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Abstract. DNA strands that, mathematically speaking, are finite strings over the
alphabet {A, G, C, T} are used in DNA computing to encode information. Due to the
fact that A is Watson-Crick complementary to T and G to C, DNA single strands
that are Watson-Crick complementary can bind to each other or to themselves in ei-
ther intended or unintended ways. One of the structures that is usually undesirable for
biocomputation, since it makes the affected DNA string unavailable for future interac-
tions, is the hairpin: If some subsequences of a DNA single string are complementary
to each other, the string will bind to itself forming a hairpin-like structure. This paper
studies a mathematical formalization of a particular case of hairpins, the Watson-
Crick bordered words. A Watson-Crick bordered word is a word with the property that
it has a prefix that is Watson-Crick complementary to its suffix. We namely study
algebraic properties of Watson-Crick bordered and unbordered words. We also give a
complete characterization of the syntactic monoid of the language consisting of all
Watson-Crick bordered words over a given alphabet. Our results hold for the more
general case where the Watson-Crick complement function is replaced by an arbitrary
antimorphic involution.

1 Introduction

The subject of this paper, Watson-Crick (WK) bordered words, is motivated by the
practical requirements of DNA computing experiments. DNA strands can be viewed
as finite strings over the alphabet {A, G,C, T} and are used in DNA computing
to encode information. Since A is Watson-Crick complementary to T and G to
C, DNA single strands that are WK complementary can bind to each other or to
themselves in either intended or unintended ways. One of these undesirable DNA
secondary structures, the hairpin, is formed when the suffix of a DNA single strand
is WK complementary to the prefix of the same DNA strand. A word with this
property is called Watson-Crick bordered. Experimentally, DNA strands that are
Watson-Crick bordered are to be avoided when encoding data on DNA strands,
since the hairpin structures they form make them unavailable for biocomputations.
Theoretically, Watson-Crick bordered words generalize the classical definition of a
bordered word: A bordered word is one with the property that it has a prefix that
equals its suffix, [20], [18].

If in a Watson-Crick bordered word over the DNA alphabet the prefix and its
WK complementary suffix do not overlap, then the strand forms a hairpin struc-
ture such as the one shown in Fig 1. If, on the other hand, the prefix of such a
word and the WK complement of one of its suffixes overlap, the DNA strand could
bind with another copy of itself as shown in Fig 2. Both such bindings are poten-
tially undesirable for DNA computing experiments and this paper investigates words
that could potentially interact this way. Algebraic properties of other types of lan-
guages that avoid DNA sequences undesirable for DNA based computations, such
as sticky-free languages, overhang-free languages and hairpin-free languages, have



been extensively studied in [2, 3, 5, 8, 9]. The notion of Watson-Crick bordered words
was formalized and its coding properties as well as relations between Watson-Crick
bordered words and other types of codes have been discussed in [11]. Certain alge-
braic properties of involution bordered words were discussed in [11]. In this paper we
study the algebraic properties of the set of all Watson-Crick bordered words through
their syntactic monoid.
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Fig. 1. If a word u is Watson-Crick bordered and its WK borders do not overlap, the word u may
stick to itself forming a simple hairpin loop, as shown above.

The reason for our choice of method of investigation is that the syntactic monoid
approach to the study of a language has proved to be very fruitful in other cases.
Algebraic characterizations of many classes of codes through their syntactic monoid
have been extensively studied [6, 14–16, 19]. In [6], the author formulated a general
characterization method of the syntactic monoid which applies to all classes of codes
that can be defined in a certain way and hence results analogous to those of [16]
can be obtained for a large variety of classes of codes. For more details on codes the
reader is referred to [1, 7, 18].

More recently, in [10] we have discussed the syntactic monoid properties of the set
of all hairpin-free words. In this paper we use these methods to study the algebraic
properties of the set of all involution-bordered words. Throughout the paper we
concentrate on an antimorphic involution θ such that θ(a) 6= a for all a ∈ Σ. Such
a function is arguably an accurate mathematical formalization of the Watson-Crick
DNA strand complementarity as it features its main properties: the fact that the WK
complement of a DNA strand is the reverse (antimorphism property) complement
(involution property) of the original strand. (An involution is a function θ such that
θ2 equals the identity.)
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Fig. 2. If a word u is Watson-Crick bordered and its WK borders overlap, the word u may stick to
another copy of itself as shown above. (Usually, in a DNA computing experiment, each DNA strand
is present in hundreds or millions of copies in the solution.)

The paper is organized as follows: Section 2 reviews basic definitions. It is easy
to see that, for an antimorphic involution, the set of all involution-bordered words
is a proper subset of the set of all hairpins as studied in [10]. (Note that neither this



inclusion nor its reverse hold if we consider the set of general hairpins of a given
length k). In [10] we showed that the elements of the syntactic monoid of the language
of all hairpin-free words are idempotents and the monoid is commutative. In this
paper (Section 3) we obtain a different result for involution-bordered word sets: We
now show that, while all the elements of the syntactic monoid of the language of
all involution-bordered words over a given alphabet are idempotents, the monoid
is not commutative. We also observe that similarly to the case of the hairpin-free
words, the language of all involution-bordered words is locally testable. Proposition
5 and 6 parallel results in [10] by giving a necessary and sufficient condition for a
finite monoid to be the syntactic monoid of the set of all involution-bordered words
over a given finite alphabet. In Section 4, we discuss the Green’s relations for the
set of all involution-bordered words. In contrast to the case of the set of all hairpin-
free words, it turns out that the Green’s relations are not trivial for the set of all
involution-bordered words.

2 Definitions and basic concepts

In this section we review some basic notions. An alphabet set Σ is a finite non-empty
set of symbols. A word u over Σ is a finite sequence of symbols in Σ. We denote by
Σ∗ the set of all words over Σ, and by Σ+ the set of all non empty words over Σ.
The empty word is denoted by λ. We note that with the concatenation operation
on words, Σ∗ is the free monoid and Σ+ is the free semigroup generated by Σ. The
length of a word u = a1...an is n for all ai ∈ Σ and is denoted by |u|. A language
over Σ is an arbitrary subset of Σ∗. A mapping θ : Σ∗ 7→ Σ∗ is called a morphism
(antimorphism) of Σ∗ if θ(uv) = θ(u)θ(v) (respectively θ(uv) = θ(v)θ(u)) for all
u, v ∈ Σ∗. An involution map θ is such that θ2 equals identity.

Bordered words were initially called “overlapping words” and unbordered words
were called as “non-overlapping words”, [18]. For properties of bordered and unbor-
dered words we refer the reader to [20], [18]. In [11], we extended the concept of
bordered words to involution-bordered words and studied some of their algebraic
properties. We now recall some definitions defined and used in [11].

Definition 1. Let θ be either a morphic or an antimorphic involution on Σ∗.
1. A word u ∈ Σ+ is said to be θ-bordered if there exists v ∈ Σ+ such that u =

vx = yθ(v) for some x, y ∈ Σ+.
2. A non-empty word which is not θ-bordered is called θ-unbordered.

Lemma 1 Let θ be either morphic or an antimorphic involution.
1. A θ-bordered word x ∈ Σ+ has length greater than or equal to 2.
2. For all a ∈ Σ, a is θ-unbordered.
3. For all a ∈ Σ such that a 6= θ(a), an is θ-unbordered for all n ≥ 1.

In case θ is the Watson-Crick involution a θ-bordered word will be called Watson-
Crick bordered, and a θ-unbordered word will be called Watson-Crick unbordered.
Figures 1 and 2 illustrate some undesirable interactions that can result if a DNA
string is Watson-Crick bordered.

We recall that a language or a set X ⊆ Σ∗ is said to be dense if for all u ∈ Σ∗,
X ∩Σ∗uΣ∗ 6= ∅. The following lemma was proved in [11].
Lemma 2 Let θ be an antimorphic involution. Let L be the set of all θ-bordered
words over Σ∗. Then
1. L is regular.
2. L is a dense set.



3 The syntactic monoid of the set of all Watson-Crick bordered
words

In the theory of codes, two types of syntactic monoids are usually considered, the
syntactic monoid of the code itself and the syntactic monoid of the Kleene star of
the code. In this section we concentrate on the characterizations of syntactic monoid
of the set of all θ-bordered words, when θ is an antimorphic involution such that
θ(a) 6= a for all a ∈ Σ. Necessary and sufficient conditions for a monoid to be the
syntactic monoid of the set of all θ-bordered words are also discussed. We first review
some basic concepts.

Let L be a language such that L ⊆ Σ+. We define the context, right context and
left context of a word w ∈ Σ∗ in L as follows:

– CL(w) = {(u, v) : uwv ∈ L, u, v ∈ Σ∗}.
– RL(w) = {u ∈ Σ∗ : wu ∈ L}.
– LL(w) = {u ∈ Σ∗ : uw ∈ L}.

CL(w), RL(w) and LL(w) are called the context, right context and left context of
w in L respectively. Also note that Sub(L) = {x : pxq ∈ L, p, q ∈ Σ∗} is the set of
all subwords of L. Recall that

Definition 2. Let L be a language such that L ⊆ Σ+.

1. The syntactic congruence of L ⊆ Σ+ is denoted by PL and is defined by u ≡
v(PL) iff CL(u) = CL(v).

2. The syntactic monoid of L is the quotient monoid M(L) = Σ∗/PL with the
operation [x][y] = [xy], where for x ∈ Σ∗, [x] denotes the PL equivalence class of
x.

Let W (L) = {x ∈ Σ∗ : CL(x) = ∅}, i.e., x ∈ W (L) iff x /∈ Sub(L). W (L) is
called the residue of L.

Note that if W (L) 6= ∅ then W (L) represents a class for PL and is the zero of
M(L).

Note that for a regular language L, M(L) is the transition monoid (see [17]) of
the minimal deterministic finite automaton (see [1, 17]) of L. The above definition
of the syntactic congruence PL can be defined for an arbitrary subset L of any
semigroup S. If the syntactic congruence is the equality relation then we call the
set L to be a disjunctive subset of S. If L = {x} for some x ∈ Σ∗ and if PL is
the equality relation then we say that x is a disjunctive element of S. For more on
syntactic monoid we refer the reader to [1, 12, 17].

It is a well known fact that L is a regular language if and only if M(L) is finite
(see [12, 17]). For any set L and its syntactic monoid M(L), η : Σ∗ → M(L) is the
natural surjective syntactic morphism defined by x → [x]. Note that for any L, L is
a union of PL classes.

We denote by Bθ,Σ the set of all θ-bordered words over Σ∗, with θ an antimorphic
involution and θ(a) 6= a for all a ∈ Σ. In the remainder of the paper, if the alphabet
Σ is clear from the context, we will denote the set of all θ-bordered words over Σ
simply by Bθ.

It was shown in [11] that Bθ is regular and hence Syn(Bθ) is finite. In the
following lemma we show that the residue of Bθ is the empty set.

Lemma 3 The residue of Bθ is the empty set, i.e., W (Bθ) = ∅.
Proof. Follows from the fact that Bθ is dense, see Lemma 2. ut



In the following proposition we show that every non zero element of Syn(Bθ) is
idempotent.

Proposition 1 For every u ∈ Σ∗, we have u PBθ
u2.

Proof. The congruence PBθ
is equivalent to the congruence PBθ

associated to the
complement Bθ of Bθ. Hence we have to show that u PBθ

u2, i.e., xuy ∈ Bθ iff
xu2y ∈ Bθ. Assume that xuy ∈ Bθ. Suppose that xu2y ∈ Bθ, then there exists
a ∈ Σ such that xu2y = avθ(a) for some v ∈ Σ∗. We have the following cases:

1. If x = ax1 and y = y1θ(a) then xuy = ax1uy1θ(a), a contradiction since xuy ∈
Bθ.

2. If x = λ, the empty word, then u2y = avθ(a) which implies u = av1 and
y = y1θ(a) and hence xuy = av1y1θ(a), again a contradiction. The case when
y = λ is similar.

3. If both x and y are empty, i.e., x = y = λ, then u2 = avθ(a). If v = λ, then
u = a = θ(a) a contradiction to our assumption that a 6= θ(a) for all a ∈ Σ.
Thus v 6= λ and u = av1 = v2θ(a) a contradiction since xuy = u ∈ Bθ.

Hence xu2y ∈ Bθ. Conversely, assume that xu2y ∈ Bθ. Suppose xuy ∈ Bθ, then
there exists a ∈ Σ such that xuy = avθ(a) for some v ∈ Σ∗. We have the following
cases:

1. If x = ax1 and y = y1θ(a) then xu2y = ax1u
2y1θ(a), a contradiction since

xu2y ∈ Bθ.
2. If x = λ, the empty word, then uy = avθ(a) which implies u = av1 and y = y1θ(a)

and hence xu2y = av1uy1θ(a), again a contradiction. The case when y = λ is
similar.

3. If both x and y are empty, i.e., x = y = λ, then u = avθ(a) which implies that
xu2y = u2 = avθ(a)avθ(a) again a contradiction since xu2y ∈ Bθ.

Thus xuy ∈ Bθ iff xu2y ∈ Bθ and hence uPBθ
u2 for all u ∈ Σ∗. ut

Corollary 1 The elements of the syntactic monoid of Bθ are idempotent elements.

Proof. The fact that uPBθ
u2 for any u ∈ Σ∗ implies that U = U2 for the class U

containing u. ut
If θ is a mapping of Σ∗ into Σ∗, a congruence R is said to be θ-compatible if uRv

implies θ(u)Rθ(v). If such is the case, then the mapping θ on Σ∗ can be extended to
a mapping of the quotient-monoid S = Σ∗/R in the following way. Let U be the class
mod R containing the word u. Define θ(U) to be the class of R containing θ(u). This
mapping is well defined, i.e., it does not depend on the choice of the representative
u of the class U . Indeed if u′ ∈ U , then, R being θ-compatible, we have θ(u)Rθ(u′)
and hence θ(u′) ∈ θ(U).

Proposition 2 The syntactic congruence PBθ
is θ-compatible.

Proof. To show that PBθ
is θ-compatible, we have to show that uPBθ

v implies
θ(u)PBθ

θ(v), i.e., CBθ
(u) = CBθ

(v) implies CBθ
(θ(u)) = CBθ

(θ(v)). Let uPBθ
v and

let (x, y) ∈ CBθ
(θ(u)), then xθ(u)y ∈ Bθ which implies that θ(xθ(u)y) ∈ θ(Bθ). Thus

θ(y)θ(θ(u))θ(x) ∈ θ(Bθ), .i.e., θ(y)uθ(x) ∈ θ(Bθ). Since Bθ is θ stable, θ(Bθ) ⊆ Bθ

and thus θ(y)uθ(x) ∈ Bθ iff θ(y)vθ(x) ∈ Bθ since uPBθ
v. Therefore θ(θ(y)vθ(x)) ∈

θ(Bθ) ⊆ Bθ and therefore xθ(v)y ∈ Bθ which implies that (x, y) ∈ CBθ
(θ(v)). Simi-

larly we can show that CBθ
(θ(v)) ⊆ CBθ

(θ(u)). Thus PBθ
is θ-compatible. ut



Recall that a semigroup in general is a set equipped with an internal associative
operation which is usually written in a multiplicative form. A monoid is a semigroup
with an identity element (usually denoted by e). If S is a semigroup, S1 denotes the
monoid equal to S if S has an identity element and to S∪{e} otherwise. In the latter
case, the multiplication on S is extended by setting s.e = e.s = s for all s ∈ S. Let
e ∈ S be an idempotent of S. Then the set eSe = {ese : s ∈ S} is a subsemigroup
of S, called the local subsemigroup associated with e. This semigroup is in fact a
monoid, since e is an identity in eSe. We also recall that a semigroup S is called
locally trivial if for all s ∈ S and for all idempotents e ∈ S, we have ese = e. We
recall the following result.

Proposition 3 [17] Let S be a non empty semigroup. The following are equivalent.
1. S is locally trivial.
2. The set of all idempotents is the minimal ideal of S.
3. We have esf = ef for all s ∈ S and for all idempotents e, f ∈ S.

Since for all e ∈ Syn(Bθ), e is an idempotent, we have the following observations.
Let S = Syn(Bθ) \ {1}, then
– S is aperiodic, i.e., for all e ∈ S, there exists n such that en = en+1.
– S is regular, i.e., for all e ∈ S, e is regular, i.e., there exists s ∈ S such that

ese = e.

Lemma 4 For all [ab] ∈ Syn(Bθ), such that a, b ∈ Σ, [ab] as a set is equal to the
set of all words that begin with a and end with b.

Proof. We first prove for the case when a 6= b. Clearly ab ∈ [ab]. Let u ∈ Σ∗ be such
that aub /∈ [ab]. Then there exists x, y ∈ Σ∗ such that xaby ∈ Bθ and xauby /∈ Bθ.
Note that xaby ∈ Bθ implies that xaby = cpθ(c) for some c ∈ Σ and p ∈ Σ∗. Then
xauby = cqθ(c) which implies that xauby ∈ Bθ a contradiction. Hence aub ∈ [ab] for
all u ∈ Σ∗.
If a = b, then clearly we have aa ∈ [aa] and for all u ∈ Σ∗, aua ∈ [aa]. Suppose
a /∈ [aa] then there exists x, y ∈ Σ∗ such that xaay ∈ Bθ and xay /∈ Bθ. Note that
xaay ∈ Bθ implies that xaay = cpθ(c) for some c ∈ Σ and p ∈ Σ∗. If both x and
y are non empty, then xay = cqθ(c) for some c ∈ Σ and q ∈ Σ∗, which implies
that xay ∈ Bθ, which is a contradiction. If x = λ and y ∈ Σ+ then aay = cpθ(c)
which implies a = c and y = y1θ(c) and hence xay = ay = cy1θ(c) which implies
that xay ∈ Bθ, a contradiction. The case when x ∈ Σ+ and y = λ is similar. If
x = y = λ, then aa = cpθ(c) which implies that a = c = θ(c) a contradiction to our
assumption, since for all a ∈ Σ, θ(a) 6= a. Hence a ∈ [aa]. Thus for all a, b ∈ Σ, and
for all [ab] ∈ Syn(Bθ), [ab] as a set is the set of all words that begin with a and end
with b. ut

Recall that a language L is said to be n-locally testable if whenever u and v have
the same factors of length at most n and the same prefix and suffix of length n− 1
and u ∈ L then v ∈ L. The language L is locally testable if it is n-locally testable
for some n ∈ IN .

We also recall a characterization of the syntactic semigroup of locally testable
languages which states that (Proposition 2.1 in [13]) a recognizable subset (A lan-
guage is called recognizable if there exists an algorithm that accepts a given string if
and only if the string belongs to that language) L of Σ+ is locally testable iff for all
idempotents g ∈ Syn(L), gSyn(L)g is a semi lattice. We use this characterization
and the above proposition to show that Bθ is locally testable.



Corollary 2 Bθ is locally testable.

Proof. We need to show that for all e ∈ Syn(Bθ), eSyn(b)e is a semilattice. Note
that from Lemma 4, for all e, s ∈ Syn(Bθ), ese = e and hence eSyn(Bθ)e = {e}.
Since e is an idempotent and {e} is commutative, eSyn(Bθ)e = {e} is a semilattice.
Thus Bθ is locally testable.

Corollary 3 S = Syn(Bθ) \ {1} is locally trivial.

Proof. For all e ∈ S, e is an idempotent. We need to show that ese = e for all
e, s ∈ S. Let e = [ab] for some a, b ∈ Σ and let s = [s1] for some s1 ∈ Σ+. Then
ese = [ab][s1][ab] = [abs1ab] = [ab] = e. Hence S is locally trivial. ut
Corollary 4 S is the minimal ideal of S and for all e, s, f ∈ S, esf = ef .

Proof. Follows from the fact that S is locally trivial and all elements of S are idem-
potents and from Proposition 3. ut
Corollary 5 For all e, f, g ∈ Syn(Bθ), if eg = fg and ge = gf then e = f .

Proof. Given that eg = fg and ge = gf . Then eg.ge = fg.gf which implies that
ege = fgf since for all e ∈ Syn(Bθ), e is an idempotent. Thus from Corollary 4,
ege = e2 = e = fgf = f2 = f which implies that e = f .

Corollary 6 Syn(Bθ) is a simple semigroup.

Proof. Since ∅ and S = Syn(Bθ) are the only ideals of Syn(Bθ), S is simple.

In the next proposition we show that for all e, f ∈ S, e and f are conjugates,
i.e., e = uv and f = vu for some u, v ∈ S.

Proposition 4 For all e, f ∈ S, e and f are conjugates.

Proof. Let e, f ∈ S such that e = [ab] and f = [cd] for some a, b, c, d ∈ Σ. Then
e = [ab] = [adcb] = [ad][cb] and f = [cd] = [cbad] = [cb][ad] which implies that e and
f are conjugates. ut
Lemma 5 PBθ

class of 1 is trivial.

Proof. Suppose not, let u ≡ 1(PBθ
) for some u ∈ Σ+. Then for any v ∈ Bθ, uv ≡

v(PBθ
) and vu ≡ v(PBθ

). Since v ∈ Bθ, uv, vu ∈ Bθ. Also, v, uv, vu ∈ [ab] for some
a, b ∈ Σ with θ(a) = b. Thus v = axb, uv = ayb and vu = azb for some x, y, z ∈ Σ∗.
Then u = arb which implies that u ∈ [ab] and hence 1 ∈ [ab] a contradiction since
1 /∈ Bθ. Thus PBθ

class of 1 is trivial.

In the following results, using the notion of the syntactic monoid, similar to
Proposition 17, 18 in [10], we establish an algebraic connection between the language
Bθ of the bordered words relatively to an antimorphic involution θ over a finite
alphabet Σ and a certain class of finite monoids.

Proposition 5 Let Syn(Bθ) be the syntactic monoid of Bθ. Then:

1. Syn(Bθ) is a finite monoid which has no zero and every element of Syn(Bθ) is
idempotent.



2. There exists an antimorphic involution ψ such that the set Syn(Bθ) is stable
under ψ.

3. Syn(Bθ) has two non empty disjunctive sets D1 and D2 such that Syn(Bθ) =
D1 ∪D2 and D1 ∩D2 = ∅, where D1 = {[x] ∈ Syn(Bθ) \ {1} : ψ([x]) = [x]}.

Proof. 1. The regularity of the language Bθ implies the finiteness of its syntactic
monoid Syn(Bθ). Since Bθ is dense, Syn(Bθ) has no zero. The last part follows
from Corollary 1.

2. Since the syntactic congruence PBθ
is θ-compatible, an antimorphic involution ψ

can be defined on Syn(Bθ) in the following way. Let U be an element of Syn(Bθ),
i.e., U is a class of PBθ

, and define ψ(U) to be the class containing the element
θ(u), where u ∈ U . This mapping is well defined because it does not depend on
the choice of the representation v of the class U by virtue of θ-compatibility of
PBθ

. Indeed, since uPBθ
v, then θ(u)PBθ

θ(v) and hence θ(v) ∈ ψ(U). Therefore
if V is the class of PBθ

containing v, then ψ(U) = ψ(V ). It is immediate that ψ
is an antimorphism since θ is an antimorphism. To show that ψ is an involution,
for all U ∈ Syn(Bθ), ψ(ψ(U)) = U . Note that ψ(U) = [θ(u)] for all u ∈ U . Thus
ψ(ψ(U)) = [θ(θ(u))] = [u] = U since θ is an involution. Thus ψ is an antimorphic
involution. The last part follows from the fact that Bθ is θ-stale.

3. Let D1 = {[x] ∈ Syn(Bθ) : x ∈ Bθ} and let D2 = Syn(Bθ) \ D1 = {[x] ∈
Syn(Bθ) : x ∈ Bθ}. Let [x] ∈ D1 which implies that x ∈ Bθ and thus x = arb for
some a, b ∈ Σ and r ∈ Σ∗ with θ(a) = b. Thus from Corollary 4, we have ψ([x]) =
ψ([arb]) = ψ([ab]) = [θ(ab)] = [θ(b)θ(a)] = [ab] = [x]. Thus for all [x] ∈ D1,
ψ([x]) = [x]. Now we show that D1 is disjunctive. Suppose there exists [x], [y] ∈
Syn(Bθ) such that CD1([x]) = CD1([y]). Then [α][x][β] ∈ D1 iff [α][y][β] ∈ D1

for [α], [β] ∈ Syn(Bθ) which implies that [αxβ] ∈ D1 iff [αyβ] ∈ D1. Thus for
all α, β ∈ Σ∗, αxβ ∈ Bθ iff αyβ ∈ Bθ which implies CBθ

(x) = CBθ
(y) and hence

x, y ∈ [x] = [y]. Hence D1 is disjunctive. Since PD1 = PD1
= PD2 , D2 is also

disjunctive.

The next proposition is a converse of the Proposition 5.

Proposition 6 Let M be a monoid with identity e and satisfy the following prop-
erties:

1. M is finite.
2. M has no zero.
3. Every element of M is an idempotent element.
4. There exists an antimorphic involution ψ such that M is stable under ψ.
5. M has two non empty disjunctive subsets D1 and D2 such that D1 = {x ∈

M \{e} : ψ(x) = x} and D2 = M \D1 and for all x ∈ D1 there exists p, q, r ∈ D2

such that x = pq and either ψ(p) = rq or ψ(q) = pr.

Then there exists a free monoid Σ∗ over a finite alphabet Σ, an antimorphic invo-
lution θ and a language Bθ in Σ∗ such that,
(i) Bθ is the set of all θ-bordered words over Σ
(ii) The syntactic monoid Syn(Bθ) = Σ∗/PBθ

is isomorphic to M .

Proof. If M = {x1, x2, ..., xn}, then take the elements of M as the letters of an alpha-
bet Σ = {x1, x2, ..., xn} and let Σ∗ be the free monoid generated by Σ∗. Let φ be the
mapping of Σ∗ onto M defined in the following way. If u ∈ Σ, then φ(u) = ψ(u) ∈ M .



If u = u1u2...uk ∈ Σ+ with ui ∈ Σ, then φ(u) = ψ(u) = ψ(uk)...ψ(u1). If u = λ,
then φ(u) = e, the identity of M . It is clear that φ is an antimorphism on Σ∗ onto
M . The relation ρ defined as uρv, u, v ∈ Σ∗ iff φ(u) = φ(v) is a congruence of Σ∗
and the quotient monoid Σ∗/ρ is isomorphic to M .
Let Bθ = {x ∈ Σ+ : φ(x) = x} and let PBθ

be the syntactic congruence of Bθ. We
need to show that PBθ

= ρ. We first show that ρ ⊆ PBθ
. Let uρv then φ(u) = φ(v).

We need to show that uPBθ
v. Let αuβ ∈ Bθ which implies that φ(αuβ) = αuβ =

φ(β)φ(u)φ(α) = φ(β)φ(v)φ(α) since uρv. Thus φ(αuβ) = φ(αvβ) = φ(αuβ) which
implies αvβ = αuβ, since φ is an involution, it is bijective. Thus φ(αvβ) = αvβ
which implies that αvβ ∈ Bθ. Similarly we can show that αvβ ∈ Bθ and hence
αuβ ∈ Bθ. Thus uPBθ

v.
Conversely, we need to show that PBθ

⊆ ρ. Let uPBθ
v. If u is not equivalent to v

modulo ρ then φ(u) 6= φ(v). M has a disjunctive D1. Then syntactic congruence
PD1 is the equality relation and we have CD1(φ(u)) 6= CD1(φ(v)). This implies the
existence if α, β ∈ M such that αφ(u)β ∈ D1 and αφ(v)β /∈ D1 or αφ(u)β /∈ D1 and
αφ(v)β ∈ D1. Suppose that we have the first case, αφ(u)β ∈ D1 and αφ(v)β /∈ D1,
and since φ is bijective there exists r, s ∈ Σ∗ such that α = φ(r), and β = φ(s).
Thus αφ(x)β = φ(r)φ(u)φ(s) = φ(sur) ∈ D1 and φ(svr) /∈ D1, i.e., φ(sur) = sur
and φ(svr) 6= svr which implies that sur ∈ Bθ and svr /∈ Bθ a contradiction since
CBθ

(u) = CBθ
(v). Hence it follows that PBθ

⊆ ρ.
We define the requested antimorphism θ of Σ∗ by taking the corresponding per-
mutation of the alphabet Σ and extending it to Σ∗ in the usual way. If u ∈ Σ+,
u = x1x2...xn for x1, x2, ..., xn ∈ Σ, then θ(u) = θ(x1x2...xn) = θ(xn)...θ(x1) and
θ(λ) = λ. It is immediate that θ is bijective antimorphism. Let us show now that
conditions (i) and (ii) are satisfied.
For (i), let u ∈ Bθ and suppose that u is θ-unbordered. If u ∈ Bθ then u = u1u2...uk

for some ui ∈ Σ. Then if a word u is Watson-Crick bordered and its WK borders
overlap, the word u may stick to another copy of itself as shown above. φ(u) =
φ(uk)...φ(u1) = u1...uk which implies φ(uk)φ(u1) = u1uk by Corollary 4. Thus u1 =
uk. Hence φ(u) = φ(u1uk) = φ(u1u1) = φ(u1) = u = u1u1 = u1 since for all f ∈ M ,
f is an idempotent. Thus for all u ∈ Bθ, u = u1 for some u1 ∈ D1. Hence there exists
p, q, r ∈ D2 such that u = pq with ψ(p) = rq or ψ(q) = pr. Thus u = pq implies
ψ(u) = ψ(q)ψ(p) = prψ(p) or ψ(u) = ψ(q)rq which implies that u is θ-bordered.
Suppose there exists a u ∈ Σ∗ such that u is θ-bordered and u /∈ Bθ, then u = axb
with θ(a) = b and a, b ∈ Σ. Thus ψ(u) = ψ(axb) = ψ(axθ(a)) = ψ(θ(a))ψ(x)ψ(a)
= ψ(θ(a))ψ(a) = ψ(b)ψ(a) = ab = axb = u. Thus ψ(u) = u implies that φ(u) = u
and u ∈ Bθ.
Condition (ii) follows by construction. ut

4 Green’s relations for the set of all Watson-Crick bordered words

We recall here the definition of Green’s relations and some well known facts about
some of the relations. For extensive treatments of Green’s relations and the related
varieties of finite monoids, we refer the reader to [4, 12, 17]. In [10], it was shown that
Green’s relations are trivial for the language of all hairpin-free words. In contrast,
this is not the case for the language of all involution-bordered words. Namely, in
this section we show that S = Syn(Bθ) \ {1} is H-trivial and S is not K-trivial for
all K ∈ {D,R,L,J }.
Definition 3. (Green’s Relations:) Let S be a semigroup. We define on S four
equivalence relations R, L, H and J called Green’s relations:



aRb ⇔ aS1 = bS1

aLb ⇔ S1a = S1b
aJ b ⇔ S1aS1 = S1bS1

aHb ⇔ aRb and aLb

Note that the relations R and L commute, i.e., RL = LR and D = RL. In
a finite semigroup D = J . A semigroup S is K-trivial iff eKf implies e = f for
K ∈ {D,R,L,J ,H}. A semigroup S is aperiodic if for all x ∈ S there exists n such
that xn = xn+1. Note that S = Syn(Bθ) \ {1} is aperiodic since all elements of S
are idempotents.

We use the following propositions from [17] to show that S = Syn(Bθ) \ {1} is
H-trivial and the D class of S is equal to S.

Proposition 7 [17] Let S be a semigroup and let g and f be idempotents of S.
Then gDf if and only if g and f are conjugates, i.e., there exists u, v ∈ S such that
g = uv and f = vu.

Proposition 8 [17] Let S be a finite semigroup. The following conditions are equiv-
alent.
1. S is aperiodic (for every x ∈ S there exists n such that xn = xn+1).
2. There exists m > 0 such that for every x ∈ S, xm = xm+1.
3. S is H-trivial.

Proposition 9 The D class and J class of S is equal to S.

Proof. Follows from the fact that S is simple and finite.

Proposition 10 S = Syn(Bθ) \ {1} is H-trivial.

Proof. Since S is aperiodic, by Proposition 8, S is H-trivial. ut
Proposition 11 Let Σ = {a1, a2, ..., an} and let [ab] ∈ S = Syn(Bθ) \ {1} for
some a, b ∈ Σ. Then the R class of [ab] is {[aai] : ai ∈ Σ}. and L class of [ab] is
{[aib] : ai ∈ Σ}.
Proof. Let eRf where e = [ab] for some a, b ∈ Σ. e = [ab] is the set of all words that
begin with a and end with b. Then for all f ∈ [ab]S1, f is the set of all words that
begin with a. Thus R class of [ab] is {[aai] : ai ∈ Σ}. Similarly we can show that
the L class of [ab] is {[aib] : ai ∈ Σ}. ut
Corollary 7 For all e, f ∈ S, Re ∩ Lf = {ef}.
Proof. For some e, f ∈ S, e = [ae1] and f = [f1b] for some a, b ∈ Σ and e1, f1 ∈ Σ∗.
Note that ef = [ae1].[f1b] = [ae1f1b] = [ab]. Then from Proposition 11, R[ae1] =
{[aai] : ai ∈ Σ} and L[f1b] = {[aib] : ai ∈ Σ}. Thus Re ∩ Lf = {[ab]} = {ef}.
Example 1. Let ∆ = {A,C, G, T} and let θ be an antimorphic involution that maps
A 7→ T and C 7→ G. Then Bθ = {aub : a, b ∈ ∆, θ(a) = b, u ∈ ∆∗} is the
set of all θ-bordered words over ∆∗. Then Syn(Bθ) = {[1], [A], [C], [G], [T ], [AC],
[AG], [AT ], [CA], [CG], [CT ], [GA], [GC], [GT ], [TA], [TG], [TC]}. Note that for all
a, b ∈ ∆, [ab] is the set of all words that begin with a and end with b and [a] repre-
sents the class that contains all words that begin and end with a. We now compute
both the R and L class for elements of Syn(Bθ).



– L[A] = { [A], [CA], [GA], [TA]}
– L[C] = { [C], [AC], [GC], [TC]}
– L[G] = { [G], [AG], [CG], [TG]}
– L[T ] = { [T ], [CT ], [GT ], [AT ]}
– R[A] = { [A], [AC], [AG], [AT ]}
– R[C] = { [C], [CA], [CG], [CT ]}
– R[G] = { [G], [GA], [GC], [GT ]}
– R[T ] = { [T ], [TA], [TG], [TC]}

Also note that since H = R∩ L for all e ∈ Syn(Bθ), He = {e}

5 Conclusion

The DNA secondary structure called “hairpin” has been a topic of constant inter-
est in experimental as well as theoretical biomolecular computing, as it is usually
undesirable in DNA-based computing experiments. This paper investigates a math-
ematical formalization of a particular case of hairpins, the Watson-Crick bordered
words, whereby the “sticky borders” that cause a DNA single strand to form a hair-
pin are situated at the extremities of the strand. Cases where these “sticky borders”
are situated in the interior of the strand have been addressed, e.g., in [9], [10]. The
main results of this paper are algebraic properties of Watson-Crick bordered and
unbordered words, and a complete characterization of the syntactic monoid of the
language consisting of all Watson-Crick bordered words over a given alphabet.

Directions for future work are two-fold. On one hand we intend to investigate
other generalizations of classical notions in combinatorics of words motivated by
DNA computing, such as Watson-Crick conjugate words and Watson-Crick com-
mutative words. On the other hand, we intend to formalize other DNA secondary
structures such as DNA pseudo-knots and study their properties.
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