #}−→2{a,b,#}∗ , ∆5(a) = ∆5(b) = #, ∆5(#) = ∅,

we obtain the requested set:

{a, b} = Mi({#a, #b}) >∆5.

The role of the ∆5-controlled deletion was to delete the symbol # and the
mirror image transferred it to the right extremity of every word, to allow
its deletion. Observe that another application of Mi is not needed.

As we have obtained the set {a, b} starting from the sets ∅, #, a, b and
{#ab} (which belongs to S as S is closed under catenation) and applying
only controlled SIN, controlled SD with singletons and mirror image, we
conclude that it belongs to S.

Returning now to the general case, let L1, L2 be two languages in S,
over the alphabet Σ. Let #1, #2 be two symbols which do not occur in Σ
and ∆6, ∆7 be the control functions:

∆6 : {#1, #2}−→2Σ∗

, ∆7 : Σ ∪ {#1, #2}−→2{#1,#2}
∗

,
∆6(#1) = L1, ∆7(#1) = #2,
∆6(#2) = L2, ∆7(#2) = #1, ∆7(a) = ∅, ∀a ∈ Σ.

The following equality is now obvious:

#1#2L1 ∪#2#1L2 = ({#1, #2}< ∆6)< ∆7.

Indeed, the ∆6-controlled SIN inserts L1 after #1 and L2 after #2, yielding
thus #1L1 ∪ #2L2. The ∆7-controlled SIN inserts then #2 after #1 and
#1 after #2.

If we further define the control functions :

∆8 : Σ ∪ {#1, #2}−→2(Σ∪{#1,#2})
∗

, ∆9 : Σ ∪ {#2}−→2(Σ∪{#2})
∗

,
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∆8(a) = #1, ∀a ∈ Σ ∪ {#2}, ∆9(a) = #2, ∀a ∈ Σ,
∆8(#1) = ∅, ∆9(#2) = ∅,

then

L1 ∪ L2 = Mi((Mi(#1#2L1 ∪#2#1L2) >∆8) >∆9),
if λ 6∈ L1 ∪ L2,

L1 ∪ L2 = Mi((Mi(#1#2L1 ∪#2#1L2) >∆8) >∆9) ∪ {λ},
if λ ∈ L1 ∪ L2.

The role of the ∆8-controlled SD was to erase the symbol #1 and that of
the ∆9-controlled SD to erase #2. We needed two controlled SD’s because
only controlled SD with singletons had to be used. The role of the mirror
image operator has been similar as in the previous cases.

We have obtained L1∪L2 starting with the languages L1, L2, #1, #2, ∅
in S and with the set {#1, #2} (which consists of two letters and therefore
belongs to S) by applying only controlled SIN, mirror image, union with λ
and controlled SD with singletons. Therefore L1 ∪ L2 is in S, that is, S is
closed under union.

Catenation closure. Let L be a language in S, over the alphabet Σ, and
let # be a letter which does not belong to Σ. If ∆10 is the control function
defined as:

∆10 : Σ ∪ {#}−→2Σ∗

, ∆10(#) = L, ∆10(a) = ∅, ∀a ∈ Σ,

then

#L∗ = {#}<
∗∆10.

Indeed, the ∆10-controlled SIN inserts words from L only to the right of
#, assuring that the controlled insertion amounts to catenation. Defining
finally the control function

∆11 : Σ ∪ {#}−→2(Σ∪{#})∗ , ∆11(a) = #, ∀a ∈ Σ, ∆11(#) = ∅,

the catenation closure of L will be

L∗ = Mi(Mi(#L∗) >∆11) ∪ {λ}.

With the help of the mirror image operator, which puts # to the end of
words, the ∆11-controlled deletion erases the letter # from all the words in
#L∗. Finally, Mi restores the form of the words from L.
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We have obtained L∗ starting from L, ∅ and {#} in S and using iter-
ated controlled SIN, mirror image, union with λ and controlled SD with
singletons. Therefore, S is closed under catenation closure.

As S contains the singleton letters and is closed under catenation, union
and catenation closure, it follows that it contains all the regular languages.
According to Lemma 4.2 the inclusion is proper.

The inclusion S ⊆ CF follows from the fact that CF is closed under
mirror image, controlled SIN (see Theorem 2.18), iterated controlled SIN
(see Lemma 4.1) and under controlled sequential deletion with singletons
(see Corollary 3.18).

Theorem 4.2 The family S is not closed under intersection.

Proof. We will prove that there exist two languages L1, L2 ∈ S whose
intersection is not a context-free language. As, according to Theorem 4.1,
S ⊆CF, this will imply that S is not closed under intersection.

Let L1 be the language defined by:

L1 = {#}<
∗∆1,

where ∆1 is the control function ∆1 : {#, a, b, d}−→2{#,a,b,d}∗ defined by:

∆1(#) = {a#b#, b#a#, d#}, ∆1(a) = ∆1(b) = ∆1(d) = ∅.

Claim. L1 = {w ∈ #(Σ#)∗| Na(w) = Nb(w)}, where Σ = {a, b, d}.

” ⊆ ” This inclusion is obvious, as we insert an equal number of a’s and
b’s at every iteration step.

” ⊇ ” We will show by induction on n that if w is a word in the right
member of the equality satisfying Na(w) = Nb(w) = n, then w ∈ L1.

n = 0. Let w = #(d#)p, where p ≥ 0. Then we have:

w ∈ {#}<
p∆1 ⊆ {#}<

∗∆1,

as w is obtained by p insertions of d# next to the first symbol #.
n 7→ n + 1. Assume the statement true for numbers up to n and let w

be a word in #(Σ#)∗, containing n + 1 letters a and n + 1 letters b. The
word w is of one of the forms:

w = #αa#(d#)mb#β, m ≥ 0, α, β ∈ (Σ#)∗,
w = #αb#(d#)ma#β, m ≥ 0, α, β ∈ (Σ#)∗.
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Assume that the first case holds, the other one being similar. Consider the
word w′ = #αβ. According to the induction hypothesis, w′ is a word in
L1. Therefore we have:

w ∈ {w′}<
m+1∆1 ⊆ {#}<

∗∆1.

Indeed, w is obtained from w′ by inserting first a#b# at the right extremity
of α and then inserting m times d# at the right extremity of a#. We
conclude that w ∈ L1 and the claim is proved.

If we define now the control function ∆2 : {#, a, b, d}−→2{#,a,b,d}∗ by:

∆2(#) = {d#b#, b#d#, a#}, ∆2(a) = ∆2(b) = ∆2(d) = ∅,

one can prove, as before, that:

L2 = {#}<
∗∆2 = {w ∈ #(Σ#)∗| Nb(w) = Nd(w)}.

It is easy to show that:

L1 ∩ L2 = {w ∈ #(Σ#)∗| Na(w) = Nb(w) = Nd(w)},

which is not a context-free language. As L1 and L2 belong to S ⊆CF, it
follows that S is not closed under intersection.

For the sake of completeness we investigate also the closure of CS under
the iterated controlled SIN.

Theorem 4.3 The family of context-sensitive languages is closed under
iterated controlled SIN.

Proof. Let L be a language generated by the context-sensitive grammar
G = (N, Σ, S, P ) and ∆ : Σ−→2Σ′∗

be a control function. The fact whether
or not λ ∈ L is irrelevant to the result of the controlled SIN into L. There-
fore, if λ ∈ L then L<

∗∆ = [(L−{λ})<
∗∆]∪{λ}. Consequently we can

assume, without loss of generality, that L is a λ-free language. Assume that,
for every a ∈ Σ, the language ∆(a) is generated by the context-sensitive
grammar Ga = (Na, Σa, Sa, Pa), that the nonterminal sets N, Na, a ∈ Σ,
are pairwise disjoint and Σ′ = ∪a∈ΣΣa. Assume further that the grammars
G, Ga, a ∈ Σ, satisfy the requirements of Theorem 2.7.
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Construct the context-sensitive grammar:

G′ = (N ′, Σ ∪Σ′, S, P ′),
N ′ = N ∪ (∪a∈ΣNa) ∪ {#},
P ′ = P ∪ (∪a∈Σ(Pa − {Sa−→λ}))∪

{A−→a#Sa#| A ∈ N ′, a ∈ Σ, A−→a ∈ P ∪ (∪a∈ΣPa)}.

Define now the morphism h : Σ′∗−→Σ′∗ by h(#) = λ, h(a) = a for all
a 6= #. The construction, the proof that

h(L(G′)) = L<
∗∆,

and that h is a 3-linear erasing with respect to L(G′) are similar to that of
Theorems 2.7, 2.6. We conclude that CS is closed under iterated controlled
SIN.

The iterated controlled PIN can be defined starting from the controlled
PIN. The formal definition can be obtained from Definition 2.3 by replacing
SIN by controlled PIN. Observe, however, that the iterated controlled PIN
can be defined only when the control function ∆, defined on Σ, has as values
languages over the same alphabet Σ.

In order to prove the closure of CS under iterated controlled PIN, the
workspace theorem (see, for example, [12], pp.93-97) will be invoked.

Assume that

D : S = u0=⇒u1=⇒ . . . =⇒un = u

is a derivation according to a grammar G. Then the workspace of u by the
derivation D is defined by

WSG(u, D) = max{lg(ui)| 0 ≤ i ≤ n}.

The workspace of u ∈ L(G) is defined by

WSG(u) = min{WSG(u, D)| D is a derivation of u}.

Note that WSG(u) ≥ lg(u) for any G and u.
The Workspace Theorem claims that if G = (N, T, S, P ) is a type-0

grammar and there is a natural number p such that

WS(u) ≤ p× lg(u),

for all nonempty words u ∈ L(G), then L(G) is a context-sensitive language.
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Lemma 4.3 The family of context-sensitive languages is closed under it-
erated controlled PIN.

Proof. Let L be a language generated by the context-sensitive grammar
G = (N, Σ, S, P ), and let ∆ : Σ−→2Σ∗

be a control function, ∆(a) 6= ∅,
∀a ∈ Σ. Assume that, for every a ∈ Σ, the language ∆(a) is generated
by the context- sensitive grammar Ga = (Na, Σa, Sa, Pa), that the non-
terminal sets N, Na, a ∈ Σ are pairwise disjoint and that ∪a∈ΣΣa ⊆ Σ.
Assume further that all the above grammars satisfy the requirements of
Theorem 2.7. The fact whether or not λ ∈ L does not affect the result of
controlled PIN into L. If λ belongs to L then L<

∗∆ = [(L−{λ})<
∗∆]∪

{λ}.Consequently we will assume, without loss of generality, that L is λ-
free.

We can construct then the following grammar:

G′ = (N ′, Σ′, S′, P ′),
Σ′ = Σ ∪ {$, #},
N ′ = N ∪ (∪a∈ΣNa) ∪ {S′, X},
P ′ = P ∪ (∪a∈Σ(Pa − {Sa−→λ}))∪

{S′−→XS′, S′−→$S#, X$−→$X}∪
{Xa−→aX | a ∈ Σ, λ ∈ ∆(a)}∪
{Xa−→aSaX | a ∈ Σ}∪
{Xa#−→aSa#| a ∈ Σ}∪
{Xa#−→a#| a ∈ Σ, λ ∈ ∆(a)},

where S′, X, $, # are new symbols which do not occur in any of the given
alphabets.

Intuitively, the grammar G′ works as follows. First, a sentential form
of the type Xn$w#, w ∈ L is generated, where n represents the number of
parallel iterations that will be made into w. X starts to move to the right.
When crossing a letter a, it generates at its left a start symbol of ∆(a).
The rules Sa−→λ are never needed. When X reaches the right extremity
of the sentential form, it disapears.

The language L(G′) is context-sensitive. Indeed, all rules of G′ except
the ones of the form Xa#−→a# are length-increasing. However, the ap-
plication of such a rule during a minimal derivation of a word α ∈ L(G) is
always preceded by the application of a rule Xa−→aSaX . If this wouldn’t
be the case, our X would represent a dummy iteration step, in which all the
inserted words are empty. This would further imply that the derivation for
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α is not minimal, as α could be obtained with a shorter derivation where
the dummy iteration step is omitted.

The rule Xa−→aSaX increases the length of the sentential form by
one and the rule Xa#−→a# decreases its length by one. Combining these
observations we conclude that the longest sentential form in a terminal
derivation of α has the length smaller than or equal to lg(α) + 1.

Consequently, for all words α ∈ L(G′) we have:

WSG′(α) ≤ 2 lg(α),

and, according to the workspace theorem, L(G′) is a context-sensitive lan-
guage.

If we consider now the morphism h : (Σ ∪ {$, #})∗−→Σ∗, defined by
h($) = h(#) = λ and h(a) = a for a ∈ Σ it can be proved that h(L(G′)) =
L<

∗∆. The construction and the proof are analogous to that of Theorem
2.9. The only difference is that here, every letter determines which words
can be inserted after it. Clearly, h is 3-linear erasing with respect to the
language L(G′).

Lemma 4.4 The family of regular and the family of context-free languages
are not closed under iterated controlled PIN.

Proof. Take L = {a} and the control function ∆ defined by ∆(a) = a.
Then,

L<
∗∆ = {a2n

| n ≥ 0},

which is not a context-free language.

Let P be the smallest class of languages which contains the empty set,
the language {λ}, the singleton letters and is closed under mirror image,
union with λ, controlled PIN, iterated controlled PIN and controlled PD
with singletons.

Theorem 4.4 P is contained in the family of context-sensitive languages
and properly contains the family of regular languages.

Proof. The fact that P contains REG can be shown using the proof of
Theorem 4.1. The control functions that appear in the proof have the value
∅ for some arguments. However, in the case of controlled PIN (controlled
PD), the control function cannot have the empty set as its value. We will
modify the functions as follows. Let $ be a new symbol which does not occur
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in any of the alphabets used in Theorem 4.1. For every controlled SIN and
iterated controlled SIN (resp. controlled SD) the control function receives
the value λ (resp. the value $) for all those letters for which it had previously
the value ∅. After this change, one notices that if we replace everywhere in
the proof the controlled SIN, iterated controlled SIN, controlled SD with
singletons with controlled PIN, iterated controlled PIN, controlled PD with
singletons respectively, the same relations hold. This happens because, in
all the cases occurring in the proof of Theorem 4.1, the parallel insertion
or deletion will amount in fact to sequential insertion or deletion.

According to Lemma 4.4, the inclusion REG⊆ P is proper.
The inclusion of P in CS follows from the fact that CS is closed under

mirror image, controlled PIN (see Theorem 2.19), iterated controlled PIN
(see the preceding Lemma ) and controlled PD with singletons (see Theorem
3.24).

Let P ′ be the smallest class of languages containing the empty set, {λ},
the singleton letters and closed under mirror image, union with λ, controlled
PIN, iterated controlled PIN and controlled PD. The difference between P
and P ′ is that, in the case of P , the controlled PD is restricted to the case
where only singletons are erased.

Theorem 4.5 P ′ is a Boolean algebra properly containing the family of
regular languages.

Proof. The family P is included in P ′, therefore P ′ properly contains the
family of regular languages.

It will be showed in the following that P ′ is closed under complemen-
tation. Let L be a language in P ′, over the alphabet Σ, and let #, $ be
letters which do not occur in Σ. Then,

{#$} ∪#Lc$$ = #Σ∗$$# >∆1,

where ∆1 is the control function:

∆1 : Σ ∪ {#, $}−→2(Σ∪{#,$})∗ , ∆1(#) = L$, ∆1(a) = ∆1($) = #, ∀a ∈ Σ.

Indeed, given a word w = #u$$# ∈ #Σ∗$$#, the ∆1-controlled PD:

• if u ∈ L, erases both u$ and the last #, yielding #$;

• if u ∈ Σ∗ − L, erases only the last #, yielding #u$$.
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One can use the control function ∆2 to erase the marker $, where

∆2 : Σ ∪ {#, $}−→2(Σ∪{$,#})∗,

∆2(#) = ∆2($) = ∆2(a) = $$, ∀a ∈ Σ.

Consequently we have:

#Lc = ({#$} ∪#Lc$$) >∆2.

Using now the control function ∆3 to erase the marker #:

∆3 : Σ ∪ {#}−→2(Σ∪{#})∗ , ∆3(#) = ∆3(a) = #, ∀a ∈ Σ,

we obtain,

Lc = Mi(Mi(#Lc) >∆3), if λ ∈ L,
Lc = Mi(Mi(#Lc) >∆3) ∪ {λ}, if λ 6∈ L.

The language #Σ∗$$#, can be obtained from the singleton letters by
using catenation and catenation closure. As, in order to obtain Lc, we have
started from Σ, $, # and L, and we have used only the operations of P ′,
we deduce that Lc ∈ P ′. Being closed under complementation and union,
P ′ is closed also under intersection. Consequently P ′ is a Boolean algebra.

4.2 Modifying the operands

In this section a particular case of sequential insertion will be considered,
namely the case when the result of the sequential insertion is a regular
language. The main theorems of the section state that, if the result of
sequential insertion L1< L2 is regular, the same result can be obtained by
replacing L2 with a regular language R such that L2 ⊆ R.

Before proving these results for the sequential insertion, the simpler case
of catenation will be considered.

Theorem 4.6 Let L1, R be languages over the alphabet Σ, R a regular
one. If there exists L2 ⊆ Σ∗ with the property L1L2 = R then there exists
a regular language R′, L2 ⊆ R′ ⊆ Σ∗, with the same property.
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Proof. Let R′ be the language defined by:

R′ = (L1\R
c)c.

(i) R′ is a regular language. Indeed, the left quotient of a regular lan-
guage by an arbitrary language is regular (see Theorem 3.1).

(ii) L1R
′ ⊆ R. Assume, for the sake of contradiction, that L1R

′ is not
included in R. There exist then words u ∈ L1, v ∈ R′, such that uv ∈ Rc.
This implies that v = (u\uv) ⊆ (L1\Rc) - a contradiction with the fact
that v was a word in R′.

(iii) Any language L2 with the property L1L2 ⊆ R is included in R′.
Indeed, assume that there exists a language L2 as before such that L2−R′ 6=
∅. Let v be a word in L2 − R′. As v belongs to L1\Rc, there exist words
w ∈ Rc, u ∈ L1, such that uv = w. This implies w ∈ L1L2 ⊆ R - a
contradiction with the fact that w was a word in Rc.

If there exists a language L2 such that L1L2 = R, according to (iii),
L2 ⊆ R′ and therefore R = L1L2 ⊆ L1R

′. As, according to (ii), we have
that L1R

′ ⊆ R, we deduce that L1R
′ = R. It has been showed in (i) that

R′ is a regular language, therefore the proof of the theorem is complete.

Corollary 4.1 The regular language R′ from the preceding theorem can be
effectively constructed if L1 is a regular or context-free language.

Proof. It follows from the preceding theorem and from Corollary 3.1.

Corollary 4.2 Let R be a regular language over an alphabet Σ. There
exists a finite number n ≥ 1 of distinct regular languages R′

i, 1 ≤ i ≤ n,
such that for any L1 ⊆ Σ∗ the following statements are equivalent:

(i) There exists a language L2 ⊆ Σ∗ with the property L1L2 = R.

(ii) There exists i, 1 ≤ i ≤ n, such that L1R
′
i = R.

Moreover, the regular languages R′
i, 1 ≤ i ≤ n, can be effectively con-

structed.

Proof. It follows from the preceding theorem and from Corollary 3.2. The
languages R′

i, 1 ≤ i ≤ n, are constructed by forming the complements of all
the possible (finitely many) languages that can be obtained from Rc by left
quotient. Since the equivalence problem is decidable for regular languages,
duplicates can be removed from the list R′

i.
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Observe that the list obtained in the preceding corollary may contain
languages R′

j for which the equality L1R
′
j = R does not hold for any lan-

guage L1. However, these languages can be removed from the list in the
following way. Note that, by using the mirror image operator, results sim-
ilar to Theorem 4.6, Corollary 4.1 and Corollary 4.2 can be obtained also
for the left operand.

Theorem 4.7 Let L2, R be languages over the alphabet Σ, R a regular
one. If there exists L1 ⊆ Σ∗ with the property L1L2 = R then there exists
a regular language R′′, L1 ⊆ R′′ ⊆ Σ∗, with the same property.

Corollary 4.3 The regular language R′′ from the preceding theorem can be
effectively constructed if L2 is a regular or context-free language.

Corollary 4.4 Let R be a regular language over an alphabet Σ. There
exists a finite number m ≥ 1 of distinct regular languages R′′

i , 1 ≤ i ≤ m
such that for any L2 ⊆ Σ∗ the following statements are equivalent:

(i) There exists a language L1 ⊆ Σ∗ with the property L1L2 = R.

(ii) There exists i, 1 ≤ i ≤ m, such that R′′
iL2 = R.

Moreover, the regular languages R′′
i, 1 ≤ i ≤ m, can be effectively

constructed.

We are now in position to effectively exclude from the list of Corollary
4.2 the languages R′

j for which the equality L1R
′
j = R does not hold for

any L1. According to the preceding corollary, if such an L1 would exist
then we would also have R′′

i R′
j = R for some index i, 1 ≤ i ≤ m.

For each j, 1 ≤ j ≤ n, check, for all i, 1 ≤ i ≤ m, whether or not
R′′

iR
′
j = R. If the equality holds for at least one index i, the language R′

j

is retained in the list, otherwise it is eliminated.
In a similar way, we can effectively exclude from the list in Corollary

4.4 the languages R′′
j for which the equality R′′

jL2 = R does not hold for
any L2.

In order to prove similar results for the more general case of sequential
insertion, a new operation will be introduced: the dipolar deletion, denoted
by ⇀↽. The dipolar deletion of the word v from the word u is the set
consisting of the words obtained from u by erasing a prefix and a suffix
whose catenation equals v. The dipolar deletion is needed in this section
to perform a task ”inverse” to SIN: if v< w = u then w can be recovered
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from u by dipolar deletion of v. However, the sequential insertion and the
dipolar deletion are not inverse operations. In general, if L1, L2, L3 are
languages over Σ such that L1< L2 = L3 then L2 ⊆ L3 ⇀↽ L1, but the
other inclusion does not hold.

Definition 4.1 Let L1, L2 be languages over the alphabet Σ. The dipolar
deletion of L2 from L1 is:

L1 ⇀↽ L2 =
⋃

u∈L1,v∈L2

(u ⇀↽ v),

where

u ⇀↽ v = {w ∈ Σ∗| ∃ v1, v2 ∈ Σ∗ : u = v1wv2, v = v1v2}.

Example 4.1 Let L1 = {ab}, L2 = {aba} and L3 = {abaab, aabab,
ababa} = L1< L2. The dipolar deletion of L1 from L3 is:

L3 ⇀↽ L1 = {aba, baa, aab},

a set which strictly includes L2.

Theorem 4.8 The family of context-sensitive languages is not closed un-
der dipolar deletion with regular languages.

Proof. Let L1, L2 be languages over an alphabet Σ and #, $ be letters which
do not occur in Σ. The theorem follows from the fact that we have

#L1$ ⇀↽ #L2 = (L2\L1)$,

and the family of context-sensitive languages is not closed under left quo-
tient with regular languages.

Theorem 4.9 The family of context-sensitive languages is closed under
dipolar deletion with singletons.

Proof. Let L be a language and w be a word over the same alphabet Σ.
The theorem follows as we have

L ⇀↽ {w} =

w1w2=w⋃

w1,w2

(w1\L)/w2,

and CS is closed under left and right quotient with singletons and under
finite union.
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Theorem 4.10 The family of context-free languages is not closed under
dipolar deletion.

Proof. The proof is similar to that of Theorem 3.4. Let L1, L2 be the
languages defined by:

L1 = #{aib2i| i > 0}∗$,
L2 = #a{biai| i > 0}∗.

Then we have
(L1 ⇀↽ L2) ∩ b+$ = {b2n

$| n > 0},

which is not a context-free language.

The following result is analogous to Lemma 3.1: the result of the dipolar
deletion from a regular language is regular regardless the complexity of the
deleted language.

Lemma 4.5 Let L, R be two languages over the alphabet Σ. If R is a
regular language then the language R ⇀↽ L is regular.

Proof. Let A = (S, Σ, s0, F, P ) be a finite automaton that accepts the lan-
guage R, in which all the states are useful. A state is called useful if there
exists a path containing it which starts from the initial state and ends in a
final state. For every two states s1, s2 in S define:

Ls1,s2
= {w ∈ Σ∗| s1w=⇒∗s2 in A}.

It will be showed in the following that:

R ⇀↽ L =
⋃

(s1,s2)∈S′

Ls1,s2
, (∗)

where

S′ = {(s1, s2) ∈ S × S| ∃sf ∈ F : Ls0,s1
Ls2,sf

∩ L 6= ∅}.

Indeed, let w be a word in R ⇀↽ L. According to the definition of the
dipolar deletion, there exist words u ∈ R, v ∈ L, v1, v2 ∈ Σ∗ such that
u = v1wv2, v = v1v2.

As u belongs to R = L(A) there exists a derivation

s0u = s0v1wv2=⇒
∗s1wv2=⇒

∗s2v2=⇒
∗sf , sf ∈ F,
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according to the rules of P . The existence of the subderivations :

s0v1=⇒∗s1,
s1w=⇒∗s2,
s2v2=⇒∗sf , sf ∈ F,

implies that v1 ∈ Ls0,s1
, w ∈ Ls1,s2

and v2 ∈ Ls2,sf
. As v1v2 belongs to

the set Ls0,s1
Ls2,sf

and also to L, it follows that Ls0,s1
Ls2,sf

∩ L 6= ∅, and
(s1, s2) ∈ S′. Consequently, w is a word in the right member of (*).

For the reverse inclusion let w be a word in the right member of (*).
There exist states s1, s2 ∈ S and sf ∈ F such that w ∈ Ls1,s2

and
Ls0,s1

Ls2,sf
∩ L 6= ∅. Let v be a word in Ls0,s1

Ls2,sf
∩ L, being there-

fore of the form v = v1v2 where v1 ∈ Ls0,s1
and v2 ∈ Ls2,sf

.
According to the definition of Ls1,s2

the following derivations exist in
A:

s0v1=⇒∗s1,
s1w=⇒∗s2,
s2v2=⇒∗sf .

We can construct then the following accepting derivation in A:

s0v1wv2=⇒
∗s1wv2=⇒

∗s2v2=⇒
∗sf , sf ∈ F,

which shows that v1wv2 is a word in R = L(A). As v = v1v2 is a word
in L, according to the definition of the dipolar deletion, we deduce that w
is a word in the set (v1wv2 ⇀↽ v) ⊆ R ⇀↽ L. The equality (*) is therefore
proved.

The lemma now follows as R ⇀↽ L is a regular language, being equal to
a finite union of regular languages.

Corollary 4.5 The language R ⇀↽ L can be effectively constructed if R is
a regular language and L is a regular or context-free language.

Proof. The claim follows from the proof of the preceding lemma. Indeed,
if R is a regular language and L is regular (context-free) then the language
Ls0,s1

Ls2,sf
∩ L is regular (context-free) for any states s1, s2, sf . As the

emptiness problem is decidable for regular (context-free) languages, the set
S′ and therefore the language R ⇀↽ L, can be effectively constructed.

Corollary 4.6 For any regular language R there exist finitely many lan-
guages that can be obtained from R by dipolar deletion.
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Proof. It follows from the preceding lemma by the fact that the automaton
A is finite. This implies that there are finitely many different possibilities
of constructing the union from (*).

The languages that can be obtained from R by dipolar deletion will be
among the languages:

LS′ =
⋃

(s1,s2)∈S′

Ls1,s2
,

where S′ is an arbitrary subset of S × S. There exists at most 2card(S×S)

such different languages.

The lemma is used to prove the main result of this section: if the result
of SIN between two languages is regular, the same result can be obtained
by replacing the inserted language with a regular one. This language can
be effectively constructed if the language in which the insertion was made
is regular or context-free.

Theorem 4.11 Let L1, R be languages over the alphabet Σ, R a regular
one. If there exists L2 ⊆ Σ∗ with the property L1< L2 = R then there
exists a regular language R′, L2 ⊆ R′ ⊆ Σ∗, with the same property.

Proof. Let R′ be the language defined by R′ = (Rc ⇀↽ L1)
c
.

(i) From Lemma 4.5 and from the fact that REG is closed under com-
plementation it follows that R′ is a regular language.

(ii) L1< R′ ⊆ R. Indeed, assume that L1< R′ is not included in R.
There exist then words u ∈ L1, v ∈ R′ and a decomposition of u, u = u1u2

such that u1vu2 does not belong to R. According to the definition of the
dipolar deletion, the word v belongs to Rc ⇀↽ L1. This contradicts our
assumption that v ∈ R′ = (Rc ⇀↽ L1)

c. We conclude that L1< R′ ⊆ R.
(iii) Any language L2 ⊆ Σ∗ with the property L1< L2 ⊆ R is included

in R′. Indeed, assume that there exists a language L2 ⊆ Σ∗ , L1< L2 ⊆ R
such that L2 is not included in R′. There exists then a word v in L2 −R′.
As v belongs to (R′)c = Rc ⇀↽ L1, there exist words w ∈ Rc, u ∈ L1 and u1,
u2 ∈ Σ∗ such that w = u1vu2, and u = u1u2. The word w = u1vu2 is an
element of the set (u< v) ⊆ L1< L2 ⊆ R. We arrived at a contradiction
as w was a word in Rc. Consequently, our assumption was false and L2 is
included in R′.

If there exists L2 ⊆ Σ∗ with the property L1< L2 = R, according to
(iii), L2 ⊆ R′ and therefore R = L1< L2 ⊆ L1< R′. As, according to
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(ii) we have that L1< R′ ⊆ R, we deduce that L1< R′ = R. It has
been showed in (i) that R′ is a regular language, therefore the proof of the
theorem is complete.

Corollary 4.7 The regular language R′ from Theorem 4.11 can be effec-
tively constructed if L1 is a regular or context-free language.

Proof. It follows from the preceding theorem and from Corollary 4.5.

Corollary 4.8 Let R be a regular language over an alphabet Σ. There
exists a finite number n ≥ 1 of distinct regular languages R′

i, 1 ≤ i ≤ n,
such that for any L1 ⊆ Σ∗ the following statements are equivalent:

(i) There exists a language L2 ⊆ Σ∗ with the property L1< L2 = R.

(ii) There exists i, 1 ≤ i ≤ n, such that L1< R′
i = R.

Moreover, the regular languages R′
i, 1 ≤ i ≤ n, can be effectively con-

structed.

Proof. It follows from Corollary 4.6 and from Theorem 4.11. The languages
R′

i, 1 ≤ i ≤ n, are constructed by forming the complements of all the
possible (finitely many) languages that can be obtained from Rc by dipolar
deletion. Since the equivalence problem is decidable for regular languages,
duplicates can be removed from the list R′

i.

Observe that the list obtained in the preceding corollary may contain
languages R′

i for which the equality L1< R′
i = R does not hold for any

language L1. However, these languages can be eliminated from the list as
shown in the end of this section.

Theorem 4.11 was concerned with the replacement of the right operand
of the insertion with a regular one which produced the same result. An
analogous theorem can be proved for the left operand. Here, instead of the
dipolar deletion, the sequential deletion is used as an operation which per-
forms a task ”inverse” to SIN. If L1, L2, L3 are languages over the alphabet
Σ such that L1< L2 = L3, the language L1 can be recovered from L3 by
sequentially deleting L2. However, the two operations are not inverse to
each other. In general, if L1< L2 = L3 we have that L1 ⊆ L3 >L2, but
the reverse inclusion does not hold.

Theorem 4.12 Let L2, R be two languages over the alphabet Σ, R a regular
one. If there exists L1 ⊆ Σ∗ with the property L1< L2 = R then there
exists a regular language R′, L1 ⊆ R′ ⊆ Σ∗ with the same property.
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Proof. Let R′ = (Rc
>L2)

c.
(i) According to Lemma 3.1, Rc

>L2 is a regular language and, there-
fore, R′ is also regular.

(ii) The language R′
< L2 is included in R. Indeed, let us assume

that R′
< L2 is not included in R. There exist then u = u1u2 ∈ R′

where u1, u2 ∈ Σ∗, and v ∈ L2 such that u1vu2 is an element of the set
(R′

< L2) − R. As the word u1vu2 belongs to Rc, u = u1u2 is a word in
the set (u1vu2 >v) ⊆ Rc

>L2. This contradicts the fact that u ∈ R′ =
(Rc

>L2)
c. Our assumption was false and, therefore, R′

< L2 ⊆ R.
(iii) Any language L1 ⊆ Σ∗ with the property L1< L2 ⊆ R is included

in R′. Indeed, assume that this is not the case and let L1 ⊆ Σ∗ be a
language such that L1< L2 ⊆ R and L1 is not included in R′. Let u be
a word in L1 − R′. The word u belongs to R′c = Rc

>L2 and therefore
there exist w ∈ Rc, v ∈ L2 and u1, u2 ∈ Σ∗ such that w = u1vu2, u = u1u2.
According to the definition of the sequential insertion, w = u1vu2 is a word
in the set (u1u2< v) ⊆ L1< L2 ⊆ R. This contradicts the fact that
w ∈ Rc. Our assumption was false, therefore we conclude that L1 ⊆ R′.

If there exists a language L1 ⊆ Σ∗ with the property L1< L2 ⊆ R
then, according to (iii), L1 ⊆ R′. This implies that R = L1< L2 ⊆
R′

< L2. As, according to (ii), R′
< L2 ⊆ R, we conclude that R′

< L2 =
R. The theorem now follows as it has been showed in (i) that R′ is a regular
language.

Corollary 4.9 The language R′ from Theorem 4.12 can be effectively con-
structed if L2 is a regular or a context-free language.

Proof. It follows from Theorem 4.12 and Corollary 3.4.

Corollary 4.10 Let R be a regular language over the alphabet Σ. There
exists a finite number n ≥ 1 of distinct regular languages R′

i, 1 ≤ i ≤ n,
such that, for every L2 ⊆ Σ∗, the following statements are equivalent:

(i) There exists L1 ⊆ Σ∗ such that L1< L2 = R.

(ii) There exists i, 1 ≤ i ≤ n, such that R′
i

< L2 = R.

Moreover, the regular languages R′
i, 1 ≤ i ≤ n, can be effectively con-

structed.

Proof. It follows from Corollary 3.5 and Theorem 4.12. The languages R′
i,

1 ≤ i ≤ n, are constructed by forming the complements of all the possi-
ble (finitely many) languages that can be obtained from Rc by sequential
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deletion. The duplicates can be eliminated as the equivalence problem is
decidable for regular languages.

Observe that the above list may contain languages R′
i for which the

equality R′
i

< L2 = R does not hold for any language L2. These languages
can be eliminated from the list in a similar way as done in the remarks
following Corollary 4.2, and using the twin list obtained in Corollary 4.8.

4.3 Derivatives

In studying the left and right quotient as operations on languages, of special
interest is the case where the language to be deleted is a singleton.

The left derivative of a language L over Σ with respect to a word w ∈ Σ∗

is obtained as a particular case of left quotient:

∂l
wL = {u ∈ Σ∗| wu ∈ L}.

The right derivative of the language L with respect to the word w is
defined similarily as:

∂r
wL = {u ∈ Σ∗| uw ∈ L}.

A natural generalization of the right and left derivative is the operation
where the word w is extracted not from the left or right extremity of a word
in L but from an arbitrary place in it.

Definition 4.2 Let L be a language and w be a word over the alphabet Σ.
The derivative of L with respect to w is defined as:

∂wL = {uv ∈ Σ∗| uwv ∈ L}.

Example 4.2 Let L = {abbbab, aaabbb, abab} and w = ab. The derivative
of L with respect to w is:

∂wL = {bbab, abbb, aabb, ab}

whereas the left and right derivatives are respectively:

∂l
wL = {bbab, ab}, ∂r

wL = {abbb, ab}.
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The derivative is a particular case of sequential deletion where the lan-
guage to be deleted consists of a single word. One can define, in a similar
way, the iterated, permuted, controlled, scattered and permuted scattered
derivative as particular cases of iterated, permuted, controlled, scattered
and permuted scattered sequential deletion respectively. The closure prop-
erties of REG, CF, CS under all these types of derivatives have been studied
in Chapter 3.

In this section, some properties of the derivatives of regular languages
are dealt with. Before that, some supplementary notions will be introduced.
Let L be a regular language and A = (S, Σ, s0, F, P ) a finite deterministic
automaton that accepts it. For every word w ∈ Σ∗ define the function
fA

w : S−→S as follows:

fA
w (s) = s′ iff sw=⇒∗s′ in A.

The function is total. If the automaton is clear from the context, we will
denote the function simply by fw.

Let L be a language over an alphabet Σ. The relations EL and ≡L over
Σ∗, referred to as the equivalence and the congruence relation induced by L
are defined as follows. uELw iff, for all y ∈ Σ∗, uy is in L exactly when wy is
in L. u ≡L w iff, for all x, y ∈ Σ∗, xuy ∈ L exactly when xwy ∈ L. Details
about the equivalence and congruence relations induced by languages can
be found for example in [11], pp.27-31, [5], pp.65-67.

It is known that uELw iff the left derivatives of L with respect to u
and w coincide, that is, ∂l

uL = ∂l
wL. As regards the congruence relation,

u ≡L w iff fu = fw in a minimal finite deterministic automaton that accepts
L. (Here minimal refers to the number of states.) Obviously, if u ≡L w
then ∂uL = ∂wL. The reverse implication does not hold, as proved by the
following example.

Example 4.3 Let L = (ababa)∗ and w1 = babaa, w2 = baaba, w3 = abaab,
w4 = aabab. Then we have:

∂wi
L = (ababa)+, for i = 1, 2, 3, 4,

but wi 6≡L wj for i 6= j. For instance, aw1baba ∈ L but awibaba 6∈ L for
i 6= 1.

The derivatives define an equivalence relation DL over Σ∗ by uDLv iff
∂uL = ∂vL. DL is an equivalence relation with a ”coarser” class division
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than ≡L: each equivalence class of DL consists of one or more classes of
≡L.

In the following a sufficient condition under which a language gives rise
to the same derivative with respect to two different words will be given.

Theorem 4.13 Let L be a regular language accepted by the deterministic
automaton A = (S, Σ, s0, F, P ) and u, v words over Σ∗. If fu = fv then
∂uL = ∂vL.

Proof. Let α be a word in ∂uL. There exist α1, α2 ∈ Σ∗ and w ∈ L such
that α = α1α2 and w = α1uα2. Consequently, the derivation:

s0α1uα2=⇒
∗s1uα2=⇒

∗s2α2=⇒
∗sf , sf ∈ F,

exists in the automaton A.
According to the definition of fu : S−→S, we have s2 = fu(s1). As fu =

fv it follows that s2 = fv(s1) and consequently the derivation s1v=⇒∗s2

exists in A. Therefore the following derivation can be constructed in A:

s0α1vα2=⇒
∗s1vα2=⇒

∗s2α2=⇒
∗sf , sf ∈ F.

We have used the derivation s0α1uα2=⇒
∗sf in which the subderivation

s1u=⇒∗s2 has been replaced by s1v=⇒∗s2. This proves that the word
α1vα2 belongs to L which implies that α1α2 belongs to ∂vL.

The reverse inclusion can be proved similarily.

The converse of the theorem does not hold, as shown by the following
example.

Example 4.4 Let L = {ab, ca} and let A = (S, Σ, s0, F, P ) be a finite
deterministic automaton that accepts it, where:

S = {s0, s1, s2, s3, s4, s
′},

F = {s2, s4},
Σ = {a, b, c},
P = {s0a−→s1, s0b−→s′, s0c−→s3}∪

{s1a−→s′, s1b−→s2, s1c−→s′}∪
{s2a−→s′, s2b−→s′, s2c−→s′}∪
{s3a−→s4, s3b−→s′, s3c−→s′}∪
{s4a−→s′, s4b−→s′, s4c−→s′}∪
{s′a−→s′, s′b−→s′, s′c−→s′}.
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Figure 1: The automaton from Example 4.4.

The automaton A is represented in Figure 1. The state s′ is a ”garbage”
state, introduced only to make the automaton deterministic. It has been
omitted from the figure, for reasons of clarity.

The derivative of L with respect to both b and c equals {a} but the
functions fb and fc are not equal: fb(s1) = s2 whereas fc(s1) = s′.

Corollary 4.11 A regular language L has at most nn different derivatives,
where n is number of states in a minimal finite deterministic automaton
accepting L.

Proof. Let L be a regular language accepted by a minimal finite determin-
istic automaton A = (S, Σ, s0, F, P ) with n states. The number of different
total functions f : S−→S is k = nn. Using the previous theorem we deduce
that there exist at most k different derivatives of L.

Example 4.5 Let us consider the minimal finite deterministic automaton
A = (S, Σ, s0, F, P ) where

S = {s0, s1},
Σ = {a1, a2, a3, a4},
F = {s0},
P = {s0a1−→s0, s1a1−→s1}∪

{s0a2−→s0, s1a2−→s0}∪
{s0a3−→s1, s1a3−→s1}∪
{s0a4−→s1, s1a4−→s0}.
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Figure 2: The automaton from Example 4.5.

The automaton A is represented in Figure 2.
The words a1, a2, a3, a4 determine respectively the functions:

a1 : f1(s0) = s0, f1(s1) = s1,
a2 : f2(s0) = s0, f2(s1) = s0,
a3 : f3(s0) = s1, f3(s1) = s1,
a4 : f4(s0) = s1, f4(s1) = s0.

According to the preceding corollary, the maximum number of different

derivatives that L(A) = L can have is card(S)card(S) = 4. In order to
show that L has 4 different derivatives we will prove that ∂a1

L, ∂a2
L, ∂a3

L,
∂a4

L are all different.
The word a3a2a1 is in L therefore a3a1 ∈ ∂a2

L. But a3a1 is not in ∂a1
L

because neither a1a3a1 nor a3a1a1 belongs to L. Consequently, ∂a2
L 6=

∂a1
L.
The word a1a1 belongs to L therefore a1 ∈ ∂a1

L. However, a1 is neither
in ∂a3

L nor in ∂a4
L as none of the words a1a3, a3a1, a1a4, a4a1 is in L.

Consequently, ∂a3
L 6= ∂a1

L and ∂a4
L 6= ∂a1

L.
The word a2a1 belongs to L, therefore a1 ∈ ∂a2

L. But, as none of the
words a3a1, a1a3, a4a1, a1a4 is in L, a1 belongs neither to ∂a3

L nor to
∂a4

L. Consequently, ∂a3
L 6= ∂a2

L and ∂a4
L 6= ∂a2

L.
The word a3a4a1 belongs to L, therefore a3a1 ∈ ∂a4

L. But a3a1 does
not belong to ∂a3

L because neither a3a3a1 nor a3a1a3 is in L. Consequently,
∂a3

L 6= ∂a4
L.

The derivatives ∂a1
L, ∂a2

L, ∂a3
L, ∂a4

L are pairwise distinct. Conse-
quently, the language L has four different derivatives which is the maximal
number of derivatives it can have.

Let A = (S, Σ, s0, F, P ) be a finite deterministic automaton. Two states
s, s′ ∈ S are called distinguishable if there exists a word u ∈ Σ∗ such
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that su=⇒∗s1, s′u=⇒∗s′1 and s1 ∈ F , s′1 6∈ F , or viceversa. A finite
deterministic automaton in which all states are distinguishable is minimal
for its language (see [5], pp.68-71).

Using the method developed in the previous example we can prove a
more general result.

Theorem 4.14 Let n be a natural number, n ≥ 1. There exists a minimal
finite deterministic automaton An, with n states, such that the language
accepted by An has nn different derivatives. Moreover, no other language
accepted by a minimal finite deterministic automaton with n states has more
different derivatives.

Proof. Let n ≥ 1 be a natural number and An be the automaton:

An = (S, Σ, s1, F, P ),
S = {s1, s2, . . . , sn},
Σ = {f | f : S−→S},
F = {s1},
P = {sif−→sj | si, sj ∈ S, f ∈ Σ, and f(si) = sj}.

Clearly, An is a finite deterministic automaton. A is also minimal. This
follows because any two distinct states si and sj are 1-distinguishable, i.e.,
a letter distinguishes them. Such a letter is f which, viewed as a function,
maps si into s1 and sj into s2.

We shall show in the following that the language L = L(An) has nn

different derivatives.
If n = 1 then card(Σ) = nn = 1. The language accepted by the au-

tomaton A1 is L = {fp| p ≥ 0} and has one derivative, ∂fL = L.
If n > 1, as card(Σ) = nn, the proof is complete if we show that for

every a, b ∈ Σ, a 6= b we have ∂aL 6= ∂bL. Let a, b be two distinct letters in
Σ. One of the following cases holds:

(i) a(s1) 6= b(s1).
If this is the case, then either a(s1) 6= s1 or b(s1) 6= s1. Assume that

the first alternative holds, the other one being similar. Choose f ∈ Σ with
the following properties:

f(s1) = s1, f(a(s1)) = a(s1), f(b(s1)) = s1.

The word bf belongs to L as we can construct the derivation:

s1bf=⇒b(s1)f=⇒f(b(s1)) = s1,
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according to An. Consequently, f is a word in ∂bL. However, f does not
belong to ∂aL as neither af nor fa belong to L:

s1af=⇒a(s1)f=⇒f(a(s1)) = a(s1) 6= s1,
s1fa=⇒f(s1)a = s1a=⇒a(s1) 6= s1.

Consequently, if (i) holds then ∂aL 6= ∂bL.
(ii) a(s1) = b(s1) and a(si) 6= b(si) for some 1 < i ≤ n.
If this is the case then either a(si) 6= s1 or b(si) 6= s1. Assume that

a(si) 6= s1, the other alternative being similar. We now consider two sub-
cases.

(ii)′ b(si) 6= si.
Choose f, g ∈ Σ with the properties:

f(x) = si, ∀x ∈ S,
g(x) = si, ∀x ∈ S, x 6= b(si) and g(b(si)) = s1.

The word fbg belongs to L as we can construct the derivation:

s1fbg=⇒f(s1)bg = sibg=⇒b(si)g=⇒g(b(si)) = s1,

according to An. This implies that fg belongs to ∂bL. However, fg is not
a word in ∂aL as none of the words afg, fag, fga is in L:

s1afg=⇒a(s1)fg=⇒f(a(s1))g = sig=⇒g(si) = si 6= s1,

(we have used the fact that b(si) 6= si)

s1fag=⇒f(s1)ag = siag=⇒a(si)g=⇒g(a(si)) = si 6= s1,

(we have used the fact that a(si) 6= b(si))

s1fga=⇒f(s1)ga = siga=⇒g(si)a = sia=⇒a(si) 6= s1,

(we have used the facts that b(si) 6= si and a(si) 6= s1).
Consequently, if (ii)′ holds then ∂aL 6= ∂bL.
(ii)′′ b(si) = si.
As si 6= s1, the above equality implies b(si) 6= s1. As a(si) 6= b(si)

and b(si) = si we deduce that a(si) 6= si. Therefore we are now in the
case b(si) 6= s1 and a(si) 6= si, which is symmetric to (ii)′ (with a and
b switching their roles). Consequently, also if this case holds we obtain
∂aL 6= ∂bL.



132 OPERATIONS: POWER AND RESTRICTIONS

As, in all the possible cases we found that ∂aL 6= ∂bL, we deduce that the
two derivatives are distinct. The two letters a, b were arbitrarily chosen from
Σ, therefore we conclude that all the nn elements of Σ produce derivatives
which are pairwise distinct. Consequently, L = L(An) has nn diffferent
derivatives. The second claim of the theorem follows from Corollary 4.11.

The following theorem shows that the language consisting of the words
with respect to which a given regular language has the same derivative is
regular.

Theorem 4.15 Let L be a regular language over the alphabet Σ. For any
word w ∈ Σ∗ the language:

Lw = {v ∈ Σ∗| ∂wL = ∂vL}

is regular and can be effectively constructed.

Proof. Let A = (S, Σ, s0, F, P ) be a finite deterministic automaton that
accepts the language L.

For every state s ∈ S and every function f : S−→S define:

Ls,f = {w ∈ Σ∗| sw=⇒∗f(s)}

and
Lf =

⋂

s∈S
Ls,f .

Each of the languages Ls,f is regular and each Lf is regular as a finite
intersection of regular languages.

Claim.

Lf = {w ∈ Σ∗| fw = f}.

” ⊆ ” Let w be a word in Lf . As w ∈ Ls,f for every state s ∈ S, the
derivation sw=⇒∗f(s) exists in the automaton A for every s ∈ S.

According to the definition of fw : S−→S, the derivation sw=⇒∗fw(s)
exists in A for every s ∈ S. As the automaton A is a deterministic one, we
deduce that f(s) = fw(s) for every state s ∈ S, that is, f = fw.

” ⊇ ” Let w ∈ Σ∗ be a word such that f(s) = fw(s) for every s ∈ S.
Then, for every state s ∈ S we have:

w ∈ Ls,f = {w ∈ Σ∗| sw=⇒∗f(s) = fw(s)}
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that is,

w ∈
⋂

s∈S
Ls,f = Lf ,

and the equality is proved.
The claim shows that the family {Lf}f :S−→S determines a finite parti-

tion of Σ∗ into disjoint regular languages Lf . To a set Lf belong those and
only those words w such that fw = f . To prove the theorem we show that
for a given w ∈ Σ∗, Lw is a union of some of the languages Lf .

There exist k = card(S)card(S) different functions f : S−→S. Given a
word w ∈ Σ∗ we construct:

L′ =
⋃k

i=1 {Lfi
| fi : S−→S and

∃ v ∈ Lfi
: ∂vL = ∂wL}.

The language L′ is nonempty, containing at least the word w. We will prove
in the following that L′ = Lw where Lw is the language mentioned in the
statement of the theorem.

Indeed, let u ∈ L′. There exist i ≤ k and fi : S−→S such that u ∈ Lfi

and ∂vL = ∂wL for some v ∈ Lfi
. According to the previous claim, fu =

fv = fi.
According to Theorem 4.13, ∂uL = ∂vL and therefore ∂uL = ∂vL =

∂wL. This implies that u belongs to Lw.
For the reverse inclusion, let u be a word in Lw. There exists i ≤ k such

that the function fu : S−→S equals the function fi : S−→S. As, according
to the definition of Lw, ∂uL = ∂wL it follows that u belongs to the set

{Lfi
| fi : S−→S and ∃u ∈ Lfi

: ∂uL = ∂wL}

that is u belongs to L′. The equality L′ = Lw is therefore proved. As L′ is
a regular language it follows that Lw is a regular language.

Using the above equality, for every word w the language Lw can be
effectively constructed. Indeed, the sets Ls,f , Lf can be constructed for
every f : S−→S and every state s ∈ S.

In order to construct L′ we use the remark that, for a total function
fi : S−→S, all the words in Lfi

give the same derivative with respect to
L. This means that, for any function fi : S−→S it suffices to check the
equality ∂vL = ∂wL for an arbitrary word v ∈ Lfi

. If the answer is YES,
the set Lfi

is taken into the union, else the function fi+1 is tried. The
process terminates as the number of different functions to be checked is
finite.
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Note that REG is closed under sequential deletion (see Corollary 3.3)
and therefore under derivative. The equivalence problem is decidable for
regular languages that is, the problem ”Is ∂vL equal with ∂wL?” is decidable
for regular languages L.

Corollary 4.12 Let L be a regular language over an alphabet Σ. For any
word w ∈ Σ∗ the languages:

Ll
w = {v ∈ Σ∗| ∂l

wL = ∂l
vL},

Lr
w = {v ∈ Σ∗| ∂r

wL = ∂r
vL}

are regular and can be effectively constructed.

Proof. Let L be a language and w be a word over Σ and let $ be a symbol
which does not occur in Σ. Consider L′ = $L (resp. L$) and w′ = $w
(resp. w$). Then

Ll
w = ($\{v ∈ (Σ ∪ {$})∗| ∂w′L′ = ∂vL

′}) ∩ Σ∗

(resp. Lr
w = ({v ∈ (Σ ∪ {$})∗| ∂w′L′ = ∂vL′}/$) ∩ Σ∗).

Using the preceding theorem and the fact that REG is closed under left
(right) quotient and intersection with regular languages, we deduce that
the languages Ll

w and Lr
w are regular and can be effectively constructed.

We are now in position to settle the closure of the family of context-free
languages under dipolar deletion with regular languages.

Theorem 4.16 The family of context-free languages is closed under dipo-
lar deletion with regular languages.

Proof. Let L be a context-free and R be a regular language over an alphabet
Σ. According to Theorem 3.1 and Corollary 3.2 there exist finitely many
languages Ri, 1 ≤ i ≤ n, that can be obtained from R by left quotient,
and they are regular. Therefore, for each w ∈ Σ∗ there exists an index i,
1 ≤ i ≤ n, such that w\R = Ri.

The preceding Corollary assures that the languages Li = {w| w\R =
Ri} are regular for all i, 1 ≤ i ≤ n.

Claim. L ⇀↽ R =
⋃n

i=1(Li\L)/Ri.



4.4 THE SINGLETON CASE 135

”⊆” Let w be a word in L ⇀↽ R. There exist xy ∈ R such that xwy ∈ L.
There also exists an index i, 1 ≤ i ≤ n, such that x\R = Ri. Obviously,
y ∈ Ri and x ∈ Li. As w belongs to (x\xwy)/y, w is an element of the set
(Li\L)/Ri.

”⊇” Let w be a word in (Li\L)/Ri for some i, 1 ≤ i ≤ n. There exist
y ∈ Ri and x ∈ Li such that xwy ∈ L. As x ∈ Li, x\R = Ri. Moreover, as
y ∈ Ri, it follows that xy ∈ R. This further implies that w ∈ L ⇀↽ R, and
the proof of the claim is complete.

The theorem now follows as CF is closed under left, right quotient with
regular languages and under finite union.

4.4 The singleton case

The catenation and the right and left quotient of words are deterministic
operations in the sense that the result of the operation is, in all three cases,
a single word. The sequential insertion and sequential deletion (called in
this section shortly insertion and deletion) are nondeterministic versions of
catenation respectively right and left quotient. The result of the insertion
(deletion) of one word into (from) another is in general a set whose car-
dinality is greater than one. A natural problem that arises is under what
circumstances the insertion or the deletion of two words is deterministic,
that is, produces as result a singleton set.

The structural property of words which influences the answer to this
problem is whether or not they are bordered (the terminology is due to
[14]). Before this, the notion of a primitive word is introduced.

Definition 4.3 A word u ∈ Σ+ is called a primitive word if u = gi, g ∈
Σ+, i ≥ 1, implies that i = 1.

Every word in Σ+ can be expressed uniquely as a power of a primitive word
(see [8], [14], p.7).

Definition 4.4 A word u ∈ Σ+ is called bordered if u = xy = yx′ for some
x, y, x′ ∈ Σ+.

A word which is not bordered will be called unbordered. Clearly, an un-
bordered word is primitive. Thus the set of unbordered words is a proper
subfamily of the set of primitive words.

Example 4.6 The following words over Σ = {a, b} are bordered: aba,
ababab, ababa. The words aab, abb, a2b2 are unbordered.
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The following lemmas (see [14], pp.6-11) will be needed in the sequel:

Lemma 4.6 Let x, y be words in Σ∗ such that xy 6= λ. If xy = yx then
there uniquely exist a primitive word g ∈ Σ+ and naturals, i, j ≥ 0, i+j > 0,
with the property x = gi, y = gj.

Lemma 4.7 If g ∈ Σ+ is a primitive word such that g = xy = yx for some
x, y ∈ Σ∗, then x = λ or y = λ.

For a bordered primitive word we have the following property (see [15]):

Lemma 4.8 Let u be a bordered primitive word in Σ+. Then u can be
expressed as u = xyx for some x, y ∈ Σ+.

The following two theorems give necessary and sufficient conditions un-
der which the result of the deletion of a word from another is a singleton.

Note. Let u, w be words in Σ∗. If u = λ then w >u is a singleton,
namely {w}. If w = λ then w >u is a singleton iff u = λ. Therefore we
will deal in the following only with the case where u and w are nonempty
words.

Theorem 4.17 If w, u are words in Σ+ and u is a power of an unbordered
word g ∈ Σ+, u = gi, i ≥ 1, then the statements (a) and (b) are equivalent:

(a) The set w >u is a singleton;

(b) The word w is of the form w = αgjβ, j ≥ i, α, β ∈ Σ∗, where neither
α nor β contains u as a subword.

Proof. (a)=⇒(b) Let us assume that w, u ∈ Σ+ as in the theorem.If w >u
is a singleton, for any two decompositions of w as w = xuy = euf with
x, y, e, f ∈ Σ∗, we have xy = ef . Let us choose x, y, e, f in such a way that
the two occurrences of u are the rightmost and the leftmost one. Consider
now all the possible relative positions of x, y and e, f .
• If lg(eu) ≤ lg(x) then:

w = eu x2uy
︸ ︷︷ ︸

f

= eux2
︸︷︷︸

x

uy, x2 ∈ Σ∗.

The equality xy = ef implies in this case that eux2y = ex2uy that is,
ux2 = x2u. According to Lemma 4.6, x2 and u are powers of the same
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primitive word. As u = gi, g primitive, we deduce that x2 = gk, k ≥ 0.
The word w can be then written as

w = egigkgiy = egk+2iy.

Taking now α = e and β = y, (b) holds.

• If lg(e) < lg(x) < lg(eu) then:

w = e u1u2
︸︷︷︸

u

u3y
︸︷︷︸

f

= eu1
︸︷︷︸

x

u2u3
︸︷︷︸

u

y, u1, u2, u3,∈ Σ+.

The equality xy = ef implies eu1y = eu3y, that is, u1 = u3. As u = u1u2 =
u2u1, according to Lemma 4.6 we obtain that u1 and u2 are powers of the
same primitive word, which is g. Therefore u1 = gk, u2 = gi−k, k > 0,
which implies:

w = eu1u2u1y = egi+ky, k > 0.

Taking now α = e and β = y, (b) holds.

• If lg(e) = lg(x) then there is only one occurrence of the word u in w
and (b) obviously holds.

For (b)=⇒(a) assume that w, u ∈ Σ+ are as in the theorem and that (b)
holds. We can assume that j is maximal, that is, α does not have g as a
suffix and β does not have g as a prefix. As j ≥ i there exists a k ≥ 0 such
that j = i + k. Argue indirectly and assume that w >u is not a singleton,
that is, there exists a word in w >u which is differs from αgkβ.
Remark. Because u is a power of the unbordered word g, two occurrences
of u can overlap only on powers of g.

We shall consider in the following all the possible cases w = αugkβ =
xuy, x, y ∈ Σ∗, which can lead to the situation that xy 6= αgkβ.

• If lg(αu) ≤ lg(x) then

w = αux1
︸ ︷︷ ︸

x

u y1β
︸︷︷︸

y

= αu x1uy1
︸ ︷︷ ︸

gk

β, x1, y1 ∈ Σ∗.

Note that u cannot overlap with α or β because g is unbordered, j is
maximal and u is a subword of neither α nor β.

As we have assumed that xy 6= αgkβ we have that αux1y1β 6= αgkβ
which implies that gix1y1 6= gk. As gk = x1g

iy1, this is a contradiction.
Our assumption was false, therefore this case cannot hold.
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• If lg(α) < lg(x) < lg(αu) then:

w = αx1
︸︷︷︸

x

u1u2
︸︷︷︸

u

y1β
︸︷︷︸

y

= α x1u1
︸︷︷︸

u

u2y1
︸︷︷︸

gk

β, x1, u1 ∈ Σ+, u2, y1 ∈ Σ∗.

As u = x1u1 = u1u2 = gi and g is an unbordered word we have that
u1 = gi1 , u2 = gi2 = x1, i1, i2 > 0. The fact that xy 6= αgkβ implies
αx1g

k−i2β 6= αgkβ that is, x1g
k−i2 6= gk. As we have shown that x1 = gi2 ,

this is a contradiction. Our assumption was false, therefore this case cannot
hold either.

As all the possible cases led to contradictions, our assumption that
w >u is not a singleton is false. The proof of the second implication, and
therefore of the theorem, is complete.

The proof of the implication (a)=⇒(b) did not use the fact that g is an
unbordered word.

The reverse implication does not hold if g is not unbordered. For ex-
ample, if w = ababa and u = aba, taking α = ab, β = λ, g = aba, the
condition (b) is satisfied. However the set w >u = {ab, ba} is not single-
ton. A stronger condition than (b) is needed to assure that w >u is a
singleton, if u is a power of a primitive bordered word.

Theorem 4.18 Let w, u be words in Σ+. If u is a power of a primitive
bordered word g ∈ Σ+, u = gi, i ≥ 1, then the statements (a) and (b) are
equivalent:

(a) The set w >u is a singleton.

(b) The word w is of the form w = αgjβ, j ≥ i, α, β ∈ Σ∗, where

(1) Neither α nor β contains u as a subword,

(2) For any decomposition of g, g = xy = yx′ where x, y, x′ ∈ Σ+

we have: α 6= α′gi−1x, ∀α′ ∈ Σ∗ and β 6= x′gi−1β′, ∀β′ ∈ Σ∗.

Proof. (a)=⇒(b) Let w, u be as in the theorem.
If w >u is a singleton, using the proof of Theorem 4.17 and the remark

following it, (b)(1) holds. Therefore w is of the form w = αgjβ, j ≥ i. As
j ≥ i there exists k ≥ 0 such that j = i + k.

Argue indirectly and assume that (b)(2) does not hold. This means that
one of the following cases holds:
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• α = α′gi−1x where α′ ∈ Σ∗, x ∈ Σ+ and there exists y, x′ ∈ Σ+ such
that g = xy = yx′,
• β = x′gi−1β′ where β′ ∈ Σ∗, x′ ∈ Σ+ and there exist y, x ∈ Σ+ such

that g = xy = yx′.
We shall consider the first case, the other one being symmetric. The

word w can be written as:

w = α′gi−1xgi+kβ = α′gi−1x(yx′)i+kβ = α′ gi−1xy
︸ ︷︷ ︸

gi=u

x′gi+k−1β.

As w >u is a singleton the words α′x′gi+k−1β and α′gi−1xgkβ are
equal. This equality leads to the following chain of implications:

x′gi+k−1 = gi−1xgk =⇒ x′gi−1 = gi−1x =⇒

x′ yx′ . . . yx′

︸ ︷︷ ︸

i−1

= xy . . .xy
︸ ︷︷ ︸

i−1

x and, as lg(x′) = lg(x), =⇒

x = x′ =⇒ g = xy = yx

According to Lemma 4.7, the last equality implies that either x or y equals
λ. This contradicts our assumption that x, y ∈ Σ+.

All the possible cases led to contradiction and therefore our assumption
that (b)(2) does not hold was false.

For the implication (b)=⇒(a), let w, u be words in Σ+, satisfying (b).
Therefore u and w are nonempty words, w = αgjβ, u = gi, j ≥ i ≥ 1,
(g ∈ Σ+ primitive and bordered) such that (b)(1) and (b)(2) hold. We can
assume that j is maximal, that is, g is neither a suffix of α nor a prefix of
β. As j ≥ i there exists k ≥ 0 such that j = i + k.

From (b) and the fact that j is maximal it follows that an arbitrary
occurrence of u in w overlaps with neither α nor β. Assume, for example,
that u overlaps with α. Then we have:

w = α1u1
︸ ︷︷ ︸

α

u2u3
︸︷︷︸

u

gkβ, α1 ∈ Σ∗, u1, u2, u3 ∈ Σ+, u = u1u2 = u2u3.

As u = u1u2 = u2u3, if any of ui, i = 1, 2, 3 would be a power of g then
u1 would equal u3. This, in turn, would imply that α contains g as a suffix
– a contradiction with the maximality of j. Therefore we can assume that
none of ui, i = 1, 2, 3 is a power of g and we have:

u = gqg1
︸︷︷︸

u1

g2g
p

︸︷︷︸

u2

= g2g
p

︸︷︷︸

u2

u3, q + p + 1 = i, g1, g2 ∈ Σ+, g = g1g2.
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If p > 0 and q = 0 then the preceding equality implies:

u = g1g2(g1g2)
p = g2(g1g2)

pu3,

and as lg(g1g2) =lg(g2g1) we conclude that g = g1g2 = g2g1. According
to Lemma 4.7 this implies g1 = λ or g2 = λ– a contradiction with our
assumption g1, g2 ∈ Σ+.

If p > 0 and q > 0 then:

u = g1g2 . . . g1g2
︸ ︷︷ ︸

q times

g1g2(g1g2)
p = g2(g1g2)

pu3,

which implies that g1g2 = g2g1 and leads to the same contradiction.
If p = 0 then gqg1

︸︷︷︸

u1

g2
︸︷︷︸

u2

= g2u3. As q = i−1 we obtain that α = α1g
i−1g1

where g = g1g2 = g2u3, and g1, g2, u3 ∈ Σ+, which contradicts (b)(2).
As all cases led to contradictions, our assumption that an occurrence

of u in w can overlap with α was false. Similarly we can prove that no
occurrence of u in w overlaps with β.

As u can overlap with neither α nor β, an occurrence of u in w can
appear only in the ”g-part” of w. This means that an arbitrary occurrence
of u in w can have only one of the following locations:
• w = αgk1−1g1 g2g

i−1g1
︸ ︷︷ ︸

u

g2g
k2β, g1, g2 ∈ Σ+, g1g2 = g,

where k > 0 and k1 + k2 = k. We have assumed here that k1 > 0 and
k2 ≥ 0. The case when k2 > 0 and k1 ≥ 0 is similar.

As u = gi = (g1g2)
i = g2(g1g2)

i−1g1 we deduce that g = g1g2 =
g2g1 which, together with Lemma 4.7, leads to a contradiction with our
assumption that g1, g2 ∈ Σ+. We conclude that such a situation cannot
occur.
• w = αgk1 gi

︸︷︷︸

u

gk2 , k ≥ 0, k1 + k2 = k.

In this situation, the erasing of u from w produces the word αgkβ,
regardless of the values of k1 and k2, k1 + k2 = k.

We conclude that the only possible occurrence of u in w yields w >u =
{αgkβ}. Therefore w >u is a singleton, that is, (a) holds. This completes
the proof of the second implication, and therefore of the theorem.

The following theorem gives a necessary and sufficient condition under
which the result of the insertion between two words is a singleton set.
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Theorem 4.19 Let u, w be words in Σ∗. The set w< u is a singleton iff
one of the following cases holds:

(i) The words w, u have the forms w = ap, u = ai, a ∈ Σ, p, i > 0;

(ii) Either u or w (or both) is equal with λ.

Proof. The ”if”-part is obvious. For the ”only if”-part let u, w be in Σ+

such that w< u is a singleton. We will show that in this case (i) holds.
The fact that w< u is a singleton implies that for any decomposition of w
as w = xy, x, y ∈ Σ∗ we have that xuy = uxy = xyu, all being elements
of the set w< u. From the equality xuy = uxy and using Lemma 4.6,
we deduce that x and u are powers of the same primitive word, x = gj ,
u = gi, g ∈ Σ+, j ≥ 0, i > 0. Analogously, from xuy = xyu we deduce that
y = gk, k ≥ 0, being a power of the same primitive word as u. As x, y were
arbitrary words with the property xy = w, taking for example x the first
letter of w we conclude that u is of the form u = ai, a ∈ Σ, i > 0 and w is
of the form w = xy = aj+k, j ≥ 0, k ≥ 0, j + k > 0. Taking p = j + k the
proof of the ”only if”-part is complete.

The catenation and the right and left quotient of words possess the
property that given the result of the operation and one of the operands,
the other operand can be recovered. Indeed, if x, y, z are words in Σ∗ then
xy = z iff x = z/y iff y = x\z. The insertion and deletion of words do
not have this property. In general, if x< y = z then {x} ⊆ z >y and
if x >y = z then {x} ⊆ z< y, but the reverse inclusions do not hold.
The following theorems will deal with circumstances under which, given
the result of the insertion and the inserted word, the other operand can
be obtained. The problem can be stated shortly : ”When is (w< u) >u
equal with {w} ?”, where u, w ∈ Σ∗. Besides the fact that u is a power
of a primitive bordered or unbordered word, the answer to this problem is
influenced by whether or not u is a subword of w.

Note. If u = λ or w = λ then (w< u) >u = {w}. Therefore we will
consider in the following only the case where u and w are nonempty words.

Theorem 4.20 Let u, w be two words in Σ+ such that u is not a subword
of w. If u is a power of an unbordered word then (w< u) >u = {w}.

Proof. Let u, w be as in the theorem, such that u = gi, g ∈ Σ+, i ≥ 1, and
g is an unbordered word. Let xuy be an arbitrary word in (w< u), where
x, y ∈ Σ∗, w = xy.
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If the only occurrence of u in xuy is the one inserted, then xuy >u =
xy = {w}.

Else, the second occurrence of u must overlap the first, as we have
assumed that u is not a subword of w. Moreover, because u is a power
of an unbordered word g, they must overlap on powers of g. Under these
circumstances, the erasing of the second ocurrence of u from xuy produces
also w.

In all the possible cases the erasing of an occurrence of u from an ar-
bitrary word of (w< u) produced w, and therefore we can conclude that
(w< u) >u = {w}.

The reverse implication does not hold. For example, taking w = cd,
u = aba, we have that u is not a subword of w and that (w< u) >u = {w}
but u is not a power of an unbordered word.

Theorem 4.21 Let u, w be words in Σ+ such that u is not a subword of
w. If u is a power of a primitive bordered word g ∈ Σ+, u = gi, i ≥ 1 then
the following statements are equivalent:

(i) The set (w< u) >u is a singleton, namely {w}.

(ii) For any decomposition of g, g = xy = yx′, x, y, x′ ∈ Σ+, the word w
contains neither gi−1x nor x′gi−1 as a subword.

Proof. We will prove first that ¬(ii)=⇒¬(i). Let u, w be as in the theorem
such that (ii) does not hold. There exists a decomposition of g, g = xy =
yx′ where x, y, x′ ∈ Σ+ such that w = αgi−1xβ, α, β ∈ Σ∗. The case where
w is of the form w = αx′gi−1β is symmetric. The word

αgi−1xgiβ = α gi−1xy
︸ ︷︷ ︸

u

x′(yx′)i−1β

belongs to w< u and therefore both words αgi−1xβ and αx′gi−1β are in
the set (w< u) >u.

If we assume that (w< u) >u is a singleton, we obtain gi−1x = x′gi−1

which implies
xyxy . . . xy
︸ ︷︷ ︸

(i−1) times

x = x′ yx′ . . . yx′

︸ ︷︷ ︸

(i−1) times

.

The last equality shows that x = x′, which implies g = xy = yx. According
to Lemma 4.7 either x or y equals λ, which contradicts our assumption
x, y ∈ Σ+. Consequently, we conclude that (w< u) >u is not a singleton.
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The implication (ii)=⇒(i) follows by using Theorem 4.18. Indeed, let
w1 be a word in w< u. Then w1 is of the form αgiβ, where g is primitive
and bordered, and αβ = w . From the fact that u is not a subword of w
we conclude that the condition (b)(1) of Theorem 4.18 is satisfied. From
(ii) we deduce that also (b)(2) holds. Consequently, we can apply Theorem
4.18 which assures that w1 >u is a singleton. As w ∈ w1 >u, it follows
that w1 >u = w. As w1 was an arbitrary word from w< u, we conclude
that (w< u) >u = w.

Theorem 4.22 Let u, w be words in Σ+, u a proper subword of w. Then
(w< u) >u = {w} iff w = ap, u = ai, a ∈ Σ, p > i > 0.

Proof. The implication ” ⇐= ” is obvious. In order to show the reverse
implication, let u, w be words in Σ+ where u a is subword of w (not nec-
essarily proper) and (w< u) >u = {w}. The word w can be expressed
as w = xuy, x, y ∈ Σ∗, u ∈ Σ+. This implies that both words u(xuy) and
(xuy)u belong to w< u and therefore:

xuy, uxy, xyu ∈ (w< u) >u = {w}.

From the equality xuy = uxy we deduce xu = ux. According to Lemma
4.6, x and u are powers of the same primitive word, u = gi, x = gk, g ∈ Σ+,
k ≥ 0, i ≥ 1.

From the equality xuy = xyu we deduce uy = yu. According to Lemma
4.6, y and u are powers of the same primitive word g that is, y = gj, j ≥ 0.

The primitive word g is unbordered. Indeed, assume that g is bordered.
Then, according to Lemma 4.8, g can be written as g = γvγ, γ, v ∈ Σ+.
As u = (γvγ)i and w = (γvγ)k+i+j we deduce that both words:

(γvγ)k+2i+j , and γ(γvγ)ivγ(γvγ)k+i+j−1 = γ(γvγ)i−1γv(γvγ)i(γvγ)k+j ,

are in the set w< u (the first word was obtained by catenating w and u
and the second by inserting u after the first occurrence of γ.) This implies
that both words:

(γvγ)k+i+j and γ(γvγ)i−1γv(γvγ)k+j ,

belong to (w< u) >u, which is a singleton. The equality of the above
mentioned words implies the equality of their prefixes γvγ = γγv which
further implies vγ = γv. According to Lemma 4.6, γ and v are powers of
the same primitive word, γ = δr, v = δr′

, δ ∈ Σ+, r, r′ > 0. We can rewrite
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g now as g = γvγ = δ2r+r′

, 2r + r′ > 2, which contradicts the fact that g
is primitive. Our assumption was false, therefore g is an unbordered word.

Taking p = i + j + k we have therefore proved that if u is a subword of
w (proper or not) and (w< u) >u = {w} then u = gi, w = gp, g ∈ Σ+,
p ≥ i > 0, where g is an unbordered word.

Assume now that u 6= λ is a proper subword of w and denote k′ = j +k,
k′ > 0. Argue indirectly and assume that g contains at least two different
letters, g = aαbβ, a, b ∈ Σ, a 6= b,α, β ∈ Σ∗. Then both words:

(aαbβ)2i+k′

and aα(aαbβ)ibβ(aαbβ)i+k′−1,

are in the set w< u which implies that both:

(aαbβ)i+k′

and aα(aαbβ)ibβ(aαbβ)k′−1

belong to (w< u) >u. Indeed, as k′ ≥ 1 we have another occurrence
of u in w< u than the one inserted, namely the prefix of length lg(u) of
(aαbβ)i+k′−1. As (w< u) >u is a singleton, the two words belonging to
it are equal that is,

aαbβ(aαbβ)i+k′−1 = aα(aαbβ)ibβ(aαbβ)k′−1.

We arrive at a contradiction as, after erasing the prefix aα, the above
equality implies a = b and we assumed that the letters a and b are distinct.
Our assumption that g contains at least two different letters was false. As
g is also primitive and unbordered we deduce that g is of the form g = a,
a ∈ Σ and consequently, w = ai+k′

, i ≥ 1, k′ > 0.
Taking p = i + k′, the proof of the second implication is complete.

Theorem 4.23 If u is a word in Σ+ then (u< u) >u = {u} iff u is a
power of an unbordered word.

Proof. It has been shown in the proof of Theorem 4.22 that, if u, w ∈ Σ+

and u is a subword of w (proper or not) then (w< u) >u = {w} implies
u = gi, w = gp, p ≥ i > 0, where g ∈ Σ+ is an unbordered word. Taking
u = w, this proves the implication ”=⇒” of the theorem.

For the reverse implication let u ∈ Σ+ be a power of an unbordered
word g ∈ Σ+, u = gi, i ≥ 1.

Assume that there exists w ∈ (u< u) >u, w 6= u. Applying the
operations in the reverse order, we deduce that u ∈ (w< u) >u. As
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w 6= u but lg(w) = lg(u), u is not a subword of w. According to Theorem
4.20 we have (w< u) >u = {w}, which implies w = u. This contradicts
our assumption that w 6= u. Consequently, we can conclude that the set
(u< u) >u = {u}, and therefore the proof for the second implication is
complete.

The last theorem of this section gives a necessary and sufficient condition
under which the set (w >u)< u is a singleton.

Theorem 4.24 If u, w are words in Σ∗ then (w >u)< u = {w} iff one
of the next cases holds:

(i) The word w is equal with u;

(ii) The word u equals λ;

(iii) The words w, u are of the form w = ap, u = ai, a ∈ Σ, p > i ≥ 1.

Proof. The implication ” ⇐= ” is obvious. For the reverse implication,
assume that w, u ∈ Σ∗, such that (w >u)< u = {w} and w 6= u, u 6= λ.
We will show that in this case (iii) holds.

Let aα be a word in w >u. The equality auα = uaα implies that
u = ai, i > 0. The equality aαu = auα implies that w = ap, p > 1. As u is
a proper subword of w, p > i ≥ 1, and the proof of the second implication
is complete.





Chapter 5

Decidability

5.1 Basic decision problems

In Section 4.2 we investigated the special case where the result of the se-
quential insertion between two languages is regular. The main results of the
section state that, if L1< L2 = R, for languages L1, L2, R ⊆ Σ∗, R ∈REG,
then either L1 or L2 (or both) can be replaced with regular languages yield-
ing the same result, R. A natural problem concerns such situations, that
is, when is the result of the insertion of two languages regular.

This section will be concerned with the more general problem, namely
the decidability of the questions ”Is L1 ⋄ L2 equal with R?” and ”Is L1

⋄ L2 regular?” for regular languages R, regular or context-free languages
L1, L2, where ⋄ is one of the operations defined in the previous sections.

More precisely, for a binary operation ⋄ and for given languages L1, L2,
regular languages R and words w, we consider the problems:
Q0: ”Is L1 ⋄ L2 = R?”
Qw

0 : ”Is L1 ⋄ w = R?”
Q: ”Is L1 ⋄ L2 a regular language?”
Qw: ”Is L1 ⋄ w a regular language?”
For ⋄ denoting a controlled operation and for given languages L1, regular
languages R and control functions ∆, the following problems will be con-
sidered:
Q0,∆: ”Is L1 ⋄∆ = R?
Q∆: ” Is L1 ⋄∆ a regular language?”
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If we restrict ourselves to control functions having only ∅ or singletons as
their values, the corresponding problems will be denoted respectively by
Qw

0,∆, Qw
∆.

Theorem 5.1 Let ⋄ be one of the following operations: catenation, SIN,
SIN next to a letter, shuffle, PIN, PIN next to a letter, right and left quo-
tient, SD, iterated SD, SD next to a letter, scattered SD, PD, PD next to
a letter. Then the problem Q0 is decidable for regular languages L1, L2, R.

Proof. The family of regular languages is closed under all the above oper-
ations and there exist effective procedures for constructing L1 ⋄ L2 from
L1, L2 given regular languages. Indeed, this follows from the proofs [12]
pp.20-22, Theorem 2.3, Theorem 2.18, [4] p.206, Theorem 2.4, Theorem
2.19, [12] p.129 and p.133, Lemma 3.1 and Corollary 3.4, Theorem 3.8 and
Corollary 3.12, Theorem 3.20, Theorem 3.25, Theorem 3.3 and Corollary
3.7, Theorem 3.22, respectively. As the equivalence problem is decidable
for the family of regular languages, the problem ”Is L1 ⋄L2 = R?” will also
be decidable.

The above proof can be used to show that, for ⋄ denoting one of the op-
erations in the preceding theorem, the problem Qw

0 is decidable for regular
languages L1, R and words w.

The family of regular languages is closed under permuted SIN with
singletons, permuted PIN with singletons, permuted scattered SIN with
singletons, permuted SD with singletons, permuted PD with singletons and
permuted scattered SD with singletons (see Theorems 2.13, 2.23, Theorem
3.11 and the remarks following it, Theorems 3.14, 3.32). Consequently, a
similar argument can be used to show that for these operations the problem
Qw

0 is decidable for regular languages L1 and R.
In the sequel a singleton (resp. regular, context-free) control function

will mean a control function whose values are ∅ or singleton (resp. regular,
context-free) languages.

Theorem 5.2 Let ⋄ be one of the operations: controlled SIN, controlled
PIN, controlled SD, controlled PD. The problem Q0,∆ is decidable for reg-
ular languages L, R and regular control functions ∆.

Proof. It follows from the fact that REG is closed under controlled SIN,
controlled PIN, controlled SD, controlled PD (Theorems 2.18, 2.19, 3.20,
3.22). The proofs are constructive and the equivalence problem is decidable
for the family of regular languages.
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The above proof can be used to show that, for ⋄ denoting one of the
operations in the preceding theorem, the problem Qw

0,∆ is decidable for
regular languages L, R and singleton control functions ∆.

Theorem 5.3 Let ⋄ be one of the operations: catenation, SIN, iterated
SIN, permuted SIN, shuffle, permuted scattered SIN, PIN, iterated PIN,
permuted PIN, right and left quotient, SD, iterated SD, permuted SD, scat-
tered SD, permuted scattered SD, PD, iterated PD, permuted PD.

Then the problem Q0 is undecidable for context-free languages L1, L2

and regular languages R.

Proof. Let Σ be an alphabet with card(Σ) ≥ 2. There exists a regular
language, R = Σ∗, and a singleton language L2 = {λ}, such that for any of
the above operations, the problem ”Is L1⋄L2 equal with R?” is undecidable
for context-free languages L1 over Σ. Indeed, for all the operations listed
in the theorem, the problem ”Is L1 ⋄ {λ} equal with Σ∗?” amounts to
the problem ”Is L1 equal with Σ∗?” which is undecidable for context-free
languages L1 over Σ.

Note that the result is stronger than the one stated in the theorem.
The theorem claims the nonexistence of algorithms dealing with tuples
(Σ, L1, L2, R). The proof shows the nonexistence of algorithms dealing
with L1 alone. For reasons of uniform presentation, this will often be the
case in the sequel: the proofs actually contain more powerful results than
stated in the theorems.

For ⋄ denoting one of the operations in the preceding theorem, the
problem Qw

0 is undecidable for context-free languages L1, regular languages
R and words w. Indeed, this follows by noticing that in the above proof
the language L2 is a singleton.

The above theorem did not provide an answer to the question ”When
is L1< L2 = R?” for L1, L2, R ⊆ Σ∗, R a regular language and L1, L2

context-free (context-sensitive) languages. However, the class of non- reg-
ular languages whose insertion is regular is a large one. Indeed, we notice
that for any language L ⊆ Σ∗, the following relation holds:

(L ∪ {λ})< (Lc ∪ {λ}) = Σ∗.

Consequently, any context-free language whose complement is a non-
context- free language, produces an example of an insertion whose result is
regular but whose left operand is a non-regular context-free language, and
right operand is a non-context-free one.
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Theorem 5.4 Let ⋄ denote one of the operations: SIN next to a letter,
PIN next to a letter, SD next to a letter, PD next to a letter. The problem
Q0 is undecidable for context-free languages L1, L2 and regular languages
R.

Proof. Similar to that of the preceding theorem.
Indeed, take R = #Σ∗, # 6∈ Σ, and, for every context-free language

L1 ⊆ Σ∗ take L′
1 = #L1. The problem ”Is L′

1 ⋄ {λ} = R?”, where the
control letter is #, amounts to the problem ”Is L1 = Σ∗?”.

The above proof can be used to show that, for ⋄ denoting one of the
operations in the preceding theorem, the problem Qw

0 is undecidable for
context-free languages L1, regular languages R and words w.

Theorem 5.5 Let ⋄ be one of the operations: controlled SIN, controlled
PIN, controlled SD, controlled PD. Then the problem Q0,∆ is undecidable
for context-free languages L1, regular control functions ∆ and regular lan-
guages R.

Proof. Let Σ be an alphabet with card(Σ) ≥ 2. There exists a regular
language R = Σ+ and a singleton control function ∆ such that for any of
the listed operations, the problem ”Is L1 ⋄∆ equal with R?” is undecidable
for context-free languages L1 over Σ.

Indeed let us choose the control function ∆ : Σ−→2Σ∗

, ∆(a) = {λ}
∀a ∈ Σ. For all the considered operations, the problem ”Is L1 ⋄ ∆ equal
with Σ+ ?” amounts to the problem ”Is L1 − {λ} equal with Σ+?”, which
is undecidable for context-free languages L1 over Σ. We have chosen the
language R = Σ+ instead of Σ∗ because the empty word does not appear
in the result of any controlled operation.

Notice that in the above proof the control function is a singleton control
function. Consequently the proof can be used to show that, for ⋄ denoting
one of the operations in the preceding theorem, the problem Qw

0,∆ is un-
decidable for context-free languages L1, regular languages R and singleton
control functions ∆.

Theorem 5.6 Let ⋄ be one of the operations: catenation, SIN, iterated
SIN, permuted SIN, shuffle, permuted scattered SIN, PIN, iterated PIN,
permuted PIN, right and left quotient, SD, iterated SD, permuted SD, scat-
tered SD, permuted scattered SD, PD, iterated PD, permuted PD. Then
the problem Q is undecidable for context-free languages L1 and regular lan-
guages L2.
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Proof. Let Σ be an alphabet with card(Σ) ≥ 2. There exists a singleton
language L2 = {λ} such that for any of the mentioned operations, the
problem ”Is L1 ⋄ L2 regular?” is undecidable for context-free languages L1

over Σ.
Indeed, the problem ”Is L1 ⋄ {λ} regular?” amounts, for all the consid-

ered operations, to the problem ”Is L1 regular?” which is undecidable for
context-free languages L1 over Σ.

Notice that in the above proof the language L2 is a singleton. Conse-
quently, for ⋄ denoting one of the operations in the preceding theorem, the
problem Qw is undecidable for context-free languages L1 and words w.

Theorem 5.7 Let ⋄ denote one of the operations: SIN next to a letter,
PIN next to a letter, SD next to a letter, PD next to a letter. The problem
Q is undecidable for context-free languages L1 and regular languages L2.

Proof. Analogous to that of the preceding theorem. For every context-free
language L1 ⊆ Σ∗ take L′

1 = #L1, # 6∈ Σ. Then the problem ”Is L′
1 ⋄ {λ}

regular?”, where the control letter is #, amounts to the problem ”Is L1

regular?”.

For ⋄ denoting one of the operations in the preceding theorem, the
problem Qw is undecidable for context-free languages L1 and words w.
This follows by noticing that the language L2 = {λ} in the above proof is
a singleton.

Theorem 5.8 Let ⋄ be one of the operations: controlled SIN, controlled
PIN, controlled SD, controlled PD. Then the problem Q∆ is undecidable
for context-free languages L1 and regular control functions ∆.

Proof. Let Σ be an alphabet with card(Σ) ≥ 2. There exists a singleton
control function ∆ such that, for any of the operations in the theorem, the
problem ”Is L1 ⋄∆ regular?” is undecidable for context-free languages L1

over Σ. Indeed, let us take ∆ : Σ−→2Σ∗

, ∆(a) = {λ}, ∀a ∈ Σ. The problem
”Is L1 ⋄∆ regular?” amounts, for all the above operations, to the problem
”Is L1−{λ} regular?”. As the last problem is undecidable for context-free
languages L1 ⊆ Σ∗, our problem is also undecidable.

The above proof can be used to show that, for ⋄ denoting one of the
operations in the preceding theorem, the problem Qw

∆ is undecidable for
context-free languages L1 and singleton control functions ∆.
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5.2 The right operand problem for insertion

The preceding section was concerned with the problem of whether or not
given languages L1, L2, R (R regular) satisfy the equation L1 ⋄ L2 = R,
for various insertion and deletion operations ⋄. This section will deal with
the question concerning whether or not the equation L1 ⋄ L2 = R has a
solution L2, where L1, R are given languages, R a regular one, and ⋄ is an
insertion operation. Moreover, the existence of a singleton solution, that
is, a solution L2 in the class of singleton languages, will be investigated.

More precisely, for a binary insertion operation ⋄ and for given lan-
guages L1 and R, R regular, we consider the problems:
Q2: ”Does there exist a language L2 such that L1 ⋄ L2 = R?”
Qw

2 : ”Does there exist a word w such that L1 ⋄ w = R?”.
For ⋄ denoting a controlled insertion operation and for given languages L1

and R, R regular, the following problems will be considered:
Q2,∆: ”Does there exist a control function ∆ such that L1 ⋄∆ = R?”
Qw

2,∆: ”Does there exist a singleton control function ∆ such that L1 ⋄∆ =
R?”.

In the cases where the considered problem is decidable, it will follow
from the proof that a solution of the equation can be effectively constructed.

Theorem 5.9 The problem ”Does there exist a language L2 such that
L1L2 = R?” is decidable for regular languages L1 and R.

Proof. For given regular languages L1, R over an alphabet Σ define:

R′ = (L1\R
c)c.

It has been proved in Theorem 4.6 that, if there exists L2 ⊆ Σ∗ such that
L1L2 = R, then L1R

′ = R. Moreover, the regular language R′ can be
effectively constructed (see Corollary 4.1).

The algorithm which decides our problem will start with the construc-
tion of R′. Then we find out whether or not L1R

′ equals R.

Example 5.1 Let L1 = {a, ab} and R = {ab, abb}. We are investigating
the existence of a solution L2 to the equation L1L2 = R. Using the method
of the preceding theorem we construct the languages:

Rc = {a, b}∗ − {ab, abb},
L1\Rc = {a, b}∗ − {b},

R′ = {b}.



5.2 THE RIGHT OPERAND PROBLEM FOR INSERTION 153

After checking the equality {a, ab}{b} = {ab, abb} we can positively answer
to the question ”Does there exist a language L2 such that L1L2 = R?”.
Such a language is L2 = R′ = {b}.

In this particular situation R′ is the only solution to our equation. This
is not always the case. For example, if L1 = R = Σ∗ then Rc = ∅, L1\Rc =
∅ and R′ = Σ∗. However the language L2 = {λ} also satisfies the equation
Σ∗L2 = Σ∗.

Note that if we take L1 = {a, ab} and R = {ab, abb, ba} we obtain the
same R′ as before, that is, R′ = {b}. However, in this case the equal-
ity {a, ab}{b} = {ab, abb, ba} does not hold. According to the preceding
theorem this implies that the equation {a, ab}L2 = {ab, abb, ba} has no
solutions.

Theorem 5.10 If ⋄ denotes the sequential insertion the problem Q2 is
decidable for regular languages L1 and R.

Proof. For given regular languages L1, R over an alphabet Σ define:

R′ = (Rc ⇀↽ L1)
c,

where ⇀↽ denotes the dipolar deletion, defined in Section 4.2. It has been
proved in Theorem 4.11 that, if there exists L2 ⊆ Σ∗ such that L1 ← L2 =
R, then L1 ← R′ = R. Moreover, the regular language R′ can be effectively
constructed (see Corollary 4.7).

The algorithm which decides our problem will start with the construc-
tion of R′. Afterwards, the problem ”Is L1< R′ = R?” is decided, and
the answer is also the answer to the original problem. Note that REG is
closed under SIN, the language L1< R′ can be effectively constructed and
the equality L1< R′ = R can be decided as the equivalence problem is
decidable for REG.

Theorem 5.11 If ⋄ denotes the shuffle operation, the problem Q2 is de-
cidable for regular languages L1 and R.

Proof. Let L1, R be given regular languages over an alphabet Σ and con-
struct

R′ = (Rc
> L1)

c,

where > denotes the scattered sequential deletion, defined in Section 3.5.
(i) R′ is a regular language and can be effectively constructed (see The-

orem 3.25, Corollary 3.22).
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(ii) L1 ∐ R′ ⊆ R. Assume the contrary and let x be a word in L1,
y be a word in R′ such that x = x1 . . . xnxn+1, y = y1 . . . yn, xi ∈ Σ∗,
1 ≤ i ≤ n + 1, yi ∈ Σ∗, 1 ≤ i ≤ n, and x1y1 . . . xnynxn+1 ∈ Rc. According
to the definition of the scattered deletion,

y ∈ (x1y1 . . . xnynxn+1 > x) ⊆ Rc
> L1.

This contradicts the fact that y was a word in R′. Our assumption was
false, therefore L1 ∐R′ ⊆ R.

(iii) Every language L2 with the property L1 ∐ L2 ⊆ R is included
in R′. Assume the contrary and let L2 ⊆ Σ∗ be a language such that
L1∐L2 ⊆ R and L2−R′ 6= ∅. Let y be a word in L2−R′. As y belongs to
(R′)c = Rc

> L1, there exist z ∈ Rc, x ∈ L1, such that x = x1 . . . xnxn+1,
y = y1 . . . yn, xi ∈ Σ∗, 1 ≤ i ≤ n + 1, yi ∈ Σ∗, 1 ≤ i ≤ n, and z =
x1y1 . . . xnynxn+1. According to the definition of the shuffle operation we
have z ∈ x ∐ y ⊆ L1 ∐ L2 ⊆ R. We arrived at a contradiction as z was a
word in Rc. Consequently, our assumption that such a language L2 exists
was false.

If there exists a language L2 such that L1 ∐ L2 = R then, according to
(iii), R = L1 ∐L2 ⊆ L1 ∐R′. As (ii) states that L1 ∐R′ ⊆ R, we conclude
that L1 ∐R′ = R.

The algorithm for deciding our problem will start with the construction
of R′. Then the problem ”Is L1 ∐ R′ = R?” is decided, and the answer to
it is the answer to our problem.

If we consider the controlled SIN, for given L1 and R over Σ, R regular,
the equation L1 ⋄∆ = R has card(Σ) variables: ∆(a), a ∈ Σ. However, the
problem Q2,∆ is still decidable if all the parameters are regular languages.
Moreover, it will follow from the proofs that a solution can be effectively
constructed.

Theorem 5.12 If ⋄ denotes the controlled SIN, the problem Q2,∆ is decid-
able for regular languages L1 and R.

Proof. Let L1, R be regular languages over an alphabet Σ = {a1, . . .an},
n ≥ 1. For every i, 1 ≤ i ≤ n, construct the gsm:

gi = (Σ, Σ ∪ {#, $}, {s0, s, s
′}, s0, {s′}, Pi),

Pi = {s0aj−→ajs0| 1 ≤ j ≤ n} ∪ {s0ai−→ai#$s′}∪
{s0ai−→ai#s} ∪ {saj−→ajs| 1 ≤ j ≤ n}∪
{saj−→aj$s′| 1 ≤ j ≤ n} ∪ {s′aj−→ajs

′| 1 ≤ j ≤ n},
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where #, $ are new symbols which do not occur in Σ. It is easy to prove
that for every language L ⊆ Σ∗ and every i, 1 ≤ i ≤ n, we have:

gi(L) = {uai#w$v| u, v, w ∈ Σ∗, 1 ≤ i ≤ n, and uaiwv ∈ L}. (∗)

Define now the morphism h : (Σ ∪ {#, $})∗−→Σ∗ by:

h(#) = h($) = λ, h(a) = a, ∀a ∈ Σ.

After these preliminary constructions, the proof will resemble that of
Theorems 5.10, 5.11. Construct, for every i, 1 ≤ i ≤ n, the language:

∆(ai) = [h((gi(R
c) ⇀↽ L1) ∩#Σ∗$)]c,

where ⇀↽ denotes the dipolar deletion, defined in Section 4.2.
(i) The languages ∆(ai), 1 ≤ i ≤ n, are regular and can be effectively

constructed (see Lemma 4.5 and Corollary 4.5).
(ii) L1< ∆ ⊆ R. Assume the contrary: there exist i, 1 ≤ i ≤ n, x ∈ L1,

w ∈ ∆(ai) such that x = uaiv and uaiwv ∈ Rc. According to (∗), the word
uai#w$v belongs to gi(R

c). Following the definition of the dipolar deletion,
#w$ is a word in (uai#w$v⇀↽uaiv)∩ #Σ∗$ ⊆ (gi(R

c) ⇀↽ L1) ∩ #Σ∗$.
Consequently, w = h(#w$) belongs to h((gi(R

c) ⇀↽ L1) ∩ #Σ∗$) which
contradicts the fact that w ∈ ∆(ai). Our assumption was false, therefore
L1< ∆ ⊆ R.

(iii) Any control function ∆′ such that L1< ∆′ ⊆ R has the property
∆′(ai) ⊆ ∆(ai), ∀i, 1 ≤ i ≤ n.

Assume the contrary and let ∆′ be a control function as before such that
there exists i, 1 ≤ i ≤ n, with the property ∆′(ai)−∆(ai) 6= ∅. Let w be a
word in ∆′(ai)−∆(ai). As w ∈ [∆(ai)]

c, the word #w$ is in gi(R
c) ⇀↽ L1.

Therefore there exist x ∈ gi(R
c) and z ∈ L1 such that x = uai#w$v,

z = uaiv, u, w ∈ Σ∗.
As x = uai#w$v ∈ gi(R

c), according to (∗), the word uaiwv belongs to
Rc. This contradicts the relation L1< ∆′ ⊆ R which implies uaiwv ∈ R
for every uaiv ∈ L1, 1 ≤ i ≤ n and w ∈ ∆′(ai). Our assumption that such
a function ∆′ exists was false.

Return to the proof of the theorem. If there exists a control function
∆′ such that L1< ∆′ = R, according to (iii) we have ∆′(ai) ⊆ ∆(ai) ∀i,
1 ≤ i ≤ n, which implies R = L1< ∆′ ⊆ L1< ∆. As, according to (ii),
L1< ∆ ⊆ R, we deduce that L1< ∆ = R.

The algorithm which decides our problem will start with the construc-
tion of the control function ∆. As REG is closed under controlled SIN, the
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problem ”Is L1< ∆ = R?” is decidable, and its answer is the answer to
our problem.

Let ⋄ denote the SIN next to the letter a. The proof of the preceding
theorem can be used to show that the problem Q2 is decidable for regular
languages L1 and R. Indeed, the only modification is that we need to define
the gsm gi and the control function ∆(ai) only for the control letter ai = a.

Theorem 5.13 If ⋄ denotes SIN, the problem Qw
2 is decidable for regular

languages L1 and R.

Proof. Let L1, R be regular languages over an alphabet Σ and let m be
the length of the shortest word in R. If there exists a word w such that
L1< w = R, then it must satisfy the condition lg(w) ≤ m. As REG
is closed under sequential insertion (see Theorem 2.3), the problem ”Is
L1< w = R?” is decidable for words w and regular languages L1 and R.
The algorithm for deciding our problem will consist of checking whether or
not L1< w = R for all words w with lg(w) ≤ m. The answer is YES if
such a word w is found, and NO otherwise.

Let ⋄ denote one of the operations: catenation, PIN, shuffle, permuted
SIN, permuted PIN, permuted scattered SIN, SIN next to a letter and PIN
next to a letter. The proof of the preceding theorem can be used to show
that in all mentioned cases the problem Qw

2 is decidable for regular lan-
guages L1 and R.

In the following, some undecidability results are presented. For a bi-
nary insertion operation ⋄, the existence of both a solution and a singleton
solution L2 to the equation L1 ⋄ L2 = R is proved to be undecidable for
context-free languages L1 and regular languages R. We start our investi-
gation with the simplest case, where ⋄ denotes the catenation operation.

Theorem 5.14 The problem ”Does there exist a language L2 such that
L1L2 = R?” is undecidable for context-free languages L1 and regular lan-
guages R.

Proof. Let Σ be an alphabet, card(Σ) ≥ 2, and let # be a letter which does
not occur in Σ. There exists a regular language R = Σ∗# such that the
problem of the theorem is undecidable for context-free languages L1.

Indeed, we notice that the equation (L1#)L2 = Σ∗# holds for languages
L1, L2 over Σ exactly in case L1 = Σ∗ and L2 = {λ}. Hence, if we could
decide the problem of the theorem, we would be deciding the problem ”Is
L1 = Σ∗?” for context-free languages L1, which is impossible.
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We notice that in the above proof the language L2 = {λ} is a singleton.
Therefore also the problem ”Does there exist a word w such that L1w = R?”
is undecidable for context-free languages L1 and regular languages R.

Let ⋄ denote one of the operations: SIN, PIN, iterated SIN and iterated
PIN, shuffle, permuted scattered SIN, permuted SIN, permuted PIN, SIN
next to a letter and PIN next to a letter. The proof of the previous theorem
and the above remark can be used to show that in all the cases, the prob-
lems Q2 and Qw

2 are undecidable for context-free languages L1 and regular
languages R.

Note. If ⋄ stands for SIN next to a letter or PIN next to a letter, we
choose the letter to be #.

Theorem 5.15 Let ⋄ denote the controlled sequential insertion. The prob-
lems Q2,∆, Qw

2,∆ are undecidable for context-free languages L1 and regular
languages R.

Proof. Let Σ be an alphabet, card(Σ) ≥ 2, and let #, $ be symbols not
belonging to Σ. There exists a regular language R = Σ∗#$ such that
the problems Q2,∆, Qw

2,∆ are undecidable for context-free languages L1.
Indeed, we observe that the equation L1#< ∆ = Σ∗#$ holds for languages
L1 ⊆ Σ∗ iff ∆(#) = $, ∆(a) = ∅, ∀a ∈ Σ and L1 = Σ∗. The ”if”-part
is obvious. For the ”only if”-part we notice that if the control function
wouldn’t be of the above form, illegal strings would occur in the result of
the controlled SIN. On the other hand, the form of ∆ forces L1 to be Σ∗.

If we could decide either one of the problems of the theorem we would
be deciding the problem ”Is L1 = Σ∗?” for context-free languages L1, which
is impossible.

5.3 The left operand problem for insertion

This section will deal with the question whether or not the equation L1 ⋄
L2 = R has a solution L1, where L2, R are given languages, R regular, and
⋄ is an insertion operation. The existence of a singleton solution will also
be investigated. More specifically, if ⋄ denotes a binary insertion operation,
given languages L2 and R, R regular, the following problems will be con-
sidered:
Q1:”Does there exist a language L1 such that L1 ⋄ L2 = R?”
Qw

1 :” Does there exist a word w such that w ⋄ L2 = R?”
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If ⋄ denotes a controlled insertion operation and R is a given language,
∆ a given control function, the following problems will be also considered:
Q1,∆:” Does there exist a language L1 such that L1 ⋄∆ = R?”
Qw

1,∆ :”Does there exist a word w such that w ⋄∆ = R?”.
In the beginning, the simplest case, where ⋄ denotes the catenation and all
the languages involved are regular, is investigated.

Theorem 5.16 The problem ”Does there exist a language L1 such that
L1L2 = R?” is decidable for regular languages L2 and R.

Proof. Similarly as Theorem 5.9.

Theorem 5.17 If ⋄ denotes the sequential insertion, the problem Q1 is
decidable for regular languages L2 and R.

Proof. Let L2, R be regular languages over an alphabet Σ and define

R′ = (Rc
>L2)

c.

It has been proved in Theorem 4.12 that, if there exists L1 ⊆ Σ∗ with
the property L1< L2 = R then also R′

< L2 = R. Moreover, the regular
language R′ can be effectively constructed (see Corollary 4.9).

The algorithm which decides our problem will start with the construc-
tion of R′. Then the problem ”Is R′

< L2 = R?” is decided, and the answer
is the answer to our problem.

Theorem 5.18 If ⋄ denotes the shuffle operation, the problem Q1 is de-
cidable for regular languages L2 and R.

Proof. It follows from Theorem 5.11 and from the fact that shuffle is a
commutative operation.

Theorem 5.19 If ⋄ denotes the controlled sequential insertion, the prob-
lem Q1,∆ is decidable for regular languages R and regular control functions
∆.

Proof. Let R be a regular language over an alphabet Σ and ∆ be a regular
control function. Define the language

R′ = (Rc
>∆ )c,

where > denotes the controlled sequential deletion, defined in Section 3.4.



5.3 THE LEFT OPERAND PROBLEM FOR INSERTION 159

(i) The language R′ is regular and can be effectively constructed (see
Theorem 3.20, Corollary 3.18).

(ii) R′
< ∆ ⊆ R. Assume the contrary and let x be a word in R′,

x = uaiv, u, v ∈ Σ∗, and w be a word in ∆(ai) such that uaiwv ∈ Rc.
According to the definition of the controlled sequential deletion, the word
x belongs to (uaiwv >∆ ) ⊆ Rc

>∆. We arrived at a contradiction as x
was a word in R′. Our assumption was false, therefore R′

< ∆ ⊆ R.
(iii) Any language L1 with the property L1< ∆ ⊆ R is included in R′.

Assume the contrary and let L1 be a language as before such that L1−R′ 6=
∅. Let y be a word in L1−R′. As y is in Rc

>∆ , there exist words x ∈ Rc,
x = uaiwv, u, v ∈ Σ∗, w ∈ ∆(ai) such that y = uaiv. According to the
definition of the controlled SIN, x belongs to y< ∆ ⊆ L1< ∆ ⊆ R.
We arrived at a contradiction as x was a word in Rc. Consequently, our
assumption that such a language L1 exists was false.

If there exists a language L1 such that L1< ∆ = R then, using (ii)
and (iii) we deduce that R′

< ∆ = R.
The algorithm which decides our problem will begin with the construc-

tion of R′. The answer to our problem will be the answer to the question
”Is R′

< ∆ = R?”, which is decidable.

Let ⋄ denote the SIN next to the letter a. The proof of the preceding
theorem can be used to show that the problem Q1 is decidable for regular

languages L2 and R. For this purpose < will be replaced with
a

< and

> with
a

> .

Theorem 5.20 If ⋄ denotes the sequential insertion, the problem Qw
1 is

decidable for regular languages L2 and R.

Proof. The proof is similar to that of Theorem 5.13 and uses the fact that
REG is closed under sequential insertion (see Theorem 2.3).

Let L2 and R be regular languages over an alphabet Σ and let m be
the length of the shortest word in R. Suppose w< L2 = R holds for some
w. Then lg(w) ≤ m because, otherwise, the shortest word in R would not
result from the insertion. Our algorithm will check, for all words w with
lg(w) ≤ m, whether or not w< L2 = R . The answer is YES if such a w
is found and NO otherwise.

Let ⋄ be one of the operations: catenation, PIN, shuffle, SIN next to a
letter, PIN next to a letter, controlled SIN and controlled PIN. The proof
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of the preceding theorem and the closure properties of REG (Theorems
2.4, 2.18, 2.19) can be used to show that, in all cases, the problem Qw

1

(respectively Qw
1,∆) is decidable for regular languages L2 (regular control

functions ∆) and regular languages R.
Let ⋄ be one of the operations: catenation, SIN, PIN, shuffle, SIN next

to a letter and PIN next to a letter. The following theorems will show
that the existence of both a solution and a singleton solution L1 to the
equation L1 ⋄ L2 = R is undecidable for context-free languages L2 and
regular languages R. The same result is obtained for the existence of a
singleton solution in the case ⋄ ∈ {controlled SIN, controlled PIN}.

Theorem 5.21 The problems ”Does there exist a language L1 such that
L1L2 = R?” and ”Does there exist a word w such that wL2 = R?” are
undecidable for context-free languages L2 and regular languages R.

Proof. The claim follows immediately from Theorem 5.14 and the remark
following it, by using the mirror image operator.

Theorem 5.22 If ⋄ denotes the sequential insertion, the problem Q1 is
undecidable for context-free languages L2 and regular languages R.

Proof. Let Σ be an alphabet with card(Σ) ≥ 2 and let # be a letter which
does not occur in Σ. We shall show that there exists a regular language
R = Σ∗ ∪ {#}, such that the problem Q1 is undecidable for context-free
languages L2.

We assume the contrary and show how to solve the problem ”Is L =
Σ∗?” for context-free languages L. For a given context-free language L ⊆ Σ∗

construct L2 = L ∪ {#}.

Claim. For all languages L1 ⊆ Σ∗ we have:

L1< L2 = R iff L1 = {λ}, L = Σ∗,

where L2, R are defined as above.

The implication ” ⇐= ” is obvious. For the reverse implication, let us
assume that L1 contains a nonempty word w. Then the string w# belongs
to L1< L2 – a contradiction with the form of the words in R. Consequently,
our assumption that L1 contains a nonempty word was false. On the other
hand, L1 = {λ} implies L = Σ∗, and the proof of the claim is complete.
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The claim implies that the problem ”Does there exist a language L1 such
that L1< (L∪ {#}) = Σ∗ ∪ {#}?” amounts to the problem ”Is L = Σ∗?”.
The theorem now follows as the latter problem is undecidable for context-
free languages L.

Note that in the proof of the preceding theorem the language L1 =
{λ} is a singleton. Consequently, the proof can be used to show that if ⋄
denotes SIN, the problem Qw

1 is undecidable for context-free languages L2

and regular languages R.
Let ⋄ denote one of the operations PIN, shuffle. The proof of the pre-

ceding theorem and the above remark can be used to show that, in both
cases, the problems Q1 and Qw

1 are undecidable for context-free languages
L2 and regular languages R.

Theorem 5.23 If ⋄ denotes the SIN next to a letter, the problem Q1 is
undecidable for context-free languages L2 and regular languages R.

Proof. Let Σ be an alphabet such that card(Σ) ≥ 2 and let b and # be
letters not occurring in Σ. There exists a regular language R = bΣ∗∪{b#}
such that the problem Q1 is undecidable for context-free languages L2.

We assume the contrary and show how to solve the problem ”Is L =
Σ∗?” for context-free languages L.

For a given context-free language L, define L2 = L ∪ {#}.

Claim. For all languages L1 ⊆ (Σ ∪ b)∗ we have:

L1
b

< L2 = R iff L1 = {b} ∪ L′
1, L = Σ∗,

where L′
1 ⊆ Σ∗ and L2, R are defined as above.

The implication ” ⇐= ” is obvious. For the reverse implication, let us
assume that L1 contains a word ubv ∈ (Σ ∪ b)∗b(Σ ∪ b)∗ different from b.

Then the word ub#v belongs to L1
b

< L2 – a contradiction with the form
of the words in R. Consequently, our assumption that such a word belongs
to L1 was false. As the words which do not contain b do not contribute to
the result, the fact that L1 is of the above form implies that L = Σ∗. The
proof of the claim is thus complete.

From the claim we deduce that the problem ”Does there exist a language

L1 such that L1
b

< (L∪{#}) = bΣ∗∪{b#}?” amounts to the problem ”Is
L = Σ∗?”. The theorem now follows as the latter problem is undecidable
for context-free languages L.
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Theorem 5.24 If ⋄ denotes the SIN next to a letter, the problem Qw
1 is

undecidable for context-free languages L2 and regular languages R.

Proof. The proof is similar to the preceding. The only difference is that
here we ask for a singleton solution and therefore:

L1
b

< L2 = bΣ∗ ∪ {b#} iff L1 = {b}, L = Σ∗.

The proofs of Theorems 5.23 and 5.24 can be used to show that also for ⋄
denoting the PIN next to a letter, the problems Q1 and Qw

1 are undecidable
for context-free languages L2 and regular languages R. Note that in both
cases L1 must equal {b}.

If ⋄ denotes the controlled sequential insertion or the controlled parallel
insertion, the problems Q1,∆ and Qw

1,∆ are undecidable for context-free
control functions ∆ and regular languages R. This follows from Theorems
5.23, 5.24 and from the fact that SIN next to a letter and PIN next to a
letter are special cases of controlled SIN, respectively controlled PIN.

5.4 The right operand problem for deletion

In Section 5.2 the existence of a solution to the equation L1 ⋄ L2 = R was
investigated, where L1, R were given languages, R a regular one, and ⋄
was an insertion operation. A similar problem for ⋄ denoting a deletion
operation will be studied in the sequel.

More specifically, if ⋄ denotes a binary deletion operation, for given
languages L1 and R, R regular, consider the problems:
Q2:”Does there exist a language L2 such that L1 ⋄ L2 = R?”
Qw

2 : ”Does there exist a word w such that L1 ⋄ w = R?”
If ⋄ stands for a ∆-controlled deletion operation, for given languages L1

and R, R regular, the following problems will also be investigated:
Q2,∆:”Does there exist a control function ∆ such that L1 ⋄∆ = R?”
Qw

2,∆:”Does there exist a singleton control function ∆ such that L1 ⋄∆ =
R?”.

If the considered problem is decidable, from the proofs will follow that
one can also construct a language, respectively a control function satisfying
the equation.
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If ⋄ denotes a binary deletion operation and L1 is a given language, a
word y is called right-useful with respect to L1 and ⋄ if there exists x ∈ L1

such that x ⋄ y 6= ∅. A language L2 is called right-useful with respect to L1

and ⋄ if it consists only of right-useful words with respect to L1 and ⋄.
Consider now the case of the controlled sequential deletion. Let ∆ be

a given control function and L1 be a given language over Σ∗. A word
y ∈ ∆(a) is called right-useful with respect to L1 and a, if there exists an

x ∈ L1 such that x
a

> y 6= ∅. The function ∆ is called right-useful with
respect to L1, if for every a ∈ Σ, ∆(a) consists only of right-useful words
with respect to L1 and a.

As we refer in this section only to the right operand problem, if L1 and
⋄ are clear from the context, the word y, the language L2 respectively the
function ∆ will be termed simply useful.

From the above definitions it follows that the problems Q2, Qw
2 , Q2,∆,

Qw
2,∆ are equivalent with the corresponding problems where the existence

of a useful language, word, control function, singleton control function is
investigated. Therefore in the sequel, when we want to prove an unde-
cidability result, we will mean a useful language, word, control function,
singleton control function when referring to the corresponding items whose
existence is studied.

We will begin our investigation with the simplest case, where the oper-
ation involved is the left (right) quotient, and all the languages considered
are regular.

Theorem 5.25 The problem ”Does there exist a language L2 such that
L2\L1 = R?” is decidable for regular languages L1 and R.

Proof. Let L1 and R be regular languages over an alphabet Σ and consider:

R′ = (L1/Rc)c.

(i) R′ is a regular language and can be effectively constructed (see The-
orem 3.1, Corollary 3.1 and the remarks following them).

(ii) R′\L1 ⊆ R. Assume the contrary and let x ∈ L1, y ∈ R′ such that
x = yz, z ∈ Rc. This implies y = x/z ⊆ L1/Rc, which contradicts the fact
that y was a word in R′.

(iii) Any language L2 with the property L2\L1 ⊆ R is included in R′.
Assume the contrary and let y be a word in such an L2, satisfying y ∈ R′c.
Consequently there exist x ∈ L1, z ∈ Rc such that x = yz. This further
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implies z = y\x ⊆ L2\L1 ⊆ R. We arrived at a contradiction as z was a
word in Rc.

If there exists a language L2 such that L2\L1 = R, from (ii) and (iii)
we deduce that also R′\L1 = R. The algorithm for deciding our problem
will consist of constructing R′ and deciding whether or not R′\L1 equals
R.

An analogous proof can be used to show that the problem ”Does there exist
a language L2 such that L1/L2 = R?” is decidable for regular languages
L1 and R. The language R′ will be in this case:

R′ = (Rc\L1)
c.

Example 5.2 Let L1 = {ab, a2b2} and R = {b, ab2}. We are investigating
the existence of a solution L2 of the equation L2\L1 = R. Using the method
of the preceding theorem we construct the languages:

Rc = {a, b}∗ − {b, ab2},
L1/Rc = {λ, ab, a2b2, a2},

R′ = {a, b}∗ − {λ, ab, a2b2, a2}.

In order to check whether or not R′\L1 = R we notice that the set of useful
words of R′ is R′

u = {a, aab}. The equality

{a, aab}\{ab, a2b2} = {b, ab2}

holds, therefore there exists a solution to the equation L1L2 = R, namely
the language L2 = R′ = {a, b}∗−{λ, ab, a2b2, a2}. Note that R′ is the largest
language satisfying our equation. It includes, for example, the languages
R′

u and {a} which are also solutions.

Observe that the same R′ is obtained if we take L1 as before and
R = {b, ab2, ba}. However, in this case the equality R′\L1 = R does not
hold. According to the preceding theorem, this implies that the equation
L2\{ab, a2b2} = {b, ab2, ba} has no solution.

Corollary 5.1 All languages that can be obtained from a regular language
L1 by left quotient can be effectively constructed. For each such language R,
a regular R′ such that R′\L1 = R can be effectively constructed. Moreover,
R′ is the largest language with the property R′\L1 = R.
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Proof. From Corollary 3.2 follows that there are finitely many languages
that can be obtained from L1 by left quotient. Moreover, a (finite) class of
languages that includes them can be effectively constructed. All languages
in the class are regular.

According to the preceding theorem, for each language in the class we
can check whether or not the language is actually obtained from L1 by
left quotient. Let R be such a language, that is, a language for which
there exists an L2 such that L2\L1 = R. Then the language R′ from the
preceding theorem satisfies the requested conditions.

A similar corollary can be proved for the right quotient of languages.
The proof uses the remarks following Corollary 3.2 and the one following
the preceding theorem.

Theorem 5.26 If ⋄ denotes the sequential deletion, the problem Q2 is de-
cidable for regular languages L1 and R.

Proof. Let L1, R be regular languages over an alphabet Σ and construct:

R′ = (L1 ⇀↽ Rc)c,

where ⇀↽ is the dipolar deletion defined in Section 4.2.
(i) The language R′ is regular and can be effectively constructed (see

Lemma 4.5 and Corollary 4.5).
(ii) L1 >R′ ⊆ R. Assume the contrary and let x ∈ L1, y ∈ R′ such

that x = z1yz2, z = z1z2 ∈ Rc. According to the definition of the dipolar
deletion, y belongs to x ⇀↽ z ⊆ L1 ⇀↽ Rc. We arrived at a contradiction as
y was a word in R′.

(iii) Any language L2 satisfying L1 >L2 ⊆ R is included in R′. Assume
the contrary and let y /∈ R′ be a word belonging to such an L2. There exist
x ∈ L1, z ∈ Rc such that x = z1yz2, z = z1z2. This implies that z belongs
to x >y ⊆ L1 >L2 ⊆ R. We arrived at a contradiction as z was a word
in Rc.

If there exists a language L2 such that L1 >L2 = R then, using (ii)
and (iii), we deduce that also L1 >R′ = R. The algorithm for deciding our
problem starts with the construction of R′. Then the equality L1 >R′ = R
is decided and the answer is the answer to our problem.

Corollary 5.2 The languages that can be obtained from a regular L1 by se-
quential deletion can be effectively constructed. For each such language R, a
regular R′ such that L1 >R′ = R can be effectively constructed. Moreover,
the language R′ is the largest one with this property.
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Proof. We use Corollary 3.5. There are finitely many languages that can be
obtained from the regular L1 by sequential deletion. Moreover, we are able
to construct a (finite) class of languages that includes them. All languages
in this class are regular.

According to the preceding theorem, for each language from the class,
one can decide whether or not the language is actually obtained from L1

by sequential deletion. Let R be such a language, that is, a language for
which there exists an L2 such that L1 >L2 = R. Then the language R′

constructed in the preceding theorem satisfies the requested conditions.

Theorem 5.27 If ⋄ denotes the scattered sequential deletion, the problem
Q2 is decidable for regular languages L1 and R.

Proof. Let L1 and R be regular languages over an alphabet Σ and construct:

R′ = (L1 > Rc)c,

where > denotes the scattered sequential deletion defined in Section 3.5.
(i) R′ is a regular language and can be effectively constructed (see The-

orem 3.25, Corollary 3.22).
(ii) L1 >R′ ⊆ R. Assume the contrary and let x ∈ L1, y ∈ R′ be

words such that x = x1y1 . . . xnynxn+1, xi ∈ Σ∗, 1 ≤ i ≤ n + 1, yi ∈ Σ∗,
1 ≤ i ≤ n, y = y1 . . . yn and z = x1 . . . xnxn+1 ∈ Rc. According to the
definition of the scattered SD, the word y belongs to (x > z) ⊆ L1 >Rc.
We arrived at a contradiction as y was a word in R′.

(iii) Any language L2 with the property L1 > L2 ⊆ R is included in
R′. Assume the contrary and let L2 be a language as before, such that
L2 − R′ 6= ∅. Let y be a word in L2 − R′. As y belongs to L1 >Rc there
exist words x ∈ L1, z ∈ Rc such that x = x1y1 . . . xnynxn+1, xi ∈ Σ∗,
1 ≤ i ≤ n + 1, yi ∈ Σ∗, 1 ≤ i ≤ n, and z = x1 . . . xnxn+1 and y = y1 . . . yn.
Consequently we have z ∈ (x > y) ⊆ L1 > L2 ⊆ R. This contradicts the
fact that z was a word in Rc.

If there exists a language L2 such that L1 >L2 = R then, according to
(ii) and (iii), L1 >R′ = R. The algorithm for deciding Q2 will consist of
constructing R′ and deciding whether or not L1 >R′ = R.

Theorem 5.28 If ⋄ denotes the controlled sequential deletion, the problem
Q2,∆ is decidable for regular languages L1 and R.

Proof. Let L1, R be regular languages over an alphabet Σ = {a1, . . . , an},
n ≥ 1 and let #, $ be letters which do not occur in Σ. We use the morphism
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h and the gsm’s gi, 1 ≤ i ≤ n, defined in Theorem 5.12 to construct for
every i, 1 ≤ i ≤ n, the value of the function ∆:

∆(ai) = [h((gi(L1) ⇀↽ Rc) ∩#Σ∗$)]c,

where ⇀↽ denotes the dipolar deletion defined in Section 4.2.
(i) ∆(ai), 1 ≤ i ≤ n, are regular languages and can be effectively con-

structed (see Lemma 4.5, Corollary 4.5).
(ii) L1 >∆ ⊆ R. Assume the contrary and let x = uaiwv ∈ L1,

w ∈ ∆(ai) be words such that uaiv ∈ Rc. According to the relation (*)
of Theorem 5.12 uai#w$v ∈ gi(L1) and therefore #w$ ∈ (gi(L1) ⇀↽ Rc)∩
#Σ∗$. This implies that w ∈ h((gi(L1) ⇀↽ Rc)∩ #Σ∗$), which contradicts
the fact that w ∈ ∆(ai).

(iii) Any control function ∆′ which satisfies the relation L1 >∆′ ⊆ R
has the property ∆′(ai) ⊆ ∆(ai) for all i, 1 ≤ i ≤ n. Assume the contrary
and let ∆′ be a function as before such that ∆′(ai) −∆(ai) 6= ∅ for some
i, 1 ≤ i ≤ n. Let w be a word in ∆′(ai) − ∆(ai). As w ∈ (∆(ai))

c we
deduce that #w$ ∈ gi(L1) ⇀↽ Rc. This implies the existence of the words
uai#w$v ∈ gi(L1), uaiv ∈ Rc. According to the definition of the gsm gi,
the word uaiwv belongs to L1, that implies in turn uaiv ∈ L1 >∆′ ⊆ R.
This contradicts the fact that uaiv ∈ Rc.

If there exists a function ∆′ such that L >∆′ = R then, using (ii) and
(iii), we deduce that L >∆ = R. The algorithm for deciding Q2,∆ will
consist of constructing ∆ and deciding whether or not L >∆ = R.

If ⋄ denotes the SD next to one letter the above proof can be used to
show that Q2 is decidable for regular languages L1 and R. Indeed, for given
regular languages L1, R ⊆ Σ∗ and control letter ai, one can construct

R′ = [h(gi(L1) ⇀↽ Rc) ∩#Σ∗$]c.

Then the problem ”Is L1
ai

> R′ = R?” is decided and it can be proved as
in Theorem 5.28 that this problem is equivalent with Q2.

In the following, some undecidability results are proved. We begin with
the simplest case, where the operation considered is the left (right) quotient.

Theorem 5.29 The problem ”Does there exist a language L2 such that
L2\L1 = R?” is undecidable for context-free languages L1 and regular lan-
guages R.
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Proof. Let Σ be an alphabet, card(Σ) ≥ 2, and let # be a letter which does
not occur in Σ. There exists a regular language R = #Σ∗ such that the
problem of the theorem is undecidable for context-free languages L1.

Indeed, the equation L2\(#L) = #Σ∗ holds for languages L and L2

over Σ exactly in the case L2 = {λ} and L = Σ∗. (Recall our conven-
tion concerning usefulness.) Hence, if we could decide the problem of the
theorem, we would be deciding the problem ”Is L = Σ∗?” for context-free
languages L, which is impossible.

Notice that in the above proof the language L2 = {λ} is a singleton.
Therefore also the problem ”Does there exist a word w such that w\L1 =
R?” is undecidable for context-free languages L1 and regular languages R.

The problems ”Does there exist a language L2 such that L1/L2 = R?”
and ”Does there exist a word w such that L1/w = R?” are undecidable
for context-free languages L1 and regular languages R. Indeed, if we take
R = Σ∗# and for a context-free L ⊆ Σ∗, L1 = L#, the proof is analogous
to that of the preceding theorem.

Theorem 5.30 If ⋄ denotes the sequential deletion, the problem Q2 is un-
decidable for context-free languages L1 and regular languages R.

Proof. Let Σ be an alphabet, card(Σ) ≥ 2, and let #, $ be letters which
do not occur in Σ. There exists a regular language R = #Σ+#∪ $Σ∗$
such that Q2 is undecidable for context-free languages L1. We assume the
contrary and show how to solve the problem ”Is L = Σ∗?” for context-free
languages L.

Let L ⊆ Σ∗ be a context-free language and consider the language L1 =
#Σ+# ∪ $L$. For all languages L2 ⊆ Σ∗, the equation:

#Σ+# ∪ $L$ >L2 = #Σ+# ∪ $Σ∗$ (∗)

holds if and only if L2 = {λ} and L = Σ∗.
The implication ”⇐= ” is obvious. For the reverse implication assume

that (∗) holds and that L2 contains a nonempty useful word w. One of the
next situations must hold:
– w = #, which implies #v# ∈ L1, for some v ∈ Σ+, and therefore,

v# ∈ (#v# >#) ⊆ R.

– w ∈ Σ+, which implies #w# ∈ L1 and therefore,

## ∈ (#w#→ w) ⊆ L1 >L2 = R.
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– w = #v, v ∈ Σ+, which implies #v# ∈ L1 and therefore,

# ∈ (#v# >#v) ⊆ R.

– w = v#, v ∈ Σ+, which implies #v# ∈ L1 and therefore,

# ∈ (#v# >v#) ⊆ R.

– w = #v#, v ∈ Σ+, which implies #v# ∈ L1 and therefore,

λ ∈ (#v# >#v#) ⊆ R.

– w = v$, v ∈ Σ∗, which implies $v′v$ ∈ L1, for some v′ ∈ Σ∗, and
therefore,

$v′ ∈ ($v′v$ >v$) ⊆ R.

– w = $v, v ∈ Σ∗, which implies $vv′$ ∈ L1, for some v′ ∈ Σ∗, and
therefore,

v′$ ∈ ($vv′$ >$v) ⊆ R.

– w = $v$, v ∈ Σ∗, which implies

λ ∈ ($v$ >$v$) ⊆ R.

As we are considering here only useful words, that is, only words w
which can actually be deleted, the above list is an exhaustive one. In all
the considered cases we arrived at contradictions with the form of the words
in R. Consequently, our assumption that L2 contains nonempty words was
false.

The fact that L2 = {λ} implies that L = Σ∗, and the proof of the
reverse implication is complete.

If we could decide the problem of the theorem, we could decide whether
for given context-free languages L, there exists a solution L2 to the equation
(∗). According to the facts proved above, this would in turn imply that we
could decide the problem ”Is L = Σ∗?” for context-free languages L, which
is impossible.

Noticing that in the above proof L2 = {λ} is a singleton language,
the proof can be used to show that for ⋄ denoting the sequential deletion,
the problem Qw

2 is undecidable for context-free languages L1 and regular
languages R.
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A similar proof using the same construction can be used to show that for
⋄ denoting the permuted SD, the scattered SD, the iterated SD, the permuted
scattered SD, the parallel deletion, the permuted PD, the iterated PD, the
problems Q2 and Qw

2 are undecidable for context-free languages L1 and
regular languages R.

Theorem 5.31 If ⋄ denotes the controlled sequential deletion, the problem
Q2,∆ is undecidable for context-free languages L1 and regular languages R.

Proof. Let Σ be an alphabet, card(Σ) ≥ 2, and let #, $ be letters which do
not occur in Σ. There exists a regular language R = Σ∗# such that Q2,∆

is undecidable for context-free languages L1. We assume the contrary and
show how to solve the problem”Is L = Σ∗?” for context-free languages L.

For a given context-free language L ⊆ Σ∗, construct L1 = L#$.
For all control functions ∆ we have:

L#$ >∆ = Σ∗# iff ∆(#) = {$}, ∆(a) = ∅, ∀a, a 6= # (∗)
and L = Σ∗.

The implication ”⇐= ” is obvious. For the reverse implication assume that
∆(#) contains at least a word w 6= $. The only possibility is w = λ which
implies that words of the form u#$ ∈ R – a contradiction. (Recall that we
are looking for useful words.)

The function ∆ has the value ∅ for any other letter than #. Indeed,
the only possible value for ∆($) would be λ, which would imply that words
containing $ would occur in R – a contradiction.

Assume that, for some a ∈ Σ, ∆(a) contains a word w. One of the
following possibilities must occur:

– w is of the form w = v#$, v ∈ Σ∗, which implies v′av ∈ L for some
v′ ∈ Σ∗ (w is useful) and therefore:

v′ ∈ (v′av#$ >∆) ⊆ R.

– w is of the form v#, v ∈ Σ∗, which implies v′av ∈ L for some v′ ∈ Σ∗

and therefore,

v′a$ ∈ (v′av#$ >∆) ⊆ R.

– w ∈ Σ∗ which implies vawv′ ∈ L for some v, v′ ∈ Σ∗ and therefore:

vav′#$ ∈ (vawv′#$ >∆) ⊆ R.
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In all cases we arrived at contradictions, therefore our assumption that
∆ is nonempty for a letter a ∈ Σ was false.

On the other hand, the fact that the control function is of the form
mentioned in (*) implies that L = Σ∗. The second implication is proved.

From the above claim it follows that the problem ”Does there exist a
control function ∆ such that L#$ >∆ = Σ∗#?” amounts to the problem
”Is L = Σ∗?”. Consequently, if the former would be decidable then the
latter would be also decidable for context-free languages L.

Notice that the control function ∆ in the proof of the preceding theo-
rem is nonempty only for one letter and has a singleton as its value. Conse-
quently, we can use the same proof to show that for ⋄ denoting the controlled
SD, the problem Qw

2,∆ is undecidable for context-free languages L1 and reg-
ular languages R. The same remark implies that if ⋄ denotes the SD next to
a letter or PD next to a letter, namely #, the problems Q2 and Qw

2 are un-
decidable for context-free languages L1 and regular languages R. The only
difference is that, in the case of PD next to a letter, the control function ∆
has the value λ for all a ∈ Σ ∪ {$}.

Theorem 5.32 Let ⋄ denote the controlled parallel deletion. The problem
Qw

2,∆ is undecidable for context-free languages L1 and regular languages R.

Proof. Let Σ be an alphabet, card(Σ) ≥ 2, and #, $ be letters not belonging
to Σ. There exists a regular language R = Σ+∪ {#a| a ∈ Σ} such that the
problem Qw

2,∆ is undecidable for context-free languages L1.
We notice that the equation

L1$ ∪ {#a$| a ∈ Σ} >∆ = Σ+ ∪ {#a| a ∈ Σ}

holds for L1 ⊆ Σ∗ and singleton control functions ∆ iff

∆(#) = ∆($) = λ, ∆(a) = $, a ∈ Σ, and L1 = Σ+.

Consequently, if we could decide Qw
2,∆, we would be deciding the prob-

lem ”Is L1 = Σ+?” for context-free languages L1, which is impossible.

5.5 The left operand problem for deletion

This section deals with problems similar to the ones studied in Section 5.3
for insertion operations. Let ⋄ denote a binary deletion operation. For given
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languages L2 and regular languages R, the following decision problems are
investigated:
Q1: ”Does there exist a language L1 such that L1 ⋄ L2 = R?”
Qw

1 : ”Does there exist a word w such that w ⋄ L2 = R?”.
If ⋄ stands for a ∆-controlled deletion operation, for given control func-

tions ∆ and regular languages R, the following problems will be also con-
sidered:
Q1,∆: ”Does there exist a language L1 such that L1 ⋄∆ = R?”
Qw

1,∆:” Does there exist a word w such that w ⋄∆ = R?”.

Let ⋄ be a binary deletion operation. If L2 is a language over an alphabet
Σ, the word x is called left useful with respect to ⋄ and L2 (shortly, useful)
if there exists a y ∈ L2 such that x ⋄ y 6= ∅. A language L1 is called left
useful with respect to ⋄ and L2 (shortly, useful), if it consists only of useful
words.

The notion is extended to the controlled sequential deletion in the ob-
vious fashion. Let ∆ be a control function defined on Σ. A word x ∈ Σ+

is called left-useful with respect to ∆ (shortly, useful) if x >∆ 6= ∅. A lan-
guage L1 is called left-useful with respect to ∆ (shortly, useful) if it consists
only of useful words.

From the above definitions it follows that the problems Q1, Qw
1 , Q1,∆,

Qw
1,∆ are equivalent with the corresponding problems where the existence of

a useful language or word is investigated. Therefore in the sequel, when we
want to prove an undecidability result, we will mean a useful language or
word when referring to a language or word whose existence is investigated.

We start with the simplest case, where the operation is the left (right)
quotient and all the languages involved are regular.

Theorem 5.33 The problem ”Does there exist a language L1 such that
L2\L1 = R?” is decidable for regular languages L2 and R.

Proof. Let L2 and R be regular languages over an alphabet Σ and consider:

R′ = (L2R
c)c.

(i) R′ is a regular language and can be effectively constructed.
(ii) L2\R′ ⊆ R. Assume the contrary and let x ∈ R′, y ∈ L2 be

words such that x = yz, z ∈ Rc. This implies that x = yz ∈ L2R
c – a

contradiction to the fact that x was a word in R′.
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(iii) Any language L1 with the property L2\L1 ⊆ R is included in
R′. Assume the contrary and let L1 be a language as before such that
L1 − R′ 6= ∅. If x is a word in L1 − R′ then x = yz for some y ∈ L2

and z ∈ Rc. This implies that z = (y\x) ∈ L2\L1 ⊆ R. We arrived at a
contradiction as z was a word in Rc.

If there exists a language L1 such that L2\L1 = R then, using (ii) and
(iii), we deduce that L2\R′ = R. The algorithm for deciding our problem
will consist of constructing R′ and deciding whether or not L2\R′ = R.

Theorem 5.34 The problem ”Does there exist a word w such that L2\w =
R?” is decidable for regular languages L2 and R.

Proof. Let L2, R be regular languages over an alphabet Σ. Notice that, if
R is an infinite language, the answer to our problem is NO. If R is finite,
we can effectively construct the regular set:

P = (L2R
c)c −

⋃

S⊂R
(L2S

c)c,

where by ⊂ we denote strict inclusion.

Claim. For all w ∈ Σ∗ we have: w ∈ P iff L2\w = R.

Indeed, from (ii), (iii) of the preceding theorem it follows that for given
regular languages L2 and R we have:

(L2R
c)c = {v| L2\v ⊆ R}.

Therefore, if L2\w = R then:

w ∈ {v| L2\v ⊆ R},
w 6∈ {v| L2\v ⊆ S ⊂ R},

and consequently w ∈ P .
For the reverse implication, let w be a word in P . As L2\w ⊆ R but

L2\w is not included in any proper subset of R we have L2\w = R. The
proof of the claim is thus complete.

The algorithm for deciding our problem will check first the finiteness of
R. If R is infinite, the answer is NO. Else, the set P is constructed and its
emptiness is decided. If P = ∅, the answer is NO. Else the answer is YES
and any word w in P satisfies the equation L2\w = R.
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The proofs of Theorem 5.33 and Theorem 5.34 can be modified in order
to show that the problems:
”Does there exist a language L1 such that L1/L2 = R?” ,
”Does there exist a word w such that w/L2 = R?”
are decidable for regular languages L2 and R. The languages constructed
in the proofs will be respectively:

R′ = (RcL2)
c,

P = (RcL2)
c −

⋃

S⊂R(ScL2)
c.

Theorem 5.35 If ⋄ denotes the sequential deletion then the problem Q1 is
decidable for regular languages L2 and R.

Proof. Let L2 and R be regular languages over an alphabet Σ and consider

R′ = (Rc
< L2)

c,

where < denotes the sequential insertion.
(i) R′ is a regular language and can be effectively constructed (see The-

orem 2.3).
(ii) R′

>L2 ⊆ R. Assume the contrary and let x ∈ R′, y ∈ L2 be words
such that x = x1yx2, x1, x2 ∈ Σ∗ and z = x1x2 ∈ Rc. According to the
definition of the sequential insertion we have x ∈ (z< y) ⊆ Rc

< L2. We
arrived at a contradiction as x was a word in R′.

(iii) Any language L1 with the property L1 >L2 ⊆ R is included in R′.
Assume the contrary and let x be a word in L1−R′. As x belongs to (R′)c,
there exist words z ∈ Rc, y ∈ L2 such that x = x1yx2, x1, x2 ∈ Σ∗, z =
x1x2. According to the definition of the sequential deletion, z ∈ (x >y) ⊆
L1 >L2 ⊆ R. This contradicts the fact that z was a word in Rc.

If there exists a language L1 such that L1 >L2 = R then, using (ii)
and (iii), we deduce that R′

>L2 = R. The algorithm for deciding Q1 will
consist of constructing R′ and deciding whether or not R′

>L2 = R.

Theorem 5.36 If ⋄ denotes the sequential deletion, the problem Qw
1 is

decidable for regular languages L2 and R.

Proof. Let L2 and R be regular languages over an alphabet Σ.
We notice first that, if R is an infinite language, the answer to our

problem is NO.
If R is finite, we can effectively construct the regular set:

P = (Rc
< L2)

c −
⋃

S⊂R
(Sc

< L2)
c.
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Claim. For all w ∈ Σ∗ we have: w ∈ P if and only if w >L2 = R.

Indeed, using the proof of (ii) and (iii) from Theorem 5.35 we can deduce
that for given regular languages L2 and R:

(Rc
< L2)

c = {v| v >L2 ⊆ R}.

Consequently, if w >L2 = R then:

w ∈ {v| v >L2 ⊆ R},
w 6∈ {v| v >L2 ⊆ S ⊂ R},

and therefore w ∈ P .
For the reverse implication, let w be a word in P . We have that w >L2

is included in R, but it is not included in any proper subset S of R. This
implies that w >L2 = R and the proof of the claim is complete.

The algorithm for deciding Qw
1 will check first the finiteness of R. If R

is infinite, the answer to Qw
1 is NO. Else, the set P is constructed and the

emptiness of P is decided. If P = ∅, the answer is NO. Else, the answer is
YES and any word w in P satisfies the equation w >L2 = R.

If ⋄ denotes the scattered sequential deletion, the problems Q1 and Qw
1

are decidable for regular languages L2 and R. The proofs can be obtained
from those of Theorem 5.35 and Theorem 5.36 by replacing the sequential
deletion by scattered sequential deletion and the sequential insertion by
shuffle.

Theorem 5.37 If ⋄ denotes the iterated sequential deletion, the problem
Qw

1 is decidable for regular languages L2 and R.

Proof. Let L2 and R be regular languages over an alphabet Σ. If there
exists a word w such that w >

∗L2 = R then R is a finite language and
w ∈ R. Consequently, the algorithm for deciding Qw

1 will begin by deciding
the finiteness of R. If R is infinite, the answer is NO. Else, for every w
in R the problem of whether or not w >

∗L2 equals R is decided. (Recall
that, according to Theorem 3.8 and Corollary 3.12 the result of the iterated
sequential deletion w >

∗L2 is regular and can be effectively constructed.)
If such a w is found the answer is YES, else it is NO.

Theorem 5.38 If ⋄ denotes the controlled sequential deletion, the problem
Q1,∆ is decidable for regular languages R and regular control functions ∆.
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Proof. Let R be a regular language over an alphabet Σ and ∆ be a regular
function over Σ. Define

R′ = (Rc
< ∆)c,

where < denotes the controlled sequential insertion.
(i) R′ is a regular language and can be effectively constructed (see The-

orem 2.18).
(ii) R′

>∆ ⊆ R. Assume the contrary and let x ∈ R′, x = uawv,
u, v, w ∈ Σ∗, a ∈ Σ, w ∈ ∆(a) be words such that uav ∈ Rc. Then
x ∈ (uav< ∆) ⊆ Rc

< ∆, which contradicts the fact that x ∈ R′.
(iii) Any language L1 with the property L1 >∆ ⊆ R is included in

R′. Assume the contrary and let x be a word in L1 −R′. As x belongs to
Rc

< ∆ there exist words z ∈ Rc, z = uav, u, v ∈ Σ∗, a ∈ Σ, and w ∈ ∆(a),
such that x = uawv. Consequently, z ∈ (x >∆) ⊆ L1 >∆ ⊆ R, which
contradicts the fact that z ∈ Rc.

If there exists a language L1 such that L1 >∆ = R then, using (ii)
and (iii), we can deduce that R′

>∆ = R. The algorithm for deciding
our problem will consist of constructing R′ and deciding whether or not
R′

>∆ = R.

Theorem 5.39 If ⋄ denotes the controlled sequential deletion, the problem
Qw

1,∆ is decidable for regular languages R and regular control functions ∆.

Proof. Analogous to that of Theorem 5.36. In the case of controlled deletion
the set P is defined as

P = (Rc
< ∆)c −

⋃

S⊂R
(Sc

< ∆)c,

and the proof of Theorem 5.38 is used.

The proofs of Theorem 5.38 and Theorem 5.39 can be used to show that
for ⋄ denoting sequential deletion next to a letter, the problems Q1 and Qw

1

are decidable for regular languages L2 and R.
The languages constructed in the proofs will be respectively:

R′ = (Rc
b

< L2)
c,

P = (Rc
b

< L2)
c −

⋃

S⊂R(Sc
b

< L2)
c.

Theorem 5.40 The problem ”Does there exist a language L1 such that
L2\L1 = R?” is undecidable for context-free languages L2 and regular lan-
guages R.
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Proof. Let Σ be an alphabet, card(Σ) ≥ 2, and let #, $1, $2 be letters which
do not occur in Σ. There exists a singleton language R = {$2} such that the
problem of the theorem is undecidable for context-free languages L2. We
assume the contrary and show how to solve the problem ”Is L − L′ 6= ∅?”
for context-free languages L and L′. For given context-free L, L′, define:

L2 = #(L ∪ L′)$1 ∪#L′$1$2.

Claim. There exists a language L1 such that L2\L1 = R iff L − L′ 6= ∅,
where L2 and R are defined as above.

”=⇒” Let L1 be a language such that L2\L1 = R. As R = {$2}, $2 has to
be a suffix of all the words in L1. (Recall that we are talking about useful
languages L1.) Let us consider all the possible cases:
– If L1 contains a word of the form #u$1$2$2, u ∈ L′, then

$2$2 ∈ (#u$1 \ #u$1$2$2) ⊆ R.

– If L1 contains a word of the form #u$1$2, u ∈ L′, then

λ ∈ (#u$1$2 \ #u$1$2) ⊆ R.

Both possibilities lead to contradictions with the fact that R = {$2}. Con-
sequently, L1 does not contain such words. Taking into account the form
of the words in L2 and R, the only remaining possibility is that:

L1 ⊆ {#u$1$2| u ∈ L− L′},

which further implies L− L′ 6= ∅, since L1 cannot be empty.
”⇐=” Assume that L − L′ 6= ∅ and let u be a word in L − L′. The

language L1 = {#u$1$2} satisfies the relation L2\L1 = R. The second
implication and therefore the proof of the claim is complete.

The proof of the preceding theorem can be used to show that the prob-
lem ”Does there exist a word w such that L2\w = R” is undecidable for
context-free languages L2 and regular languages R.

An analogous proof can be used to show that the problems:
”Does there exist a language L1 such that L1/L2 = R?”
”Does there exist a word w such that w/L2 = R?”
are undecidable for context-free languages L2 and regular languages R. The
languages used in the proof will be respectively:

R = {$2}, L2 = $1(L ∪ L′)# ∪ $2$1L
′#.
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Theorem 5.41 If ⋄ denotes the sequential deletion, the problem Qw
1 is

undecidable for context-free languages L2 and regular languages R.

Proof. Let Σ be an alphabet, card(Σ) ≥ 2, and let #1, #2, $1, $2 be letters
which do not occur in Σ. There exists a finite language R = {#1, $2}
such that the problem Qw

1 is undecidable for context-free languages L2. We
assume the contrary and show how to solve the problem ” Is L∩L′ 6= ∅?” for
context-free languages L, L′. For given context-free languages L, L′ ⊆ Σ∗,
define the language:

L2 = #1#2L$1 ∪#2L
′$1$2.

Claim. There exists a word w such that w >L2 = R iff the intersection
L ∩ L′ is nonempty, where L2 and R are defined as before.

”⇐=” Let u be a word in L ∩ L′ and take w = #1#2u$1$2. The following
relations hold:

#1#2u$1$2 >#1#2u$1 = {$2},

#1#2u$1$2 >#2u$1$2 = {#1}.

Moreover, because of the markers, no other words of L2 are subwords of w
and therefore w >L2 = {#1, $2} = R.

”=⇒” Let w be a word with the property w >L2 = R. As R =
{#1, $2}, either $2 or #1 is a prefix of w.

If $2 is a prefix of w then, necessarily, #1 is a suffix of w, and therefore
w has the form w = $2α#1. As {$2} ⊆ w >L2, the word α#1 has to
be a subword of L2 – a contradiction with the form of the words in L2.
Consequently, $2 is not a prefix of w.

If #1 is a prefix of w then, necessarily, $2 is a suffix of w, and therefore
w has to be of the form w = #1α$2. As {$2} ⊆ w >L2 it results that w
has the form w = #1#2u$1$2 where u belongs to L. As {#1} ⊆ w >L2 it
results that w has the form w = #1#2u

′$1$2, where u′ belongs to L′. We
conclude that u = u′ ∈ L ∩ L′, which is therefore nonempty. The proof of
the claim is complete.

The claim implies that the problem ”Does there exist a word w such
that:

w >(#1#2L$1 ∪#2L
′$1$2) = {#1, $2}?”.

amounts to the problem ”Is L ∩ L′ = ∅?”.
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Remark. The operations of insertion and deletion are associated with
several notions rather basic in the combinatorics of words. While a more
detailed study of such notions lies outside the scope of this Thesis, we want
to briefly mention here one of them.

A language L is called a deletion set if

L = w >L′,

for some word w and language L′. Clearly, every deletion set is finite. If
m is the length of the longest word in a deletion set L, then L contains at
most (m + 1)(m + 2)/2 words, this upper bound being the best possible
in the general case. It is also not difficult to prove that it is decidable
whether or not a given finite language is a deletion set. This result should
be contrasted with the undecidability result of Theorem 5.41.

Theorem 5.42 If ⋄ denotes the sequential deletion the problem Q1 is un-
decidable for context-free languages L2 and regular languages R.

Proof. Let Σ be an alphabet, card(Σ) ≥ 2, and let $1, $2, # be letters which
do not occur in Σ. There exists a singleton language R = {$2} such that
the problem Q1 is undecidable for context-free languages L2. We assume
the contrary and show how to solve the problem ”Is L − L′ = ∅?” for
context-free languages L and L′. Let L, L′ be context-free languages and
consider the language:

L2 = #(L ∪ L′)$1 ∪#L′$1$2 ∪ $2#L′$1.

Claim. There exists a language L1 such that L1 > L2 = R iff L− L′ 6=
∅, where L2 and R are defined as before.

”=⇒” Let L1 be a language such that L1 >L2 = R. Every word in L1

has to be of the form w$2 or $2w where w is a word in L2. (Recall that
we are considering only useful languages L1.) We take into account all the
possible cases:
– If L1 contains a word of the form #u$1$2$2, u ∈ L′, then

$2$2 ∈ (#u$1$2$2 >#L′$1) ⊆ R.

– If L1 contains a word of the form $2#u$1$2, u ∈ L′, then

$2$2 ∈ ($2#u$1$2 >#L′$1) ⊆ R.
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– If L1 contains a word of the form $2$2#u$1, u ∈ L′, then

$2$2 ∈ ($2$2#u$1 >#L′$1) ⊆ R.

– If L1 contains a word of the form #u$1$2, u ∈ L′, then

λ ∈ (#u$1$2 >#L′$1$2) ⊆ R.

– If L1 contains a word of the form $2#u$1, u ∈ L′, then

λ ∈ ($2#u$1 >$2#L′$1) ⊆ R.

All the mentioned cases led to contradictions with the fact that R = {$2}.
Consequently, L1 does not contain such words. Taking into account the
form of the words in L2 and R, the only remaining possibility is that:

L1 ⊆ {#u$1$2| u ∈ L− L′} ∪ {$2#u$1| u ∈ L− L′}.

This further implies that if L1 with the desired property exists then
L− L′ 6= ∅.

”⇐=” Assume that L − L′ 6= ∅ and let u be a word in L − L′. The
language L1 = {#u$1$2} satisfies the relation L1 >L2 = R. The proof of
the claim is thus complete.

Theorem 5.43 If ⋄ denotes the controlled sequential deletion, the prob-
lem Q1,∆ is undecidable for context-free control functions ∆ and regular
languages R.

Proof. Let Σ be a language, card(Σ) ≥ 2, and let #1, #2, $1, $2 be letters
which do not occur in Σ. There exists a singleton language R = {#1$2}
such that the problem Q1,∆ is undecidable for context-free control functions
∆. We assume the contrary and show how to solve the problem ”Is L−L′ =
∅?” for context-free languages L, L′.

For given L, L′ as before consider the control function defined by:

∆(#1) = #2(L ∪ L′)$1 ∪#2L
′$1$2, ∆(a) = ∅, ∀a 6= #1.

Claim. There exists a language L1 such that L1 >∆ = R, iff L−L′ 6= ∅,
where ∆, R are defined as before.
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”=⇒” If L1 would contain a word of the form #1#2u$1$2$2, u ∈ L′, then

#1$2$2 ∈ (#1#2u$1$2$2 >∆) ⊆ R,

– a contradiction.
If L1 would contain a word of the form #1#2u$1$2, u ∈ L′, then

#1 ∈ (#1#2u$1$2 >∆) ⊆ R,

– a contradiction.
Consequently, the only possibility that remains is that

L1 ⊆ {#1#2u$1$2| u ∈ L− L′},

and, as L1 6= ∅, this implies L− L′ 6= ∅.
”⇐=” If u is a word in L − L′ take L1 = {#1#2u$1$2}. The language

L1 satisfies the equality L1 >∆ = R. The proof of the claim and therefore
of the theorem is complete.

The previous proof can be used to show that for ⋄ denoting the controlled
SD the problem Qw

1,∆ is undecidable for context-free control functions ∆
and regular languages R.

Noticing that the control function ∆ used in the previous proof has as
value ∅ for all letters except #, the proof can be used to show that, for ⋄
denoting the SD next to a letter, the problems Q1 and Qw

1 are undecidable
for context-free languages L2 and regular languages R.

Theorem 5.44 If ⋄ denotes the scattered sequential deletion, the problems
Q1, Qw

1 are undecidable for context-sensitive languages L2 and regular lan-
guages R.

Proof. We shall prove a stronger result: there exists a singleton language,
R = {λ}, such that the problem Q1 is undecidable for context-sensitive
languages L2. We assume the contrary and show how to solve the emptiness
problem for context-sensitive languages. This follows noticing that the
problem ”Does there exist a language L1 such that L1 >L2 = {λ}?” is
equivalent with the problem ”Is L2 6= ∅?”. Indeed, if L2 6= ∅ we can take
L1 = {w}, where w is one of the shortest words in L2. It is easy to see that
{w} >L2 = {λ}. The reverse implication is obvious.





Appendix A

Operations: abbreviations

and notations

Insertion Operations

Name of operation Abbreviation Nota-

tion

sequential insertion SIN <

parallel insertion PIN <

iterated sequential insertion iterated SIN <
∗

iterated parallel insertion iterated PIN <
∗

permuted sequential insertion permuted SIN <

permuted parallel insertion permuted PIN <

controlled sequential insertion controlled SIN <

left controlled left controlled SIN < <

sequential insertion
controlled parallel insertion controlled PIN <

left controlled left controlled PIN < <

parallel insertion
iterated controlled iterated controlled SIN <

∗

sequential insertion
iterated controlled iterated controlled PIN <

∗

parallel insertion

sequential insertion next SIN next to a
a

<

to the letter a

parallel insertion next PIN next to a
a

<

to the letter a
shuffle ∐
permuted scattered permuted scattered SIN <

(sequential) insertion
commutative closure com
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Deletion operations

Name of operation Abbreviation Notation

sequential deletion SD >

parallel deletion PD >

iterated sequential deletion iterated SD >
∗

iterated parallel deletion iterated PD >
∗

permuted sequential deletion permuted SD >

permuted parallel deletion permuted PD >

controlled sequential deletion controlled SD >

left controlled left controlled SD >>

sequential deletion
controlled parallel deletion controlled PD >

left controlled left controlled PD >>

parallel deletion

sequential deletion next SD next to a
a

>

to the letter a

parallel deletion next PD next to a
a

>

to the letter a
scattered (sequential) deletion scattered SD >

permuted scattered permuted scattered SD >

(sequential) deletion
dipolar deletion ⇀↽



Appendix B

Closure properties

Insertion Operations

Closed under REG CF CS

catenation YES YES YES
SIN YES YES YES
PIN YES YES YES
iterated SIN NO/NO YES YES
iterated PIN NO/NO NO (no/no) YES
permuted SIN NO/YES NO (no/yes) YES
permuted PIN NO/YES NO (no/yes) YES
controlled SIN YES YES YES
SIN next to a letter YES YES YES
controlled PIN YES YES YES
PIN next to a letter YES YES YES
shuffle YES NO (yes/yes) YES
permuted scattered SIN NO/YES NO (no/yes ) YES
iterated controlled SIN NO/NO YES YES
iterated controlled PIN NO/NO NO (no/no) YES

In all tables, dash stands for unsettled. For the other notations, see also
the remarks on the next page.
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Deletion Operations

Closed under REG CF CS

left (right) quotient YES NO (yes/yes) NO(no/yes)
SD YES NO (yes/yes) NO (no/yes)
PD YES NO (yes/yes) NO (no/no)
iterated SD YES NO (no/no) NO (no/no)
iterated PD – NO (no/no) NO (no/no)
permuted SD YES NO (no/yes) NO (no/yes)
permuted PD NO/YES NO (no/yes) NO (no/no)
controlled SD YES NO (yes/yes) NO (no/yes)
SD next to a letter YES NO (yes/yes) NO(no/yes)
controlled PD YES NO (yes/yes) NO (no/yes)
PD next to a letter YES NO (yes/yes) NO(no/yes)
scattered SD YES NO (yes/yes) NO (no/yes)
permuted scattered SD NO/YES NO (no/yes) NO (no/yes)
dipolar deletion YES NO (yes/yes) NO (no/yes)

1. RE is closed under all the listed operations except PD, iterated PD,
permuted PD, controlled PD, PD next to a letter.

2. In case REG is not closed under an operation, its closure under the
operation with singletons is stated. For example, REG is not closed
under permuted SIN, but it is closed under permuted SIN with sin-
gletons.

3. In case CF, CS are not closed under an operation, their closure under
the operation with regular, respectively singleton languages is stated
in parentheses. For example, CS is not closed under scattered SD,
it is not closed under scattered SD with regular languages but it is
closed under scattered SD with singletons.



Appendix C

Decision problems
Basic decision problems for insertion

Operation Problem REG CF

catenation Q0(Q
w
0 ) D (D) U (U)

Q(Qw) T (T) U (U)
SIN Q0(Q

w
0 ) D (D) U (U)

Q(Qw) T (T) U (U)
PIN Q0(Q

w
0 ) D (D) U (U)

Q(Qw) T (T) U (U)
iterated SIN Q0(Q

w
0 ) – (–) U (U)

Q(Qw) – (–) U (U)
iterated PIN Q0(Q

w
0 ) – (–) U (U)

Q(Qw) – (–) U (U)
permuted SIN Q0(Q

w
0 ) – (D) U (U)

Q(Qw) – (T) U (U)
permuted PIN Q0(Q

w
0 ) – (D) U (U)

Q(Qw) – (T) U (U)
controlled SIN Q0,∆(Qw

0,∆) D (D) U (U)

Q∆(Qw
∆) T (T) U (U)

controlled PIN Q0,∆(Qw
0,∆) D (D) U (U)

Q∆(Qw
∆) T (T) U (U)

SIN next to a letter Q0(Q
w
0 ) D (D) U (U)

Q(Qw) T (T) U (U)
PIN next to a letter Q0(Q

w
0 ) D (D) U (U)

Q(Qw) T (T) U (U)
shuffle Q0(Q

w
0 ) D (D) U (U)

Q(Qw) T (T) U (U)
permuted scattered SIN Q0(Q

w
0 ) – (D) U (U)

Q(Qw) – (T) U (U)

In all the following tables, U means undecidable, D decidable, T true for
the whole class, and dash unsettled. For the meaning of the symbols Q0,
Qw

0 , Q0,∆, Qw
0,∆, Q, Qw, Q∆ and Qw

∆, see Section 5.1 .
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Basic decision problems for deletion

Operation Problem REG CF

right(left) quotient Q0(Q
w
0 ) D (D) U (U)

Q(Qw) T (T) U (U)
SD Q0(Q

w
0 ) D (D) U (U)

Q(Qw) T (T) U (U)
PD Q0(Q

w
0 ) D (D) U (U)

Q(Qw) T (T) U (U)
iterated SD Q0(Q

w
0 ) D (D) U (U)

Q(Qw) T (T) U (U)
iterated PD Q0(Q

w
0 ) – (–) U (U)

Q(Qw) – (–) U (U)
permuted SD Q0(Q

w
0 ) – (D) U (U)

Q(Qw) T (T) U (U)
permuted PD Q0(Q

w
0 ) – (D) U (U)

Q(Qw) – (T) U (U)
controlled SD Q0,∆(Qw

0,∆) D (D) U (U)

Q∆(Qw
∆) T (T) U (U)

controlled PD Q0,∆(Qw
0,∆) D (D) U (U)

Q∆(Qw
∆) T (T) U (U)

SD next to a letter Q0(Q
w
0 ) D (D) U (U)

Q(Qw) T (T) U (U)
PD next to a letter Q0(Q

w
0 ) D (D) U (U)

Q(Qw) T (T) U (U)
scattered SD Q0(Q

w
0 ) D (D) U (U)

Q(Qw) T (T) U (U)
permuted scattered SD Q0(Q

w
0 ) – (D) U (U)

Q(Qw) – (T) U (U)

See Section 5.1 for the meaning of the symbols Q0, Qw
0 , Q0,∆, Qw

0,∆, Q,
Qw, Q∆, Qw

∆ and the preceding page for the meaning of U, D, T, –.
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Operand problems for insertion

Operation Problem REG CF

catenation Q1(Q
w
1 ) D (D) U (U)

Q2(Q
w
2 ) D (D) U (U)

SIN Q1(Q
w
1 ) D (D) U (U)

Q2(Q
w
2 ) D (D) U (U)

PIN Q1(Q
w
1 ) – (D) U (U)

Q2(Q
w
2 ) – (D) U (U)

iterated SIN Q1(Q
w
1 ) – (–) – (–)

Q2(Q
w
2 ) – (–) U (U)

iterated PIN Q1(Q
w
1 ) – (–) – (–)

Q2(Q
w
2 ) – (–) U (U)

permuted SIN Q1(Q
w
1 ) – (–) – (–)

Q2(Q
w
2 ) – (D) U (U)

permuted PIN Q1(Q
w
1 ) – (–) – (–)

Q2(Q
w
2 ) – (D) U (U)

controlled SIN Q1,∆(Qw
1,∆) D(D) U (U)

Q2,∆(Qw
2,∆) D (–) U (U)

controlled PIN Q1,∆(Qw
1,∆) – (D) U (U)

Q2,∆(Qw
2,∆) – (–) – (–)

SIN next to a letter Q1(Q
w
1 ) D (D) U (U)

Q2(Q
w
2 ) D (D) U (U)

PIN next to a letter Q1(Q
w
1 ) – (D) U (U)

Q2(Q
w
2 ) – (D) U (U)

shuffle Q1(Q
w
1 ) D (D) U (U)

Q2(Q
w
2 ) D (D) U (U)

permuted scattered SIN Q1(Q
w
1 ) – (–) – (–)

Q2(Q
w
2 ) – (D) U (U)

See Section 5.2 (5.3) for the meaning of the symbols Q2, Qw
2 , Q2,∆, Qw

2,∆

(Q1, Qw
1 , Q1,∆ and Qw

1,∆, respectively) and the table ”Basic decision prob-
lems for insertion” for the meaning of U, D, T, –.
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Operand problems for deletion

Operation Problem REG CF

right(left) quotient Q1(Q
w
1 ) D (D) U (U)

Q2(Q
w
2 ) D (–) U (U)

SD Q1(Q
w
1 ) D (D) U (U)

Q2(Q
w
2 ) D (–) U (U)

PD Q1(Q
w
1 ) – (–) – (–)

Q2(Q
w
2 ) – (–) U(U)

iterated SD Q1(Q
w
1 ) – (D) – (–)

Q2(Q
w
2 ) – (–) U (U)

iterated PD Q1(Q
w
1 ) – (–) – (–)

Q2(Q
w
2 ) – (–) U (U)

permuted SD Q1(Q
w
1 ) – (–) – (–)

Q2(Q
w
2 ) – (–) U (U)

permuted PD Q1(Q
w
1 ) – (–) – (–)

Q2(Q
w
2 ) – (–) U (U)

controlled SD Q1,∆(Qw
1,∆) D (D) U (U)

Q2,∆(Qw
2,∆) D (–) U (U)

controlled PD Q1,∆(Qw
1,∆) – (–) – (–)

Q2,∆(Qw
2,∆) – (–) – (U)

SD next to a letter Q1(Q
w
1 ) D (D) U (U)

Q2(Q
w
2 ) D (–) U (U)

PD next to a letter Q1(Q
w
1 ) – (–) – (–)

Q2(Q
w
2 ) – (–) U (U)

scattered SD Q1(Q
w
1 ) D (D) – (–)

Q2(Q
w
2 ) D (–) U (U)

permuted scattered SD Q1(Q
w
1 ) – (–) – (–)

Q2(Q
w
2 ) – (–) U (U)

See Section 5.4 (5.5) for the meaning of the symbols Q2, Qw
2 , Q2,∆ and

Qw
2,∆ (Q1, Qw

1 , Q1,∆ and Qw
1,∆, respectively) and the table ” Basic decision

problems for insertion” for the meaning of U, D, T, – .
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[2] M.Andraşiu, Gh.Păun, A.Salomaa. Language-theoretical problems aris-
ing from Richelieu cryptosystems. Submitted for publication.

[3] S.Ginsburg. Algebraic and Automata-Theoretic Properties of Formal
Languages. North-Holland, Amsterdam, 1975.

[4] M.A.Harrison. Introduction to Formal Language Theory. Addison Wes-
ley, Reading, Massachusetts, 1978.

[5] J.Hopcroft, J.Ulmann. Introduction to Automata Theory, Languages,
and Computation. Addison Wesley, Reading, Massachusetts, 1979.

[6] H.C.M.Kleijn, G.Rozenberg. Context-free like restrictions on selective
rewriting. Theoretical Computer Science, vol.16, no.3(1981), pp.237-
269.

[7] W.Kuich, A.Salomaa. Semirings, Automata, Languages. Springer Ver-
lag, Berlin, 1986.

[8] R.C.Lyndon, M.P.Schutzenberger. The equation aM = bNcP in a free
group, Michigan Math.J., no.9(1962), pp.289-298.

[9] Gh.Păun, A.Salomaa. Semi-commutativity sets – a cryptographically
grounded topic. Bull.Math.Soc.Sci.Math.Roumanie, to appear.

[10] G.Rozenberg, A.Salomaa. The Mathematical Theory of L Systems.
Academic Press, London, 1980.



192 BIBLIOGRAPHY

[11] A.Salomaa. Theory of Automata. Pergamon Press, Oxford, 1969.

[12] A.Salomaa. Formal Languages. Academic Press, London, 1973.

[13] L.Sântean1. Six arithmetic-like operations on languages. Revue
Roumaine de Linguistique, Tome XXXIII, 1988, Cahiers de linguistique
theorique et applique, Tome XXV, 1988, No.1, Janvier-Juin, pp.65-73.

[14] H.J.Shyr. Free Monoids and Languages. Lecture Notes, Institute of
applied mathematics, National Chung-Hsing University, Taichung, Tai-
wan, 1991.

[15] H.J.Shyr, G.Thierrin, S.S.Yu. Monogenic e-closed languages and dipo-
lar words. To appear.

1The maiden name of the author of this Thesis


