
Theoretical Computer Science 410 (2009) 3250–3260

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

On the descriptional complexity of Watson–Crick automata
Elena Czeizler a,∗, Eugen Czeizler a,1, Lila Kari a, Kai Salomaa b
a Department of Computer Science, University of Western Ontario, London, Ontario N6A 5B7, Canada
b School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada

a r t i c l e i n f o

Keywords:
Watson–Crick automata
State complexity
Determinism

a b s t r a c t

Watson–Crick automata are finite state automata working on double-stranded tapes,
introduced to investigate the potential of DNA molecules for computing. In this paper, we
continue the investigation of descriptional complexity ofWatson–Crick automata initiated
by Păun et al. [A. Păun, M. Păun, State and transition complexity of Watson–Crick finite
automata, in: G. Ciobanu, G. Paun (Eds.), Fundamentals of Computation Theory, FCT’99,
in: LNCS, vol. 1684, 1999, pp. 409–420]. In particular, we show that any finite language, as
well as any unary regular language, can be recognized by a Watson–Crick automaton with
only two, and respectively three, states. Also, we formally define the notion of determinism
for these systems. Contrary to the case of non-deterministic Watson–Crick automata, we
show that, for deterministic ones, the complementarity relation plays a major role in the
acceptance power of these systems.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

One of the current trends in nanoengineering is to develop nanomachineswhich can parsemolecules of DNA and perform
a finite number of tasks, e.g., the development of artificial enzymes [14] or smart drug design [15]. One of the first theoretical
abstractions for such nanomachines isWatson–Crick automata [3], which is based on the idea of finite automata running on
complete DNA-molecules. Formally, these machines are finite automata, with two independent reading heads, working
on double-stranded sequences. The two strands of the input are separately scanned from left to right by read-only heads
controlled by a common state. One of themain features of these automata is that characters on corresponding positions from
the two strands of the input are related by a complementarity relation similar to the Watson–Crick complementarity of the
DNA nucleotides. Several variants of these systemswere investigated, e.g., in [9] and [12]; for a comprehensive presentation,
we refer to both Chapter 5 from [11] as well as to [1] for a recent survey.
In this paper, we continue the study of the descriptional complexity of Watson–Crick automata initiated in [10]. Since,

at each step, Watson–Crick automata can read blocks of more than one letter, a special feature of these systems is that, for a
given number of states, even two or three, one can already define an infinite number of distinct automata. This is different
from most of the usually considered models, such as ordinary finite automata or Turing machines. Thus, Watson–Crick
automata allow, in some sense, to encode state information in the finite but unbounded number of transitions, and this
makes it essentially more difficult to prove lower bounds for the number of states. In particular, we prove that several
intricate families of languages can be accepted by Watson–Crick automata with a small, constant number of states. For
instance, we show that any finite language and any unary regular language can be recognized by aWatson–Crick automaton
with two, and respectively three, states. Also,weprovide a family of languageswhich generates an infinite hierarchy from the

∗ Corresponding address: Department of IT, Åbo Akademi University, Turku 20520, Finland. Tel.: +1 519 661 2111.
E-mail addresses: elczeizl@abo.fi (Elena Czeizler), eczeizle@abo.fi (Eugen Czeizler), lila@csd.uwo.ca (L. Kari), ksalomaa@cs.queensu.ca (K. Salomaa).

1 Current affiliation: Department of IT, Åbo Akademi University, Turku 20520, Finland.

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.05.001

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:elczeizl@abo.fi
mailto:eczeizle@abo.fi
mailto:lila@csd.uwo.ca
mailto:ksalomaa@cs.queensu.ca
http://dx.doi.org/10.1016/j.tcs.2009.05.001

E. Czeizler et al. / Theoretical Computer Science 410 (2009) 3250–3260 3251

point of view of the state complexity of the block automata recognizing them. Then, we show that this hierarchy collapses
when we consider the case of Watson–Crick automata, that is, we prove that three states are enough when recognizing
any language from this family. Recall that block automata, or block-NFA, are finite automata which, similarly to the case of
Watson–Crick automata, can read an arbitrarily long finite sequence of characters at a time.
Also, we formally define the notion of deterministic Watson–Crick automata and investigate their properties. Although

determinism is a well established notion in automata theory, it has never been considered yet in relation to Watson–Crick
automata. In this paper, we define the notion of determinism using a syntactic property of the rewriting rules of the
automaton. We also consider a weaker operational definition of determinism, namely weak determinism, and show that it
is undecidable whether a given non-deterministic Watson–Crick automaton is weakly deterministic. For non-deterministic
Watson–Crick automata, it was proved in [8] that we can always suppose the complementarity relation to be the identity.
Hence, a natural question is whether the structure of the complementarity relation plays an active role in the deterministic
case. Thus, we define the notion of strong determinism, embedding both the deterministic feature and the fact that
the complementarity relation is the identity. We prove that these three levels of abstraction (i.e., weak determinism,
determinism, and strong determinism) are all distinct from each other. Furthermore, we also show that non-deterministic
Watson–Crick automata are strictly stronger than strongly deterministic ones.
The paper is organized as follows. In the next section, we fix our terminology and recall some known results. In Section 3,

we investigate someproperties of deterministicWatson–Crick automata, on the three levels of abstractionmentioned above.
Also, we look at the relation between the acceptance power of these three variants of deterministicWatson–Crick automata.
In Section 4, we investigate the state complexity of both deterministic and non-deterministic Watson–Crick automata. A
preliminary version of this paper was given in [2].

2. Preliminaries

Let V be a finite alphabet. We denote by V ∗ the set of all finite words over V , by λ the empty word, and V+ = V ∗\{λ}.
For a word u ∈ V ∗, we denote by |u| its length, i.e., the number of letters occurring in it; in particular, |λ| = 0. We say that
u ∈ V ∗ is a prefix of a word v, and denote it by u ≤ v, if there exists some t ∈ V ∗ such that v = ut . Two words u and v are
prefix comparable, denoted by u ∼p v, if one of them is a prefix of the other. For a word u = u1 . . . un, with u1, . . . , un ∈ V ,
we denote by uR = un . . . u1 its reverse. Then, we say that u is palindrome if u = uR.
Now let ρ ⊆ V × V be a symmetric relation, called the Watson–Crick complementarity relation on V . As suggested by the

name, this relation is biologically inspired by theWatson–Crick complementarity of nucleotides in the double stranded DNA
molecule. In accordance with the representation of DNA molecules, viewed as two strings written one on top of the other,
we write

(
V∗

V∗

)
instead of V ∗ × V ∗ and an element (w1, w2) ∈ V ∗ × V ∗ as

(
w1
w2

)
.

We denote
[
V
V

]
ρ
=
{[a
b

]
| a, b ∈ V , (a, b) ∈ ρ

}
andWKρ(V) =

[
V
V

]∗
ρ
. The set WKρ(V) is called the Watson–Crick

domain associated to V and ρ. An element
[
a1
b1

] [
a2
b2

]
. . .
[
an
bn

]
∈ WKρ(V) can be also written in a more compact form as[

w1
w2

]
, wherew1 = a1a2 . . . an andw2 = b1b2 . . . bn.

The essential difference between
(
w1
w2

)
and

[
w1
w2

]
is that

(
w1
w2

)
is just an alternative notation for the pair (w1, w2),

whereas
[
w1
w2

]
implies that the strings w1 and w2 have the same length and the corresponding letters are connected by

the complementarity relation.
A (non-deterministic)Watson–Crick finite automaton is a 6-tupleM = (V , ρ,Q , q0, F , P), where: V is the (input) alphabet,

ρ ⊆ V × V is the complementarity relation, Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final
states, and P is a finite set of transition rules of the form q

(
w1
w2

)
→ q′, denoting the fact that if the automaton is in a state q

and parsesw1 ∈ V ∗ on the upper strand andw2 ∈ V ∗ on the lower strand, then it enters the state q′.
A configuration of a Watson–Crick automaton is a pair

(
s,
(u
v

))
where s is the current state of the automaton and

(u
v

)
is

the part of the input word which has not been read yet. Now, a transition between two configurations is defined as follows.
For

(
u1v1
u2v2

)
∈

(
V∗

V∗

)
and q, q′ ∈ Q we write q

(
u1v1
u2v2

)
⇒ q′

(
v1
v2

)
if and only if q

(
u1
u2

)
→ q′. Let⇒∗ denote the reflexive

and transitive closure of the relation ⇒. Then, for a given
[
w1
w2

]
∈ WKρ(V), a computation is a sequence of transitions

q0
[
w1
w2

]
⇒
∗ s
(
u1
u2

)
with u1, u2 ∈ V ∗, starting from the initial state and such that either s ∈ F and u1 = u2 = λ or there are

no more applicable transitions from configuration
(
s,
(
u1
u2

))
. The language accepted by a Watson–Crick automaton is:

L(M) =

{
w1 ∈ V ∗ | q0

[
w1

w2

]
⇒
∗ s
(
λ

λ

)
,with s ∈ F , w2 ∈ V ∗,

[
w1

w2

]
∈ WKρ(V)

}
.

3252 E. Czeizler et al. / Theoretical Computer Science 410 (2009) 3250–3260

Hence, a word w1 is accepted byM if there exists a complementary word w2 such that starting from the initial state, after
parsing the whole input

[
w1
w2

]
the automaton is in a final state. By convention, as suggested also in [10], whenever we

compare the languages accepted by two Watson–Crick automata, we ignore the empty word.
Although the notion of determinism is well established in automata theory, it has never been considered in relation with

Watson–Crick automata. Intuitively, this notion suggests that for each configurationwe have atmost one option to continue.
Here, we propose three variants for this concept, each on a different level of abstraction. The first definition that we suggest
illustrates the intuitive idea we presented above.

Definition 1. We say that aWatson–Crick automaton isweakly deterministic if in every configuration that can occur in some
computation of the automaton there is at most one possibility to continue the computation.

Note that the previous definition does not provide a clear description of the structure of the transition rules of a
deterministic automaton. Thus, we introduce our second definition.

Definition 2. We call a Watson–Crick automaton deterministic if whenever we have two rewriting rules of the form
q
(u
v

)
→ q′ and q

(
u′

v′

)
→ q′′, then u �p u′ or v �p v′.

Clearly, the deterministic constraint is stronger than the weak one. However, unexpectedly, Example 2 shows that a
weakly deterministic automaton need not be deterministic.
With the previous two definitions, for a given pair of words from the domain,

[
w1
w2

]
∈ WKρ(V), there exists a unique

computation. However, depending on the complementary relation ρ, the automaton can choose various words w2 on the
lower strand. Thus, in order to eliminate this selection, we introduce our third definition.

Definition 3. We call a Watson–Crick automaton strongly deterministic if it is deterministic and the Watson–Crick
complementarity relation is the identity.

Note that the notion of strong determinism does not change if ρ is allowed to be a non-identity one-to-one function. As
shown later by Theorem 4, strongly deterministic Watson–Crick automata are less powerful than deterministic ones.
Depending on the type of the states and of the rewriting rules, there are four subclasses of Watson–Crick automata. We

say that a Watson–Crick automatonM is

• stateless if it has only one state, i.e., Q = F = {q0};
• all-final if all the states are final, i.e., Q = F ;
• simple if for any rewriting rule s

(
w1
w2

)
→ s′, eitherw1 = λ orw2 = λ;

• 1-limited if for any rewriting rule s
(
w1
w2

)
→ s′, we have |w1w2| = 1.

Recently, in [8], it was proved that for non-deterministic Watson–Crick automata we can always suppose the
complementarity relation ρ to be the identity, denoted, from now on, by ι ⊆ V × V . However, this is not true anymore
for the deterministic case, as shown later by Theorem 4.

3. Properties of deterministic Watson–Crick automata

In this section we investigate various aspects of the three types of deterministic Watson–Crick automata.

3.1. Deterministic Watson–Crick automata: Subclasses equivalence

One of the basic properties of non-deterministic Watson–Crick automata is that they are equivalent with simple and
1-limited ones, respectively, see [11]. The following two results show that this property still holds when we look at their
deterministic variants.

Theorem 1. Deterministic Watson–Crick automata are equivalent with deterministic simple Watson–Crick automata.
Proof. Let M = (V , ρ,Q , q0, F , P) be a deterministic Watson–Crick automaton. We want to construct an equivalent
deterministic Watson–Crick automaton M′ = (V , ρ,Q ′, q0, F , P ′), where for any state q ∈ Q ′ all rewriting rules from
q, q

(
ui
vi

)
→ qi with 1 ≤ i ≤ n, satisfy exactly one of the following conditions:

either ui = λ for all 1 ≤ i ≤ n and vj �p vk for any 1 ≤ j 6= k ≤ n, (1)
or vi = λ for all 1 ≤ i ≤ n and uj �p uk for any 1 ≤ j 6= k ≤ n. (2)

Thus, we introduce some new intermediate states and transform the rewriting rules to achieve the above constraint.
If for a state q there exists only one rewriting rule q

(u
v

)
→ q′, with u, v 6= λ, then we introduce a new intermediate

state s /∈ Q and the rewriting rules q
(u
λ

)
→ s and s

(
λ

v

)
→ q′. This newly introduced state s will not be used in any other

rewriting rule. Note that if either u = λ or v = λ, then this rule is already of the desired form, so we do not do anything.

E. Czeizler et al. / Theoretical Computer Science 410 (2009) 3250–3260 3253

Let us suppose now that for a state q we have several rewriting rules from q and let us denote Pq =
{
q
(
ui
vi

)
→

qi | 1 ≤ i ≤ n
}
the set of all such rules. We now describe an inductive procedure which stops after we transform all these

rules into ones of the form (1) or (2). First, we define an equivalence relation for a set of wordsW ⊆ V+. We say that for
two words u, v ∈ W , u ≡ v if and only if there existsw ∈ W such thatw ≤ u andw ≤ v, i.e.,w is a prefix of both u and v.
Case 1: If for some 1 ≤ i ≤ n, ui = λ, then for all 1 ≤ j ≤ n, vj 6= λ and, moreover, vi �p vk for any k 6= i, since
the initial automaton is deterministic. We partition the set Pq into equivalence classes using the relation ≡ for the set of

words occurring on the lower strand. For all classes containing only one rule q
(
ui
vi

)
→ qi, we have one of the following two

possibilities. If ui = λ, thenwe leave the rule unchanged, as it is already of the form (2). Otherwise, we introduce a new state
s and replace the rule with the following two: q

(
λ

vi

)
→ s and s

(ui
λ

)
→ qi. Note that at least one such class exists since for

a rule with ui = λ, vi �p vk for any k 6= i. Suppose now that there exists a class C containing at least two rules. Then, there

exists a rule q
(
uk
vk

)
→ qk in C such that vk is a prefix of all the words occurring on the lower strand of the rules from C .

Next, we introduce a new state s and we transform all the rules from C as follows. First, we introduce the rule q
(
λ

vk

)
→ s.

Then, each rule q
(
uj
vj

)
→ qj from C is replaced by s

(
uj
v′j

)
→ qj, where vj = vkv′j with v

′

j ∈ V
∗ and |v′j | < |vj|. Furthermore,

for each newly introduced state s the set of rules Ps contains strictly less elements than Pq. So, we can repeat inductively the
same procedure for each new set Ps. Moreover, note that after we make these transformations, all the rules initiating from
state q are of the form (2).
Case 2: Suppose now that in Pq, ui 6= λ for all 1 ≤ i ≤ n. Then we partition the set Pq into equivalence classes using the

relation≡ for the set of words occurring on the upper strand. For all classes containing only one rule q
(
ui
vi

)
→ qi, we have

one of the following two possibilities. If vi = λ, then we leave the rule unchanged as it is already of the form (1). Otherwise,
we introduce a new state s and replace the rule with the following two: q

(ui
λ

)
→ s and s

(
λ

vi

)
→ qi. On the other hand,

for all classes C containing at least two rules, we proceed as follows. By the definition of the relation ≡, there exists a rule
q
(
uk
vk

)
→ qk in C such that uk is a prefix of all the words occurring on the upper strand of the rules from C . Next, we

introduce a new state s and we transform all the rules from C as follows. First, we introduce the rule q
(uk
λ

)
→ s. Then, each

rule q
(
uj
vj

)
→ qj from C is replaced by s

(
u′j
vj

)
→ qj, where uj = uku′j with u

′

j ∈ V
∗ and |u′j| < |uj|. Furthermore, although

for each newly introduced state s the set of rules Ps contains at most an equal number of elements as Pq, the words on the
upper strands are strictly shorter. So, we can repeat inductively the same procedure for each new set Ps. Moreover, note that
after we make these transformations, all the rules initiating from state q are of the form (1).
Since, at each step, we strictly decrease the length of the words on the upper or on the lower strand of each rule, this

procedure ends after finitely many steps. In addition, all the rules starting from a given state q ∈ Q ′ are either of the form
(1) or (2).
Since each newly introduced state acts just as an intermediate, the language accepted byM′ is exactly L(M). By the way

we constructed the rules in P ′,M′ is a deterministic simple Watson–Crick automaton. �

Using a similar technique, we can transform a deterministic simple Watson–Crick automaton into a deterministic
1-limited one. Thus, we can state the following result.

Corollary 2. Deterministic Watson–Crick automata are equivalent with deterministic 1-limited Watson–Crick automata.

3.2. Relations among non-deterministic and deterministic Watson–Crick automata

As stated in [11], a 1-limited Watson–Crick automaton can be interpreted as a one-way two-headed automaton where
the two strands are interrelated through the complementarity relation. Furthermore, as arbitrary Watson–Crick automata
are equivalentwith 1-limited ones (see [11]) we can also state that they are equivalentwith one-way two-headed automata.
Moreover, by Corollary 2, deterministicWatson–Crick automata using the identity complementarity relation are equivalent
with deterministic one-way two-headed automata. Thus, we can prove the following result.

Theorem 3. Non-deterministic Watson–Crick automata are more powerful than strongly deterministic ones.

Proof. Let L = {w ∈ V ∗ | w = wR} be the set of palindrome words and L′ = V ∗ \ L be its complement. It is known (see [6]
and [16]) that L′ can be recognized by a non-deterministic one-way two-headed automaton, but not by a deterministic one.
Thus, L′ can be recognized by a nondeterministic Watson–Crick automaton, but not by a strongly deterministic one. �

The next example shows that if we use a non-injective complementarity relation ρ, thenwe can construct a deterministic
Watson–Crick automaton accepting the language L′ from the previous result. Thus, L′ cannot be used to differentiate between
the accepting power of deterministic and non-deterministic Watson–Crick automata.

3254 E. Czeizler et al. / Theoretical Computer Science 410 (2009) 3250–3260

Example 1. LetM = (V , ρ,Q , q0, F , P) be a Watson–Crick automaton, where V = {a, b, va, vb, c}, ρ = {(a, a), (a, va),
(va, a), (b, b), (b, vb), (vb, b), (c, a), (a, c), (c, b), (b, c)}, Q = {q0, q1, qa, qb}, F = {q1}, and we have the following
transitions:

• q0
(
λ

x

)
→ q0, q0

(
λ

vx

)
→ qx,with x ∈ {a, b},

• qx
(y
z

)
→ qx,with x, y, z ∈ {a, b},

• qx
(zy
c

)
→ q1,with x, y, z ∈ {a, b}, x 6= y,

• q1
(x
λ

)
→ q1,with x ∈ {a, b}.

It is easy to see thatM is deterministic. Let w ∈ {a, b}∗, w = w1w2 . . . wn with wi ∈ {a, b}. If w 6= wR, then there exists
a position k on the first half of w such that wk 6= wn−k. The automatonM accepts the word w only when we choose, as
its complement, the wordw1 . . . wk−1 vwk wk+1 . . . wn−1c. On the other hand, ifw is a palindrome word, then it will not be
accepted, regardless of what complement we use; thus, L(M) = {w ∈ {a, b}+ | w 6= wR}.

Thus, we can formulate the following result showing that the complementarity relation plays an active role for
deterministic Watson–Crick automata, contrary to the non-deterministic case, see [8].

Theorem 4. Strongly deterministic Watson–Crick automata are strictly weaker than deterministic ones.

Now, a natural and interesting question, which still remains open, is whether non-deterministicWatson–Crick automata
are equivalent to deterministic ones, clearly, using a non-injective complementarity relation.
As we already stated in the previous section, the deterministic constraint is stronger than the weakly deterministic one.

The following example presents a weakly deterministic Watson–Crick automaton which is not deterministic.

Example 2. Let us consider the non-regular language L = {anbn | n ≥ 1} ∪ {bnan | n ≥ 1}. Then, we takeM = (V , ι,
Q , q0, F , P), where V = {a, b}, Q = {q0, q1, q2, q3, q4}, F = {q3, q4}, and P contains the following productions:

• q0
(a
λ

)
→ q1 and q0

(
λ

b

)
→ q2,

• q1
(a
λ

)
→ q1, q1

(
b
a

)
→ q3, q3

(
b
a

)
→ q3, q3

(
λ

b

)
→ q3,

• q2
(
λ

b

)
→ q2, q2

(
b
a

)
→ q4, q4

(
b
a

)
→ q4, q4

(a
λ

)
→ q4.

Clearly, the language recognized by this automaton is L. The only non-deterministic choice can bemade in q0 at the beginning
of a computation. However, given an input, this choice becomes uniquely determined. Thus,M is a weakly deterministic
Watson–Crick automaton which is not deterministic, due to the first two rules in q0.

It is not yet known whether weakly deterministic Watson–Crick automata recognize more languages than deterministic
ones.

3.3. Strongly deterministic stateless Watson–Crick automata

Even though strongly deterministic Watson–Crick automata are weaker than non-deterministic ones, they still prove to
be more powerful than finite automata. The following example shows that even if we take strongly deterministic stateless
Watson–Crick automata, we can still recognize some non-regular languages.

Example 3. Consider the non-regular language L = {a2nb2n | n ≥ 1} ∪ {b2na2n | n ≥ 1}. LetM = (V , ι,Q , q0, F , P), where
V = {a, b}, Q = F = {q0}, i.e., the automaton is stateless, and P contains the following three productions:

q0
(aa
a

)
→ q0, q0

(
b
a

)
→ q0, q0

(
b
bb

)
→ q0.

Let us consider the case when both reading heads of the Watson–Crick automaton are on the same position (e.g., at the
beginning of the input word). Depending on whether the first letter of the rest of the input word is either a or b, the next
time when the reading heads of the automaton are again on the same position will be after the automaton parses a block
of the form a2nb2n or b2na2n, respectively, for some n ≥ 1. Since a word is accepted only when both reading heads have
finished parsing the input, and thus they are on the same position, we conclude that an accepting word must contain one or
more blocks and, moreover, each of them is of the form a2nb2n or b2na2n for some n ≥ 1. Thus, the language accepted by the
automaton is L∗, which is a non-regular language. Furthermore, note that the Watson–Crick automatonM is deterministic.

Thus, we can naturally ask nowwhat kind of languages can be accepted by strongly deterministic statelessWatson–Crick
automata. In [11] it was proved that if L is the language accepted by a non-deterministic statelessWatson–Crick automaton,
then L = L+. For the case of strongly deterministic automata, we refine this result using prefix codes.We say that a language
L is a prefix code if no two (distinct) words of the language are prefix comparable. That is, for any twowordsw1, w2 ∈ L such
thatw1 6= w2, we havew1 �p w2. For more detailed information on prefix codes we refer to [7].

E. Czeizler et al. / Theoretical Computer Science 410 (2009) 3250–3260 3255

Proposition 5. For any strongly deterministic stateless Watson–Crick automaton M, there exists a prefix code L such that
L(M) = L∗.

Proof. Let L ⊆ L(M) be the language obtained from L(M) by taking all those non-empty words whose proper prefixes are
not accepted by the automatonM, i.e.,

L = {w ∈ L(M) | w 6= λ and for all v ∈ L(M) \ {λ} if v ≤ w then v = w}.

Clearly, L is a prefix code and L∗ ⊆ L(M). We show that if v ∈ L(M), then v ∈ L∗.
Let q0 be the state of the automatonM. Then, all the rewriting rules fromM are of the form q0

(
ui
vi

)
→ q0 for 1 ≤ i ≤ n,

where for all 1 ≤ i 6= j ≤ n either ui �p uj or vi �p vj (or both). Let us consider now a non-empty word v recognized by the
automatonM, i.e., v ∈ L(M), such that v /∈ L. Then, there must exist a wordw ∈ L, such thatw ≤ v; let v = ww′ for some
w′. Let q0

(
ui1
vi1

)
→ q0 and q0

(
uj1
vj1

)
→ q0 be the first rewriting rules applied when recognizingw and v, respectively. Since

w ≤ v we conclude that ui1 ∼p uj1 and also vi1 ∼p vj1 . Thus, sinceM is deterministic, it implies that the two rules must
coincide, i.e., ui1 = uj1 and vi1 = vj1 . Similarly, we can conclude that all the rewriting rules applied when recognizingw and
v = ww′ are exactly the same, until we start parsing w′. So, at some moment in the recognition process of v, after parsing
w, both heads of the Watson–Crick automaton are at the beginning of w′. Since q0 is the only state ofM we conclude that
w′ is also accepted by the automaton, i.e.,w′ ∈ L(M).
To conclude, for any non-empty word v ∈ L(M) \ L, there exists w ∈ L such that v = ww′ and w′ ∈ L(M). By applying

this process inductively, we obtain v ∈ L+. �

Now, it seems natural to ask whether strongly deterministic stateless Watson–Crick automata can recognize the Kleene
star of any prefix code. We start this analysis by looking first at finite prefix codes.

Proposition 6. Let L ⊆ V ∗ be a finite prefix code. Then, there exists a strongly deterministic stateless Watson–Crick automaton
recognizing the language L∗.

Proof. Let L = {w1, . . . , wn} ⊆ V ∗, with n ≥ 1, be a finite prefix code. We construct a stateless Watson–Crick automaton
M = (V , ι, {q0}, q0, {q0}, P) where P contains all the rewriting rules of the form q0

(
wi
wi

)
→ q0 with 1 ≤ i ≤ n. It is easy

to see that the automatonM accepts the language L∗. Since L is a prefix code, the constructed Watson–Crick automaton is
deterministic. �

As illustrated by Example 3, there exist also some infinite prefix codes L such that the language L∗ is recognized by a
deterministic stateless Watson–Crick automaton. However, this cannot be generalized for the Kleene closure of any infinite
prefix code, since there are countably many Watson–Crick automata, while the set of all prefix codes is uncountable. Thus,
we have the following result.

Proposition 7. There exists an infinite prefix code L such that the language L∗ cannot be accepted by any strongly deterministic
stateless Watson–Crick automaton.

The following example presents such an infinite prefix code.

Example 4. Let us take the infinite prefix code L = {anb | n ≥ 1} and assume there exists a strongly deterministic stateless
Watson–Crick automatonM = (V , ι, {q0}, q0, {q0}, P) accepting L∗. SinceM has a finite number of transition rules and it
accepts all words of the form anb with n ≥ 1, it must contain a rule of the form q0

(
ai

aj

)
→ q0 with i, j ≥ 0. If i = j, then

we would also have ai ∈ L(M), which is a contradiction. Thus, from now on we can suppose without loss of generality that
i > j ≥ 0; the case when j > i ≥ 0 is symmetric. Moreover, in P we cannot have any other rule of the form q0

(
ai1
aj1

)
→ q0

sinceM is deterministic. Thus, all other rules from P must read the letter b at least on one string. Let now P = {p1, . . . , pk}
be the set of all productions fromM, where p1 : q0

(
ai

aj

)
→ q0 and all the others involve also the character b. When the

automatonM accepts words from L ⊆ L∗ any of the productions p2, . . . , pk may be used at most on the last two steps. Since
L is infinite, this means that there exist two indices l1 and l2 such that the rules pl1 and pl2 are used for the last two steps

when accepting an infinite number of words from L; let this set be L′ = {an1b, an2b, . . .}. Let now pl1 : q0
(
ul1
vl1

)
→ q0 and

pl2 : q0
(
ul2
vl2

)
→ q0. Then, |ul1 |a + |ul2 |a − |vl1 |a − |vl2 |a = C , where C is a constant. However, when accepting words from

L′, by applying rule p1 we can obtain an arbitrarily large difference between the two reading heads, e.g., larger than C . So,
we cannot use only the rules p1, pl1 , and pl2 to accept all the words from L

′.

3.4. Undecidability results

The next result gives an undecidability property for Watson–Crick automata.

Theorem 8. It is undecidable whether a given non-deterministic Watson–Crick automaton is weakly deterministic.

3256 E. Czeizler et al. / Theoretical Computer Science 410 (2009) 3250–3260

Proof. In order to prove this, we use the fact that it is undecidable whether a Turing machine accepts the empty word, see
[4]. Given a deterministic Turingmachine T , we construct aWatson–Crick automatonMwhich verifies whether the input is
a valid sequence of consecutive configurations of the Turingmachine starting from the empty tape. Since the Turingmachine
is deterministic, we can simulate each of its transitions with deterministic rewriting rules of the Watson–Crick automaton.
The only moment when we can continue a computation inM in a non-deterministic manner, i.e., by choosing to apply one
rule from several possible ones, is when the Turing machine halts. The detailed description of theWatson–Crick automaton
is very technical and we include it in the Appendix.
Intuitively, the Watson–Crick automaton M receives an input of the form

[
] q0] u1qi1 v1] ...] unqin vn]
] q0] u1qi1 v1] ...] unqin vn]

]
, where q0 is the

initial state of the Turing machine, qi1 , . . . , qin are states of T and uivi is the tape content at step i, where the reading head
is on the first character of vi. Then, the Watson–Crick automaton verifies in a deterministic way that, for any 1 ≤ j ≤ n− 1,
uj+1qij+1vj+1 is a valid configuration obtained from ujqijvj, by applying one of the deterministic rules of T . As soon as the
Turing machine enters a final state, we let the Watson–Crick automaton finish reading the rest of the input in a non-
deterministic way. Thus, we can make a non-deterministic choice in a computation of the Watson–Crick automaton if and
only if the Turing machine enters a final state and halts when started with the empty word as input. Since it is undecidable
whether a given Turing machine accepts the empty word, it also becomes undecidable whether the non-deterministic
Watson–Crick automaton is weakly deterministic. �

As a consequence of the proof of Theorem 8, we get also an alternative proof for the known undecidability result of the
emptiness problem for (non-) deterministic multihead automata [13]. Indeed, in the proof of Theorem 8 we construct a
Watson–Crick automaton which accepts an input if and only if it represents a valid sequence of consecutive configurations
of a Turing machine starting from the empty tape. However, since it is undecidable whether a Turing machine accepts the
empty word, we obtain, in turn, that it is undecidable whether the language recognized by the Watson–Crick automaton is
empty or not. Furthermore, the construction from the previous theorem can be easily made fully deterministic.

Corollary 9. Given a (deterministic) Watson–Crick automaton M, it is undecidable whether the recognized language L(M) is
empty.

4. State complexity of Watson–Crick automata

It is well-known thatWatson–Crick automata are more powerful than classical finite automata, see e.g., [11]. In addition,
it was shown in [10] that Watson–Crick automata recognize some regular languages in a more efficient manner. We devote
this section to the study of state complexity of languages accepted by deterministic and non-deterministic Watson–Crick
automata. For more details on state complexity, we refer the reader to [5] and [17]. Note that in [8] it was proved that
any non-deterministic Watson–Crick automaton can be transformed into one where the complementarity relation is
the identity. Moreover, since this transformation preserves the number of states, when working with non-deterministic
Watson–Crick automata we can suppose, without loss of generality, that the complementarity relation ρ is actually the
identity ι ⊆ V × V .
It is well-known that the state complexity of some families of finite languages is unbounded when we consider the finite

automata recognizing them. However, as illustrated by our next result, this is not the case anymore when we consider the
non-deterministic Watson–Crick automata recognizing them.

Theorem 10. Any finite language can be recognized by a non-deterministic Watson–Crick automaton with two states.
Proof. Let L = {w1, . . . , wn} ⊂ V ∗ be a finite language. We construct the Watson–Crick automatonM = (V , ι, {q0, q1},
q0, F , P), where F = {q1} and P contains rewriting rules of the form q0

(
wi
wi

)
→ q1, for all 1 ≤ i ≤ n. Clearly, the language

recognized byM is L. �

On the other hand, if we restrict to strongly deterministic Watson–Crick automata, then there exists a family of finite
languages with unbounded state complexity.

Theorem 11. For any k ≥ 2 there exists a finite language Lk ⊆ V ∗ such that any strongly deterministicWatson–Crick automaton
recognizing Lk needs at least k states.

Proof. Let Lk = {ai | 1 ≤ i ≤ k− 1}, with k ≥ 2, andM be a strongly deterministic Watson–Crick automaton recognizing
it. Since Lk ⊂ {a}∗, any rule ofM is of the form q1

(
ai

aj

)
→ q2 for some i, j ≥ 0. Furthermore, sinceM is deterministic, for

every state q1 we can have at most one transition rule of the form mentioned above.
We claim now that in each final state qf we accept only one word. Otherwise, let us suppose that in qf we accept two

words ai, aj ∈ Lk with i < j. SinceM is deterministic and from every state we have at most one transition rule, any word of
the form ai+l(j−i) with l ≥ 0 is in the language accepted byM. Hence, the accepted language would not be finite.
Thus, a strongly deterministic Watson–Crick automaton accepting Lk needs at least k states: one initial and k − 1 final

ones. Clearly, such a deterministic Watson–Crick automaton can be easily constructed. �

On the other hand, if we look at Watson–Crick automata with non-injective complementarity relations, then the infinite
hierarchy from the previous theorem collapses.

E. Czeizler et al. / Theoretical Computer Science 410 (2009) 3250–3260 3257

Theorem 12. For any k ≥ 2, the language Lk = {ai | 1 ≤ i ≤ k − 1} can be recognized by a deterministic Watson–Crick
automaton with two states and having a non-injective complementarity relation.

Proof. Let Lk = {ai | 1 ≤ i ≤ k − 1}, for a given k ≥ 2. We construct a deterministic Watson–Crick automaton
M = (V , ρ,Q , q0, F , P), where V = {a, b, c, d}, ρ = {(a, b), (b, a), (a, c), (c, a), (a, d), (d, a)}, Q = {q0, q1}, F = {q1},
and the set P of rewriting rules is

P =
{
q0

(
a2i

bic i

)
→ q1, | 1 ≤ i ≤

⌊
k− 1
2

⌋}
∪

{
q0

(
a2j−1

bj−1dc j−1

)
→ q1 | 1 ≤ j ≤

⌈
k− 1
2

⌉}
.

Then, it is easy to see that L(M) = Lk and, moreover,M is deterministic. �

It is only natural now to also askwhether, for the case of non-deterministicWatson–Crick automata, there exists a family
of languages with unbounded state complexity; this question was first stated in [10].
We shownext that any unary regular language can be recognized by a (non-deterministic)Watson–Crick automatonwith

only three states. Actually, we prove this property for block non-deterministic finite automata, which can be considered a
special case of Watson–Crick automata.
A block non-deterministic finite automaton (for short, block-NFA) is a finite automaton A = (Q ,Σ, δ, q0,QF) where δ

consists of a finite number of rules (q1, w, q2), with q1, q2 ∈ Q and w ∈ Σ∗. Clearly, a block-NFA is a special case of a
Watson–Crick automaton where the two reading heads are required to always move together.
An arbitrary unary regular language is denoted by a regular expression of the form

aj1 + . . .+ ajr−1 + ajr (ai1 + . . .+ ais−1)(am)∗, (3)

where 0 ≤ j1 < · · · < jr−1 < jr , 0 ≤ i1 < · · · < is1 < m, and r, s ≥ 0. Here the words a
j1 , . . . , ajr−1 are usually called the

‘‘tail’’ of the language and the remaining words belong to the cycle of lengthm.

Theorem 13. Any unary regular language L can be recognized by a block-NFA A having three states. Furthermore, A can be
restricted to be unambiguous.

Proof. Let L be a unary regular language described by a regular expression of the form (3). We construct a block-NFA
A = (Q ,Σ, δ, q0,QF)where Q = {q0, q1, q2}, QF = {q1, q2}, and δ contains the rules

• (q0, ax, q1), where x ∈ {j1, . . . jr−1},
• (q0, ax, q2)where x ∈ {jr + i1, . . . , jr + is−1},
• (q2, am, q2).

It is easy to see that each word of L is accepted by a unique computation ofA. �

Since any block NFA can be seen also as a Watson–Crick automaton where the two heads always move together, the
following result is an immediate consequence.

Corollary 14. Any unary regular language can be recognized by a non-deterministic Watson–Crick automaton with only three
states.

Note that the construction from the previous theorem can be slightly modified such that any unary regular language can
be accepted by a deterministic Watson–Crick automaton with a non-injective complementarity relation. Moreover, we can
go a step further and prove a more general result.

Theorem 15. Any block NFAAwith n states can be simulated by a deterministic Watson–Crick automaton with at most n states.

Proof. LetA = (Q ,Σ, δ, q0,QF) be a block NFA with |Q | = n. We can suppose thatA does not contain any λ-transitions,
i.e., rules of the form (q, λ, q′)with q, q′ ∈ Q . Otherwise, we can construct an equivalent block NFA,A′ with L(A) = L(A′),
which does not have λ-transitions and, moreoverA′ has at most n states. Let now k be the number of all rules fromA. Then,
we denote the set of all rules fromA as (qi, ui, q′i)with qi, q

′

i ∈ Q and ui ∈ Σ
+ with 1 ≤ i ≤ k.

We construct a deterministicWatson–Crick automatonM = (V , ρ,Q , q0,QF , P) such that L(M) = L(A) as follows. First,
we take V = Σ∪Vk, where Vk = {a1, . . . , ak} and Vk∩Σ = ∅ and the complementarity relation ρ = ιΣ ∪ Σ×Vk ∪ Vk×Σ ,
where ιΣ is the identity relation onΣ . Then, for each rule (qi, ui, q′i) fromA, we introduce inM a transition rule of the form

qi
(
ui
viai

)
→ q′i where ai ∈ Vk and vi ∈ Σ

∗ is obtained from ui by cutting the last character, i.e., vi = pref|ui|−1(ui).
Note that for each rule fromA, we used a different character ai on the lower strand of the corresponding rule inM. Thus,

theWatson–Crick automatonM is deterministic and, in addition, it has the same number of states asA. Also, since the rules
ofM simulate the behavior of the block automatonA, it is easy to see that L(A) = L(M). �

As illustrated by Theorem10andCorollary 14, some infinite hierarchies collapsewhen switching from the finite automata
to the Watson–Crick automata recognizing them. However, in both cases, this is mainly due to the fact that Watson–Crick
automata can read blocks of letters at each step. Thus, we investigate next what happens with infinite hierarchies of
languages accepted by block-NFA’s when we consider the Watson–Crick automata recognizing them.

3258 E. Czeizler et al. / Theoretical Computer Science 410 (2009) 3250–3260

Theorem 16. For any k ≥ 1, there exists a regular language Lk such that any block-NFA recognizing Lk needs more than k states.

Proof. Let Lk = (10∗)k+11 and assume that Lk is recognized by a block-NFA A having k states. Let N be the length of the
longest word appearing in rules ofA and take wN = (10N)k+11. Since wN ∈ Lk,A has an accepting computation C on wN .
By the choice of N , for each i = 1, . . . , k+ 1, between the ith and (i+ 1)st occurrence of 1 we have at least one applicable
transition in the computation C . Let qi be a state occurring in computation C between the ith and (i+ 1)st occurrence of 1,
1 ≤ i ≤ k+ 1. By the pigeon-hole-principle there exist 1 ≤ j1 < j2 ≤ k+ 1 such that qj1 = qj2 . ThusA accepts also words
having k+ 2+ l(j2 − j1) occurrences of 1 for any l ≥ −1; clearly, some of them are not in Lk. �

Considering the state complexity of languages, the previous result shows the existence of an infinite hierarchy. Although
block-NFA’s are a particular type of Watson–Crick automata, we show next that this hierarchy collapses when we look at
the Watson–Crick automata accepting them.

Theorem 17. For any k ≥ 1, the language Lk = (10∗)k+11 can be recognized by a Watson–Crick automaton with three states.

Proof. LetMk = (V , ι, {q0, q1, q2}, q0, F , P) be a Watson–Crick automaton, where V = {0, 1}, F = {q2}, and P contains the
following productions:

• q0
(
λ

1u

)
→ q1, for any word u ∈ {0, 1}k,

• q1
(
0
x

)
→ q1, where x ∈ {0, 1},

• q1
(
1
λ

)
→ q1, and q1

(
1
1

)
→ q2.

With the first production, we advance the lower head k + 1 characters, independently of what we have on the tape. Then,
the upper head will catch up this advance only after reading k + 1 times the character 1. Then, the automaton enters the
final state after reading the last character 1. Since a word is accepted only when both reading heads have completely parsed
the input word, the language recognized byM is Lk. �

The results of this section illustrate the fact that there are many complex languages which can be accepted by
Watson–Crick automata with a bounded number of states. Although we do not include a formal proof in this paper,
another such complex family of languages accepted by Watson–Crick automata with only a small number of states is
Lk = 10+120+ . . . 0+12

k
, for any k ≥ 2. However, it remains open whether, for all k > 1, there exists a language Lk such that

any non-deterministic Watson–Crick automaton accepting Lk needs at least k states [10].

Acknowledgments

This research was supported by Natural Sciences and Engineering Research Council of Canada Discovery Grant, UWO
Faculty of Science Grant, and Canada Research Chair Award to L.K. and Natural Sciences and Engineering Research Council
of Canada Discovery Grant to K.S.

Appendix

Theorem 18. It is undecidable whether a given non-deterministic Watson–Crick automaton is weakly deterministic.

Proof. Let T = (Q ,Γ , B,Σ, δ, q0, F) be a deterministic Turing machine, where Q is a finite set of states, Γ is a finite set of
tape symbols, B ∈ Γ is the blank symbol (the only symbol allowed to occur on the tape infinitely often at any step during
the computation),Σ ⊆ Γ \ {B} is the set of input symbols, δ : Q × Γ → Q × Γ × {L, R,N} is a partial function called the
transition function, where L is left shift, R is right shift, N is no shift, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final
states.
We construct a Watson–Crick automatonM = (V , ι,Q ′, r0, F ′, P)where V = Q ∪Γ ∪ {]}, Q ′ = {r0, rv, rn, rf , r]l , r]u} ∪

{rxun , r
xl
n | x ∈ Γ } ∪ {r]xy | x, y ∈ Γ ∪ Q ∪ {]}} ∪ {rxyz | x ∈ Γ , y ∈ Γ ∪ Q , z ∈ Γ ∪ Q ∪ {]}}, and F = {rf }.

We present, below, a list of rewriting rules and a short description of their role. However, our constructedWatson–Crick
automaton contains only a subset of these rules according to the transitions of the Turing machine T .
The initial rule of M is of one of the following forms depending on the structure of the initial transition of the Turing

machine.

• r0
(
]q0]q1Ba
]q0]q1B

)
→ r]q1B if δ(q0, B) = (q1, a, L)

• r0
(
]q0]q1a
]q0]q1a

)
→ r]q1a if δ(q0, B) = (q1, a,N)

• r0
(
]q0]aq1
]q0]aq1

)
→ r]aq1 if δ(q0, B) = (q1, a, R)

With an initial rule of either of these forms,we simulate the first transition of T andweembed amemory of the previous three
symbols from the lower strand. Using them, we can check that the sequence indeed contains consecutive configurations.

E. Czeizler et al. / Theoretical Computer Science 410 (2009) 3250–3260 3259

The following group of rules is applied after the lower head has read the symbol] which separates two consecutive
configurations. Moreover, if the following symbol is a state of T , then we also check that a valid production was applied.

• r]xy
(
]

z

)
→ rxyz, for all x ∈ Γ , y, z ∈ Γ ∪ Q

• r]xy
(
]qBa
λ

)
→ rv if x ∈ Q , δ(x, y) = (q, a, L), and q /∈ F

• r]xy
(
]qBa
λ

)
→ rn if x ∈ Q , δ(x, y) = (q, a, L), and q ∈ F

• r]xy
(
]qa
λ

)
→ rv if x ∈ Q , δ(x, y) = (q, a,N), and q /∈ F

• r]xy
(
]qa
λ

)
→ rn if x ∈ Q , δ(x, y) = (q, a,N), and q ∈ F

• r]xy
(
]aq
λ

)
→ rv if x ∈ Q , δ(x, y) = (q, a, R), and q /∈ F

• r]xy
(
]aq
λ

)
→ rn if x ∈ Q , δ(x, y) = (q, a, R), and q ∈ F

The state rv is reached only after we checked that we have a valid transition in T not involving a final state. Then, we
only need to check that the rest of the input tape is the same in the two consecutive configurations. We do this using the
following group of rewriting rules.

• rv
(x
x

)
→ rv, for all x ∈ Γ

• rv
(
λ

]xy

)
→ r]xy, for all x, y ∈ Γ ∪ Q

On the other hand, the state rn is reached after we checked that in T we have a valid transition ending in a final
state, i.e., T has accepted the empty string. This is the first moment when the Watson–Crick automaton can choose, in a
non-deterministic way, which rules to use in order to verify that the rest of the input tape is the same in these last two
configurations. Then, we use the final state rf to finish parsing the input also with the lower head.

• rn
(x
λ

)
→ rxun for all x ∈ Γ

• rn
(
λ

x

)
→ rxln for all x ∈ Γ

• rxun
(
λ

x

)
→ rn for all x ∈ Γ

• rxln
(x
λ

)
→ rn for all x ∈ Γ

• rn
(
λ

]

)
→ r]l

• rn
(
]

λ

)
→ r]u

• r]l
(
]

λ

)
→ rf

• r]u
(
λ

]

)
→ rf

• rf
(
λ

x

)
→ rf , for all x ∈ Γ ∪ Q ∪ {]}

Using states rxyz which embed a memory of the last three symbols from the lower strand, we search for a symbol y ∈ Q
and then we check that after we apply a valid transition in T , we obtain the next configuration.

• rxyz
(x
t

)
→ ryzx, for all x, y ∈ Γ , z ∈ Γ ∪ Q , and t ∈ Γ ∪ Q ∪ {]}

• rxyz
(qxa
λ

)
→ rv if x, z ∈ Γ , y ∈ Q , and δ(y, z) = (q, a, L)where q /∈ F

• rxyz
(qxa
λ

)
→ rn if x, z ∈ Γ , y ∈ Q , and δ(y, z) = (q, a, L)where q ∈ F

• rxyz
(xqa
λ

)
→ rv if x, z ∈ Γ , y ∈ Q , and δ(y, z) = (q, a,N)where q /∈ F

• rxyz
(xqa
λ

)
→ rn if x, z ∈ Γ , y ∈ Q , and δ(y, z) = (q, a,N)where q ∈ F

• rxyz
(xaq
λ

)
→ rv if x, z ∈ Γ , y ∈ Q , and δ(y, z) = (q, a, R)where q /∈ F

• rxyz
(xaq
λ

)
→ rn if x, z ∈ Γ , y ∈ Q , and δ(y, z) = (q, a, R)where q ∈ F

• rxy]
(
xaq
t1t2

)
→ r]t1t2 if x ∈ Γ , y ∈ Q , t1, t2 ∈ Γ ∪ Q , and δ(y, B) = (q, a, R)where q /∈ F

• rxy]
(xaq
λ

)
→ r ′n if x ∈ Γ , y ∈ Q , and δ(y, B) = (q, a, R)where q ∈ F

• r ′n
(
]

λ

)
→ rf

• r ′n
(
λ

x

)
→ r ′n for all x ∈ Γ ∪ Q ∪ {]}

• rxy]
(
xqa
t1t2

)
→ r]t1t2 if x ∈ Γ , y ∈ Q , t1, t2 ∈ Γ ∪ Q , and δ(y, B) = (q, a,N)where q /∈ F

• rxy]
(xqa
λ

)
→ r ′n if x ∈ Γ , y ∈ Q , and δ(y, B) = (q, a,N)where q ∈ F

• rxy]
(
qxa
t1t2

)
→ r]t1t2 if x ∈ Γ , y ∈ Q , t1, t2 ∈ Γ ∪ Q , and δ(y, B) = (q, a, L)where q /∈ F

• rxy]
(qxa
λ

)
→ r ′n if x ∈ Γ , y ∈ Q , and δ(y, B) = (q, a,N)where q ∈ F �

3260 E. Czeizler et al. / Theoretical Computer Science 410 (2009) 3250–3260

References

[1] E. Czeizler, E. Czeizler, A Short Survey on Watson–Crick Automata, Bull. EATCS 88 (2006) 104–119.
[2] E. Czezler, E. Czeizler, L. Kari, K. Salomaa, Watson–Crick automata: Determinism and state complexity, in: Proc DCFS, 2008.
[3] R. Freund, Gh. Păun, G. Rozenberg, A. Salomaa,Watson–Crick finite automata, in: Proc 3rd DIMACSWorkshop on DNA Based Computers, Philadelphia,
1997, pp. 297–328.

[4] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, MA, 1979.
[5] J. Hromkovic, Descriptional complexity of finite automata: Concepts and open problems, J. Autom. Lang. Comb. 7 (2002) 519–531.
[6] O.H. Ibarra, B. Ravikumar, On partially blind multihead finite automata, Theoret. Comput. Sci. 356 (2006) 190–199.
[7] H. Jürgensen, S. Konstantinidis, Codes, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, vol. I, Springer, 1997, pp. 511–607.
[8] D. Kuske, P. Weigel, The Role of the Complementarity Relation in Watson–Crick Automata and Sticker Systems, DLT 2004, in: LNCS, vol. 3340, 2004,
pp. 272–283.

[9] C. Martín-Vide, Gh. Păun, Normal Forms forWatson–Crick Finite Automata, in: F. Cavoto (Ed.), The Complete Linguist: A Collection of Papers in Honour
of Alexis Manaster Ramer, Lincom Europa, Munich, 2000, pp. 281–296.

[10] A. Pǎun, M. Pǎun, State and transition complexity of Watson–Crick finite automata, in: G. Ciobanu, G. Pǎun (Eds.), Fundamentals of Computation
Theory, FCT’99, in: LNCS, vol. 1684, 1999, pp. 409–420.

[11] G. Pǎun, G. Rozenberg, A. Salomaa, DNA Computing: New Computing Paradigms, Springer-Verlag, Berlin, 1998.
[12] E. Petre, Watson–Crick ω-Automata, J. Autom. Lang. Comb. 8 (1) (2003) 59–70.
[13] A.L. Rosenberg, On multi-head finite automata, IBM Journal of Research and Development 10 (5) (1966) 388–394.
[14] D. Röthlisberger, et al., Kemp elimination catalysts by computational enzyme design, Nature 453 (2008) 190–195.
[15] E. Shapiro, Y. Benenson, Bringing DNA computers to life, Scientific American 294 (2006) 44–51.
[16] K. Wagner, G. Wechsung, Computational Complexity, D. Reidel Publishing Company, 1986.
[17] S. Yu, State complexity of finite and infinite regular languages, Bull. EATCS 76 (2002) 142–152.

	On the descriptional complexity of Watson--Crick automata
	Introduction
	Preliminaries
	Properties of deterministic Watson--Crick automata
	Deterministic Watson--Crick automata: Subclasses equivalence
	Relations among non-deterministic and deterministic Watson--Crick automata
	Strongly deterministic stateless Watson--Crick automata
	Undecidability results

	State complexity of Watson--Crick automata
	Acknowledgments
	Appendix
	References

