
Two lower bounds on distributive generation of

languages

Juraj Hromkovič+

Dept. of Mathematics & Informatics, University of Paderborn

33098 Paderborn, Germany

Jarkko Kari, Lila Kari∗∗

Dept. of Mathematics, University of Turku and Academy of Finland

20500 Turku, Finland

Dana Pardubská+,∗

Faculty of Mathematics and Physics, Comenius University
84215 Bratislava, Slovakia

Abstract

The lower bounds on communication complexity measures of language genera-
tion by Parallel Communicating Grammar Systems (PCGS) are investigated. The
first result shows that there exists a language that can be generated by some dag-
PCGS (PCGS with communication structures realizable by directed acyclic graphs)
consisting of 3 grammars, but by no PCGS with tree communication structure.

The second result shows that dag-PCGS have their communication complexity
of language generation either constant or linear.

+ These authors were partially supported by MSV SR grant and by EC Cooperative
Action IC 1000: project ALTEC

∗∗ The work of this author has been supported by Project 11281 of the Academy of
Finland.

∗ The part of the work of this author has been done during the author’s stay at the
Dept. of Mathematics & Informatics of the University of Paderborn.

1

1 Introduction

This work is devoted to the computational aspects of Parallel Communicating Gram-
mar Systems (PCGS) introduced in [PS 89]. The concept of PCGS differs from the
previous models of parallel derivation of words (languages) like Lindenmayer systems
[HR 75, RS 80] in that a PCGS can be viewed as a typical distributive system consist-
ing of a number of independent elements cooperating by the exchange of information via
communication links. Thus, the derivation of a PCGS is a sequence of parallel derivation
steps and communication steps. As typical for distributive systems there are several com-
plexity measures of importance for PCGS. The most investigated complexity measure
for PCGS has been the number of grammars the PCGS consists of, which is clearly a
descriptive complexity measure. The hierarchy results claiming that cPCGS (centralized
PCGS) of regular n + 1 grammars are more powerful than cPCGS of n regular grammars
for any positive integer n have been established in [SK 92].

Because the complexity of the executed communication shows generally to be the crucial
one in parallel systems, Hromkovič et. al.[HKK 93] proposed to consider two communi-
cation complexity measures for PCGS. The first one is the communication structure of
PCGS (the shape of the graph consisting of the directed communication links between the
grammars of the system) which can be considered as alternative descriptive complexity
measure. As classes of structures of a principal interest, linear arrays (chains), rings, trees
and directed acyclic graphs have been proposed in [HKK 93]. The second communication
complexity measure introduced in [San 90, HKK 93] is the number of exchanged messages
(strings) during the generation procedure. This complexity measure is clearly a compu-
tational complexity measure which may be considered as a function of the length of the
generated word.

The aim of this paper is to study the two last mentioned communication complexity mea-
sures. First, the power of different communication structures is investigated. In [HKK 93]
some special lower bound techniques were developed for special communication structures
as rings, trees and dags. These techniques have enabled to show strong hierarchies on
the number of grammars in these structures. However, no result showing that any type
of communication structures is more powerful than another one has been achieved there.
In [Luk 92] the chain−PCGSs (PCGSs with communication structure chain) have been
shown to be more powerful than cPCGSs. In [Par 93], showing that rings and dags can
generate only regular languages over one-letter alphabet (independently of the number of
component grammars used) Pardubská gets that rings and dags are weaker than arbitrary
structures (complete graphs). Since a nonregular language over one-letter alphabet can
be achieved by 3 grammars, this shows that the number of grammars cannot compensate
for suitable communication structure.

Here, we show, that dag − PCGSs (PCGSs with communication structure correspond-
ing to a directed acylic graph) are more powerful than tree-PCGSs (PCGSs with tree
communication structure). Namely, we prove that L = {ww | w ∈ Z∗} can be generated
by a dag-PCGS consisting of three grammars, but by no tree-PCGS.

Our second result is devoted to the study of the power of communication complexity
as computational complexity measure. In [HKK 93] the power of PCGS’s with special

2

communication structures were studied from computational complexity point of view.

It was shown there, that there is an infinite hierarchy of constant communication complex-
ity for cPCGS and tree-PCGS. (k +1 communications are more powerful than k, where
k is independent of the length of generated words). Such a hierarchy for unrestricted com-
munication structure and for dags has been established in [Par 93]. Pardubska [Par 93]
also showed, for unrestricted communication structures, that

(i) if the communication complexity cannot be bounded by a constant, then it is at
least Ω(log2 n), and

(ii) for every k ∈ N, o(k
√

n) communications are less powerful than O(k
√

n).

The last known result about communication complexity as an unbounded function has
been established in [HKK 93] where a language requiring linear Ω(n) communication com-
plexity to be generated by tree-PCGSs is constructed. Here, we deal with the problem,
whether it is possible to get a result like (ii) for some unbounded function for tree-PCGSs
and dag-PCGSs. The answer is negative, because we prove that every dag-PCGS has
either constant communication complexity or Ω(n) communication complexity.

The paper is organized as follows. The next section contains the basic definitions and
fixes the notation used. In Section 3 we show that direct acyclic graphs are more powerful
communication structures than trees, and in Section 4 we prove the non-existence of
any hierarchy of communication complexity restricted by unbounded functions for dag-
PCGSs.

2 Preliminaries

We assume the reader to be familiar with basic definitions and notations in formal lan-
guage theory and we specify only some of them related to the PCGS. We denote by ε the
empty symbol (word) and, for any word x, |x| denotes the length of x. For a set K of
symbols and a word x, |x|K denotes the number of occurrences of symbols of K in x. Let
R denote the set of regular languages.

First, we give the formal definition of Parallel Communicating Grammar System (PCGS).

Definition 2.1 A PCGS of degree m, m ≥ 1, is an (m + 1)-tuple
Π = (G1, . . . , Gm, K), where

• Gi = (Ni, T, Si, Pi) are regular grammars satisfying

– Ni ∩ T = ∅ for all i ∈ {1, . . . , m}
– Pi ⊂ N x T ∗N ∪ N x T+

• K ⊆ {Q1, . . . , Qm}
⋂∪m

i=1Ni is a set of special symbols, called communication
symbols, Ki = K ∩ Ni is the set of communication symbols of Gi.

3

Now, we describe the work of PCGSs. The possible communications in a PCGS Π are
determined by the communication graph. The vertices of this directed graph G(Π) corre-
spond to the individual component grammars and are labelled by their names G1, . . . , Gm.
The directed edges describe the possibility of inquiry. The edge (Gi, Gj) is present in G(Π)
iff the communication symbol Qj belongs to the nonterminal alphabet of Gi.
An m-tuple (x1, . . . , xm), xi = αiAi, αi ∈ T ∗, Ai ∈ (Ni ∪ ε), is called configuration. With
every configuration C = (α1A1, . . . , αmAm) its nonterminal cut N(C) =
(A1, A2, . . . , Am) is associated. If the nonterminal cut of the configuration contains at
least one communication symbol, then the so-called communication cut, that is m-tuple
(B1, B2, . . . , Bm), where Bi = Ai for Ai ∈ K and Bi = ε for Ai /∈ K, is associated with it,
too.
We say a configuration (x1, . . . , xm) directly derives a configuration (y1, . . . , ym) and write
(x1, . . . , xm) → (y1, . . . , ym), if one of the next two cases holds:

1. |x|K = 0 for all i, 1 ≤ i ≤ m, and either xi → yi in Gi when xi contains nonterminal
or xi is the terminal word and yi = xi .

2. if |xi|K > 0 for some i, 1 ≤ i ≤ m, then, for each i such that xi = ziQji
, for some

zi ∈ T ∗, ∀Qji
∈ K, the following happens:

(a) If |xji
|K = 0 then yi = zixji

and yji
= Sji

(b) If |xji
|K > 0 then yi = xi.

For all the remaining indices t, for which xt does not contain communication symbols and
Qt has not occurred in any of xi’s, we put yt = xt.

A derivation of a PCGS Π is a sequence of configurations X1, X2, . . . , Xt, where Xi →
Xi+1 is a direct derivation in Π. It can be viewed as a sequence of rewriting and com-
munication steps, too. If no communication symbol appears in any of the component
grammars then we perform a rewriting step consisting of rewriting steps synchronously
performed in each of the grammars. If some of the components is a terminal string, it is
left unchanged. If some of the component grammars contains a nonterminal that cannot
be rewritten, the derivation is blocked. If the first grammar G1 contains a terminal word
y, the derivation is finished and y is the word generated by Π in this derivation. If a com-
munication symbol is present in any of the components, then a communication step is
performed. It consists of replacing all communication symbols with the phrases they refer
to, under condition that these phrases do not contain further communication symbols. If
some communication symbols are not satisfied in this communication step, they may be
satisfied in one of the next ones. Communication steps are performed until no more com-
munication symbols are present or the derivation is blocked because no communication
symbol has been satisfied in the last communication step. The language generated by a
PCGS consists of the terminal words generated in G1 (in the cooperation with the other
grammars).

Definition 2.2 For any PCGS Π,

L(Π) = {α ∈ T ∗| (S1, . . . , Sm) →∗ (α, β2, . . . , βm)}

4

Some examples of PCGS generating specific languages can be found in [HKK 93, Luk 92,
San 90].

Now, for our lower bound results, we need to go in more details concerning the deriva-
tions of PCGSs. Let D(w) = C1, C2, . . . , Ct be a derivation of a word w. With this
derivation two sequences of nonterminal cuts could be associated. The first one is that
of all nonterminal cuts of this derivation. The second one is a sequence containing only
communication cuts of the derivation. We will call the sequence of nonterminal cuts the
trace of the derivation (resp. trace) and denote T (D(w)). The sequence containing only
communication cuts of the derivation will be called the communication sequence of the
derivation and will be denoted by C(D(w)).

Note that for a given PCGS Π it is meaningful to speak about the set D(Π) of all
derivations of Π, the set T (Π) of all traces of Π, and the set C(Π) of all communication
sequences of Π. For a natural number k, C(Π, k) denotes the set of all communication
sequences of Π with at most k communications in it. We note that there is no one-to-
one relation between the sets D(Π) and T (Π). To every d ∈ D(Π) the T (d) ∈ T (Π) is
given unambiguously. But, for any t ∈ T (Π), there is a set T−1(t) such that for every
d ∈ T −1(Π)(t), T (d) = t. The cardinality of the set T −1(Π)(t) can be bounded by a
constant that depends on Π and t. The relation between the sets D(Π) and C(Π) is not
unambiguous, too. For every d ∈ D(Π) there exists precisely one C(d) ∈ C(Π). But there
are c ∈ C(Π) for which the cardinality of the set C−1(Π)(c) = {d ∈ D(Π)|C(d) = c} is
bounded by infinity only.

Let N(D(w)) = N(C1), N(C2), . . . , N(Ct) be a sequence of nonterminal cuts of a com-
putation D(w). Let i, j ∈ {1, 2, . . . , t}, i < j such that N(Ci) = N(Cj) holds. Then
the sequence of steps corresponding to the subderivation Ci → Ci+1, . . . , Cj−1 → Cj

forms a cycle of the derivation. If none of the nonterminal cuts N(Ci), . . . , N(Cj)
contains a communication symbol, then the cycle of the derivation is called the
generative cycle of the derivation (resp. generative cycle).

Let I = {t1, t2, ..., tk}, t1 < t2 < ... < tk, be the set of all communication steps of D(w).
• the i-th generative section of D(w), 1 ≤ i ≤ k + 1, is the subsequence ti−1 + 1,
ti−1 + 2, . . . , ti − 1 of derivation steps, t0 = 0, tk+1 − 1 = t.
• Let Ctj+1 = (α1A1, α2A2, . . . , αnAn) be the configuration just at the beginning of the
j− th generative section (after the succesfuly performed j− th communication step; resp.
at the beginning of the derivation D(w)).
Let Ctj+1

= (α1β1B1, α2β2B2, . . . , αnβnBn) be that of the end of the j-th generative sec-
tion.
Then g(i, j)(D(w)) is the substring βi of αiβiBi. We prefer the abbreviation g(i, j) if it is
not misleading. The terminal word w generated in the derivation D(w) can be composed
using some of g(i, j)(D(w))′s. Thus, for a given D(w) and i, j ∈ N one can speak about
the number of occurrences of g(i, j)(D(w)) in the word w. But, in fact, this number does
not depend on the whole derivation. It depends on the communication sequence C(D(w))
only, so the following denotation is correct.
• Let CC = (C1, C2, . . . , Cp), Cr ∈ {ε, Q1, . . . , Qm}m for some natural numbers r, m, p
(where m can be considered as the number of component grammars of some PCGS and
CC can be considered as a communication sequence of the PCGS). Then we will denote

5

by n(i, j)(CC) (resp. n(i, j)) the number of occurrences of g(i, j)(D(w)) (resp. g(i, j)) in
w for every D(w) with communication sequence equal to CC.

The last notion recalled here is the notion of communication complexity measure, as
defined in [Par 93].

Definition 2.3 Let Π be a PCGS(m), L = L(Π) and D(Π) be the set of all deriva-
tions of Π. Let D(Π, w) be the set of all derivations of a word w by Π. Let
DΠ(w) = C0, C1, C2, . . . , Ct, Ci = (Ci1, Ci2, . . . , Cim) be a derivation of a terminal word w
in Π and I = {t1, t2, ..., tk|t1 < t2 < ... < tk} be the set of those communication steps of
the derivation DΠ(w) for which the (ti − 1)-st step, i ∈ {1, . . . , k}, is generative. Then

com(DΠ(w)) =
k

∑

i=1

|Ci|K
com(w, Π) = max{com(D) | D ∈ D(Π, w)}
com(n, Π) = max{com(w, Π) | |w| = n}.

Finally,
COM(f(n)) = {L(Π)|∀n ∈ N : com(n, Π) ≤ f(n)}.

Let us denote by x-PCGS(m)-f(n) the PCGS of degree m with the communication
graph in the class of graphs x and at most f(n) communications during the generation
of any word of the length n. We consider x ∈ {tree, dag(directed acyclic graph), c}
where by tree-PCGS one assumes that the output grammar G1 is in the root of the tree,
and c-PCGSs are the centralized PCGSs introduced in [PS 89]. We use the notation
x-PCGS-k instead of x-PCGS-g(n) if g(n) = k for every n ∈ N.

3 dag-PCGS versus tree-PCGS

Pardubská [Par 93] has shown that unrestricted communication structures (complete,
directed graphs) are more powerful than the communication structures restricted by the
topology of directed acyclic graphs, and Lukáč [Luk 92] has shown that tree-PCGSs are
more powerful than c-PCGSs. Here, we make a further step in getting a hierarchy on
communication structures by proving dag-PCGSs are more powerful that tree-PCGSs.

Theorem 3.1 The language L = {ww | w ∈ Σ∗}, |Σ| ≥ 2, can be generated by a dag-
PCGS of degree 3, and cannot be generated by any tree-PCGS.

Proof. Since the proof contains long technical considerations it is moved to Appendix A.

Note, that Theorem 3.1 also shows that the weakness of a communication structure cannot
be compensated by any increase in the number of components.

Corollary 3.1

L(dag-PCGS(3)) −
⋃

m∈N

L(tree-PCGS(m)) 6= ∅.

6

Corollary 3.2 for any positive integer k ≥ 3,

L(tree-PCGS(k)) (L(dag-PCGS(k)).

4 Communication complexity of dag-PCGSs

In [HKK 93] it is shown that k + 1 communications are more powerful than k commu-
nications for tree-PCGSs, and Pardubská [Par 93] has established the same hierarchy
for dag-PCGSs. The next result shows, that these hierarchies have no continuation in a
hierarchy of unbounded functions, i.e., the communication complexity of a dag-PCGS is
either a constant or a linear function. Note that each L ∈ dag-PCGS can be generated
with O(n) communication complexity.

Theorem 4.1 Le f(n) be a nondecreasing function from N to N and let Π be a dag-PCGS-
f(n) generating a language L such that L /∈ L(dag-PCGS-O(1)). Then f(n) = Ω(n).

Before starting the proof of Theorem 4.1 we give two useful obervations and one definition.

Observation 4.1 Let Π be a PCGS. Then there exists a constant ℓ(Π) such that for
every i, j ∈ N and every derivation D(w) of Π the following is true:
|g(i, j)(D(w))| ≥ ℓ(Π) =⇒ there is a generative cycle in the j − th generative section of
the derivation D(w).

Proof. It is sufficient to choose ℓ(Π) greater than the number of all nonterminal cuts of
Π multiplied by the maximum of lengths of all right sides of rules in Π. Note, that ℓ(Π)
depends only on Π (namely on the degree of Π, on the number of nonterminals in Π and
on the lengths of rules of Π). 2

Observation 4.2 Let Π be a dag −PCGS. Then there exists a constant n(Π) such that
for all derivations of Π and all i, j ∈ N, n(i, j) ≤ n(Π).

Proof. For every i, j, n(i, j) is at most the number of distinct paths between Gi and G1.
Since the communication structure of Π is acylic, n(Π) is finite and can be bounded by
2k ≤ 2m2

, where k is the number of edges of the communication graph of Π and m is the
degree of Π. 2

Definition 4.1 Let Π be a PCGS and D(w) be a derivation of a word w ∈ L(Π) . We
say the derivation D(w) is reduced, if every repetition of a generative cycle of D(w) leads
to a longer terminal word.

Note, that for each derivation D(w) of w one can construct the reduced derivation D(w)
of w in such a way that D(w) and D(w) have the same communication sequence, so the
same number of communications too.
Proof of Theorem 4.1. Assume, for the sake of contradiction, that Π is a dag −

7

PCGS(m) − f(n) generating the language L /∈ L(dag − PCGS − O(1)), f(n) 6= Ω(n).
Since the functionf(n) is unbounded (L /∈ L(dag − PCGS − O(1))), nondecreasing and
f(n) 6= Ω(n) we can suppose f(n) = o(n).

According to the assumption about the language L the communication complexity of Π
cannot be bounded by any constant. So, for every natural number k there is a word ω
such that some of its derivations use at least k communications. Hence, for every k ∈ N,
we can fixe one of them in the following way.

(1) ωk is the first word in the lexicographical order (therefore one of the shortest ones)
that contains at least k communications in some of its reduced derivations.

As we cannot bound the function f(n) by any constant and f is nondecreasing the fol-
lowing is true.

(2) The set {ωk|k ∈ N} is infinite.

Since f(n) = o(n),

(3) for every ℓ ∈ N there exists a positive integer nℓ ∈ N such that ∀n ≥ nℓ :
n ≥ ℓ · f(n).

In what follows we need a word ωβ satisfying (1) for some suitable constant β and more-
over, the length of the word ωβ has to satisfy (3) for some other constant α. Let

α = 4m · ℓ(Π) · n(Π), where

m is the number of component grammars of Π

ℓ(Π) is the constant bounding the length of words generated without the repetition of
any nonterminal cut (see Observation 4.1).

n(Π) is the constant bounding the number of occurences of individual g(i, j)’s in the
resulting terminal word (see Observation 4.2).

Let w be a ωβ (see (1)) such that |ωβ| ≥ nα for some β ∈ N. Let |w| = n.
According to (2), the word w with the required length exists. Suppose D(w) is a
reduced derivation of w containing at least β communications (but at most f(n),
(n/f(n)) ≥ α). Since the derivation D(w) contains at most f(n) communications,

(4) at most (f(n) + 1) · m different g(i, j)’s form the word w.

Then, (n)/((f(n) + 1) · m · n(Π)) is the lower bound on the average length of g(i, j) for
the word w.

(5)
n

(f(n) + 1) · m · n(Π)
≥ n

2 · m · f(n) · n(Π)
≥ α · f(n)

2 · m · f(n) · n(Π)
=

α

2 · m · n(Π)

=
4m · ℓ(Π) · n(Π)

2 · m · n(Π)
= 2 · ℓ(Π)

8

¿From (5) it follows that there exist some values i0, j0 such that
|g(i0, j0)| > ℓ(Π). Following Observation 4.1 we get that the derivation D(w) contains
a generative cycle. Removing this generative cycle from the derivation D(w) another
derivation D(w′) of a terminal word w′ is obtained. Since D(w) is reduced, the derivation
D(w′) is reduced too and moreover the word w′ is shorter than the word w. But the
number of communications in both derivations D(w) and D(w′) is the same (no genera-
tive cycle contains communications). This fact contradicts the assumption that w is the
shortest word containing at least β communications in some of its reduced derivations. 2

References

[PS 89] Gh.Paun, L.Santean: Parallel communicating grammar systems: the regular
case. Ann.Univ.Buc.Ser.Mat.-Inform.37 vol.2(1989), pp.55-63.

[HU 69] J.E.Hopcroft, J.D.Ullman: Formal Languages and Their Relation to Au-
tomata. Addison-Wesley Publishing Company, Reading, Massachusetts, 1969.

[HR 75] G.T.Herman, G.Rozenberg: Developmental Systems and Languages, North-
Holland, Amsterdam, 1975.

[HKK 93] J.Hromkovič, J.Kari, L.Kari: Some hierarchies for the communication complex-
ity measures of cooperating grammar systems. Theoretical Computer Science,
to appear (extended abstract in: Proc. of the MFCS’93 Lecture Notes in Comp.
Science 711, pp.495 - 505).

[Luk 92] M.Lukáč: About two communication structures of PCGS.Master Thesis(1992),
Dept.of Comp.Sci., Faculty of Mathematics and Physics, Comenius University,
Bratislava (in Slovak).

[Par 92] D.Pardubská: The communication complexity hierarchy of parallel communi-
cating systems. Presented at IMYCS’92.

[Par 93] D.Pardubská: On the power of communication structure for distributive gen-
eration of languages. In: Developments in Language Theory. Preproceedings,
University of Turku, Turku 1993, pp.30 - 32.

[RS 80] G.Rozenberg, A.Salomaa: The Mathematical Theory of L Systems. Academic
Press, 1980.

[San 90] L.Santean: Parallel Communicating Systems. EATCS Bulletin, Num.42 (1990),
160 - 171.

[SK 92] L.Santean, J.Kari: The impact of the number of cooperative grammars on the
generative power, Theoretical Computer Science 98(1992) pp. 249-263.

9

A The proof of Theorem 3.1

Proposition A.1 The language

L = {ww| w ∈ Σ∗}
can be generated by a regular dag-PCGS of degree 3.

Proof. Consider the dag-PCGS π = (G1, G2, G3) where Gi = (Ni, Σ, Si, Pi), 1 ≤ i ≤ 3
and

N1 = {S1, Z, Z1, Q2, Q3},
N2 = {S2, Z, Z1, Q3},
N3 = {S3, Z},
P1 = {S1−→S1, S1−→Q3, Z−→Q2, Z1−→λ},
P2 = {S2−→S2, S2−→Q3, Z−→Z1},
P3 = {S3−→aS3| a ∈ Σ} ∪ {S3−→Z}.

A terminating derivation according to π will have the following form:

(S1, S2, S3) =⇒∗ (S1, S2, wS3) =⇒
(Q3, Q3, wZ) =⇒ (wZ, wZ, S3) =⇒
(wQ2, wZ1, α) =⇒ (wwZ1, S2, α) =⇒
(ww, β, α′),

where w ∈ Σ∗ and β ∈ N2, α, α′ ∈ Σ∗N3.

Informally, the word w ∈ Σ∗ is generated by the grammar G3 and it is then simultaneously
read by G1 and G2. In this way, two identical copies of w are created. Then the master
grammar G1 appends w from G2 to its own w.

It is obvious from the above considerations that the dag-PCGS π generates the requested
language. 2

In the sequel we will prove that the language L defined in Proposition A.1 cannot be gen-
erated by any tree-PCGS. Before starting this main result, some notations and auxiliary
results are needed.

Consider a tree-PCGS of degree k ≥ 1, π = (G1, G2, . . . , Gk). The first component is the
root of the tree. For a component x different from the root, 2 ≤ x ≤ k, fa(x) will denote
the father of the component x in the communication tree. The set Des(x) denotes the
descendants of component x :

Des(x) =



















{x}, if x is a leaf, and

{x} ∪







⋃

x=fa(y)

Des(y)





 , otherwise.

Let D be a derivation according to π, starting with the initial configuration c0 and finishing
with a configuration cm (not necessarily terminal):

D : c0=⇒c1=⇒c2=⇒ . . .=⇒cm.

10

In the following we count only the rewriting steps. Communication steps ”come for free”.
Let d denote the total number of rewriting steps in D.

For every two components 1 ≤ x, y ≤ k, where y is a descendant of x, we inductively
define a number FD,x(y) :

FD,x(y) =



































































d (= the number of rewriting steps in D), if y = x,

the number of rewriting steps before
the last communication step commu-
nicating y to fa(y) which is preceeded
by at most FD,x(fa(y)) rewriting steps.
This means FD,x(y) ≤ FD,x(fa(y)).
If no such communication step exists,
FD,x(y) = 0. if y 6= x.

Intuitively, FD,x(y) indicates the number of rewriting steps performed in the component
y, that will have an effect on the string of component x of the last configuration cm

(component y has time to communicate its string to x before the derivation D is finished).

The following lemma contains the main idea used in proving that L cannot be generated
by a tree-PCGS. Informally, if the conditions of Lemma A.1 are met, we can interchange
any corresponding sentential forms of two reachable configurations and the result is still
a reachable configuration. This will help in showing that, if a tree-PCGS can generate
words of the form ww, then it can generate (due to the possibility of interchanging given
by Lemma A.1) also strings that are not of the form ww.

Lemma A.1 Let π = (G1, . . . , Gk) be a regular tree-PCGS of degree k ≥ 1, and

D1 : (S1, . . . , Sk)=⇒∗(α1
1, . . . , α

1
k) and D2 : (S2, . . . , Sk)=⇒∗(α2

1, . . . , α
2
k)

be two derivations according to π. If FD1,x(y) = FD2,x(y) for all 1 ≤ x, y ≤ k with
y ∈ Des(x), then for any i1, i2, . . . ik ∈ {1, 2} there exists a derivation

D : (S1, . . . , Sk)=⇒∗(αi1
1 , . . . , αik

k)

according to π. Moreover, FD,x(y) = FD1,x(y) for all y ∈ Des(x).

Proof. Let x be a fixed component, different from the root, 2 ≤ x ≤ k. We show
how to construct a valid derivation for (αi1

1 , . . . , αik
k) where iy = 2 if y ∈ Des(x) and

iy = 1 otherwise. This means we can interchange the sentential forms of all components
belonging to an arbitrary subtree of the communication tree. The general case follows by
repeating the process for smaller and smaller subtrees.

Let us denote shortly F (y) instead of F
D1,fa(x)

(y) (the number of rewriting steps performed

in component y that have an effect outside the subtree rooted at x. According to the
hypothesis of the lemma this number is equal in D1 and D2.) In derivation D an arbitrary

11

component y will use on j’th rewriting step the same rewriting rule as Di used on its j’th
rewriting step, where

Di =

{

D1, if y 6∈ Des(x), or j ≤ F (y),
D2, if y ∈ Des(x) and j > F (y).

In other words, components not in the subtree rooted at x will follow the same rewriting
steps as they do in D1, while components that are in the subtree will first follow D1 but
after F (y) steps they start to imitate D2. That this is possible, and that it will lead to
the correct outcome, will be demonstrated below.

Let sj(y), s
(1)
j (y) and s

(2)
j (y) denote the sentential forms in component y immediately

after the j’th rewriting step in D, D1 and D2, respectively. For j = 0 we define s0(y) =

s
(1)
0 (y) = s

(2)
0 (y) = Sy, the axiom of component y. We show using induction on j that for

all components y

sj(y) =

{

s
(1)
j (y), if y 6∈ Des(x), or j ≤ F (y),

s
(2)
j (y), if y ∈ Des(x) and j > F (y).

This proves the lemma, since after m rewriting steps all components in the subtree rooted
in x will have the same sentential form as in D2, while all other components have sentential
forms from D1.

If j = 0 the claim is trivially true: all sentential forms are equal to the axiom of the
corresponding component. Assume that the claim has been proved for j, and consider
the string of an arbitrary component y after j + 1 rewriting steps:

1◦ y 6∈ Des(x) or j < F (y) : We first have to show that after all possible commu-
nications between j’th and (j + 1)’st rewriting steps, the sentential form in component
y is the same in D and in D1. There are different alternatives depending on the type
of communications that occur. If component y communicates its string to its father, it
resumes its axiom Sy. But the same happens in derivation D1: according to the inductive
hypothesis, after j rewriting steps there is in fa(y) the same nonterminal — namely Qy

— in both D and D1.

If y is not communicated to fa(y), but y itself “reads” the sentential form of one of
its children, say z, then necessarily j ≤ F (z). Namely, according to the definitions of
the numbers FD,x(y), there cannot be a communication from z to y between rewriting
steps F (z) and F (y). The same applies to any other components which communicate
simultaneously their strings — via z — to y. According to the inductive hypothesis the
same sentential forms are communicated to y in D and in D1.

So, regardless what happens between the rewriting steps j and j + 1, in the beginning of
the (j +1)’st rewriting step the component y has the same sentential form in both D and
D1. Since the same rewriting rule is applied, the same sentential form is reached.

2◦ y ∈ Des(x) and j = F (y) : After the j’th rewriting step, component y communicates
its string to its father in both D1 and D2. Therefore the (j +1)’st rewriting in component
y is done on the axiom. Since the same rule is used in D as in D2 (because j +1 > F (y)),
the same sentential form is reached.

12

3◦ y ∈ Des(x) and j > F (y) : Since the rewriting rule of D2 is used, the same sentential
form is reached, provided the sentential forms were equal just before the rewriting. This
is indeed the case according to the inductive hypothesis (possible communications cannot
ruin it, as can be seen in the same fashion as in case 1◦). 2

Consider the minimal terminating derivation

D : c0=⇒c1=⇒ . . .=⇒(ww, α2, . . . , αk)

for a word ww ∈ L. A component x is called useful in configuration ci if it eventually
communicates its string to the master grammar G1 (it contributes to ww). In our earlier
notation this is equivalent to FD,1(x) ≥ the number of rewriting steps among the first i
derivation steps. Note that usefulness depends on the derivation D.

Lemma A.2 Let π = (G1, . . . , Gk) be a tree-PCGS. There exist positive constants a
and b such that for every minimal derivation D and natural number n, after the first
n rewriting steps, the length ln of the longest terminal string in any useful component
satisfies ⌊a · n⌋ ≤ ln ≤ b · n.

Proof. Consider the sum of the lengths of the terminal strings in all useful components of
D, denoted by l′n. On each rewriting step l′n can increase by at most b = k× the maximum
number of terminal letters on the right hand sides of all productions. l′n does not change
on communication steps. Therefore ln ≤ l′n ≤ b · n.

Consider then the lower limit for l′n. On a minimal derivation there can be at most Nk

consecutive rewriting steps that do not increase l′n, where N denotes the number of non-
terminals (a rewriting step that does not increase l′n can only rename the non-terminals
of useful components. In Nk + 1 steps the same configuration would appear twice.)
Each terminal string can be communicated fewer than k times before it reaches the root.
Therefore there must be fewer than k2 communication steps separated by at most Nk

consecutive rewriting steps. Altogether, l′n has to increase in every k2 ·Nk rewriting steps.
Because ln ≥ l′n/k, we can choose a = 1/(k3Nk). 2

Two configurations along two terminating derivations are said to be different in their
useful components if one of the following conditions holds:

(i) there is a component which is useful in exactly one of the configurations,

(ii) the configurations differ in a sentential form of some useful component.

In other words the configurations are considered similar if the same components are useful
in both of them, and the contents of useful components are equal.

Theorem A.1 The language L = {ww| w ∈ Σ∗} cannot be generated by any tree-PCGS
of degree k ≥ 1.

Proof. Assume that there exists a tree-PCGS π = (G1, . . . , Gk) such that L(π) = L,
and let a, b be the numbers defined in Lemma A.2. Number b can be assumed to be an
integer.

13

Let f(n) denote the number of different configurations reachable in exactly n rewriting
steps on any minimal derivation for ww, |w| = bn. By different configurations we mean
different in their useful components.

There are two possible cases to consider, depending on the growth rate of f(n): either
f(n) is bounded by a polynomial, or f(n) grows faster than any polynomial. We will
show that both cases lead to contradictions, which implies that our assumption that L
can be generated by π was false.

Case 1. There exists a polynomial p(n) such that f(n) < p(n). In this case choose n
big enough so that p(n) < |Σ|⌊an⌋/(bn). This means that there are less than |Σ|⌊an⌋/(bn)
different configurations, say e1, e2, . . . , eh, h < |Σ|⌊an⌋/(bn), reachable in n rewriting steps
on minimal derivations for words ww, |w| = bn, and each such configuration contains
a useful component whose string contains at least ⌊an⌋ terminal letters. Pick one such
string for each ei. Let w1, w2, . . . , wh be their prefixes of length ⌊an⌋.
Every ww, |w| = bn, contains one wi as a subword. Each wi can however be a subword
of at most bn|Σ|bn−⌊an⌋ of them. Indeed, the word wi has to start in one of the |w| = bn
first positions in ww. It fixes |wi| = ⌊an⌋ letters of w — only the remaining |w| − |wi| =
bn − ⌊an⌋ letters can be chosen arbitrarily.

Therefore only h · bn|Σ|bn−⌊an⌋ of the words ww, |w| = bn, can contain some wi as a
subword. But

h · bn|Σ|bn−⌊an⌋ < |Σ|⌊an⌋/(bn) · bn|Σ|bn−⌊an⌋ = |Σ|bn,
the number of words ww with |w| = bn, a contradiction.

Case 2. The function f(n) grows faster than any polynomial. Then there exists (for large
enough n) two different configurations c1, c2 reachable in n rewriting steps along minimal
terminating derivations D1, D2 for some w1w1, w2w2, respectively, where |w1| = |w2| = bn,
such that in c1, c2 :

• the same components are useful (at most 2k alternatives),

• the strings of the useful components have the same nonterminals (at most (|N |+1)k

alternatives),

• the lengths of the strings of the useful components are the same (at most (bn)k

alternatives), and

• FD′

1
,x(y) = FD′

2
,x(y) for all x, y, y ∈ Des(x), where D′

i denotes the initial part (con-

taining n rewriting steps) of Di that produces ci, i = 1, 2 (at most nk2

alternatives).

Namely, there are at most

p(n) = 2k · (|N | + 1)k · (bn)k · nk2

different choices for the four items above. Clearly p(n) is a polynomial of n, and thus
exceeded by f(n) for some n. We may choose n so large that ⌊an⌋ ≥ 1.

14

According to Lemma 1, any string of c1 can be replaced with the corresponding string of
c2. Since c1 and c2 are different (meaning that they differ in the terminal string of one of
their useful components) one terminal string, say α, in a useful component of c1 can be
replaced by a different, but equally long, word β. Note that 1 ≤ |α| = |β| ≤ bn.

Continuing the derivation according to D1, a word is produced, that differs from w1w1:
exactly one occurence of α has been replaced by β. (At least one occurence since the
change was done in a useful component; at most one occurence, since the communication
graph is a tree.) This is a contradiction: one cannot obtain a word in L after replacing
in ww a nonempty subword of length ≤ |w| with an equally long but different word. 2

15

