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Abstract The study of hairpin-free words has been initiated in the context of DNA
computing. DNA strands that, theoretically speaking, are finite strings over the alpha-
bet {A, G, C, T} are used in DNA computing to encode information. Due to the fact
that A is complementary to T and G to C, DNA single strands that are complemen-
tary can bind to each other or to themselves in either intended or unintended ways.
One of the structures that is usually undesirable for biocomputation, since it makes
the affected DNA string unavailable for future interactions, is the hairpin: if some
subsequences of a DNA single string are complementary to each other, the string will
bind to itself forming a hairpin-like structure. This paper continues the theoretical
study of hairpin-free languages. We study algebraic properties of hairpin-free words
and hairpins. We also give a complete characterization of the syntactic monoid of the
language consisting of all hairpin-free words over a given alphabet and illustrate it
with an example using the DNA alphabet.

1 Introduction

The topic of this paper is the study of the hairpin-free words and languages, mainly
through their syntactic monoid. The object of this study, hairpin words and languages,
stems from the practical requirements of DNA computing experiments. DNA strands
can be viewed as finite strings over the alphabet {A, G, C, T} and are used in DNA
computing to encode information. Due to the fact that A is complementary to T
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Fig. 1 A simple hairpin loop

GC T AT C
GAT AGC A

C

C

C

C

A
T

A T

G
C

A
TGAC

CTG

and G to C, DNA single strands that are complementary can bind to each other or to
themselves in either intended or unintended ways. One of the structures that is usually
undesirable for biocomputation, since it makes the affected DNA string unavailable
for future interactions, is the hairpin: if some subsequences of a DNA single string are
complementary to each other, the string will bind to itself forming a hairpin-like struc-
ture. An example of a DNA hairpin structure is shown in Fig. 1. Algebraic properties
of languages that avoid DNA sequences undesirable for DNA based computations,
such as those that can form hairpins, have been extensively studied in [6,10,11]. The
notion of a hairpin structure was formalized and its coding properties as well as rela-
tions between hairpin-free languages and other types of codes have been discussed
in [6,15]. Certain algebraic properties of hairpin-free languages were discussed in
[11]. Effective methods for the design of long hairpin-free DNA words were given
in [11]. In this paper we study the algebraic properties of the set of all hairpins and
hairpin-free words through their syntactic monoid.

The syntactic monoid approach to the study of languages has been very successful.
Algebraic characterizations of many classes of codes through their syntactic monoid
have been extensively studied [7,16–18]. Several properties of syntactic congruences
for infix, outfix and hypercodes have been presented in [5,7,9,17,23]. Additional
properties of syntactic congruences for infix and outfix codes have been presented
in [14]. The characterization of a syntactic monoid of a semigroup generated by a
comma-free code and prefix code have been discussed in [16] and [18], respectively.
The characterizations of the syntactic monoid of a comma-free code X and X+ were
discussed in [16]. The syntactic characterization of strictly locally testable languages
were discussed in [13]. In [7], the author formulated a general characterization method
of the syntactic monoid which applies to all classes of codes that can be defined in
a certain way and hence results analogous to those of [17] can be obtained for a
large variety of classes of codes. For more details on codes the reader is referred to
[1,8,20,24]. In [2], the authors have introduced a special type of regular languages
using the syntactic congruence.

In this paper we follow the approach from [16,17] and extend these concepts to
study the algebraic properties of the set of all hairpin-free words mainly through their
syntactic monoid.

The paper is organized as follows: Sect. 2 reviews basic definitions. Section 3
presents several properties of the set of all hairpins and hairpin-free words. In par-
ticular we show that the set of all hairpin-free words and its complementary set are
commutative. In Sect. 4 we study the properties of the syntactic monoid of hairpin-
free languages. We show that all the elements of the syntactic monoid of the language
of all hairpin-free words over a given alphabet are idempotents, and proceed to use
this property to show that the underlying syntactic semigroup is indeed an inverse
semigroup and also that the language of all hairpin-free words over a given alphabet
is locally testable. Propositions 17 and 18 give necessary and sufficient condition for
a finite monoid to be the syntactic monoid of the set of all hairpin free words over a
given finite alphabet. These results give thus complete characterization of the syntactic
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monoid of the language of hairpin-free words over an alphabet. We also discuss the
Green’s relations for hairpin-free languages.

2 Definitions and basic concepts

In this section we review some basic notions. An alphabetΣ is a finite non-empty set
of symbols. A word u overΣ is a finite sequence of symbols inΣ . We denote byΣ∗ the
set of all words overΣ , and byΣ+ the set of all non empty words overΣ . The empty
word is denoted by λ. For words u, v over Σ∗ we denote by uv the concatenation u
and v. We note that with the concatenation operation on words,Σ∗ is the free monoid
and Σ+ is the free semigroup generated by Σ . The length of a word u = a1 · · · an,
ai ∈ Σ , 1 ≤ i ≤ n, is n and is denoted by |u|. We denote by Σk the set of all words in
Σ of length k. A language over Σ is an arbitrary subset of Σ∗.

A mapping θ : Σ∗ �→ Σ∗ is called a morphism (antimorphism) of Σ∗ if θ(uv) =
θ(u)θ(v) (respectively θ(uv) = θ(v)θ(u)) for all u, v ∈ Σ∗. A d-morphism of Σ∗ is
either a morphism or an antimorphism of Σ∗. If θ is bijective, then θ has an inverse
θ−1 such that θθ−1 = θ−1θ = I, the identity mapping. An involution map θ is such
that θ2 = I. An involution map θ is a particular case of a bijective map where θ = θ−1.
The d-morphism θ is said to be length-preserving if |u| = |θ(u)| for all u ∈ Σ∗. Since
Σ is finite, this is equivalent to θ(Σ) ⊆ Σ . Bijective d-morphisms, in particular invo-
lutions, are examples of length preserving d-morphisms. In this paper we concentrate
on relations that are defined by length preserving d-morphisms.

The following was defined in [11] for an involution θ . An analogous definition was
given in [6].

Definition 1 Let θ be a length preserving d-morphism and k ∈ N.

1. A word u ∈ Σ∗ is called an (θ , k)-hairpin if there exists x, v, y, z ∈ Σ∗ such that
u = xvyθ(v)z or u = xθ(v)yvz with |v| ≥ k.

2. A word u ∈ Σ∗ is said to be an (θ , k)-hairpin-free if u = xvyθ(v)z or u = xθ(v)yvz
where x, v, y, z ∈ Σ∗ implies |v| < k.

For a length preserving d-morphism θ of Σ and k ∈ N, we denote by hpf (θ , k) the
set of all (θ , k)-hairpin-free words in Σ∗. We denote by hp(θ , k) its complement, i.e.,
hp(θ , k) is the set of words in Σ∗ having at least a hairpin, i.e., u = xvyθ(v)z or u =
xθ(v)yvz with |v| ≥ k and x, y, v, z ∈ Σ∗. A language L overΣ is called hp(θ , k)-free if
L ⊆ hpf (θ , k). Throughout the rest of the paper θ is a length preserving d-morphism
unless stated otherwise and we denote hp(θ , 1) and hpf (θ , 1) by hp(θ) and hpf (θ).

Lemma 1 A language L is hp(θ , k)-free if and only if Σ∗vΣ∗θ(v)Σ∗ ∩ L = ∅ and Σ∗
θ(v) Σ∗ vΣ∗ ∩ L = ∅ for all v ∈ Σ∗ , |v| ≥ k.

Proof Immediate from the definition. 
�

3 Properties of hairpin-free languages

Recall that the embedding order ≤e is defined as follows:
u ≤e v if and only if:

u = u1u2 · · · un, v = v1u1v2u2 · · · vnunvn+1

for some integer n and ui, vj ∈ Σ∗, 1 ≤ i ≤ n and 1 ≤ j ≤ n + 1.
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A language L is called ≤e-convex if u ≤e w ≤e v, u, v ∈ L implies w ∈ L. It is
called right ≤e-convex if u ≤e w, u ∈ L implies w ∈ L,

The following result is well known (see [3,22]):
Every ≤e-convex and right ≤e-convex language over a finite alphabet is regular.
In the next propositions we show that the set of all words with at least a hairpin is

closed under insertion and is a right ≤e-convex language and hence using the result
in [3,22] we show that hp(θ , k) and hpf (θ , k) are regular. In [11], it was shown that
hp(θ , k) and hpf (θ , k) are regular when θ is an involution. We will show that the results
hold true for a d-morphism θ .

Lemma 2 Let θ be a length preserving d-morphism and k ∈ N, k ≥ 1. Then every
hairpin u = x′v′y′θ(v′)z′ ∈ hp(θ , k) can be written in the form u = xvyθ(v)z with
|v| = 1.

Proof If v′ = v1 · · · vk, for vi ∈ Σ then θ(v′) = θ(v 1) · · · θ(vk) if θ is a morphism
or θ(v′) = θ(vk) · · · θ(v1) if θ is an anti-morphism. Hence when θ is a morphism u
can be written as u = x′v1v2 · · · vky′θ(v1) θ(v2) · · · θ(vk)z′ and when θ is an antimor-
phism u = x′v1v2 · · · vky′θ(vk) · · · θ(v2)θ(v1)z′. Taking v = v1, we get u in the form
u = xvyθ(v)z with |v| = 1. 
�

Proposition 1 The language hp(θ) is closed under insertion, i.e., u = u1u2 ∈ hp(θ) and
w ∈ Σ∗ implies u1wu2 ∈ hp(θ).

Proof Since u ∈ hp(θ), from the previous lemma the word u can be written as
u = xvyθ(v)z with |v| = 1. Since θ is length preserving we have |θ(v)| = |v| = 1. This
implies that the insertion of w in u can occur either to the left of v, between v and θ(v)
or to the right of θ(v). The word u1wu2 can be written as u1wu2 = x′′vy′′θ(v)z′′ where
u = u1u2. Therefore u1wu2 ∈ hp(θ). 
�

Proposition 2 The language hp(θ) is right ≤e-convex.

Proof Let u ∈ hp(θ) and suppose that u ≤e w, i.e., u = u1u2 · · · un and w =
w1u1w2u2 · · · wnunwn+1. The word w is obtained from u through a finite sequence
of insertions of the words wi in u. Since u ∈ hp(θ), then, by Proposition 1, w ∈ hp(θ)
and hence hp(θ) is right ≤e-convex. 
�

Corollary 1 The languages hp(θ) and hpf (θ) are regular.

Let L ⊆ Σ∗ be a nonempty language and let:

L̃ = {w ∈ Σ∗|u ≤e w, u ∈ L}

Hence L̃ is the set of all the words w ∈ Σ∗ that can be expressed in the form
w = x1u1x2u2 · · · xnunxn+1 with u = u1u2 · · · un ∈ L and xi ∈ Σ∗.

Recall that a nonempty set H ⊂ Σ+ is called a hypercode over Σ∗ iff x ≤e y and
x, y ∈ H imply x = y. That is, a hypercode is an independent set with respect to the
embedding order.
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Proposition 3 There exists a unique hypercode H such that hp(θ) = H̃.

Proof Let H be the set of all minimal words in hp(θ) relative to the embedding order
≤e. A word u is in H if and only if u ∈ H and v ∈ hp(θ) with v ≤e u implies v = u. The
set H is a hypercode, i.e., words in H are not ≤e-comparable and H is finite since every
hypercode over a finite alphabet is finite. Furthermore hp(θ) ⊆ H̃ by Proposition 2.

For the converse inclusion, let w ∈ H̃. Then u ≤e w for some u ∈ H. By Prop-
osition 2, hp(θ) is right ≤e-convex. Hence w ∈ hp(θ) and H̃ ⊆ hp(θ). Therefore
hp(θ) = H̃. The uniqueness of H is immediate. 
�

Recall that for a word w = a1a2 · · · an ∈ Σ∗ for ai ∈ Σ , 1 ≤ i ≤ n, π(w) =
{as(1)as(2) · · · as(n)|s a permutation of {1, 2, . . . , n}}.

We also recall the following definitions.

Definition 2 A language L is said to be:

1. θ -stable if θ(L) ⊆ L.
2. Commutative iff L = π(L) which is equivalent to the condition that for all

x, u, v, y ∈ Σ∗ if xuvy ∈ L then xvuy ∈ L.
3. Factorial if Sub(L) = L where Sub(L) = {x ∈ Σ∗|pxq ∈ L for some p, q ∈ Σ∗}.
4. Transitive if for all x, y ∈ L there exists z ∈ Σ∗ such that xzy ∈ L.
5. Prolongable if for all x ∈ L there exists p, q ∈ Σ+ such that pxq ∈ L.

Note that for a commutative language L, the complement of L denoted by L̄ is
also commutative.

Proposition 4 The language hpf (θ) is factorial.

Proof Note that for all u ∈ hp(θ), u is hairpin-free and hence every subword of u is
also hairpin-free which implies Sub(hpf (θ)) = hpf (θ). Thus hpf (θ) is factorial. 
�
Proposition 5 Let θ be such that for all a ∈ Σ , θ(a) �= a. Then hpf (θ) is prolongable.

Proof Let x ∈ hpf (θ) such that x = x1x2 · · · xn for xi ∈ Σ . Take p ∈ Σ such that p = xi
for some i such that 1 ≤ i ≤ n. Since θ(xi) �= xi we have pxp ∈ hp(θ). Hence hp(θ) is
prolongable. 
�
Proposition 6 hp(θ) is prolongable and transitive.

Proof Let x ∈ hp(θ). Then x contains a hairpin and hence for all p, q ∈ Σ+, pxq also
contains a hairpin and hence pxq ∈ hp(θ) which implies hp(θ) is prolongable.

Let x, y ∈ hp(θ). Then for all z ∈ Σ∗, xzy contains a hairpin and hence xzy ∈ hp(θ).
Thus hp(θ) is transitive. 
�
Proposition 7 The languages hpf (θ) and hp(θ) are commutative.

Proof Let w = xuvy ∈ hpf (θ). If xvuy /∈ hpf (θ), then xvuy is a hairpin, i.e., xvuy =
paqθ(a)r with |a| = 1 and |θ(a)| = 1. This implies that both a and θ(a) are letters of
the words x, u, v, y. We have to consider the following cases:

a, θ(a) are letters of x. Then w = x′aqθ(a)r′uvy for x′, q, r′, u, v, y ∈ Σ∗ and w /∈
hpf (θ), a contradiction.

a is a letter of x and θ(a) is a letter of vu and hence of uv. Then w = x′ax′′z′θ(a)z′′y
and w /∈ hpf (θ), a contradiction.

a is not a letter of x. Then both a and θ(a) are letters of vuy and hence of uvy. This
implies that w is a hairpin, a contradiction. 
�
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Throughout the rest of the paper we consider θ to be a bijective d-morphism on
Σ∗ (which is a particular case of length preserving d-morphism) and denote by FΣ
the set of all hp(θ)-free words overΣ , i.e., u ∈ FΣ iff u is not an hairpin. In the sequel
whenever the alphabet Σ is clear from the context we will omit the subscript Σ . By
Corollary 1, F is regular. In the following proposition we discuss various other prop-
erties that are satisfied by F under the new stronger hypothesis that θ is a bijective
d-morphism.

Proposition 8 The language F is θ -stable.

Proof Let u ∈ F and suppose that θ(u) /∈ F. Then θ(u) can be written as θ(u) =
xvyθ(v)z with v �= λ.

Since θ is bijective, then there exists w ∈ Σ∗, w �= λ such that θ(w) = v and hence
w = θ−1(v).

If θ is a morphism, then, since θ is bijective u = θ−1θ(u) which implies u =
θ−1(x)θ−1(v)θ−1(y)vθ−1(z). Hence u = θ−1(x)wθ−1(y)θ(w)θ−1(z). Since w �= λ, then
u is a hairpin, i.e., u /∈ F, a contradiction.

If θ is an anti-morphism, then u = θ−1θ(u) = θ−1(z)vθ−1(y)θ−1(v)θ−1(x). Since
θ is bijective, we have v = θ(w) for some w ∈ Σ∗, w �= λ. Hence u = θ−1θ(u) =
θ−1(z)θ(w)θ−1(y)wθ−1(x) which implies that u is a hairpin, a contradiction.

Therefore F is θ -stable. 
�
Note that the above proposition may not be true if θ is not bijective.

4 The syntactic monoid of the set of all hairpin-free words

In the theory of codes, two types of syntactic monoids are usually considered, the
syntactic monoid of the code itself and the syntactic monoid of the Kleene star of
the code. In this section we concentrate on the characterizations of syntactic monoid
of the set of all hairpin-free words hpf (θ) = F, when θ is a bijective d-morphism.
Necessary and sufficient conditions for a monoid to be the syntactic monoid of the set
of all hairpin-free words are also discussed. We first review some basic concepts.

Let L be a language such that L ⊆ Σ+. We define the context, right context and
left context of a word w ∈ Σ∗ in L as follows:

– CL(w) = {(u, v)|uwv ∈ L, u, v ∈ Σ∗}.
– RL(w) = {u ∈ Σ∗|wu ∈ L}.
– LL(w) = {u ∈ Σ∗|uw ∈ L}.
CL(w), RL(w) and LL(w) are called the context, right context and left context of w in
L, respectively.

Definition 3 Let L be a language such that L ⊆ Σ+.

1. The syntactic congruence of L ⊆ Σ+ is denoted by PL and is defined by u ≡ v(PL)

iff CL(u) = CL(v).
2. The syntactic monoid of L is the quotient monoid M(L) = Σ∗/PL with the

operation [x][y] = [xy], where for x ∈ Σ∗, [x] denotes the PL equivalence class
of x.
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Let W(L) = {x ∈ Σ∗|CL(x) = ∅}, i.e., x ∈ W(L) iff x /∈ Sub(L). W(L) is called the
residue of L.

Note that if W(L) �= ∅ then W(L) represents a class for PL and is the zero of M(L).

Example 1 Let L = ab∗ over the alphabet set Σ = {a, b}. Then
CL(ab∗) = {(λ, b∗)}
CL(b∗) = {(ab∗, b∗)}
CL(λ) = {(λ, ab∗), (ab∗, b∗)}
W(L) = L̄

Hence M(L) = {0, [1], [ab∗], [b∗]}.
Note that for a regular language L, M(L) is the transition monoid (see [19]) of the

minimal deterministic finite automaton (see [1,19]) of L. The above definition of the
syntactic congruence PL can be defined for an arbitrary subset L of any semigroup
S. If the syntactic congruence is the equality relation then we call the set L to be a
disjunctive subset of S. If L = {x} for some x ∈ Σ∗ and if PL is the equality relation
then we say that x is a disjunctive element of S. For more on syntactic monoid we
refer the reader to [1,12,19].

It is a well known fact that L is a regular language if and only if M(L) is finite (see
[12,19]). For any set L and its syntactic monoid M(L), η : Σ∗ → M(L) is the natural
surjective syntactic morphism defined by x → [x]. Note that for any L, L is a union of
PL classes.

We have the following observations on the set of all hairpin-free words F.

Proposition 9 Let η : Σ∗ �→ Syn(F). Then Syn(F) has a zero such that η−1(Syn(F) \
{0}) = F.

If θ is such that θ(a) �= a for all a ∈ Σ then for all non zero elements [x] ∈ Syn(F)
there exists p, q �= λ such that [pxq] �= 0.

Proof Follows from the fact that F is factorial and prolongable. 
�

Proposition 10 uPFv if and only if RF(u) = RF(v) and LF(u) = LF(v).

Proof Follows from the fact that F is commutative. 
�

In the following proposition we show that every non zero element of Syn(F) is an
idempotent element.

Proposition 11 For every u ∈ Σ∗, we have u PF u2.

Proof The congruence PF is equivalent to the congruence PF̄ associated to the com-
plement F̄ of F and F̄ is an ideal of Σ∗. Hence we have to show that u PF̄ u2, i.e.,
RF̄(u) = RF̄(u

2).
Let x ∈ RF̄(u) then ux ∈ F̄, and since F̄ is an ideal, u.ux = u2x ∈ F̄ which implies

that x ∈ RF̄(u
2).

Conversely let x ∈ RF̄(u
2) then u2x ∈ F̄, and by Lemma 2, u2x can be written

as u2x = x′vy′θ(v)z′, with |v| = 1 where the lengths of the words z′ and y′ in this
expression are minimal. Since |v| = 1, this implies that v is either a letter of u or x.
Depending on the position of the letter v appearing in the expression x′vy′θ(v)z′, we
have the following cases.
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v is not a letter of u. Then this implies that v is a letter of x and ux = x′′vy′θ(v)z′ ∈ F̄.
v is a letter of u, but θ(v) is not. Then ux can be written as ux = x′′′vy′′θ(v)z′ and

ux ∈ F̄.
v and θ(v) are letters of u in that order. In this case, u = rvsθ(v)t and ux ∈ F̄.
Therefore u2x ∈ F̄ implies ux ∈ F̄ and hence x ∈ RF̄(u). 
�

Corollary 2 The elements of the syntactic monoid Syn(F) of F are idempotent elements.

Proof The fact that u PF u2 for any u ∈ Σ∗ implies that U = U2 for the class U
containing u. 
�
Corollary 3 Syn(F) is a semi lattice.

Recall that a semigroup in general is a set equipped with an internal associative
operation which is usually written in a multiplicative form. A monoid is a semigroup
with an identity element (usually denoted by e). If S is a semigroup, S1 denotes the
monoid equal to S if S has an identity element and to S ∪ {e} otherwise. In the latter
case, the multiplication on S is extended by setting se = es = s for all s ∈ S. We also
recall the following definitions.

Definition 4 A semigroup S is called an inverse semigroup if each element has a
unique inverse. ( a′ is an inverse of a iff aa′a = a and a′aa′ = a′).
An element a ∈ S is called regular if there exists s ∈ S such that asa = a.
A semigroup S is said to be regular if all elements of S are regular.

Note that the notion of regularity of semigroups is not to be confused with the
notion of regular languages.

Note that since F is commutative (see Proposition 7), Syn(F) is a commutative
monoid, i.e., for all [x], [y] ∈ Syn(F) we have [x][y] = [y][x]. Using this fact we show
that the underlying semigroup is an inverse semigroup.

Proposition 12 S = Syn(F) \ {1} is an inverse semigroup.

Proof Proposition 2.12 in [12] states that a semigroup S is an inverse semigroup iff S
is regular and any two idempotents commute. Since Syn(F) is commutative any two
idempotent elements commute and since all elements of S are idempotent elements
S is regular. Hence S is an inverse semigroup. 
�
Proposition 13 For all elements g ∈ Syn(F), gSyn(F)g is a semi lattice, i.e., for all
s, t ∈ Syn(F), gsgsg = gsg and gsgtg = gtgsg, i.e., gSyn(F)g is idempotent and commu-
tative.

Proof Since every element in Syn(F) is an idempotent element and Syn(F) is com-
mutative we have gsgsg = gssgg = gsg and gsgtg = gstgg = gtsgg = gtgsg. Hence
gSyn(F)g is a semi lattice for all g ∈ Syn(F). 
�

Recall that a language L is said to be n-locally testable if whenever u and v have
the same factors of length at most n and the same prefix and suffix of length n − 1 and
u ∈ L then v ∈ L. The language L is locally testable if it is n-locally testable for some
n ∈ N.

A language L is said to be strictly locally testable if there are finite sets P, Q, R ⊆ Σ∗
such that L = (PΣ∗ ∩Σ∗Q)\Σ∗RΣ∗. We also recall a characterization of the syntac-
tic semigroup of locally testable languages which states that (Proposition 2.1 in [13])
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a recognizable subset (A language is called recognizable if there exists an algorithm
that accepts a given string if and only if the string belongs to that language) L of Σ+
is locally testable iff for all idempotents g ∈ Syn(L), gSyn(L)g is a semi lattice. Using
Propositions 13 and Proposition 2.1 in [13], we show that the set of all hairpin-free
words is locally testable.

Corollary 4 F is locally testable.

Proof Since Syn(F) is finite, F is recognizable and by Proposition 13, we have that
gSyn(F)g is a semi lattice for all g ∈ Syn(F) and hence F is locally testable. 
�

It is well known result (see [13]) that if L is strictly locally testable then for all
idempotent elements g ∈ Syn(L), gSyn(L)g ⊆ {g, 0}. We show that F is not strictly
locally testable in general with an example where the bijective map in particular is an
involution.

Example 2 Let � = {A, G, C, T} be the DNA alphabet and let θ be an antimorphic
involution such that A �→ T, G �→ C and viceversa. Then

Syn(F�) = {1, [A], [G], [C], [T], [AC], [AG], [GT], [CT], 0}. We have that:

– [A]1[A] = [A]
– [A][A][A] = [A]
– [A][G][A] = [AG]
– [A][C][A] = [AC]
– [A][T][A] = 0
– [A][AC][A] = [AC]
– [A][AG][A] = [AG]
– [A][GT][A] = 0
– [A][CT][A] = 0
– [A]0[A] = 0

Every element in Syn(F�) is an idempotent element but [A]Syn(F�)[A] = {[A],
[AC],[AG],0} �= {[A], 0}. Hence F� is not strictly locally testable.

Proposition 14 For all a ∈ Σ such that θ(a) �= a , [a] = {an|n ≥ 1} is an element of
Syn(F).

Proof Suppose there exists w ∈ [a] such that w �= ak then w = xcy for some c ∈ Σ

such that c �= a and x, y ∈ Σ∗. Note that from our assumption, for all a ∈ Σ , θ(a) �= a.
Hence we have the following two cases:

1. θ(c) = a and since θ(a) �= a we have a2 ∈ F but ca /∈ F since ca is a hairpin and
hence xcya = wa /∈ F which implies that w /∈ [a], a contradiction.

2. θ(c) = d for some d �= a, then ad ∈ F but cd /∈ F since cd is an haripin and hence
xcyd = wd /∈ F which implies that w /∈ [a], a contradiction.

Hence w = ak for some k ≥ 1. 
�

Let M be a monoid and S be the underlying semigroup. A subsemigroup T of M is
adherent in M if for all x, y ∈ S, xTy ∩ T �= ∅ implies x, y ∈ T1. An idempotent g ∈ M
is adherent in M if the semigroup {g} is adherent in M.
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Proposition 15 For all a ∈ Σ such that θ(a) �= a, g = [a] is adherent in Syn(F).

Proof If [x]g[y] = g then we need to show that [x], [y] ∈ {1, g} for some [x], [y] ∈
Syn(F). From Proposition 14 we have that g = [a] = {ai|i ≥ 1} which implies that
[x], [y] ∈ {1, g}. 
�

If θ is a mapping of Σ∗ into Σ∗, a congruence R is said to be θ -compatible if uRv
implies θ(u)Rθ(v). If such is the case, then the mapping θ onΣ∗ can be extended to a
mapping of the quotient-monoid S = Σ∗/R in the following way. Let U be the class
of R containing the word u. Define θ(U) to be the class of R containing θ(u). This
mapping is well defined, i.e., it does not depend on the choice of the representative u
of the class U. Indeed if u′ ∈ U, then, R being θ -compatible, we have θ(u)Rθ(u′) and
hence θ(u′) ∈ θ(U).
Proposition 16 The syntactic congruence PF is θ -compatible.

Proof To show that PF is θ -compatible, we have to show that uPFv implies θ(u)PFθ(v),
i.e., CF(u) = CF(v) implies CF(θ(u)) = CF(θ(v)). Since θ is a bijective mapping and
Σ is finite, the set� = {θ , θ2, . . . , θk−1, θk = I} generated by the powers of θ is a finite
group, in particular a finite group of permutations of the setΣ . Since θ .θk−1 = θk = I,
θk−1 is the inverse of θ .

Let (x, y) ∈ CF(θ(u)) then xθ(u)y ∈ F. If θ is a morphism, then since F is θ -stable, we
have θn(xθ(u)y) ∈ F and θn(x)θn+1(u)θn(y) ∈ F for n ≥ 1. In particular, for n = k−1,
since θk = I, then θk−1(x)θk(u)θk−1(y) = θk−1(x)uθk−1(y) ∈ F. Since CF(u) = CF(v)
we have θk−1(x)vθk−1(y) ∈ F. Hence θ(θk−1(x)vθk−1(y)) ∈ θ(F) ⊆ F. Since θ is a
morphism, θk(x)θ(v)θk(y) = xθ(v)y ∈ F. Therefore (x, y) ∈ CF(θ(v)). Similarly, we
have the inverse inclusion and hence CF(θ(u)) = CF(θ(v)) and θ(u)PFθ(v). The case
when θ is an antimorphic involution can be proved by symmetry. 
�

In the following results, using the notion of the syntactic monoid, we establish an
algebraic connection between the language F of the hairpin-free words relatively to a
bijective d-morphism θ over a finite alphabet Σ and a certain class of finite monoids.

Proposition 17 Let Syn(F) be the syntactic monoid of F. Then:

1. Syn(F) is a finite commutative monoid with a disjunctive zero 0 and every element
of Syn(F) is idempotent.

2. There exists a bijective d-morphism ψ such that the set Syn(F) \ {0} is stable under
ψ .

3. If [x][y] = 0 for [x], [y] ∈ Syn(F) \ {0} then there exists [p], [q] ∈ Syn(F) such that
[x][y] = [p][q][θ(q)].

Proof 1. The regularity of the language F implies the finiteness of its syntactic monoid
Syn(F). Since F is commutative, then Syn(F) is a commutative monoid. The comple-
ment F̄ of F is an ideal ofΣ∗ and F̄ is a class of PF . Therefore the class F̄ = 0 is a zero
element of Syn(F). Since PF = PF̄ , then, in Syn(F), the congruence P0 = PF̄ is the
equality and hence 0 is a disjunctive element of the syntactic monoid.

The last part follows from Corollary 2.

2. Since the syntactic congruence PF is θ -compatible, a d-morphism ψ can be
defined on Syn(F) in the following way. Let U be an element of Syn(F), i.e., U is a
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class of PF , and define ψ(U) to be the class containing the element θ(u) where u ∈ U.
This mapping is well defined because it does not depend on the choice of the repre-
sentative v of the class U by virtue of the θ -compatibility of PF . Indeed, since uPFv,
then θ(u)PFθ(v) and hence θ(v) ∈ ψ(U). Therefore if V is the class of PF containing
v, then ψ(U) = ψ(V).

It is immediate thatψ is a d-morphism, i.e., if θ is a morphism thenψ is a morphism
and if θ is an antimorphism then ψ is an antimorphism.

To show that ψ is bijective, we only have to show that ψ is injective. Suppose
that ψ(U) = ψ(V). If u ∈ U, v ∈ V, then, from the definition of ψ , we must have
θ(u)PFθ(v) . Hence u, v are in the same class and therefore U = V.

The last part follows from the fact that F is θ -stable.

3. Let [x], [y] ∈ Syn(F) \ {0} and [x][y] = 0. Then [xy] = 0 which implies that xy =
αavθ(a)β for some α, v,β ∈ Σ∗, a ∈ Σ and xy ∈ [xy]. Then [xy] = [α][a][v][θ(a)][β] =
[α][v][β][a][θ(a)] since Syn(F) is commutative. Hence [x][y] = [αvβa][θ(a)]. Take
[p] = [αvβ] and [q] = [a]. Thus [xy] = [p][q][θ(q)]. 
�
Example 3 Let � = {A, C, G, T} be the DNA alphabet and θ be the Watson–Crick
complement involution. If F� is the set of hp(θ)-free words in �∗, then the classes of
Syn(F�) are the following: {1, [A], [C], [G], [T], [AC], [AG], [CT], [GT], 0}

where

– [A], [C], [G], [T]: classes containing the letters of the alphabet.
– [AC], [AG], [CT], [GT]: classes containing the words AC, AG, CT, GT.
– 0: class of all words containing at least two complementary letters such as ACTCA

or AGTGC.

Since F is a commutative language, then [AC], [AG], [CT] and [GT] are also the
classes of respectively [CA], [GA], [TC] and [TG].

These classes are the elements of the syntactic monoid Syn(F�) and they are idem-
potent elements of it. Furthermore F̄� is a class which is the zero element.

The product in Syn(F�) is easily determined. For example:

– [A][C] = [AC].
– [A][GT] = [AGT] = 0, because A and T are complementary elements and hence

AT ∈ F̄�.
– [GT][AG] = [GTAG] = 0.

Since A �→ T and C �→ G, the classes [A], [C], [G], [T] are adherent in Syn(F�).

Next proposition is a converse of the Proposition 17.

Proposition 18 Let M be a monoid, with identity e satisfying the following six proper-
ties:

1. M is finite
2. M is commutative
3. Every element of M is an idempotent element
4. M has a disjunctive zero element 0
5. There exists a bijective d-morphism ψ such that the set M − {0} is stable under ψ

and xψ(x) = 0 for all x ∈ M, x �= e.
6. For all x, y ∈ M, if xy = 0 then there exists p, q ∈ M such that xy = pqψ(q).
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Then there exists a free monoid Σ∗ over a finite alphabet Σ , a bijective d-morphism θ

and a language V in Σ∗ such that

(i) V is the set of all hairpin-free words under θ
(ii) The syntactic monoid Syn(V) = Σ∗/PV is isomorphic to M.

Proof If M = {x1, x2, . . . , xn}, then take the elements of M as the letters of an alphabet
Σ = {x1, x2, . . . , xn} and let Σ∗ be the free monoid generated by Σ .

Let φ be the mapping of Σ∗ onto M defined in the following way. If u ∈ Σ , then
φ(u) = ψ(u) ∈ M. If u = u1u2 · · · uk ∈ Σ+ with ui ∈ Σ , then φ(u) = ψ(u1) . . . ψ(uk).
If u = λ, then φ(u) = e, the identity of M. It is clear that φ is a homomorphism
or anti-homomorphism of Σ∗onto M. The relation ρ defined as uρv, u, v ∈ Σ∗ iff
φ(u) = φ(v) is a congruence ofΣ∗and the quotient monoidΣ∗/ρ is isomorphic to M.

Let T = {x|x ∈ Σ∗,φ(x) = 0}. T is an ideal of Σ∗. Let PT be the syntactic congru-
ence of T.

We now show that ρ = PT . It is immediate that ρ ⊆ PT .
Let x ≡ y (PT), x, y ∈ Σ∗. If x is not equivalent to y modulo ρ, then φ(x) �= φ(y).

Since 0 is disjunctive, then the syntactic congruence P0 on M is the equality and we
have C0(φ(x)) �= C0(φ(y)). This implies the existence of a, b ∈ M such that aφ(x)b
= 0 and aφ(y)b �= 0 or aφ(x)b �= 0 and aφ(y)b = 0. Suppose that we have the first
case. Since φ is bijective, then there are r, s ∈ Σ∗ such that a = φ(r) , b = φ(s).

If θ is a homomorphism, then φ(rxs) = 0 and φ(rys) �= 0. Hence rxs ∈ T and
rys /∈ T, a contradiction because CT(x) = CT(y). It follows then that PT ⊆ ρ. If θ is
an anti-morphism, we get the same conclusion.

Hence ρ = PT .
Let V = Σ∗ \ T. Since V is the complement of T, we have PT = PV . Therefore

the syntactic monoid Syn(V) = PV of V is isomorphic to M.
Since ψ is bijective and M is finite, then ψ is in particular a permutation of the

elements of M. Since we have identified the elements of M with the alphabet Σ , we
define the requested d-morphism θ of Σ∗ by taking the corresponding permutation
of the alphabet Σ and extending it to Σ∗ in the usual way. If u ∈ Σ+, u = xy · · · z,
x, y, . . . , z ∈ Σ , then:
θ(u) = θ(x)θ(y) · · · θ(z) if ψ is a morphism
θ(u) = θ(z) · · · θ(y)θ(x) if ψ is an anti-morphism .
θ(λ) = λ

It is immediate that θ is a bijective d-morphism.
Let us show now that conditions (i) and (ii) are satisfied. For (i), let u ∈ V and

suppose that u is not hairpin-free. Then u = xwyθ(w)z with |w| = 1. Since M is com-
mutative and PV is isomorphic to M, then every class and every union of classes of
PV are commutative. In particular, V being a union of classes of PV , is a commutative
language. From u = xwyθ(w)z ∈ V follows wθ(w)xyz ∈ V. Since V is the comple-
ment of the ideal T, then we have wθ(w) ∈ V. From Property 5 of the Proposition
18 it follows that wθ(w) ∈ T. Since V ∩ T = ∅, we have a contradiction. Hence V
is hairpin-free. Now we show that V contains the set of all hairpin-free words. Sup-
pose there exists u = a1a2 · · · an for ai ∈ Σ such that u is not a hairpin and u ∈ T.
Then φ(u) = 0 which implies that φ(u) = φ(a1a2 · · · an) = ψ(a1a2 · · · an) = 0. Thus
ψ(a1a2 · · · an) = [b1][b2] · · · [bn] = 0 and there exists [x], [y] ∈ M \ {0} such that
[x][y] = [b1][b2] · · · [bn] = 0 and hence by Property 6 there are [p], [q] ∈ M such
that ψ(u) = [x][y] = [p][q][θ(q)] which implies that u is a hairpin, a contradiction.
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Hence u /∈ T. Thus V contains all hairpin-free words. Condition (ii) follows by the
construction. 
�
Example 4 Let M = {1, 0, [a], [b]} with [a][b] = 0 = [b][a] and the involution ψ

defined by ψ([a]) = [b] ,ψ([b]) = [a]. Clearly in this example, the conditions of
Proposition 18 are satisfied.

LetΣ = {a, b}. The bijective morphism θ is defined onΣ∗ as θ([a]) = [b], θ([b]) =
[a] and it is also an involution. Note that T = {x ∈ Σ∗|θ(x) = 0}, i.e., T = {x ∈ Σ∗|x ∈
Σ∗aΣ∗bΣ∗}. The set V = Σ∗ \ T = {a∗, b∗} which is the set of all hairpin-free words
under θ and is the set of words not containing two different letters of Σ .

We end this paper by discussing the Green’s relations for the set of all hairpin-free
words. We recall here the definition of Green’s relations and some well known facts
about some of the relations. For extensive treatments of Green’s relations and the
related varieties of finite monoids, we refer the reader to [4,12,19].

Definition 5 (Green’s relations) Let S be a semigroup. We define on S four equiva-
lence relations R, L, H and J called Green’s relations:

1. aR b ⇔ aS1 = bS1

2. aL b ⇔ S1a = S1b
3. aJ b ⇔ S1aS1 = S1bS1

4. aH b ⇔ aR b and aL b

Note that the relations R and L commute, i.e., RL = LR and D = RL. In a
finite semigroup D = J . A semigroup S is K-trivial iff eK f implies e = f for K ∈
{D, R, L, J , H}.

Note that in a commutative semigroup, H = R = L = D = J . Also no H class in a
semigroup contains more than one idempotent. Since every element of Syn(F) is an
idempotent, SynF \ {1} is H-trivial and since Syn(F) is commutative, Syn(F) \ {1} is
K-trivial for all K ∈ {R, L, J , D, H}.

Recall that a language L is said to be n-piecewise testable if whenever u and v
have the same subwords of length atmost n and u ∈ L, then v ∈ L. The language
L is piecewise testable if it is n-piecewise testable for some n. Star-free languages
can be described by star-free expressions, i.e., using the letters of the alphabets, the
constants ∅ and λ (empty word), the boolean operations and concatenation (but no
star). It was proved in [21] that a language L is piecewise testable iff syntactic monoid
of L is J -trivial. Also note that piecewise testable languages are star-free. Hence F is
piecewise testable and star-free.
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