State Complexity of Combined Operations with Two Basic Operations ${ }^{\hat{\alpha}}$

Bo Cui, Yuan Gao, Lila Kari, Sheng Yu
Department of Computer Science, The University of Western Ontario, London, Ontario, Canada N6A 5B7

Abstract

This paper studies the state complexity of $\left(L_{1} L_{2}\right)^{R}, L_{1}^{R} L_{2}, L_{1}^{*} L_{2},\left(L_{1} \cup L_{2}\right) L_{3}$, $\left(L_{1} \cap L_{2}\right) L_{3}, L_{1} L_{2} \cap L_{3}$, and $L_{1} L_{2} \cup L_{3}$ for regular languages L_{1}, L_{2}, and L_{3}. We first show that the upper bound proposed by [Liu, Martin-Vide, Salomaa, Yu, 2008] for the state complexity of $\left(L_{1} L_{2}\right)^{R}$ coincides with the lower bound and is thus the state complexity of this combined operation by providing some witness DFAs. Also, we show that, unlike most other cases, due to the structural properties of the result of the first operation of the combinations $L_{1}^{R} L_{2}, L_{1}^{*} L_{2}$, and $\left(L_{1} \cup L_{2}\right) L_{3}$, the state complexity of each of these combined operations is close to the mathematical composition of the state complexities of the component operations. Moreover, we show that the state complexities of $\left(L_{1} \cap L_{2}\right) L_{3}$, $L_{1} L_{2} \cap L_{3}$, and $L_{1} L_{2} \cup L_{3}$ are exactly equal to the mathematical compositions of the state complexities of their component operations in the general cases. We also include a brief survey that summarizes all state complexity results for combined operations with two basic operations.

Keywords: state complexity, combined operations, regular languages, finite automata

1. Introduction

State complexity is a type of descriptional complexity based on the deterministic finite automaton (DFA) model. The state complexity of an operation on regular languages is the number of states that are necessary and sufficient in the worst case for the minimal, complete DFA to accept the resulting language of the operation. While many results on the state complexity of individual operations, such as union, intersection, catenation, star, re-

[^0]versal, shuffle, power, orthogonal catenation, proportional removal, and cyclic shift $[1,2,5,6,7,12,14,15,16,19,20,23,25,27]$, have been obtained in the past 15 years, the research on state complexity of combined operations, which was initiated by A. Salomaa, K. Salomaa, and S. Yu in 2007 [21], has recently attracted more attention. This is because, in practice, a combination of several individual operations, rather than only one individual operation, is often performed.

In recent publications $[3,4,8,9,10,11,17,18,21,28]$, it has been shown that the state complexity of a combined operation is usually not a simple mathematical composition of the state complexities of its component operations. For example, let L_{1} be an m-state DFA language and L_{2} be an n-state DFA language. Recall that the state complexity of $L_{1} \cup L_{2}$ (considered as $f(m, n)$) is $m n$ and the state complexity of L_{2}^{*} (considered as $\left.g(n)\right)$ is $2^{n-1}+2^{n-2}$. Thus, the composition of these state complexities $(g(f(m, n)))$ gives $2^{m n-1}+2^{m n-2}$ as an upper bound of the state complexity of $\left(L_{1} \cup L_{2}\right)^{*}$. However, this upper bound is too high to be reached and the state complexity of this combined operation has been proven to be $2^{m+n-1}+2^{m-1}+2^{n-1}+1$. This is due to the structural properties of the DFA that results from the first operation of a combined operation.

For example, let us consider reversal combined with catenation $\left(L_{1}^{R} L_{2}\right)$. We know that, on one hand, if a DFA is obtained for L_{1}^{R}, where $m>1$, and it reaches the upper bound of the state complexity of reversal $\left(2^{m}\right)$, then half of its states are final [25]; on the other hand, in order to reach the upper bound of the state complexity of catenation, the DFA of its left operand language has to have only one final state [25]. This situation is depicted in Fig. 1. (In another
S_{1} : resulting DFAs of reversal
when the upper bound for the
state complexity of reversal
All possible DFAs for the left operand of catenation
S_{2} : DFAs that can achieve the upper bound for the state complexity of catenation is achieved $(m>1)$

Figure 1: The set S_{1} of DFAs that are outputs of reversal when the upper bound for the state complexity of reversal is achieved is disjoint from the set S_{2} of DFAs that are the left operand for catenation which can achieve the upper bound for the state complexity of catenation.
example, the initial state of a DFA obtained from star is always a final state). In general, the resulting language obtained from the first operation (such as reversal, star, or union) may not be among the worst cases of the subsequent operation (such as catenation).

It has been shown that there does not exist a general algorithm that, for an arbitrarily given combined operation and a class of regular languages, computes the state complexity of the operation on the class of languages [22, 24]. Thus, the state complexity of every combined operation must be investigated individually. Although the number of combined operations is unlimited, the study of the state
complexity of combinations of two basic operations is clearly necessary since it is the initial step towards the study of combinations of more operations.

There are in total 26 different combinations of two basic operations selected from catenation, star, reversal, intersection, and union. Note that we consider $\left(L_{1}^{R}\right)^{*}$ and $\left(L_{1}^{*}\right)^{R}$ as the same combined operation because $\left(L_{1}^{R}\right)^{*}=\left(L_{1}^{*}\right)^{R}$. The combined operations $\left(L_{1}^{*}\right)^{*}=L_{1}^{*}$ and $\left(L_{1}^{R}\right)^{R}=L_{1}$ are not counted, either. Among the 26 combined operations, the state complexities of the following ones have been studied in the literature: $\left(L_{1} \cup L_{2}\right)^{*}$ in [21], $\left(L_{1} \cap L_{2}\right)^{*}$ in [17], $\left(L_{1} L_{2}\right)^{*}$, $\left(L_{1}^{R}\right)^{*}$ in [9], $\left(L_{1} \cup L_{2}\right)^{R},\left(L_{1} \cap L_{2}\right)^{R},\left(L_{1} L_{2}\right)^{R}, L_{1} L_{2}^{*}, L_{1} L_{2}^{R}$ in [3], $L_{1}\left(L_{2} \cup L_{3}\right)$, $L_{1}\left(L_{2} \cap L_{3}\right)$ in [4], $L_{1}^{*} \cup L_{2}, L_{1}^{*} \cap L_{2}, L_{1}^{R} \cup L_{2}, L_{1}^{R} \cap L_{2}$ in [11], $L_{1} L_{2} L_{3}$, the combined Boolean operations $L_{1} \cup L_{2} \cup L_{3}, L_{1} \cap L_{2} \cap L_{3},\left(L_{1} \cup L_{2}\right) \cap L_{3}$, and $\left(L_{1} \cap L_{2}\right) \cup L_{3}$ in [8], where L_{1}, L_{2}, and L_{3} are three regular languages.

In this paper, we study the state complexities of all the other combinations of two basic operations, namely $\left(L_{1} L_{2}\right)^{R}, L_{1}^{R} L_{2}, L_{1}^{*} L_{2},\left(L_{1} \cup L_{2}\right) L_{3},\left(L_{1} \cap L_{2}\right) L_{3}$, $L_{1} L_{2} \cap L_{3}$, and $L_{1} L_{2} \cup L_{3}$ for regular languages L_{1}, L_{2}, and L_{3} accepted by DFAs of m, n, and p states, respectively.

Although the state complexity of $\left(L_{1} L_{2}\right)^{R}$ has been considered in [18], only an upper bound has been obtained. In this paper, we prove, by providing some witness DFAs, that the upper bound, $3 \cdot 2^{m+n-2}-2^{n}+1$, proposed in [18] is indeed the state complexity of this combined operation when $m \geq 2$ and $n \geq 1$.

We also show that, unlike some other combined operations, the state complexities of $\left(L_{1} \cap L_{2}\right) L_{3}, L_{1} L_{2} \cap L_{3}$, and $L_{1} L_{2} \cup L_{3}$ in general cases are equal to the compositions of the state complexities of their component operations, while the state complexities of $L_{1}^{R} L_{2}, L_{1}^{*} L_{2}$ and $\left(L_{1} \cup L_{2}\right) L_{3}$ are close to the compositions.

In the next section, we introduce the basic definitions and notations used in the paper. Then we prove our results on the state complexities of $\left(L_{1} L_{2}\right)^{R}$ in Section 3, $L_{1}^{R} L_{2}$ in Section 4, $L_{1}^{*} L_{2}$ in Section $5,\left(L_{1} \cup L_{2}\right) L_{3}$ in Section 6, $\left(L_{1} \cap L_{2}\right) L_{3}$ in Section 7, $L_{1} L_{2} \cap L_{3}$ in Section 8, and $L_{1} L_{2} \cup L_{3}$ in Section 9. Section 10 summarizes our results and also provides an overview of the state complexity results of all possible combined operations with two basic operations.

2. Preliminaries

A DFA is denoted by a 5 -tuple $A=(Q, \Sigma, \delta, s, F)$, where Q is the finite set of states, Σ is the finite input alphabet, $\delta: Q \times \Sigma \rightarrow Q$ is the state transition function, $s \in Q$ is the initial state, and $F \subseteq Q$ is the set of final states. A DFA is said to be complete if $\delta(q, a)$ is defined for all $q \in Q$ and $a \in \Sigma$. All the DFAs we mention in this paper are assumed to be complete. We extend δ to $Q \times \Sigma^{*} \rightarrow Q$ in the usual way.

A non-deterministic finite automaton (NFA) is denoted by a 5 -tuple $A=$ $(Q, \Sigma, \delta, s, F)$, where the definitions of Q, Σ, s, and F are the same to those of DFAs, but the state transition function δ is defined as $\delta: Q \times \Sigma \rightarrow 2^{Q}$, where 2^{Q} denotes the power set of Q, i.e. the set of all subsets of Q. An NFA can have multiple initial states, which is not the usual convention. In this case, the

NFA can be denoted by a 5 -tuple $A=(Q, \Sigma, \delta, S, F)$, where S is the set of the initial states.

In this paper, the state transition function δ of a DFA is often extended to $\hat{\delta}: 2^{Q} \times \Sigma \rightarrow 2^{Q}$. The function $\hat{\delta}$ is defined by $\hat{\delta}(R, a)=\{\delta(r, a) \mid r \in R\}$, for $R \subseteq Q$ and $a \in \Sigma$. We just write δ instead of $\hat{\delta}$ if there is no confusion.

A string $w \in \Sigma^{*}$ is accepted by a DFA (an NFA) if $\delta(s, w) \in F(\delta(s, w) \cap F \neq$ $\emptyset)$. Two states in a finite automaton A are said to be equivalent if and only if for every string $w \in \Sigma^{*}$, if A is started in either state with w as input, it either accepts in both cases or rejects in both cases. It is well-known that a language which is accepted by an NFA can be accepted by a DFA, and such a language is said to be regular. The language accepted by a DFA A is denoted by $L(A)$. The reader may refer to $[13,26]$ for more details about regular languages and finite automata.

The state complexity of a regular language L, denoted by $s c(L)$, is the number of states of the minimal complete DFA that accepts L. The state complexity of a class S of regular languages, denoted by $s c(S)$, is the supremum among all $s c(L), L \in S$. The state complexity of an operation on regular languages is the state complexity of the resulting languages from the operation as a function of the state complexity of the operand languages. Thus, in a certain sense, the state complexity of an operation is a worst-case complexity.

3. State complexity of $\left(L_{1} L_{2}\right)^{R}$

In this section, we investigate the state complexity of $\left(L_{1} L_{2}\right)^{R}$ for an m-state DFA language L_{1} and an n-state DFA language L_{2}, which has been an open problem since 2008. In [18], the following theorem concerning the upper bound of the state complexity of $\left(L_{1} L_{2}\right)^{R}$ was proved.

Theorem 3.1 ([18]). Let L_{1} and L_{2} be an m-state DFA language and an nstate DFA language, respectively, with $m, n>1$. Then there exists a DFA with no more than $3 \cdot 2^{m+n-2}-2^{n}+1$ states that accepts $\left(L_{1} L_{2}\right)^{R}$.

In the following, we first show that this upper bound is reachable by some worst-case examples for $m, n \geq 2$ (Theorem 3.2). Then we investigate the state complexity of $\left(L_{1} L_{2}\right)^{R}$ when $m=1$ (Theorem 3.3) or $n=1$ (Theorem 3.4). Finally, we summarize the state complexity of $\left(L_{1} L_{2}\right)^{R}$ (Theorem 3.5).

Let us start with a general lower bound of the state complexity of $\left(L_{1} L_{2}\right)^{R}$ when $m, n \geq 2$.

Theorem 3.2. Given two integers $m, n \geq 2$, there exists a DFA M of m states and a DFA N of n states such that any DFA accepting $(L(M) L(N))^{R}$ needs at least $3 \cdot 2^{m+n-2}-2^{n}+1$ states.

Proof. Let $M=\left(Q_{M}, \Sigma, \delta_{M}, 0,\{m-1\}\right)$ be a DFA, where $Q_{M}=\{0,1, \ldots, m-$ $1\}, \Sigma=\{a, b, c, d\}$, and the transitions are given as:

- $\delta_{M}(i, a)=i+1 \bmod m, i=0, \ldots, m-1$,
- $\delta_{M}(i, h)=i, i=0, \ldots, m-1, h \in\{b, c, d\}$.

Let $N=\left(Q_{N}, \Sigma, \delta_{N}, 0,\{n-1\}\right)$ be a DFA, shown in Figure 2, where $Q_{N}=$ $\{0,1, \ldots, n-1\}, \Sigma=\{a, b, c, d\}$, and the transitions are given as:

- $\delta_{N}(i, a)=i, i=0, \ldots, n-1$,
- $\delta_{N}(i, b)=i+1 \bmod n, i=0, \ldots, n-1$,
- $\delta_{N}(i, c)=i, i=0, \ldots, n-2, \delta_{N}(n-1, c)=n-2$,
- $\delta_{N}(i, d)=i, i=0, \ldots, n-3, \delta_{N}(n-2, d)=n-1, \delta_{N}(n-1, d)=n-2$.

Figure 2: Witness DFA N which shows that the upper bound of the state complexity of $(L(M) L(N))^{R}, 3 \cdot 2^{m+n-2}-2^{n}+1$, is reachable when $m, n \geq 2$.

Next we construct a DFA $D=\left(Q_{D}, \Sigma, \delta_{D}, s_{D}, F_{D}\right)$ to accept $(L(M) L(N))^{R}$, where

$$
\begin{aligned}
Q_{D} & =(R \cup S)-T \\
R & =\left\{\left\langle R_{1}, R_{2}\right\rangle \mid R_{1} \subseteq Q_{M}, R_{2} \subseteq Q_{N}-\{0\}\right\}, \\
S & =\left\{\left\langle R_{1}, R_{2}\right\rangle \mid R_{1} \subseteq Q_{M}, m-1 \in R_{1}, R_{2} \subseteq Q_{N}, 0 \in R_{2}\right\} \\
T & =\left\{\left\langle Q_{M}, R_{2}\right\rangle \mid R_{2} \subseteq Q_{N}, R_{2} \neq \emptyset\right\}, \\
s_{D} & =\langle\emptyset,\{n-1\}\rangle, \\
F_{D} & =\left\{\left\langle R_{1}, R_{2}\right\rangle \in Q_{D} \mid 0 \in R_{1}\right\} .
\end{aligned}
$$

For any $g=\left\langle R_{1}, R_{2}\right\rangle \in Q_{D}, h \in \Sigma$, let $R_{1}^{\prime}=\left\{p \in Q_{M} \mid \delta_{M}(p, h) \in R_{1}\right\}$, $R_{2}^{\prime}=\left\{q \in Q_{N} \mid \delta_{N}(q, h) \in R_{2}\right\}$, and then δ_{D} is defined as follows,

$$
\delta_{D}(g, h)=\left\{\begin{array}{l}
\left\langle R_{1}^{\prime}, R_{2}^{\prime}\right\rangle, \text { if } R_{1}^{\prime} \neq Q_{M}, 0 \notin R_{2}^{\prime}, \\
\left\langle R_{1}^{\prime} \cup\{m-1\}, R_{2}^{\prime}\right\rangle, \text { if } R_{1}^{\prime} \cup\{m-1\} \neq Q_{M}, 0 \in R_{2}^{\prime}, \\
\left\langle Q_{M}, \emptyset\right\rangle, \text { if } R_{1}^{\prime}=Q_{M}, 0 \notin R_{2}^{\prime}, \\
\left\langle Q_{M}, \emptyset\right\rangle, \text { if } R_{1}^{\prime} \cup\{m-1\}=Q_{M}, 0 \in R_{2}^{\prime}
\end{array}\right.
$$

Since M is a complete DFA, each state of M has an outgoing transition with each letter in Σ. It follows that $Q_{M}^{\prime}=\left\{p \in Q_{M} \mid \delta_{M}(p, h) \in Q_{M}\right\}=Q_{M}$ for
any $h \in \Sigma$. Note that $0 \in Q_{M}$, so every state $\left\langle Q_{M}, R_{2} \subseteq Q_{N}\right\rangle$ is a final state. This means that all states starting with Q_{M} are equivalent. Thus, when we construct the DFA D, all such equivalent states are combined into one state, that is, $\left\langle Q_{M}, \emptyset\right\rangle$.

In the following, we will prove D is a minimal DFA.
(I) We first show that every state $\left\langle R_{1}, R_{2}\right\rangle \in Q_{D}$, is reachable from s_{D}. It can be seen that $\langle\emptyset, \emptyset\rangle=\delta_{D}\left(s_{D}, c\right)$ regardless of whether $n=2$ or $n>2$. Then we consider the other 3 cases.

Case 1: $R_{1}=\emptyset, R_{2} \neq \emptyset$.
It is trivial when $n=2$, because $m-1 \in R_{1} \neq \emptyset$ if $0 \in R_{2}$. Therefore, we only discuss $n>2$ and use induction on the size of R_{2} to prove that the state can be reached from s_{D}. When $\left|R_{2}\right|=1$, let R_{2} be $\{i\}, 1 \leq i \leq n-1$. Then we have $\langle\emptyset,\{i\}\rangle=\delta_{D}\left(s_{D}, b^{n-1-i}\right)$. Now assume that $\left\langle\emptyset, R_{2}\right\rangle \in Q_{D}$ is reachable from s_{D} when $\left|R_{2}\right|=k$. We will prove that $\left\langle\emptyset, R_{2}^{\prime}\right\rangle \in Q_{D}$ is also reachable when $\left|R_{2}^{\prime}\right|=k+1 \leq n-1$. We assume $R_{2}^{\prime}=\left\{q_{1}, q_{2}, \ldots, q_{k+1}\right\}$ such that $1 \leq q_{1}<q_{2}<\ldots<q_{k+1} \leq n-1$. Then

$$
\begin{gathered}
\left\langle\emptyset, R_{2}^{\prime}\right\rangle=\delta_{D}\left(\left\langle\emptyset, R_{2}^{\prime \prime}\right\rangle, c(b d)^{q_{k+1}-q_{k}-1} b^{n-1-q_{k+1}}\right) \text {, where } \\
R_{2}^{\prime \prime}=\left\{q_{1}+n-q_{k}-2, q_{2}+n-q_{k}-2, \ldots, q_{k-1}+n-q_{k}-2, n-2\right\} .
\end{gathered}
$$

Note that $q_{k-1}+n-q_{k}-2<n-2$ because $q_{k-1}<q_{k}$.
Case 2: $R_{1} \neq \emptyset, R_{2}=\emptyset$.
Let R_{1} be $\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ such that $0 \leq p_{1}<p_{2}<\ldots<p_{k} \leq m-1,1 \leq k \leq m$. Then $\left\langle R_{1}, \emptyset\right\rangle=\delta_{D}\left(s_{D}, w^{\prime}\right)$, where

$$
w^{\prime}=b^{n} a^{p_{2}-p_{1}} b^{n} a^{p_{3}-p_{2}} \cdots b^{n} a^{p_{k}-p_{k-1}} b^{n} a^{m-1-p_{k}} c .
$$

When $R_{1}=\left\{p_{1}\right\}, w^{\prime}$ is $b^{n} a^{m-1-p_{1}} c$.
Case 3: $R_{1} \neq \emptyset, R_{2} \neq \emptyset$.
Assume $R_{1}=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ such that $0 \leq p_{1}<p_{2}<\ldots<p_{k} \leq m-1$, $1 \leq k \leq m-1$. Note that k cannot be m in this case, because all the states starting with Q_{M} are equivalent and merged into $\left\langle Q_{M}, \emptyset\right\rangle$. We first use $w^{\prime \prime}$ to move the DFA D from s_{D} to $\left\langle R_{1},\{n-1\}\right\rangle$, where

$$
w^{\prime \prime}=b^{n} a^{p_{2}-p_{1}} b^{n} a^{p_{3}-p_{2}} \cdots b^{n} a^{p_{k}-p_{k-1}} b^{n} a^{m-1-p_{k}}
$$

Then $\left\langle R_{1}, R_{2}\right\rangle$ can be reached from $\left\langle R_{1},\{n-1\}\right\rangle$ by the strings shown in Case 1 because they consist of the letters b, c, d and cannot change R_{1}. If 0 shows up in R_{2}, p_{k} must be $m-1$ and it has been included in R_{1} during the processing of $w^{\prime \prime}$ and $R_{1} \cup\{m-1\}=R_{1}$. If $0 \notin R_{2}$, then 0 will not appear in the second element of the two-tuples (states) when processing the strings in Case 1 from the state $\left\langle R_{1},\{n-1\}\right\rangle$. Thus, the set R_{1} will not be changed.
(II) Next, we show that any two different states $\left\langle R_{1}, R_{2}\right\rangle,\left\langle R_{1}^{\prime}, R_{2}^{\prime}\right\rangle \in Q_{D}$, are distinguishable. It is obvious when one state is final and the other is not. Therefore, we consider only when both the two states are final or non-final. There are three cases in the following.

1. $R_{1} \neq R_{1}^{\prime}$. Without loss of generality, we may assume that there exists x such that $x \in R_{1}-R_{1}^{\prime}$. A string a^{x} can distinguish the two states because

$$
\begin{array}{rll}
\delta_{D}\left(\left\langle R_{1}, R_{2}\right\rangle, a^{x}\right) & \in F_{D} \\
\delta_{D}\left(\left\langle R_{1}^{\prime}, R_{2}^{\prime}\right\rangle, a^{x}\right) & \notin & F_{D}
\end{array}
$$

Note that $x \neq m-1$ if $0 \in R_{2}^{\prime}$.
2. $R_{1}=R_{1}^{\prime}=\emptyset, R_{2} \neq R_{2}^{\prime}$. We may assume without loss of generality that there exists x such that $x \in R_{2}-R_{2}^{\prime}$. Then there always exists a string $b^{x} a^{m}$ such that

$$
\begin{aligned}
\delta_{D}\left(\left\langle R_{1}, R_{2}\right\rangle, b^{x} a^{m}\right) & \in F_{D} \\
\delta_{D}\left(\left\langle R_{1}^{\prime}, R_{2}^{\prime}\right\rangle, b^{x} a^{m}\right) & \notin F_{D} .
\end{aligned}
$$

3. $R_{1}=R_{1}^{\prime} \neq \emptyset, R_{2} \neq R_{2}^{\prime}$. Let p be an element of R_{1} and R_{1}^{\prime}. Since $\left\langle R_{1}, R_{2}\right\rangle$ and $\left\langle R_{1}^{\prime}, R_{2}^{\prime}\right\rangle$ are two different states, according to the definition of D, R_{1} and R_{1}^{\prime} cannot be Q_{M}, otherwise the two states would be the same. Thus, we can find $y \in Q_{M}-R_{1}$. We may assume without loss of generality that there exists x such that $x \in R_{2}-R_{2}^{\prime}$. Then there always exists a string t such that one of $\delta_{D}\left(\left\langle R_{1}, R_{2}\right\rangle, t\right)$ and $\delta_{D}\left(\left\langle R_{1}^{\prime}, R_{2}^{\prime}\right\rangle, t\right)$ is final and the other is not, where

$$
t=\left\{\begin{array}{l}
a^{p+1} b^{x} a^{m-p-1} a^{y+1} a^{m-1}, \text { if } 0 \notin R_{2}^{\prime} \\
a^{m} a^{y}, \text { if } 0 \notin R_{2} \text { and } 0 \in R_{2}^{\prime} \\
b^{x} a^{y+1} a^{m-1}, \text { if } 0 \in R_{2} \text { and } 0 \in R_{2}^{\prime}
\end{array}\right.
$$

Note that when $0 \in R_{2}$ or $0 \in R_{2}^{\prime}, m-1$ must be in R_{1} and R_{1}^{\prime} according to the definition of D and the condition of $R_{1}=R_{1}^{\prime}$.

Thus, the states in D are pairwise distinguishable and D is a minimal DFA accepting $(L(M) L(N))^{R}$ with $3 \cdot 2^{m+n-2}-2^{n}+1$ states.

The lower bound given in Theorem 3.2 coincides with the upper bound shown in Theorem 3.1 [18]. Thus, the bounds are tight when $m, n \geq 2$.

Next, we consider the state complexity of $\left(L_{1} L_{2}\right)^{R}$ when $m=1$ or $n=1$. When $m=1, L_{1}$ is either Σ^{*} or \emptyset. Clearly,

$$
\left(L_{1} L_{2}\right)^{R}=\left\{\begin{array}{l}
L_{2}^{R} \Sigma^{*}, \text { if } L_{1}=\Sigma^{*} \\
\emptyset, \text { if } L_{1}=\emptyset
\end{array}\right.
$$

The state complexity of $L_{2}^{R} \Sigma^{*}$ will be proved later in Theorems 4.5, 4.6, 4.7 and Lemma 4.1 in Section 4. Here we just give the following result on the state complexity of $\left(L_{1} L_{2}\right)^{R}$ when $m=1, n \geq 2$.

Theorem 3.3. For any integer $n \geq 2$, let L_{1} be a 1-state DFA language and L_{2} be an n-state DFA language. Then $2^{n-1}+1$ states are both sufficient and necessary in the worst case for a DFA to accept $\left(L_{1} L_{2}\right)^{R}$.

Note that when $m=1, n \geq 2$, the general upper bound $3 \cdot 2^{m+n-2}-2^{n}+1=$ $2^{n-1}+1$. Similarly, when $n=1, L_{2}$ is either Σ^{*} or \emptyset, and

$$
\left(L_{1} L_{2}\right)^{R}=\left\{\begin{array}{l}
\Sigma^{*} L_{1}^{R}, \text { if } L_{2}=\Sigma^{*} \\
\emptyset, \text { if } L_{2}=\emptyset
\end{array}\right.
$$

The state complexity of $\Sigma^{*} L_{1}^{R}$ has been proved in [3]. Thus, we have the following result on the state complexity of $\left(L_{1} L_{2}\right)^{R}$ when $m \geq 1, n=1$.

Theorem 3.4. For any integer $m \geq 1$, let L_{1} be an m-state $D F A$ language and L_{2} be a 1-state DFA language. Then 2^{m-1} states are both sufficient and necessary in the worst case for a DFA to accept $\left(L_{1} L_{2}\right)^{R}$.

By summarizing Theorems 3.1, 3.2 and 3.3, we can obtain Theorem 3.5.
Theorem 3.5. For any integers $m \geq 1, n \geq 2$, let L_{1} be an m-state $D F A$ language and L_{2} be an n-state DFA language. Then $3 \cdot 2^{m+n-2}-2^{n}+1$ states are both sufficient and necessary in the worst case for a DFA to accept $\left(L_{1} L_{2}\right)^{R}$.

4. State complexity of $L_{1}^{R} L_{2}$

In this section, we study the state complexity of $L_{1}^{R} L_{2}$ for an m-state DFA language L_{1} and an n-state DFA language L_{2}. We first show that the upper bound of the state complexity of $L_{1}^{R} L_{2}$ is $3 \cdot 2^{m+n-2}$ in general (Theorem 4.1). Then we prove that this upper bound can be reached when $m, n \geq 2$ (Theorem 4.2). Next, we investigate the case when $m=1$ and $n \geq 1$ and prove the state complexity can be lowered to 2^{n-1} in such a case (Theorem 4.4). Finally, we show that the state complexity of $L_{1}^{R} L_{2}$ is $2^{m-1}+1$ when $m \geq 2$ and $n=1$ (Theorem 4.7).

Now, we start with a general upper bound of the state complexity of $L_{1}^{R} L_{2}$ for any integers $m, n \geq 1$.

Theorem 4.1. Let L_{1} and L_{2} be two regular languages accepted by an m-state $D F A$ and an n-state DFA, respectively, $m, n \geq 1$. Then there exists a DFA of at most $3 \cdot 2^{m+n-2}$ states that accepts $L_{1}^{R} L_{2}$.
Proof. Let $M=\left(Q_{M}, \Sigma, \delta_{M}, s_{M}, F_{M}\right)$ be a DFA of m states and $L_{1}=L(M)$. Let $N=\left(Q_{N}, \Sigma, \delta_{N}, s_{N}, F_{N}\right)$ be another DFA of n states and $L_{2}=L(N)$.

Let $M^{\prime}=\left(Q_{M}, \Sigma, \delta_{M^{\prime}}, F_{M},\left\{s_{M}\right\}\right)$ be an NFA with multiple initial states and $q \in \delta_{M^{\prime}}(p, a)$ if $\delta_{M}(q, a)=p$ where $a \in \Sigma$ and $p, q \in Q_{M}$. Clearly,

$$
L\left(M^{\prime}\right)=L(M)^{R}=L_{1}^{R}
$$

By performing the subset construction on NFA M^{\prime}, we can get an equivalent, 2^{m}-state DFA $A=\left(Q_{A}, \Sigma, \delta_{A}, s_{A}, F_{A}\right)$ such that $L(A)=L_{1}^{R}$. Since M^{\prime} has only one final state s_{M}, we know that $F_{A}=\left\{I \mid I \subseteq Q_{M}, s_{M} \in I\right\}$. Thus, A has
2^{m-1} final states in total. Now we construct a DFA $B=\left(Q_{B}, \Sigma, \delta_{B}, s_{B}, F_{B}\right)$ accepting the language $L_{1}^{R} L_{2}$, where

$$
\begin{aligned}
Q_{B} & =\left\{\langle I, J\rangle \mid I \in Q_{A}, J \subseteq Q_{N}\right\}, \\
s_{B} & =\left\{\begin{array}{l}
\left\langle s_{A}, \emptyset\right\rangle, \text { if } s_{A} \notin F_{A} ; \\
\left\langle s_{A},\left\{s_{N}\right\}\right\rangle, \text { otherwise, },
\end{array}\right. \\
F_{B} & =\left\{\langle I, J\rangle \in Q_{B} \mid J \cap F_{N} \neq \emptyset\right\}, \\
\delta_{B}(\langle I, J\rangle, a) & =\left\{\begin{array}{l}
\left\langle I^{\prime}, J^{\prime}\right\rangle, \text { if } \delta_{A}(I, a)=I^{\prime}, \delta_{N}(J, a)=J^{\prime}, a \in \Sigma, I^{\prime} \notin F_{A} ; \\
\left\langle I^{\prime}, J^{\prime} \cup\left\{s_{N}\right\}\right\rangle, \text { if } \delta_{A}(I, a)=I^{\prime}, \delta_{N}(J, a)=J^{\prime}, a \in \Sigma, I^{\prime} \in F_{A} .
\end{array}\right.
\end{aligned}
$$

From the above construction, we can see that all the states in B starting with $I \in F_{A}$ must end with J such that $s_{N} \in J$. There are in total $2^{m-1} \cdot 2^{n-1}$ states which don't meet this.

Thus, the number of states of the minimal DFA accepting $L_{1}^{R} L_{2}$ is no more than

$$
2^{m+n}-2^{m-1} \cdot 2^{n-1}=3 \cdot 2^{m+n-2} .
$$

This result gives an upper bound for the state complexity of $L_{1}^{R} L_{2}$. Next we show that this bound is reachable when $m, n \geq 2$.

Theorem 4.2. Given two integers $m, n \geq 2$, there exists a DFA M of m states and a DFA N of n states such that any DFA accepting $L(M)^{R} L(N)$ needs at least $3 \cdot 2^{m+n-2}$ states

Proof. Let $M=\left(Q_{M}, \Sigma, \delta_{M}, 0,\{m-1\}\right)$ be a DFA, shown in Figure 3, where $Q_{M}=\{0,1, \ldots, m-1\}, \Sigma=\{a, b, c, d\}$, and the transitions are given as:

- $\delta_{M}(i, a)=i+1 \bmod m, i=0, \ldots, m-1$,
- $\delta_{M}(i, b)=i, i=0, \ldots, m-2, \delta_{M}(m-1, b)=m-2$,
- $\delta_{M}(m-2, c)=m-1, \delta_{M}(m-1, c)=m-2$, if $m \geq 3, \delta_{M}(i, c)=i, i=0, \ldots, m-3$,
- $\delta_{M}(i, d)=i, i=0, \ldots, m-1$,

Note that M is in fact identical with the second witness DFA in the proof of Theorem 3.2 after replacing d by a, a by b, b by c, and c by d.

Let $N=\left(Q_{N}, \Sigma, \delta_{N}, 0,\{n-1\}\right)$ be a DFA, shown in Figure 4 , where $Q_{N}=$ $\{0,1, \ldots, n-1\}, \Sigma=\{a, b, c, d\}$, and the transitions are given as:

- $\delta_{N}(i, a)=i, i=0, \ldots, n-1$,
- $\delta_{N}(i, b)=i, i=0, \ldots, n-1$,
- $\delta_{N}(i, c)=0, i=0, \ldots, n-1$,
- $\delta_{N}(i, d)=i+1 \bmod n, i=0, \ldots, n-1$,

Figure 3: Witness DFA M which shows that the upper bound of the state complexity of $L(M)^{R} L(N), \frac{3}{4} 2^{m+n}$, is reachable when $m, n \geq 2$.

Figure 4: Witness DFA N which shows that the upper bound of the state complexity of $L(M)^{R} L(N), \frac{3}{4} 2^{m+n}$, is reachable when $m, n \geq 2$.

Now we design a DFA $A=\left(Q_{A}, \Sigma, \delta_{A},\{m-1\}, F_{A}\right)$, where $Q_{A}=\{P \mid P \subseteq$ $\left.Q_{M}\right\}, \Sigma=\{a, b, c, d\}, F_{A}=\left\{P \mid 0 \in P, P \in Q_{A}\right\}$, and the transitions are defined as:

$$
\delta_{A}(P, e)=\left\{j \mid \delta_{M}(j, e)=i, i \in P\right\}, P \in Q_{A}, e \in \Sigma
$$

It is easy to see that A is a DFA that accepts $L(M)^{R}$. Since M is identical with the DFA shown in Figure 2 by replacing the corresponding letters, and it has been proved in the proof of Theorem 3.2 that any state $\left\langle\emptyset, R_{2}\right\rangle$ of the resulting DFA is reachable from the initial state, and any two different states $\left\langle\emptyset, R_{2}\right\rangle$ and $\left\langle\emptyset, R_{2}^{\prime}\right\rangle$ are distinguishable, then the DFA A constructed in the same manner for $L(M)^{R}$ in the current proof is minimal.

Now let $B=\left(Q_{B}, \Sigma, \delta_{B}, s_{B}, F_{B}\right)$ be another DFA, where

$$
\begin{aligned}
Q_{B}= & \left\{\langle P, Q\rangle \mid P \in Q_{A}-F_{A}, Q \subseteq Q_{N}\right\} \\
& \cup\left\{\left\langle P^{\prime}, Q^{\prime}\right\rangle \mid P^{\prime} \in F_{A}, Q^{\prime} \subseteq Q_{N}, 0 \in Q^{\prime}\right\} \\
\Sigma= & \{a, b, c, d\} \\
s_{B}= & \langle\{m-1\}, \emptyset\rangle \\
F_{B}= & \left\{\langle P, Q\rangle \mid n-1 \in Q,\langle P, Q\rangle \in Q_{B}\right\},
\end{aligned}
$$

and for each state $\langle P, Q\rangle \in Q_{B}$ and each letter $e \in \Sigma$,

$$
\delta_{B}(\langle P, Q\rangle, e)= \begin{cases}\left\langle P^{\prime}, Q^{\prime}\right\rangle & \text { if } \delta_{A}(P, e)=P^{\prime} \notin F_{A}, \delta_{N}(Q, e)=Q^{\prime}, \\ \left\langle P^{\prime}, Q^{\prime}\right\rangle & \text { if } \delta_{A}(P, e)=P^{\prime} \in F_{A}, \delta_{N}(Q, e)=R^{\prime}, Q^{\prime}=R^{\prime} \cup\{0\} .\end{cases}
$$

As we mentioned in the last proof, all the states starting with $P \in F_{A}$ must end with $Q \subseteq Q_{N}$ such that $0 \in Q$. Clearly, B accepts the language $L(M)^{R} L(N)$ and it has

$$
2^{m} \cdot 2^{n}-2^{m-1} \cdot 2^{n-1}=3 \cdot 2^{m+n-2}
$$

states. Now we show that B is a minimal DFA.
(I) Every state $\langle P, Q\rangle \in Q_{B}$ is reachable. We consider the following six cases:

1. $P=\emptyset, Q=\emptyset .\langle\emptyset, \emptyset\rangle$ is the sink state of $B . \delta_{B}(\langle\{m-1\}, \emptyset\rangle, b)=\langle P, Q\rangle$.
2. $P \neq \emptyset, Q=\emptyset$. Let $P=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}, 1 \leq p_{1}<p_{2}<\ldots<p_{k} \leq m-1$, $1 \leq k \leq m-1$. Note that $0 \notin P$, because $0 \in P$ guarantees $0 \in Q$. $\delta_{B}(\langle\{m-1\}, \emptyset\rangle, w)=\langle P, Q\rangle$, where

$$
w=a b(a c)^{p_{2}-p_{1}-1} a b(a c)^{p_{3}-p_{2}-1} \cdots a b(a c)^{p_{k}-p_{k-1}-1} a^{m-1-p_{k}} .
$$

Please note that $w=a^{m-1-p_{1}}$ when $k=1$.
3. $P=\emptyset, Q \neq \emptyset$. In this case, let $Q=\left\{q_{1}, q_{2}, \ldots, q_{l}\right\}, 0 \leq q_{1}<q_{2}<\ldots<$ $q_{l} \leq n-1,1 \leq l \leq n . \delta_{B}(\langle\{m-1\}, \emptyset\rangle, x)=\langle P, Q\rangle$, where

$$
x=a^{m} d^{q_{l}-q_{l-1}} a^{m} d^{q_{l-1}-q_{l-2}} \cdots a^{m} d^{q_{2}-q_{1}} a^{m} d^{q_{1}} b .
$$

4. $P \neq \emptyset, 0 \notin P, Q \neq \emptyset$. Let $P=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}, 1 \leq p_{1}<p_{2}<\ldots<p_{k} \leq$ $m-1,1 \leq k \leq m-1$ and $Q=\left\{q_{1}, q_{2}, \ldots, q_{l}\right\}, 0 \leq q_{1}<q_{2}<\ldots<q_{l} \leq$ $n-1,1 \leq l \leq n$. We can find a string $u v$ such that $\delta_{B}(\langle\{m-1\}, \emptyset\rangle, u v)=$ $\langle P, Q\rangle$, where

$$
\begin{gathered}
u=a b(a c)^{p_{2}-p_{1}-1} a b(a c)^{p_{3}-p_{2}-1} \cdots a b(a c)^{p_{k}-p_{k-1}-1} a^{m-1-p_{k}} \\
v=a^{m} d^{q_{l}-q_{l-1}} a^{m} d^{q_{l-1}-q_{l-2}} \cdots a^{m} d^{q_{2}-q_{1}} a^{m} d^{q_{1}}
\end{gathered}
$$

5. $P \neq \emptyset, 0 \in P, m-1 \notin P, Q \neq \emptyset$. Let $P=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}, 0=$ $p_{1}<p_{2}<\ldots<p_{k}<m-1,1 \leq k \leq m-1$ and $Q=\left\{q_{1}, q_{2}, \ldots, q_{l}\right\}$, $0=q_{1}<q_{2}<\ldots<q_{l} \leq n-1,1 \leq l \leq n$. Since 0 is in P, according to the definition of $B, 0$ has to be in Q as well. There exists a string $u^{\prime} v^{\prime}$ such that $\delta_{B}\left(\langle\{m-1\}, \emptyset\rangle, u^{\prime} v^{\prime}\right)=\langle P, Q\rangle$, where

$$
\begin{gathered}
u^{\prime}=a b(a c)^{p_{2}-p_{1}-1} a b(a c)^{p_{3}-p_{2}-1} \cdots a b(a c)^{p_{k}-p_{k-1}-1} a^{m-2-p_{k}}, \\
v^{\prime}=a^{m} d^{q_{l}-q_{l-1}} a^{m} d^{q_{l-1}-q_{l-2}} \cdots a^{m} d^{q_{2}-q_{1}} a^{m} d^{q_{1}} a .
\end{gathered}
$$

6. $P \neq \emptyset,\{0, m-1\} \subseteq P, Q \neq \emptyset$. Let $P=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}, 0=p_{1}<p_{2}<$ $\ldots<p_{k}=m-1,2 \leq k \leq m$ and $Q=\left\{q_{1}, q_{2}, \ldots, q_{l}\right\}, 0=q_{1}<q_{2}<$ $\ldots<q_{l} \leq n-1,1 \leq l \leq n$. In this case, we have

$$
\langle P, Q\rangle= \begin{cases}\delta_{B}\left(\left\langle\left\{0,1, p_{2}+1, \ldots, p_{k-1}+1\right\}, Q\right\rangle, a\right), & \text { if } m-2 \notin P, \\ \delta_{B}(\langle P-\{m-1\}, Q\rangle, b), & \text { if } m-2 \in P\end{cases}
$$

where states $\left\langle\left\{0,1, p_{2}+1, \ldots, p_{k-1}+1\right\}, Q\right\rangle$ and $\langle P-\{m-1\}, Q\rangle$ have been proved to be reachable in Case 5 .
(II) We then show that any two different states $\left\langle P_{1}, Q_{1}\right\rangle$ and $\left\langle P_{2}, Q_{2}\right\rangle$ in Q_{B} are distinguishable.

1. $Q_{1} \neq Q_{2}$. We may assume without loss of generality that there exists x such that $x \in Q_{1}-Q_{2}$. A string d^{n-1-x} can distinguish them because

$$
\begin{aligned}
\delta_{B}\left(\left\langle P_{1}, Q_{1}\right\rangle, d^{n-1-x}\right) & \in F_{B}, \\
\delta_{B}\left(\left\langle P_{2}, Q_{2}\right\rangle, d^{n-1-x}\right) & \notin F_{B} .
\end{aligned}
$$

2. $P_{1} \neq P_{2}, Q_{1}=Q_{2}$. We may assume without loss of generality that there exists y such that $y \in P_{1}-P_{2}$. Then there always exists a string $a^{y} c^{2} d^{n}$ such that

$$
\begin{aligned}
\delta_{B}\left(\left\langle P_{1}, Q_{1}\right\rangle, a^{y} c^{2} d^{n}\right) & \in F_{B}, \\
\delta_{B}\left(\left\langle P_{2}, Q_{2}\right\rangle, a^{y} c^{2} d^{n}\right) & \notin F_{B} .
\end{aligned}
$$

Since all the states in B are reachable and pairwise distinguishable, DFA B is minimal. Thus, any DFA accepting $L(M)^{R} L(N)$ needs at least $3 \cdot 2^{m+n-2}$ states.

Theorem 4.2 gives a lower bound for the state complexity of $L_{1}^{R} L_{2}$ when $m, n \geq 2$. It coincides with the upper bound shown in Theorem 4.1 exactly. Thus, we obtain the state complexity of the combined operation $L_{1}^{R} L_{2}$ for $m \geq 2$ and $n \geq 2$.

Theorem 4.3. For any integers $m, n \geq 2$, let L_{1} be an m-state DFA language and L_{2} be an n-state DFA language. Then $3 \cdot 2^{m+n-2}$ states are both necessary and sufficient in the worst case for a DFA to accept $L_{1}^{R} L_{2}$.

In the rest of this section, we study the remaining cases when either $m=1$ or $n=1$.

We first consider the case when $m=1$ and $n \geq 2$. In this case, $L_{1}=\emptyset$ or $L_{1}=\Sigma^{*} . L_{1}^{R} L_{2}=L_{1} L_{2}$ holds regardless of whether L_{1} is \emptyset or Σ^{*}, since $\emptyset^{R}=\emptyset$ and $\left(\Sigma^{*}\right)^{R}=\Sigma^{*}$. It has been shown in [25] that 2^{n-1} states are both sufficient and necessary in the worst case for a DFA to accept the catenation of a 1-state DFA language and an n-state DFA language, $n \geq 2$.

When $m=1$ and $n=1$, it is also easy to see that 1 state is sufficient and necessary in the worst case for a DFA to accept $L_{1}^{R} L_{2}$, because $L_{1}^{R} L_{2}$ is either \emptyset or Σ^{*}. Thus, we have Theorem 4.4 concerning the state complexity of $L_{1}^{R} L_{2}$ for $m=1$ and $n \geq 1$.

Theorem 4.4. Let L_{1} be a 1-state DFA language and L_{2} be an n-state DFA language, $n \geq 1$. Then 2^{n-1} states are both sufficient and necessary in the worst case for a DFA to accept $L_{1}^{R} L_{2}$.

Now, we study the state complexity of $L_{1}^{R} L_{2}$ for $m \geq 2$ and $n=1$. Let us start with the following upper bound.

Theorem 4.5. For any integer $m \geq 2$, let L_{1} and L_{2} be two regular languages accepted by an m-state DFA and a 1-state DFA, respectively. Then there exists a DFA of at most $2^{m-1}+1$ states that accepts $L_{1}^{R} L_{2}$.

Proof. Let $M=\left(Q_{M}, \Sigma, \delta_{M}, s_{M}, F_{M}\right)$ be a DFA of m states, $m \geq 2, k_{1}$ final states and $L_{1}=L(M)$. Let N be another DFA of 1 state and $L_{2}=L(N)$. Since N is a complete DFA, as we mentioned before, $L(N)$ is either \emptyset or Σ^{*}. Clearly, $L_{1}^{R} \cdot \emptyset=\emptyset$. Thus, we need to consider only the case $L_{2}=L(N)=\Sigma^{*}$.

We construct an NFA $M^{\prime}=\left(Q_{M}, \Sigma, \delta_{M^{\prime}}, F_{M},\left\{s_{M}\right\}\right)$ with k_{1} initial states which is similar to the proof of Theorem 4.1. $q \in \delta_{M^{\prime}}(p, a)$ if $\delta_{M}(q, a)=p$ where $a \in \Sigma$ and $p, q \in Q_{M}$. It is easy to see that

$$
L\left(M^{\prime}\right)=L(M)^{R}=L_{1}^{R}
$$

By performing subset construction on the NFA M^{\prime}, we get an equivalent, 2^{m}-state DFA $A=\left(Q_{A}, \Sigma, \delta_{A}, s_{A}, F_{A}\right)$ such that $L(A)=L_{1}^{R} . F_{A}=\{I \mid I \subseteq$ $\left.Q_{M}, s_{M} \in I\right\}$ because M^{\prime} has only one final state s_{M}. Thus, A has 2^{m-1} final states in total.

Define $B=\left(Q_{B}, \Sigma, \delta_{B}, s_{B},\left\{f_{B}\right\}\right)$ where $f_{B} \notin Q_{A}, Q_{B}=\left(Q_{A}-F_{A}\right) \cup\left\{f_{B}\right\}$,

$$
s_{B}= \begin{cases}s_{A} & \text { if } s_{A} \notin F_{A}, \\ f_{B} & \text { otherwise } .\end{cases}
$$

and for any $a \in \Sigma$ and $P \in Q_{B}$,

$$
\delta_{B}(P, a)= \begin{cases}\delta_{A}(P, a) & \text { if } \delta_{A}(P, a) \notin F_{A}, \\ f_{B} & \text { if } \delta_{A}(P, a) \in F_{A}, \\ f_{B} & \text { if } P=f_{B} .\end{cases}
$$

The automaton B is exactly the same as A except that A 's 2^{m-1} final states are made to be sink states and these sink, final states are merged into one,
since they are equivalent. When the computation reaches the final state f_{B}, it remains there. Now, it is clear that B has

$$
2^{m}-2^{m-1}+1=2^{m-1}+1
$$

states and $L(B)=L_{1}^{R} \Sigma^{*}$.
This theorem shows an upper bound for the state complexity of $L_{1}^{R} L_{2}$ for $m \geq 2$ and $n=1$. The upper bound can also be proved based on the results in [1]. Next we show the upper bound is reachable.

Lemma 4.1. Given an integer $m=2$ or 3 , there exists an m-state DFA M and a 1-state DFA N such that any DFA accepting $L(M)^{R} L(N)$ needs at least $2^{m-1}+1$ states .

Proof. When $m=2$ and $n=1$, we can construct the following witness DFAs. Let $M=\left(\{0,1\}, \Sigma, \delta_{M}, 0,\{1\}\right)$ be a DFA, where $\Sigma=\{a, b\}$, and the transitions are given as:

- $\delta_{M}(0, a)=1, \delta_{M}(1, a)=0$,
- $\delta_{M}(0, b)=0, \delta_{M}(1, b)=0$.

Let N be the DFA accepting Σ^{*}. Then the resulting DFA for $L(M)^{R} \Sigma^{*}$ is $A=\left(\{0,1,2\}, \Sigma, \delta_{A}, 0,\{1\}\right)$ where

- $\delta_{A}(0, a)=1, \delta_{A}(1, a)=1, \delta_{A}(2, a)=2$,
- $\delta_{A}(0, b)=2, \delta_{A}(1, b)=1, \delta_{A}(2, b)=2$.

When $m=3$ and $n=1$, the witness DFAs are as follows. Let $M^{\prime}=$ $\left(\{0,1,2\}, \Sigma^{\prime}, \delta_{M^{\prime}}, 0,\{2\}\right)$ be a DFA, where $\Sigma^{\prime}=\{a, b, c\}$, and the transitions are:

- $\delta_{M^{\prime}}(0, a)=1, \delta_{M^{\prime}}(1, a)=2, \delta_{M^{\prime}}(2, a)=0$,
- $\delta_{M^{\prime}}(0, b)=0, \delta_{M^{\prime}}(1, b)=1, \delta_{M^{\prime}}(2, b)=1$,
- $\delta_{M^{\prime}}(0, c)=0, \delta_{M^{\prime}}(1, c)=2, \delta_{M^{\prime}}(2, c)=1$.

Let N^{\prime} be the DFA accepting $\Sigma^{\prime *}$. The resulting DFA for $L\left(M^{\prime}\right)^{R} \Sigma^{\prime *}$ is $A^{\prime}=$ $\left(\{0,1,2,3,4\}, \Sigma^{\prime}, \delta_{A^{\prime}}, 0,\{3\}\right)$ where

- $\delta_{A^{\prime}}(0, a)=1, \delta_{A^{\prime}}(1, a)=3, \delta_{A^{\prime}}(2, a)=2, \delta_{A^{\prime}}(3, a)=3, \delta_{A^{\prime}}(4, a)=3$,
- $\delta_{A^{\prime}}(0, b)=2, \delta_{A^{\prime}}(1, b)=4, \delta_{A^{\prime}}(2, b)=2, \delta_{A^{\prime}}(3, b)=3, \delta_{A^{\prime}}(4, b)=4$,
- $\delta_{A^{\prime}}(0, c)=1, \delta_{A^{\prime}}(1, c)=0, \delta_{A^{\prime}}(2, c)=2, \delta_{A^{\prime}}(3, c)=3, \delta_{A^{\prime}}(4, c)=4$.

The minimality of A and A^{\prime} can be easily checked by the reader.
The above result shows that the bound $2^{m-1}+1$ is reachable when m is equal to 2 or 3 and $n=1$. The last case is $m \geq 4$ and $n=1$.

Theorem 4.6. Given an integer $m \geq 4$, there exists a DFA M of m states and a DFA N of 1 state such that any DFA accepting $L(M)^{R} L(N)$ needs at least $2^{m-1}+1$ states.

Proof. Let $M=\left(Q_{M}, \Sigma, \delta_{M}, 0,\{m-1\}\right)$ be a DFA, shown in Figure 5, where $Q_{M}=\{0,1, \ldots, m-1\}, m \geq 4, \Sigma=\{a, b, c, d\}$, and the transitions are given as:

- $\delta_{M}(i, a)=i+1 \bmod m, i=0, \ldots, m-1$,
- $\delta_{M}(i, b)=i, i=0, \ldots, m-2, \delta_{M}(m-1, b)=m-2$,
- $\delta_{M}(i, c)=i, i=0, \ldots, m-3, \delta_{M}(m-2, c)=m-1, \delta_{M}(m-1, c)=m-2$,
- $\delta_{M}(0, d)=0, \delta_{M}(i, d)=i+1, i=1, \ldots, m-2, \delta_{M}(m-1, d)=1$.

Figure 5: Witness DFA M which shows that the upper bound of the state complexity of $L(M)^{R} L(N), 2^{m-1}+1$, is reachable when $m \geq 4$ and $n=1$.

Let N be the DFA accepting Σ^{*}. Then $L(M)^{R} L(N)=L(M)^{R} \Sigma^{*}$. Now we design a DFA $A=\left(Q_{A}, \Sigma, \delta_{A},\{m-1\}, F_{A}\right)$ similar to the proof of Theorem 4.2, where $Q_{A}=\left\{P \mid P \subseteq Q_{M}\right\}, \Sigma=\{a, b, c, d\}, F_{A}=\left\{P \mid 0 \in P, P \in Q_{A}\right\}$, and the transitions are defined as:

$$
\delta_{A}(P, e)=\left\{j \mid \delta_{M}(j, e)=i, i \in P\right\}, P \in Q_{A}, e \in \Sigma
$$

It is easy to see that A is a DFA that accepts $L(M)^{R}$. Since the transitions of M on letters a, b, and c are exactly the same as those of DFA M in the proof of Theorem 4.2, we can say that A is minimal and it has 2^{m} states, among which 2^{m-1} states are final.

Define $B=\left(Q_{B}, \Sigma, \delta_{B}, s_{B},\left\{f_{B}\right\}\right)$ where $f_{B} \notin Q_{A}, Q_{B}=\left(Q_{A}-F_{A}\right) \cup\left\{f_{B}\right\}$, $s_{B}=\{m-1\}$, and for any $e \in \Sigma$ and $I \in Q_{B}$,

$$
\delta_{B}(I, e)= \begin{cases}\delta_{A}(I, e) & \text { if } \delta_{A}(I, e) \notin F_{A}, \\ f_{B} & \text { if } \delta_{A}(I, e) \in F_{A}, \\ f_{B} & \text { if } I=f_{B}\end{cases}
$$

The DFA B is the same as A except that A 's 2^{m-1} final states are changed into sink states and merged to one sink, final state, as we did in the proof of Theorem 4.5. Clearly, B has $2^{m}-2^{m-1}+1=2^{m-1}+1$ states and $L(B)=$ $L(M)^{R} \Sigma^{*}$. Next we show that B is a minimal DFA.
(I) Every state $I \in Q_{B}$ is reachable from $\{m-1\}$. The proof is similar to that of Theorem 4.2. We consider the following four cases:

1. $I=\emptyset . \delta_{A}(\{m-1\}, b)=I=\emptyset$.
2. $I=f_{B} \cdot \delta_{A}\left(\{m-1\}, a^{m-1}\right)=I=f_{B}$.
3. $|I|=1$. Assume that $I=\{i\}, 1 \leq i \leq m-1$. Note that $i \neq 0$ because all the final states in A have been merged into f_{B}. In this case, $\delta_{A}(\{m-$ $\left.1\}, a^{m-1-i}\right)=I$.
4. $2 \leq|I| \leq m-1$. Assume that $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}, 1 \leq i_{1}<i_{2}<\ldots<$ $i_{k} \leq m-1,2 \leq k \leq m-1 . \delta_{A}(\{m-1\}, w)=I$, where

$$
w=a b(a c)^{i_{2}-i_{1}-1} a b(a c)^{i_{3}-i_{2}-1} \cdots a b(a c)^{i_{k}-i_{k-1}-1} a^{m-1-i_{k}} .
$$

(II) Any two different states I and J in Q_{B} are distinguishable.

Since f_{B} is the only final state in Q_{B}, it is inequivalent to any other state. Thus, we consider the case when neither of I and J is f_{B}.

We may assume without loss of generality that there exists x such that $x \in I-J . x$ is always greater than 0 because all the states which include 0 have been merged into f_{B}. Then a string $d^{x-1} a$ can distinguish these two states because

$$
\begin{aligned}
\delta_{B}\left(I, d^{x-1} a\right) & =f_{B}, \\
\delta_{B}\left(J, d^{x-1} a\right) & \neq f_{B} .
\end{aligned}
$$

Since all the states in B are reachable and pairwise distinguishable, B is a minimal DFA. Thus, any DFA accepting $L(M))^{R} \Sigma^{*}$ needs at least $2^{m-1}+1$ states.

After summarizing Theorem 4.5, Theorem 4.6 and Lemma 4.1, we obtain the state complexity of the combined operation $L_{1}^{R} L_{2}$ for $m \geq 2$ and $n=1$.

Theorem 4.7. For any integer $m \geq 2$, let L_{1} be an m-state DFA language and L_{2} be a 1-state DFA language. Then $2^{m-1}+1$ states are both sufficient and necessary in the worst case for a DFA to accept $L_{1}^{R} L_{2}$.

5. State complexity of $L_{1}^{*} L_{2}$

In this section, we investigate the state complexity of $L(A)^{*} L(B)$ for two DFAs A and B of sizes $m, n \geq 1$, respectively. We first notice that, when $n=1$, the state complexity of $L(A)^{*} L(B)$ is 1 for any $m \geq 1$. This is because B is complete $\left(L(B)\right.$ is either \emptyset or $\left.\Sigma^{*}\right)$, and we have either $L(A)^{*} L(B)=\emptyset$
or $\Sigma^{*} \subseteq L(A)^{*} L(B) \subseteq \Sigma^{*}$. Thus, $L(A)^{*} L(B)$ is always accepted by a 1 state DFA. Next, we consider the case where A has only one final state, which is also the initial state. In such a case, $L(A)^{*}$ is also accepted by A, and hence the state complexity of $L(A)^{*} L(B)$ is equal to that of $L(A) L(B)$. We will show that, for any A of size $m \geq 1$ in this form and any B of size $n \geq 2$, the state complexity of $L(A) L(B)$ (also $L(A)^{*} L(B)$) is $m\left(2^{n}-1\right)-2^{n-1}+1$ (Theorems 5.1 and 5.2), which is lower than the state complexity of catenation in the general case. Lastly, we consider the state complexity of $L(A)^{*} L(B)$ in the remaining case, that is when A has at least one final state that is not the initial state and $n \geq 2$. We will show that its upper bound (Theorem 5.3) coincides with its lower bound (Theorem 5.4), and the state complexity is $5 \cdot 2^{m+n-3}-2^{m-1}-2^{n}+1$.

Now, we consider the case where the DFA A has only one final state, which is also the initial state, and first obtain the following upper bound of the state complexity of $L(A) L(B)\left(L(A)^{*} L(B)\right)$, for any DFA B of size $n \geq 2$.

Theorem 5.1. For integers $m \geq 1$ and $n \geq 2$, let A and B be two DFAs with m and n states, respectively, where A has only one final state, which is also the initial state. Then there exists a DFA of at most $m\left(2^{n}-1\right)-2^{n-1}+1$ states that accepts $L(A) L(B)$, which is equal to $L(A)^{*} L(B)$.

Proof. Let $A=\left(Q_{1}, \Sigma, \delta_{1}, s_{1},\left\{s_{1}\right\}\right)$ and $B=\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$. We construct a DFA $C=(Q, \Sigma, \delta, s, F)$ such that

$$
\begin{aligned}
& Q=Q_{1} \times\left(2^{Q_{2}}-\{\emptyset\}\right)-\left\{s_{1}\right\} \times\left(2^{Q_{2}-\left\{s_{2}\right\}}-\{\emptyset\}\right), \\
& s=\left\langle s_{1},\left\{s_{2}\right\}\right\rangle, \\
& F=\left\{\langle q, T\rangle \in Q \mid T \cap F_{2} \neq \emptyset\right\}, \\
& \delta(\langle q, T\rangle, a)=\left\langle q^{\prime}, T^{\prime}\right\rangle, \text { for } a \in \Sigma, \text { where } q^{\prime}=\delta_{1}(q, a) \text { and } T^{\prime}=R \cup\left\{s_{2}\right\} \\
& \quad \text { if } q^{\prime}=s_{1}, T^{\prime}=R \text { otherwise, where } R=\delta_{2}(T, a) .
\end{aligned}
$$

Intuitively, Q contains the pairs whose first component is a state of Q_{1} and second component is a subset of Q_{2}. Since s_{1} is the final state of A, without reading any letter, we can enter the initial state of B. Thus, states $\langle q, \emptyset\rangle$ such that $q \in Q_{1}$ can never be reached in C, because B is complete. Moreover, Q does not contain those states whose first component is s_{1} and second component does not contain s_{2}.

Clearly, C has $m\left(2^{n}-1\right)-2^{n-1}+1$ states, and we can verify that $L(C)=$ $L(A) L(B)$.

Next, we show that this upper bound can be reached by some witness DFAs in this specific form.

Theorem 5.2. For any integers $m \geq 1$ and $n \geq 2$, there exist a $D F A$ of m states and a DFA B of n states, where A has only one final state, which is also the initial state, such that any DFA accepting the language $L(A) L(B)$, which is equal to $L(A)^{*} L(B)$, needs at least $m\left(2^{n}-1\right)-2^{n-1}+1$ states.

Figure 6: Witness DFA A which shows that the upper bound of the state complexity of $L(A)^{*} L(B), m\left(2^{n}-1\right)-2^{n-1}+1$, is reachable when A has only one final state, which is also the initial state, and $m, n \geq 2$.

Figure 7: Witness DFA B which shows that the upper bound of the state complexity of $L(A)^{*} L(B), m\left(2^{n}-1\right)-2^{n-1}+1$, is reachable, when A has only one final state, which is also the initial state, and $m, n \geq 2$.

Proof. When $m=1$, the witness DFAs used in the proof of Theorem 2.1 in [25] can be used to show that the upper bound proposed in Theorem 5.1 can be reached.

Next, we consider the case when $m \geq 2$. We provide witness DFAs A and B, depicted in Figures 6 and 7, respectively, over the three letter alphabet $\Sigma=\{a, b, c\}$.
A is defined as $A=\left(Q_{1}, \Sigma, \delta_{1}, 0,\{0\}\right)$ where $Q_{1}=\{0,1, \ldots, m-1\}$, and the transitions are given as

- $\delta_{1}(i, a)=i+1 \bmod m$, for $i \in Q_{1}$,
- $\delta_{1}(i, x)=i$, for $i \in Q_{1}$, where $x \in\{b, c\}$.
B is defined as $B=\left(Q_{2}, \Sigma, \delta_{2}, 0,\{n-1\}\right)$ where $Q_{2}=\{0,1, \ldots, n-1\}$, where the transitions are given as
- $\delta_{2}(i, a)=i$, for $i \in Q_{2}$,
- $\delta_{2}(i, b)=i+1 \bmod n$, for $i \in Q_{2}$,
- $\delta_{2}(0, c)=0, \delta_{2}(i, c)=i+1 \bmod n$, for $i \in\{1, \ldots, n-1\}$.

Following the construction described in the proof of Theorem 5.1, we construct a DFA $C=(Q, \Sigma, \delta, s, F)$ that accepts $L(A) L(B)$ (also $L(A)^{*} L(B)$). To prove that C is minimal, we show that (I) all the states in Q are reachable from s, and (II) any two different states in Q are not equivalent.

For (I), we show that all the states in $\langle q, T\rangle \in Q$ are reachable by induction on the size of T.

The basis clearly holds, since, for any $i \in Q_{1}$, the state $\langle i,\{0\}\rangle$ is reachable from $\langle 0,\{0\}\rangle$ by reading string a^{i}, and the state $\langle i,\{j\}\rangle$ can be reached from the state $\langle i,\{0\}\rangle$ on string b^{j}, for any $i \in\{1, \ldots, m-1\}$ and $j \in Q_{2}$.

In the induction steps, we assume that all the states $\langle q, T\rangle$ such that $|T|<k$ are reachable. Then we consider the states $\langle q, T\rangle$ where $|T|=k$. Let $T=$ $\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$ such that $0 \leq j_{1}<j_{2}<\ldots<j_{k} \leq n-1$. We consider the following three cases:

1. $j_{1}=0$ and $j_{2}=1$. For any state $i \in Q_{1}$, the state $\langle i, T\rangle \in Q$ can be reached as

$$
\left\langle i,\left\{0,1, j_{3}, \ldots, j_{k}\right\}\right\rangle=\delta\left(\left\langle 0,\left\{0, j_{3}-1, \ldots, j_{k}-1\right\}\right\rangle, b a^{i}\right),
$$

where $\left\{0, j_{3}-1, \ldots, j_{k}-1\right\}$ is of size $k-1$.
2. $j_{1}=0$ and $j_{2}>1$. For any state $i \in Q_{1}$, the state $\left\langle i,\left\{0, j_{2}, \ldots, j_{k}\right\}\right\rangle$ can be reached from the state $\left\langle i,\left\{0,1, j_{3}-j_{2}+1, \ldots, j_{k}-j_{2}+1\right\}\right\rangle$ by reading string $c^{j_{2}-1}$.
3. $j_{1}>0$. In such a case, the first component of the state $\langle q, T\rangle$ cannot be 0 . Thus, for any state $i \in\{1, \ldots, m-1\}$, the state $\left\langle i,\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}\right\rangle$ can be reached from the state $\left\langle i,\left\{0, j_{2}-j_{1}, \ldots, j_{k}-j_{1}\right\}\right\rangle$ by reading string $b^{j_{1}}$.
Next, we show that any two distinct states $\langle q, T\rangle$ and $\left\langle q^{\prime}, T^{\prime}\right\rangle$ in Q are not equivalent. We consider the following two cases:

1. $q \neq q^{\prime}$. Without loss of generality, we assume $q \neq 0$. Then the string $w=c^{n-1} a^{m-q} b^{n}$ can distinguish the two states, because $\delta(\langle q, T\rangle, w) \in F$ and $\delta\left(\left\langle q^{\prime}, T^{\prime}\right\rangle, w\right) \notin F$.
2. $q=q^{\prime}$ and $T \neq T^{\prime}$. We may assume without loss of generality that there exists j such that $j \in T-T^{\prime}$. It is clear that, when $q \neq 0$, string b^{n-1-j} can distinguish the two states, and when $q=0$, string c^{n-1-j} can distinguish the two states since j cannot be 0 .
Due to (I) and (II), the DFA C needs at least $m\left(2^{n}-1\right)-2^{n-1}+1$ states and is minimal.

In the rest of this section, we focus on the case where the DFA A contains at least one final state that is not the initial state. Thus, this DFA is of size at least 2 . We first obtain the following upper bound for the state complexity.

Theorem 5.3. Let $A=\left(Q_{1}, \Sigma, \delta_{1}, s_{1}, F_{1}\right)$ be a DFA such that $\left|Q_{1}\right|=m>1$ and $\left|F_{1}-\left\{s_{1}\right\}\right|=k_{1} \geq 1$, and $B=\left(Q_{2}, \Sigma, \delta_{2}, s_{2}, F_{2}\right)$ be a DFA such that $\left|Q_{2}\right|=n>$ 1. Then there exists a DFA of at most $2^{m+n-2}+3 \cdot 2^{m+n-k_{1}-2}-2^{m-k_{1}}-2^{n}+1$ states that accepts $L(A)^{*} L(B)$.
Proof. We denote $F_{1}-\left\{s_{1}\right\}$ by F_{0}. Then $\left|F_{0}\right|=k_{1} \geq 1$.
We construct a DFA $C=(Q, \Sigma, \delta, s, F)$ for the language $L_{1}^{*} L_{2}$, where L_{1} and L_{2} are the languages accepted by DFAs A and B, respectively.

Let $Q=\{\langle p, t\rangle \mid p \in P$ and $t \in T\}-\left\{\left\langle p^{\prime}, t^{\prime}\right\rangle \mid p^{\prime} \in P^{\prime}\right.$ and $\left.t^{\prime} \in T^{\prime}\right\}$, where

$$
\begin{aligned}
P & =\left\{R \mid R \subseteq\left(Q_{1}-F_{0}\right) \text { and } R \neq \emptyset\right\} \cup P^{\prime} \\
T & =2^{Q_{2}}-\{\emptyset\} \\
P^{\prime} & =\left\{R \mid R \subseteq Q_{1}, s_{1} \in R, \text { and } R \cap F_{0} \neq \emptyset\right\} \\
T^{\prime} & =2^{Q_{2}-\left\{s_{2}\right\}}-\{\emptyset\} .
\end{aligned}
$$

The initial state s is $s=\left\langle\left\{s_{1}\right\},\left\{s_{2}\right\}\right\rangle$.
The set of final states is defined to be $F=\left\{\langle p, t\rangle \in Q \mid t \cap F_{2} \neq \emptyset\right\}$.
The transition relation δ is defined as follows:

$$
\delta(\langle p, t\rangle, a)= \begin{cases}\left\langle p^{\prime}, t^{\prime}\right\rangle & \text { if } p^{\prime} \cap F_{1}=\emptyset, \\ \left\langle p^{\prime} \cup\left\{s_{1}\right\}, t^{\prime} \cup\left\{s_{2}\right\}\right\rangle & \text { otherwise },\end{cases}
$$

where, $a \in \Sigma, p^{\prime}=\delta_{1}(p, a)$, and $t^{\prime}=\delta_{2}(t, a)$.
Intuitively, C is equivalent to the NFA C^{\prime} obtained by first constructing an NFA A^{\prime} that accepts L_{1}^{*}, then catenating this new NFA with DFA B by λ transitions. Note that, in the construction of A^{\prime}, we need to add a new initial and final state s_{1}^{\prime}. However, this new state does not appear in the first component of any of the states in Q. The reason is as follows. First, note that this new state does not have any incoming transitions. Thus, from the initial state s_{1}^{\prime} of A^{\prime}, after reading a nonempty string, we will never return to this state. As a result, states $\langle p, t\rangle$ such that $p \subseteq Q_{1} \cup\left\{s_{1}^{\prime}\right\}, s_{1}^{\prime} \in p$, and $t \in 2^{Q_{2}}$ is never reached in DFA C except for the state $\left\langle\left\{s_{1}^{\prime}\right\},\left\{s_{2}\right\}\right\rangle$. Then we note that in the construction of A^{\prime}, states s_{1}^{\prime} and s_{1} should reach the same state on any letter in Σ. Thus, we can say that states $\left\langle\left\{s_{1}^{\prime}\right\},\left\{s_{2}\right\}\right\rangle$ and $\left\langle\left\{s_{1}\right\},\left\{s_{2}\right\}\right\rangle$ are equivalent, because neither of them is final if $s_{2} \notin F_{2}$, and they are both final states otherwise. Hence, we merge this two states and let $\left\langle\left\{s_{1}\right\},\left\{s_{2}\right\}\right\rangle$ be the initial state of C.

Also, we notice that states $\langle p, \emptyset\rangle$ such that $p \in P$ can never be reached in C, because B is complete.

Moreover, C does not contain those states whose first component contains a final state of A and whose second component does not contain the initial state of B.

Therefore, we can verify that DFA C indeed accepts $L_{1}^{*} L_{2}$, and it is clear that the size of the state set of C is

$$
\begin{aligned}
|Q| & =\left(2^{m-1}+2^{m-1-k_{1}}-1\right)\left(2^{n}-1\right)-\left(2^{m-1}-2^{m-k_{1}-1}\right)\left(2^{n-1}-1\right) \\
& =2^{m+n-2}+3 \cdot 2^{m+n-k_{1}-2}-2^{m-k_{1}}-2^{n}+1
\end{aligned}
$$

Then we show that this upper bound is reachable by some witness DFAs.

Figure 8: Witness DFA A which shows that the upper bound of the state complexity of $L(A)^{*} L(B), 5 \cdot 2^{m+n-3}-2^{m-1}-2^{n}+1$, is reachable when $m, n \geq 2$.

Figure 9: Witness DFA B which shows that the upper bound of the state complexity of $L(A)^{*} L(B), 5 \cdot 2^{m+n-3}-2^{m-1}-2^{n}+1$, is reachable when $m, n \geq 2$.

Theorem 5.4. For any integers $m, n \geq 2$, there exist a DFA A of m states and a DFA B of n states such that any $D F A$ accepting $L(A)^{*} L(B)$ needs at least $5 \cdot 2^{m+n-3}-2^{m-1}-2^{n}+1$ states.

Proof. We define the following two automata over a four letter alphabet $\Sigma=$ $\{a, b, c, d\}$.

Let $A=\left(Q_{1}, \Sigma, \delta_{1}, 0,\{m-1\}\right)$, shown in Figure 8 , where $Q_{1}=\{0,1, \ldots, m-$ $1\}$, and the transitions are defined as

- $\delta_{1}(i, a)=i+1 \bmod m$, for $i \in Q_{1}$,
- $\delta_{1}(0, b)=0, \delta_{1}(i, b)=i+1 \bmod m$, for $i \in\{1, \ldots, m-1\}$,
- $\delta_{1}(i, x)=i$, for $i \in Q_{1}, x \in\{c, d\}$.

Let $B=\left(Q_{2}, \Sigma, \delta_{2}, 0,\{n-1\}\right)$, shown in Figure 9 , where $Q_{2}=\{0,1, \ldots, n-$ $1\}$, and the transitions are defined as

- $\delta_{2}(i, x)=i$, for $i \in Q_{2}, x \in\{a, b\}$,
- $\delta_{2}(i, c)=i+1 \bmod n$, for $i \in Q_{2}$,
- $\delta_{2}(i, d)=0$, for $i \in Q_{2}$.

Let $C=\{Q, \Sigma, \delta,\langle\{0\},\{0\}\rangle, F\}$ be the DFA accepting the language $L(A)^{*} L(B)$ which is constructed from A and B exactly as described in the proof of Theorem 5.3.

Now, we prove that the size of Q is minimal by showing that (I) any state in Q can be reached from the initial state, and (II) no two different states in Q are equivalent.

We first prove (I) by induction on the size of the second component t of the states in Q.

The basis holds, since, for any $i \in Q_{2}$, the state $\langle\{0\},\{i\}\rangle$ can be reached from the initial state $\langle\{0\},\{0\}\rangle$ on the string c^{i}. In the proof of Theorem 3.3 in [25], a witness DFA is used to prove the state complexity of star operation on regular languages. The DFA A above is a modification of that witness DFA by adding $c-$ and d - loops to each state. With similar construction of the resulting DFA for star, it has been proved in [25] that any $p \in P$ is reachable from $\{0\}$ on some string over letters a and b. Since $a-$ and $b-$ transitions do not change the second element $\{i\}$ in the state, it is clear that the state $\langle p,\{i\}\rangle$ of Q, where $p \in P$ and $i \in Q_{2}$, is reachable from the state $\langle\{0\},\{i\}\rangle$ on the same string.

In the induction steps, assume that all the states $\langle p, t\rangle$ in Q such that $p \in P$ and $|t|<k$ are reachable. Then we consider the states $\langle p, t\rangle$ in Q where $p \in P$ and $|t|=k$. Let $t=\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}$ such that $0 \leq j_{1}<j_{2}<\ldots<j_{k} \leq n-1$.

Note that states such that $p=\{0\}$ and $j_{1}=0$ are reachable as follows:

$$
\left\langle\{0\},\left\{0, j_{2}, \ldots, j_{k}\right\}\right\rangle=\delta\left(\left\langle\{0\},\left\{0, j_{3}-j_{2}, \ldots, j_{k}-j_{2}\right\}\right\rangle, c^{j_{2}} a^{m-1} b\right) .
$$

Then states such that $p=\{0\}$ and $j_{1}>0$ can be reached as follows:

$$
\left\langle\{0\},\left\{j_{1}, j_{2}, \ldots, j_{k}\right\}\right\rangle=\delta\left(\left\langle\{0\},\left\{0, j_{2}-j_{1}, \ldots, j_{k}-j_{1}\right\}\right\rangle, c^{j_{1}}\right)
$$

Once again, with the same strings over letters a and b in the proof of Theorem 3.3 in [25], states $\langle p, t\rangle$ in Q, where $p \in P$ and $|t|=k$, can be reached from the state $\langle\{0\}, t\rangle$.

Next, we show that any two states in Q are not equivalent. Let $\langle p, t\rangle$ and $\left\langle p^{\prime}, t^{\prime}\right\rangle$ be two different states in Q. We consider the following two cases:

1. $p \neq p^{\prime}$. We may assume without loss of generality that there exists i such that $i \in p-p^{\prime}$. It is clear that string $a^{m-1-i} d c^{n}$ is accepted by C starting from the state $\langle p, t\rangle$, but it is not accepted starting from the state $\left\langle p^{\prime}, t^{\prime}\right\rangle$.
2. $p=p^{\prime}$ and $t \neq t^{\prime}$. We may assume without loss of generality that there exists j such that $j \in t-t^{\prime}$. Then the state $\langle p, t\rangle$ reaches a final state on string c^{n-1-j}, but the state $\left\langle p^{\prime}, t^{\prime}\right\rangle$ does not on the same string. Note that, when $m-1 \in p$, we can say that $j \neq 0$.
Due to (I) and (II), DFA C has at least $5 \cdot 2^{m+n-3}-2^{m-1}-2^{n}+1$ reachable states, and any two of them are not equivalent.

6. State complexity of $\left(L_{1} \cup L_{2}\right) L_{3}$

In this section, we study the state complexity of $\left(L_{1} \cup L_{2}\right) L_{3}$, where L_{1}, L_{2} and L_{3} are regular languages accepted by DFAs of m, n, p states, respectively. We first show that the state complexity of $\left(L_{1} \cup L_{2}\right) L_{3}$ is $m n 2^{p}-(m+n-1) 2^{p-1}$ when $m, n, p \geq 2$ (Theorem 6.1). Next, we investigate the case when $m=1$ or $n=1$ and $p \geq 2$ and show that the state complexity is $m n 2^{p}-2^{p-1}$ in such a case (Theorem 6.2). Then we prove that the state complexity of $\left(L_{1} \cup L_{2}\right) L_{3}$ is $m n$ when $m=1$ or $n=1$ and $p=1$ (Theorem 6.3). Finally, we show that the state complexity of $\left(L_{1} \cup L_{2}\right) L_{3}$ is $m n-m-n+2$ when $m, n \geq 2$ and $p=1$ (Theorem 6.4).

Now let us start with the state complexity of $\left(L_{1} \cup L_{2}\right) L_{3}$ for any integers $m, n, p \geq 2$.

Theorem 6.1. Let L_{1}, L_{2} and L_{3} be three regular languages accepted by an mstate DFA, an n-state DFA and a p-state DFA, respectively, $m, n, p \geq 2$. Then $m n 2^{p}-(m+n-1) 2^{p-1}$ states are sufficient and necessary in the worst case for a DFA to accept $\left(L_{1} \cup L_{2}\right) L_{3}$.

Proof. We first show that $m n 2^{p}-(m+n-1) 2^{p-1}$ states are sufficient. It has been proved in [25] that the state complexity of $L(U) L(V)$ is upper bounded by $u 2^{v}-k 2^{v-1}$, where U and V are u-state and v-state automata, respectively, and U has k final states. Thus, the state complexity of $\left(L_{1} \cup L_{2}\right) L_{3}$ is no more than $m n 2^{p}-k^{\prime} 2^{p-1}$ by the mathematical composition of the state complexity of union and catenation, where k^{\prime} is the number of final states in the DFA accepting $L_{1} \cup L_{2}$. We can easily get the upper bound $m n 2^{p}-(m+n-1) 2^{p-1}$ when the DFAs for L_{1} and L_{2} both have a single final state. Note that in the minimal, complete DFA for arbitrary $L_{1} \cup L_{2}$, the number of final states k^{\prime} may be less than $(m+n-1)$. However, it is clear that

$$
\left(m n-(m+n-1)+k^{\prime}\right) 2^{p}-k^{\prime} 2^{p-1} \leq m n 2^{p}-(m+n-1) 2^{p-1} .
$$

Now let us prove that $m n 2^{p}-(m+n-1) 2^{p-1}$ states are necessary in the worst case. Let $A=\left(Q_{A}, \Sigma, \delta_{A}, 0,\{m-1\}\right)$ be a DFA, where $Q_{A}=\{0,1, \ldots, m-1\}$, $\Sigma=\{a, b, c, d\}$, and the transitions are given as:

- $\delta_{A}(i, a)=i+1 \bmod m, i=0, \ldots, m-1$,
- $\delta_{A}(i, e)=i, i=0, \ldots, m-1, e \in\{b, c, d\}$.

Let $B=\left(Q_{B}, \Sigma, \delta_{B}, 0,\{n-1\}\right)$ be a DFA, where $Q_{B}=\{0,1, \ldots, n-1\}, \Sigma=$ $\{a, b, c, d\}$, and the transitions are given as:

- $\delta_{B}(i, e)=i, i=0, \ldots, n-1, e \in\{a, c, d\}$,
- $\delta_{B}(i, b)=i+1 \bmod n, i=0, \ldots, n-1$.

Let $C=\left(Q_{C}, \Sigma, \delta_{C}, 0,\{p-1\}\right)$ be a DFA, where $Q_{C}=\{0,1, \ldots, p-1\}, \Sigma=$ $\{a, b, c, d\}$, and the transitions are given as:

- $\delta_{C}(i, e)=i, i=0, \ldots, p-1, e \in\{a, b\}$,
- $\delta_{C}(i, c)=i+1 \bmod p, i=0, \ldots, p-1$,
- $\delta_{C}(i, d)=1, i=0, \ldots, p-1$.

Next we construct a DFA $D=\left(Q_{D}, \Sigma, \delta_{D}, s_{D}, F_{D}\right)$, where

$$
\begin{aligned}
Q_{D} & =M \cup N \cup P \\
M & =\left\{\langle i, j, K\rangle \mid i \in Q_{A}-\{m-1\}, j \in Q_{B}-\{n-1\}, K \subseteq Q_{C}\right\}, \\
N & =\left\{\langle i, j, K\rangle \mid i=m-1, j \in Q_{B}, K \subseteq Q_{C}, 0 \in K\right\}, \\
P & =\left\{\langle i, j, K\rangle \mid i \in Q_{A}, j=n-1, K \subseteq Q_{C}, 0 \in K\right\}, \\
s_{D} & =\langle 0,0, \emptyset\rangle, \\
F_{D} & =\left\{\langle i, j, K\rangle \in Q_{D} \mid p-1 \in K\right\},
\end{aligned}
$$

and for any $g=\langle i, j, K\rangle \in Q_{D}, a \in \Sigma, \delta_{D}(g, a)=\left\langle i^{\prime}, j^{\prime}, K^{\prime}\right\rangle$, where

- if $\delta_{A}(i, a)=i^{\prime} \neq m-1$ and $\delta_{B}(j, a)=j^{\prime} \neq n-1$, then $\delta_{C}(K, a)=K^{\prime}$,
- if $\delta_{A}(i, a)=i^{\prime}=m-1$ and $\delta_{B}(j, a)=j^{\prime}$, then $K^{\prime}=\delta_{C}(K, a) \cup\{0\}$,
- if $\delta_{A}(i, a)=i^{\prime}$ and $\delta_{B}(j, a)=j^{\prime}=n-1$, then $K^{\prime}=\delta_{C}(K, a) \cup\{0\}$.

Clearly, D accepts $(L(A) \cup L(B)) L(C)$. We will prove D is a minimal DFA in the following.
(I) We first show that every state $\langle i, j, K\rangle \in Q_{D}$, is reachable from s_{D} by induction on the size of K.

When $|K|=0$, we can see $i \neq m-1$ and $j \neq n-1$ according to the definition of D. The state $\langle i, j, \emptyset\rangle$ is reachable from s_{D} by reading $a^{i} b^{j}$. When $|K|=1$, let K be $\left\{k_{1}\right\}, 0 \leq k_{1} \leq p-1$. We have $\delta_{D}\left(s_{D}, a^{m} c^{k_{1}} a^{i} b^{j}\right)=\langle i, j, K\rangle$. Note that if $i=m-1$ or $j=n-1$, then K has to be $\{0\}$ in this case.

Assume that any state $\left\langle i^{\prime}, j^{\prime}, K^{\prime}\right\rangle \in Q_{D}$ such that $\left|K^{\prime}\right|=q \geq 1$ is reachable from s_{D}. We will prove that $\langle i, j, K\rangle \in Q_{D}$ such that $|K|=q+1$ is reachable in the following. Let $K=\left\{l_{1}, l_{2}, \ldots, l_{q+1}\right\}$ and $K^{\prime}=\left\{l_{2}-l_{1}, \ldots, l_{q+1}-l_{1}\right\}$, where $0 \leq l_{1}<l_{2}<\ldots<l_{q+1} \leq p-1$. Then

$$
\delta_{D}\left(\left\langle 0,0, K^{\prime}\right\rangle, a^{m} c^{l_{1}} a^{i} b^{j}\right)=\langle i, j, K\rangle .
$$

Since $\left|K^{\prime}\right|=q$ and $\left\langle 0,0, K^{\prime}\right\rangle$ is reachable from s_{D} according to the induction hypothesis, the state $\langle i, j, K\rangle$ is also reachable. As we mentioned, if $i=m-1$ or
$j=n-1$, then l_{1} has to be 0 . Thus, we have proved every state $\langle i, j, K\rangle \in Q_{D}$, can be reached from s_{D}.
(II) Next, we show that any two different states $\left\langle i_{1}, j_{1}, K_{1}\right\rangle,\left\langle i_{2}, j_{2}, K_{2}\right\rangle \in Q_{D}$, are distinguishable. We consider the following three cases.

1. $K_{1} \neq K_{2}$. We may assume without loss of generality that there exists x such that $x \in K_{1}-K_{2}$. A string c^{p-1-x} can distinguish the two states because

$$
\begin{array}{lll}
\delta_{D}\left(\left\langle i_{1}, j_{1}, K_{1}\right\rangle, c^{p-1-x}\right) & \in F_{D} \\
\delta_{D}\left(\left\langle i_{2}, j_{2}, K_{2}\right\rangle, c^{p-1-x}\right) & \notin F_{D} .
\end{array}
$$

2. $i_{1} \neq i_{2}, K_{1}=K_{2}$. Without loss of generality, we assume that $i_{1}>i_{2}$. Then there always exists a string $b^{n-j_{2}} d a^{m-1-i_{1}} c^{p-1}$ such that

$$
\begin{array}{lll}
\delta_{D}\left(\left\langle i_{1}, j_{1}, K_{1}\right\rangle, b^{n-j_{2}} d a^{m-1-i_{1}} c^{p-1}\right) & \in F_{D}, \\
\delta_{D}\left(\left\langle i_{2}, j_{2}, K_{2}\right\rangle, b^{n-j_{2}} d a^{m-1-i_{1}} c^{p-1}\right) & \notin F_{D} .
\end{array}
$$

3. $i_{1}=i_{2}, j_{1} \neq j_{2}, K_{1}=K_{2}$. Without loss of generality, we assume $j_{1}>j_{2}$ in this case. Then we can distinguish the two states with $a^{m-i_{1}} d b^{n-1-j_{1}} c^{p-1}$ because

$$
\begin{aligned}
\delta_{D}\left(\left\langle i_{1}, j_{1}, K_{1}\right\rangle, a^{m-i_{1}} d b^{n-1-j_{1}} c^{p-1}\right) & \in F_{D} \\
\delta_{D}\left(\left\langle i_{2}, j_{2}, K_{2}\right\rangle, a^{m-i_{1}} d b^{n-1-j_{1}} c^{p-1}\right) & \notin F_{D}
\end{aligned}
$$

Thus, the states in D are pairwise distinguishable and D is a minimal DFA accepting $(L(A) \cup L(B)) L(C)$ with $m n 2^{p}-(m+n-1) 2^{p-1}$ states.

Nest, we consider the case when $m=1$ or $n=1$, and $p \geq 2$. When $m=1$, $n \geq 2, p \geq 2$, the resulting language $\left(L_{1} \cup L_{2}\right) L_{3}$ is either $\Sigma^{*} L_{3}$ or $L_{2} L_{3}$ whose state complexities are 2^{p-1} and $n 2^{p}-2^{p-1}$, respectively [25]. Clearly, the state complexity of $\left(L_{1} \cup L_{2}\right) L_{3}$ should be the latter one. When $m \geq 2, n=1, p \geq 2$, the case is symmetric and the state complexity is $m 2^{p}-2^{p-1}$. When $m=n=1$, $n \geq 2,\left(L_{1} \cup L_{2}\right) L_{3}$ is either $\Sigma^{*} L_{3}$ or \emptyset and the state complexity is 2^{p-1}. Thus, we can get Theorem 6.2.

Theorem 6.2. Let L_{1}, L_{2} and L_{3} be three regular languages accepted by an m-state DFA, an n-state DFA and a p-state DFA, respectively, with $m=1$ or $n=1$, and $p \geq 2$. Then $m n 2^{p}-2^{p-1}$ states are sufficient and necessary in the worst case for a DFA to accept $\left(L_{1} \cup L_{2}\right) L_{3}$.

Now let us investigate the case when $p=1$. In this case, the language L_{3} is either Σ^{*} or \emptyset. In [25], it has been proved that the state complexity of $L_{1} \Sigma^{*}$ is m. Therefore, the mathematical composition of the state complexities of union and catenation for $\left(L_{1} \cup L_{2}\right) L_{3}$ when $p=1$ is $m n$. This upper bound is reachable when $m=1$ or $n=1$, and $p=1$, because

$$
\left(L_{1} \cup L_{2}\right) \Sigma^{*}= \begin{cases}L_{1} \Sigma^{*}, & \text { if } m \geq 2, n=1, L_{2}=\emptyset \\ L_{2} \Sigma^{*}, & \text { if } m=1, L_{1}=\emptyset, n \geq 2 \\ \Sigma^{*}, & \text { if } m=n=1, L_{1}=\Sigma^{*} \text { or } L_{2}=\Sigma^{*}\end{cases}
$$

Thus, Theorem 6.3 in the following holds.
Theorem 6.3. Let L_{1}, L_{2} and L_{3} be three regular languages accepted by an m-state DFA, an n-state DFA and a 1-state DFA, respectively, $m=1$ or $n=1$. Then mn states are sufficient and necessary in the worst case for a DFA to accept $\left(L_{1} \cup L_{2}\right) L_{3}$.

Now the only case left is $m, n \geq 2$ and $p=1$. The upper bound can be lowered in this case, because the multiple final states in the resulting DFA for $L_{1} \cup L_{2}$ are merged to one sink, final state to accept $\left(L_{1} \cup L_{2}\right) \Sigma^{*}$. There are $m+n-1$ such final states in the worst case. Thus, the upper bound is $m n-m-n+2$ in this case and it is easy to see that $L_{1}=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a} \equiv\right.$ $m-1 \bmod m\}, L_{2}=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{b} \equiv n-1 \bmod n\right\}$, and $L_{3}=\{a, b\}^{*}$ are the witness regular languages that reach the upper bound.
Theorem 6.4. Let L_{1}, L_{2} and L_{3} be three regular languages accepted by an m-state DFA, an n-state DFA and a 1-state DFA, respectively, $m, n \geq 2$. Then $m n-m-n+2$ states are sufficient and necessary in the worst case for a DFA to accept $\left(L_{1} \cup L_{2}\right) L_{3}$.

7. State complexity of $\left(L_{1} \cap L_{2}\right) L_{3}$

In this section, we investigate the state complexity of $\left(L_{1} \cap L_{2}\right) L_{3}$, where L_{1}, L_{2} and L_{3} are regular languages accepted by DFAs of m, n, p states, respectively. We first show that the state complexity of $\left(L_{1} \cap L_{2}\right) L_{3}$ is $m n 2^{p}-2^{p-1}$ when $m, n \geq 1, p \geq 2$ (Theorem 7.1). Next, we prove the case when $m, n \geq 1, p=1$ and show that the state complexity is $m n$ in this case (Theorem 7.2).

Let us start with the state complexity of $\left(L_{1} \cap L_{2}\right) L_{3}$ for any integers $m, n \geq$ $1, p \geq 2$.

Theorem 7.1. Let L_{1}, L_{2} and L_{3} be three regular languages accepted by an m-state DFA, an n-state DFA and a p-state DFA, respectively, $m, n \geq 1, p \geq 2$. Then $m n 2^{p}-2^{p-1}$ states are sufficient and necessary in the worst case for a DFA to accept $\left(L_{1} \cap L_{2}\right) L_{3}$.
Proof. The state complexity of $\left(L_{1} \cap L_{2}\right) L_{3}$ is upper bounded by $m n 2^{p}-2^{p-1}$ because it is the mathematical composition of the state complexities of intersection and catenation [25]. Thus, we only need to prove that $m n 2^{p}-2^{p-1}$ states are necessary in the worst case. When $m=1$ and $p \geq 2,\left(L_{1} \cap L_{2}\right) L_{3}$ is either $L_{2} L_{3}$ or \emptyset. The state complexity of $L_{2} L_{3}$ is $n 2^{p}-2^{p-1}$ [25] which coincides with the upper bound we obtained. The case when $n=1$ and $p \geq 2$ is symmetric.

When $m, n, p \geq 2$, we use the same witness DFAs A, B and C in the proof of Theorem 6.1. Next we construct a DFA $D=\left(Q_{D}, \Sigma, \delta_{D}, s_{D}, F_{D}\right)$, where

$$
\begin{aligned}
Q_{D} & =M-N \\
M & =\left\{\langle i, j, K\rangle \mid i \in Q_{A}, j \in Q_{B}, K \subseteq Q_{C}\right\} \\
N & =\left\{\langle i, j, K\rangle \mid i=m-1, j=n-1, K \subseteq Q_{C}-\{0\}\right\}, \\
s_{D} & =\langle 0,0, \emptyset\rangle \\
F_{D} & =\left\{\langle i, j, K\rangle \in Q_{D} \mid p-1 \in K\right\},
\end{aligned}
$$

and for any $g=\langle i, j, K\rangle \in Q_{D}, a \in \Sigma, \delta_{D}$ is defined as follows,

$$
\delta_{D}(g, a)= \begin{cases}\left\langle\delta_{A}(i, a), \delta_{B}(j, a), \delta_{C}(K, a) \cup\{0\}\right\rangle, & \text { if } \delta_{A}(i, a)=m-1 \\ \left\langle\delta_{A}(i, a), \delta_{B}(j, a), \delta_{C}(K, a)\right\rangle, & \text { and } \delta_{B}(j, a)=n-1, \\ \text { otherwise }\end{cases}
$$

It is easy to see that D accepts $(L(A) \cap L(B)) L(C)$. In the following, we will show D is minimal with a similar method as in the proof of Theorem 6.1.
(I) First, we prove that any state $\langle i, j, K\rangle \in Q_{D}$ can be reached from s_{D} by induction on the size of K.

When $|K|=0$, we have $i \neq m-1$ or $j \neq n-1$ according to the definition of D. The state $\langle i, j, \emptyset\rangle$ can be reached from s_{D} by $a^{i} b^{j}$. When $|K|=1$, let $K=\left\{k_{1}\right\}, 0 \leq k_{1} \leq p-1$. Then $\delta_{D}\left(s_{D}, a^{m-1} b^{n-1} a b c^{k_{1}} a^{i} b^{j}\right)=\langle i, j, K\rangle$. If $i=m-1$ and $j=n-1, K$ must be $\{0\}$ when $|K|=1$.

Assume any state $\left\langle i^{\prime}, j^{\prime}, K^{\prime}\right\rangle \in Q_{D}$ such that $\left|K^{\prime}\right|=q \geq 1$ can be reached from s_{D}. In the following we will prove $\langle i, j, K\rangle \in Q_{D}$ such that $|K|=q+1$ is also reachable. Let $K=\left\{l_{1}, l_{2}, \ldots, l_{q+1}\right\}$ and $K^{\prime}=\left\{l_{2}-l_{1}, \ldots, l_{q+1}-l_{1}\right\}$, where $0 \leq l_{1}<l_{2}<\ldots<l_{q+1} \leq p-1$. Then

$$
\delta_{D}\left(\left\langle 0,0, K^{\prime}\right\rangle, a^{m-1} b^{n-1} a b c^{l_{1}} a^{i} b^{j}\right)=\langle i, j, K\rangle .
$$

Since $\left\langle 0,0, K^{\prime}\right\rangle$ where $\left|K^{\prime}\right|=p$ is reachable as the induction hypothesis, the state $\langle i, j, K\rangle$ is also reachable. Again, if $i=m-1$ and $j=n-1, l_{1}$ must be 0 . Thus, all states in D are reachable from s_{D}.
(II) Next, we prove that any two different states $\left\langle i_{1}, j_{1}, K_{1}\right\rangle$ and $\left\langle i_{2}, j_{2}, K_{2}\right\rangle$ in Q_{D}, are distinguishable. There are three cases to be considered.

1. $K_{1} \neq K_{2}$. Without loss of generality, we may assume that there exists x such that $x \in K_{1}-K_{2}$ and a string c^{p-1-x} distinguishes the two states because

$$
\begin{aligned}
\delta_{D}\left(\left\langle i_{1}, j_{1}, K_{1}\right\rangle, c^{p-1-x}\right) & \in F_{D} \\
\delta_{D}\left(\left\langle i_{2}, j_{2}, K_{2}\right\rangle, c^{p-1-x}\right) & \notin F_{D}
\end{aligned}
$$

2. $i_{1} \neq i_{2}, K_{1}=K_{2}$. Without loss of generality, we may assume $i_{1}>i_{2}$. Then there exists a string $b^{n-1-j_{1}} d a^{m-1-i_{1}} c^{p-1}$ such that

$$
\begin{array}{lll}
\delta_{D}\left(\left\langle i_{1}, j_{1}, K_{1}\right\rangle, b^{n-1-j_{1}} d a^{m-1-i_{1}} c^{p-1}\right) & \in F_{D}, \\
\delta_{D}\left(\left\langle i_{2}, j_{2}, K_{2}\right\rangle, b^{n-1-j_{1}} d a^{m-1-i_{1}} c^{p-1}\right) & \notin F_{D} .
\end{array}
$$

3. $i_{1}=i_{2}, j_{1} \neq j_{2}, K_{1}=K_{2}$. Without loss of generality, assume that $j_{1}>j_{2}$. Then the two states can be distinguished by $a^{m-1-i_{1}} d b^{n-1-j_{1}} c^{p-1}$ because

$$
\begin{array}{rll}
\delta_{D}\left(\left\langle i_{1}, j_{1}, K_{1}\right\rangle, a^{m-1-i_{1}} d b^{n-1-j_{1}} c^{p-1}\right) & \in F_{D} \\
\delta_{D}\left(\left\langle i_{2}, j_{2}, K_{2}\right\rangle, a^{m-1-i_{1}} d b^{n-1-j_{1}} c^{p-1}\right) & \notin F_{D} .
\end{array}
$$

Thus, all states in D are distinguishable and D is a minimal DFA for $(L(A) \cap$ $L(B)) L(C)$ with $m n 2^{p}-2^{p-1}$ states.

Next, we consider the case when $m, n \geq 1$ and $p=1$. Since L_{3} is accepted by a 1 -state DFA, it is either \emptyset or Σ^{*}. When $L_{3}=\emptyset,\left(L_{1} \cap L_{2}\right) L_{3}$ is also \emptyset. When $L_{3}=\Sigma^{*}$, we have $\left(L_{1} \cap L_{2}\right) L_{3}=\left(L_{1} \cap L_{2}\right) \Sigma^{*}$. As we mentioned in the previous section, the state complexity of $L_{1} \Sigma^{*}$ is m [25]. Thus, the state complexity of $\left(L_{1} \cap L_{2}\right) \Sigma^{*}$ is upper bounded by $m n$ and the reader can easily prove that the upper bound is reached by $L_{1}=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a} \equiv m-1 \bmod m\right\}$ and $L_{2}=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{b} \equiv n-1 \bmod n\right\}$ when $m, n \geq 2$. For $m=1$ or $n=1$, and $p=1$, we have

$$
\left(L_{1} \cap L_{2}\right) \Sigma^{*}= \begin{cases}L_{1} \Sigma^{*}, & \text { if } m \geq 2, n=1, L_{2}=\Sigma^{*} \\ L_{2} \Sigma^{*}, & \text { if } m=1, L_{1}=\Sigma^{*}, n \geq 2, \\ \Sigma^{*}, & \text { if } m=n=1, L_{1}=L_{2}=\Sigma^{*}\end{cases}
$$

Thus, we can get Theorem 7.2 after summarizing the subcases above.
Theorem 7.2. Let L_{1}, L_{2} and L_{3} be three regular languages accepted by an m-state DFA, an n-state DFA and a 1-state DFA, respectively, $m, n \geq 1$. Then $m n$ states are sufficient and necessary in the worst case for a DFA to accept $\left(L_{1} \cap L_{2}\right) L_{3}$.

8. State complexity of $L_{1} L_{2} \cap L_{3}$

In this section, we investigate the state complexity of $L_{1} L_{2} \cap L_{3}$ for regular languages L_{1}, L_{2}, and L_{3} accepted by m-state, n-state, and p-state DFAs, respectively. It is clear that, when $p=1, L_{3}$ can only be either Σ^{*} or \emptyset. We do not need to consider the case $L_{3}=\emptyset$. Thus, $L_{1} L_{2} \cap L_{3}=L_{1} L_{2}$. Therefore, when $p=1$, the state complexity of $L_{1} L_{2} \cap L_{3}$ is equal to that of $L_{1} L_{2}$. In the following theorem, we show that the state complexity of $L_{1} L_{2} \cap L_{3}$ is $\left(m 2^{n}-2^{n-1}\right) p$ when $m \geq 1, n \geq 2$, and $p \geq 2$, and it is $m p$ when $m \geq 1, n=1$, and $p \geq 2$.

Theorem 8.1. Let L_{1}, L_{2}, and L_{3} be languages accepted by m-state, n-state, and p-state DFAs, respectively, then, we have:
(1) when $m \geq 1$, $n \geq 2$, and $p \geq 2$, the state complexity of $L_{1} L_{2} \cap L_{3}$ is $\left(m 2^{n}-2^{n-1}\right) p$.
(2) when $m \geq 1, n=1$, and $p \geq 2$, the state complexity of $L_{1} L_{2} \cap L_{3}$ is $m p$.

Proof. For (1), Denote by A, B, and C the m-state, n-state, and p-state DFAs, respectively. Since the claimed state complexity is exactly the composition of the state complexities of catenation and intersection, the construction of a DFA E that accepts $L_{1} L_{2} \cup L_{3}$ is as follows. We first construct a DFA D that accepts $L_{1} L_{2}$. Then, the set of the states of E is a Cartesian product of the sets of the states of D and C, the initial state of E is a pair of the initial states of D and C, and each final state of E consists of a final state of D and a final state of C. Moreover, the transitions of E simulate the transitions of D and C on the first element and the second element of each state of E, respectively. Since the state
complexity of $L_{1} L_{2}$ is $m 2^{n}-2^{n-1}$ when $m \geq 1$ and $n \geq 2$, the total number of states in E is upper bounded by $\left(m 2^{n}-2^{n-1}\right) p$.

To prove (1), we just need to show that this upper bound can be reached by some witness DFAs.

We first consider the case where $m \geq 2, n \geq 2$, and $p \geq 2$. Let us define the following DFAs A, B, and C over the same alphabet $\Sigma=\{a, b, c\}$.

Let $A=\left(Q_{1}, \Sigma, \delta_{1}, 0, F_{1}\right)$, where $Q_{1}=\{0,1, \ldots, m-1\}, F_{1}=\{m-1\}$, and the transitions are given as:

- $\delta_{1}(i, a)=(i+1) \bmod m, i \in Q_{1}$,
- $\delta_{1}(i, b)=i+1$, if $i \leq m-3, \delta_{1}(m-2, b)=0$,
- $\delta_{1}(m-1, b)=(m-n+1) \bmod (m-1)$,
- $\delta_{1}(i, c)=i, i \in Q_{1}$.

Let $B=\left(Q_{2}, \Sigma, \delta_{2}, 0, F_{2}\right)$, where $Q_{2}=\{0,1, \ldots, n-1\}, F_{2}=\{n-1\}$, and the transitions are given as:

- $\delta_{2}(i, a)=i+1, i \leq n-2, \delta_{2}(n-1, a)=n-1$,
- $\delta_{2}(i, b)=(i+1) \bmod n, i \in Q_{2}$,
- $\delta_{2}(i, c)=i, i \in Q_{2}$.

Let $C=\left(Q_{3}, \Sigma, \delta_{3}, 0, F_{3}\right)$, where $Q_{3}=\{0,1, \ldots, p-1\}, F_{3}=\{p-1\}$, and the transitions are given as:

- $\delta_{3}(i, x)=i, i \in Q_{3}$ and $x \in\{a, b\}$,
- $\delta_{3}(i, c)=(i+1) \bmod p, i \in Q_{3}$.

Note that, in DFAs A and B, the transitions on letters a and b are exactly the same as those defined in the DFAs in [15] that prove the lower bound of the state complexity of catenation. Moreover, no state will change after reading a letter c. Let $D=\left(Q_{4}, \Sigma, \delta_{4}, 0, F_{4}\right)$ be the DFA accepting $L(A) L(B)$. Thus, D does not move on letter c, it has $\left|Q_{4}\right|=m 2^{n}-2^{n-1}$ reachable states, and any two states in Q_{4} are not equivalent.

Then, as described at the beginning of this proof, we construct the DFA $E=\left(Q_{5}, \Sigma, \delta_{5},\langle 0,0\rangle, F_{5}\right)$, where Q_{5} is a Cartesian product of Q_{4} and Q_{3}. For each state in Q_{5}, δ_{5} simulates the transitions of D on its first element and simulates the transitions of C on its second element. Furthermore, each state in F_{5} consists of a final state in F_{4} and the final state in F_{3}. Next we show that (I) all the states in Q_{5} are reachable and (II) any two of them are not equivalent. It is clear that (I) is true, because, using the proof of Theorem 1 in [15], any state $\langle s, 0\rangle, s \in Q_{4}$, can be reach from the initial state $\langle 0,0\rangle$ by reading a string over letters a and b, and then, any state $\langle s, i\rangle, s \in Q_{4}$, can be reached from the state $\langle s, 0\rangle$ by reading c^{i}. For (II), let $\left\langle s_{1}, i_{1}\right\rangle$ and $\left\langle s_{2}, i_{2}\right\rangle$ be two different states in Q_{5}. If $s_{1}=s_{2}$, then there exists a string w_{1} such that, by reading w_{1}, we can reach
a final state in F_{4} from the state s_{1}. Thus, string $w_{1} c^{p-i_{1}-1}$ will distinguish the states $\left\langle s_{1}, i_{1}\right\rangle$ and $\left\langle s_{2}, i_{2}\right\rangle$. If $s_{1} \neq s_{2}$, then there exists a string w_{2} such that w_{2} leads s_{1} to a final state in F_{4} but does not lead s_{2} to any final state in F_{4}. Thus, string $w_{2} c^{p-i_{1}-1}$ will distinguish the states $\left\langle s_{1}, i_{1}\right\rangle$ and $\left\langle s_{2}, i_{2}\right\rangle$. After verifying (I) and (II), we can say that the size of Q_{5} is $\left(m 2^{n}-2^{n-1}\right) p$, and therefore this number is the state complexity of $L_{1} L_{2} \cap L_{3}$ when $m \geq 2, n \geq 2$, and $p \geq 2$.

Next we consider the case where $m=1, n \geq 2$, and $p \geq 2$. We use the alphabet $\Sigma=\{a, b, c\} . L_{1}$ is Σ^{*}, and we use the same DFA C for L_{3}. Here we define $F=\left(Q_{6}, \Sigma, \delta_{6}, 0, F_{6}\right)$ for L_{2}, where $Q_{6}=\{0,1, \ldots, n-1\}, F_{6}=\{n-1\}$, and the transitions are given as follows:

- $\delta_{6}(0, a)=0, \delta_{6}(i, a)=i+1,1 \leq i \leq n-2, \delta_{6}(n-1, a)=1$,
- $\delta_{6}(0, b)=1, \delta_{6}(i, b)=i, 1 \leq i \leq n-1$,
- $\delta_{6}(i, c)=i, i \in Q_{6}$.

Note that, without the transitions on letter c, F is the second witness DFA in [25] that proves the lower bound of the state complexity of catenation when $m=1$ and $n \geq 2$. Thus, the proof for this case is very similar to that in the previous case and hence is omitted.

For (2), recall that the state complexity of $L_{1} L_{2}$ is m when $m \geq 1$ and $n=1$. Thus, $m p$ is the composition of the state complexities of catenation and intersection, and it is an upper bound of the state complexity of $L_{1} L_{2} \cap L_{3}$ when $m \geq 1, n=1$, and $p \geq 2$. To prove (2), we just need to show the existence of worst case examples that reach this upper bound. Let

$$
\begin{aligned}
L_{1} & =\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a} \equiv m-1(\bmod m)\right\} \\
L_{2} & =\{a, b\}^{*}, \text { and } \\
L_{3} & =\left\{\left.w \in\{a, b\}^{*}| | w\right|_{b} \equiv p-1(\bmod p)\right\}
\end{aligned}
$$

It is clear that L_{1}, L_{2}, and L_{3} are accepted by $m-, 1-$, and p-state DFAs, respectively. The DFA accepting $L_{1} L_{2}$ has m states. Then the proof method is exactly the same as the previous ones, and hence is omitted.

9. State complexity of $L_{1} L_{2} \cup L_{3}$

In this section, we investigate the state complexity of $L_{1} L_{2} \cup L_{3}$ for regular languages L_{1}, L_{2}, and L_{3} accepted by m-state, n-state, and p-state DFAs, respectively. When $p=1, L_{3}$ is either Σ^{*} or \emptyset. Thus, $L_{1} L_{2} \cup L_{3}$ is either Σ^{*} or $L_{1} L_{2}$. Therefore, when $p=1$, the state complexity of $L_{1} L_{2} \cup L_{3}$ is equal to that of $L_{1} L_{2}$. For the other cases, we will show that the state complexity of $L_{1} L_{2} \cup L_{3}$ is $m p-p+1$ when $m \geq 1, n=1$, and $p \geq 2$ (Lemma 9.1), and it is $\left(m 2^{n}-2^{n-1}\right) p$ when $m \geq 1, n \geq 2$, and $p \geq 2$ (Theorem 9.1).

We first consider the case where $m \geq 1, n=1$, and $p \geq 2$.
Lemma 9.1. Let L_{1}, L_{2}, and L_{3} be languages accepted by m-state, n-state, and p-state DFAs, respectively. Then, when $m \geq 1, n=1$, and $p \geq 2$, the state complexity of $L_{1} L_{2} \cup L_{3}$ is $m p-p+1$.

Proof. Let us denote by A, B, and C the m-state, n-state, and p-state DFAs, respectively.

We first show that $m p-p+1$ is an upper bound of the state complexity of $L_{1} L_{2} \cup L_{3}$. In the construction of a DFA E that accepts $L_{1} L_{2} \cup L_{3}$, we first construct a DFA D that accepts $L_{1} L_{2}$. Then, the set of the states of E is a Cartesian product of the state sets of D and C, the initial state of E is a pair of the initial states of D and C, and each final state of E contains a final state of D or the final state of C. Moreover, the transitions of E simulates the transitions of D and C on the first element and the second element of each state of E, respectively. Note that B has only one state and it will go back to this state on any letter in Σ. As a result, the final state f of D will return to itself on any letter in Σ as well.

We know that, when $m \geq 1$ and $n=1$, the state complexity of $L_{1} L_{2}$ is m. Thus, E has at most $m p$ states. Because f will return to itself on any letter in Σ, all the states $\langle f, i\rangle$, where i is a state of C, are clearly equivalent. Therefore, $m p-p+1$ is an upper bound of the state complexity of $L_{1} L_{2} \cup L_{3}$ when $m \geq 1$, $n=1$, and $p \geq 2$.

To show that this upper bound is reachable, we use the language $L_{2}=$ $\{a, b\}^{*}$, and the DFAs G and H in the proof of Theorem 8.1 for L_{1} and L_{3}, respectively. The proof is straightforward, and hence is omitted.

For the remaining cases, that is when $m \geq 1, n \geq 2$, and $p \geq 2$, we obtain the following result.

Theorem 9.1. Let L_{1}, L_{2}, and L_{3} be languages accepted by m-state, n-state, and p-state DFAs, respectively. Then, when $m \geq 1, n \geq 2$, and $p \geq 2$, the state complexity of $L_{1} L_{2} \cup L_{3}$ is $\left(m 2^{n}-2^{n-1}\right) p$.

Proof. Let us denote by A, B, and C the m-state, n-state, and p-state DFAs, respectively.

Since the claimed state complexity is exactly the composition of the state complexities of catenation and union, the construction of a DFA E that accepts $L_{1} L_{2} \cup L_{3}$ is as follows. We first construct a DFA D that accepts $L_{1} L_{2}$. Then, the set of the states of E is a Cartesian product of the sets of the states of D and C, the initial state of E is a pair of the initial states of D and C, and each final state of E contains a final state of D or the final state of C. Moreover, the transitions of E simulates the transitions of D and C on the first element and the second element of each state of E, respectively. Since the state complexity of $L_{1} L_{2}$ is $m 2^{n}-2^{n-1}$ when $m \geq 1$ and $n \geq 2$, the total number of states in E is upper bounded by $\left(m 2^{n}-2^{n-1}\right) p$. To prove the theorem, we just need to show that there exist witness DFAs that reach this upper bound.

We first consider the case where $m=1, n \geq 2$, and $p \geq 2$. We use the alphabet $\Sigma=\{a, b, c, d\}$, and $L_{1}=\Sigma^{*}$.

Define $B=\left(Q_{2}, \Sigma, \delta_{2}, 0, F_{2}\right)$ that accepts L_{2}, where $Q_{2}=\{0,1, \ldots, n-1\}$, $F_{2}=\{n-1\}$, the transitions on letters a, b, and c are exactly the same as those defined in the DFA F used in the proof of Theorem 8.1, and the transitions on letter d are given as $\delta_{2}(i, d)=0, i \in Q_{2}$.

Define $C=\left(Q_{3}, \Sigma, \delta_{3}, 0, F_{3}\right)$ that accepts L_{3}, where $Q_{3}=\{0,1, \ldots, p-1\}$, $F_{3}=\{p-1\}$, the transitions on letters a, b, and c are exactly the same as those defined in the DFA C used in the proof of Theorem 8.1, and the transitions on letter d are given as $\delta_{3}(i, d)=i, i \in Q_{3}$.

As described at the beginning of this proof, we first construct the DFA D. Note that, without the transitions on letters c and d, B is the second witness DFA in [25] that proves the lower bound of the state complexity of catenation when $m=1$ and $n \geq 2$. Thus, D has 2^{n-1} states, all these states are reachable, and any two of the states are not equivalent. After constructing $E=\left(Q_{5}, \Sigma, \delta_{5},\langle 0,0\rangle, F_{5}\right)$ we just need to show that (I) all the states in Q_{5} are reachable, and (II) any two states in Q_{5} are not equivalent. The reachability of all the states in Q_{5} is immediate since all the transitions on letters a, b, and c of B and C are exactly the same as those defined in the DFAs F and C used in the proof of Theorem 8.1, respectively.

For (II), let $\left\langle s_{1}, i_{1}\right\rangle$ and $\left\langle s_{2}, i_{2}\right\rangle$ be two different states in Q_{5}. We consider the following two cases:
$1 i_{1} \neq i_{2}$. The string $d c^{p-1-i_{1}}$ will distinguish these two states.
$2 i_{1}=i_{2}$. We have $s_{1} \neq s_{2}$, and there exists a string $w \in\{a, b\}^{*}$ such that, after reading w, we can reach a final state of D from s_{1}, but we cannot reach any final state of D from s_{2}. As a result, if i_{1} is not a final state of C, then w will distinguish $\left\langle s_{1}, i_{1}\right\rangle$ from $\left\langle s_{2}, i_{2}\right\rangle$, otherwise, the string $c w$ will distinguish these two states.

Since E has $2^{n-1} p$ reachable states and any two of them are not equivalent, we have showed the existence of witness DFAs that prove the state complexity of $L_{1} L_{2} \cup L_{3}$ to be $\left(m 2^{n}-2^{n-1}\right) p$ when $m=1, n \geq 2$, and $p \geq 2$.

In the following, we consider the case where $m \geq 2, n \geq 2$, and $p \geq 2$. We use the same DFAs A, B, and C used in the proof of Theorem 8.1 for L_{1}, L_{2}, and L_{3}, respectively, and denote them by A^{\prime}, B^{\prime}, and C^{\prime}. As described at the beginning of this proof, we construct D^{\prime} and E^{\prime} for $L_{1} L_{2}$ and $L_{1} L_{2} \cup L_{3}$, respectively. Note that the only difference between E^{\prime} and the DFA E used in the proof of Theorem 8.1 is the definitions of their final state sets. Here, each final state of E^{\prime} contains a final state of B^{\prime} or the final state of C^{\prime}. Thus, we can say that, E^{\prime} has $\left(m 2^{n}-2^{n-1}\right) p$ states, and all these states are reachable from its initial state. The proof for the reachability of the states of E^{\prime} is exactly the same as the proof for the reachability of the states of the DFA E used in the proof of Theorem 8.1.

In order to prove the theorem, we need to show that any two states in E^{\prime} are not equivalent in the next step. Before proving this, we need some details about the construction of D^{\prime}. The DFAs A^{\prime} and B^{\prime} are obtained by adding the transitions on letter c to the DFAs in [15] that prove the lower bound of the state complexity of catenation. Thus, the set of the states of D^{\prime} can be written in the same form as used in [15]:
$Q_{4}=\left\{\{i\} \cup S \mid i \in Q_{1}-\{m-1\}\right.$ and $\left.S \subseteq Q_{2}\right\} \cup\left\{\{m-1\} \cup S \mid S \subseteq Q_{2}-\{0\}\right\}$,
i.e., any state in Q_{4} consists of exactly one state of Q_{1} and some states of Q_{2}, and if a set in Q_{4} contains the state $m-1$, then it does not contain the state 0 of Q_{2}. We know that there are $m 2^{n}-2^{n-1}$ reachable states in Q_{4} and any two of them are not equivalent.

Now, we show that any two states in E^{\prime} are not equivalent. Let $\left\langle t_{1}, j_{1}\right\rangle$ and $\left\langle t_{2}, j_{2}\right\rangle$ be two different states in E^{\prime}. We consider the following two cases:
$1 j_{1}=j_{2}$. Then, $t_{1} \neq t_{2}$, and there exists a string w that will distinguish t_{1} from t_{2} in D^{\prime}. Therefore, if j_{1} is the final state of C^{\prime}, then string $c w$ will distinguish $\left\langle t_{1}, j_{1}\right\rangle$ from $\left\langle t_{2}, j_{2}\right\rangle$, otherwise, w will distinguish these two states.
$2 j_{1} \neq j_{2}$. We have three sub-cases. (1) $t_{1}=t_{2}$ and t_{1} is not a final state of D^{\prime}. The string $c^{p-j_{1}-1}$ will distinguish $\left\langle t_{1}, j_{1}\right\rangle$ from $\left\langle t_{2}, j_{2}\right\rangle$. (2) $t_{1}=t_{2}$ and t_{1} is a final state of D^{\prime}. Let us rewrite t_{1} as $t_{1}=\{i\} \cup T$, where $i \in Q_{1}$ and $T \subseteq Q_{2}$. The string $a^{m-i} b^{n-1} c^{p-j_{1}-1}$ will distinguish $\left\langle t_{1}, j_{1}\right\rangle$ from $\left\langle t_{2}, j_{2}\right\rangle$, since after reading $a^{m-i} b^{n-1} t_{1}$ will not reach any final state of D^{\prime}. (3) $t_{1} \neq t_{2}$. Then, there exists a string $w^{\prime} \in\{a, b\}^{*}$ that leads the state t_{1} to a final state of D^{\prime} but does not lead the state t_{2} to any final state of D^{\prime}. Thus, string $w^{\prime} c^{p-j_{1}-1}$ will distinguish the two states.

We have showed that E^{\prime}, which is constructed from A^{\prime}, B^{\prime}, and C^{\prime}, has $\left(m 2^{n}-2^{n-1}\right) p$ reachable states, and any two of its states are not equivalent. Therefore, the state complexity of $L_{1} L_{2} \cup L_{3}$ is equal to the composition of the state complexities of catenation and union, which is $\left(m 2^{n}-2^{n-1}\right) p$.

10. Conclusion

In this paper, we completed the investigation of the state complexity of combined operations with two basic operations, by studying the state complexities of $\left(L_{1} L_{2}\right)^{R}, L_{1}^{R} L_{2}, L_{1}^{*} L_{2},\left(L_{1} \cup L_{2}\right) L_{3},\left(L_{1} \cap L_{2}\right) L_{3}, L_{1} L_{2} \cap L_{3}$, and $L_{1} L_{2} \cup L_{3}$ for regular languages L_{1}, L_{2}, and L_{3}. In particular, we solved an open problem posed in [18] by showing that the upper bound proposed in [18] for the state complexity of $\left(L_{1} L_{2}\right)^{R}$ coincides with the lower bound and is thus indeed the state complexity of this combined operation when $m \geq 2$ and $n \geq 1$. Also, we showed that, due to the structural properties of DFAs obtained from reversal, star, and union, the state complexities of $L_{1}^{R} L_{2}, L_{1}^{*} L_{2}$, and $\left(L_{1} \cup L_{2}\right) L_{3}$ are close to the mathematical compositions of the state complexities of their individual participating operations, although they are not exactly the same. Furthermore, we showed that, in the general cases, the state complexities of $\left(L_{1} \cap L_{2}\right) L_{3}$, $L_{1} L_{2} \cap L_{3}$, and $L_{1} L_{2} \cup L_{3}$ are exactly equal to the mathematical compositions of the state complexities of their component operations.

A summary of the state complexity for all combinations of two basic operations on regular languages is presented in Table 1.

The results obtained and summarized in this paper are on regular languages. Therefore, future work might address the state complexity of the same operations for sub-families of the family of regular languages, such as finite languages
and codes. Another interesting research direction is to investigate the state complexity of combined operations composed of language operations other than the basic ones, e.g. shuffle [2], proportional removal [6, 19], cyclic shift [16, 19], etc.

Operation	State complexity	Most General Case
$\left(L_{1} \cup L_{2}\right)^{*}$	$2^{m+n-1}-2^{m-1}-2^{n-1}+1([21])$	$m, n \geq 2$
$\left(L_{1} \cap L_{2}\right)^{*}$	$2^{m n-1}+2^{m n-2}([17])$	$m, n \geq 2$
$\left(L_{1} L_{2}\right)^{*}$	$2^{m+n-1}+2^{m+n-4}-2^{m-1}-2^{n-1}+m+1([9])$	$m, n \geq 2$
$\left(L_{1}^{R}\right)^{*}=\left(L_{1}^{*}\right)^{R}$	$2^{m}([9])$	$m \geq 1$
$\left(L_{1} \cup L_{2}\right)^{R}$	$2^{m+n}-2^{m}-2^{n}+2([18])$	$m, n \geq 3$
$\left(L_{1} \cap L_{2}\right)^{R}$	$2^{m+n}-2^{m}-2^{n}+2([18])$	$m, n \geq 3$
$\left(L_{1} L_{2}\right)^{R}$	$3 \cdot 2^{m+n-2}-2^{n}+1$ ([18] and Section 3)	$m \geq 2, n \geq 1$
$L_{1}^{*} L_{2}$	$5 \cdot 2^{m+n-3}-2^{m-1}-2^{n}+1,$ the DFA for L_{1} has at least one final state that is not the initial state (Section 5)	$m, n \geq 2$
$L_{1} L_{2}^{*}$	$(3 m-1) 2^{n-2}$ the DFA for L_{2} has at least one final state that is not the initial state ([3])	$m, n \geq 2$
$L_{1}^{R} L_{2}$	$3 \cdot 2^{m+n-2}$ (Section 4)	$m, n \geq 2$
$L_{1} L_{2}^{R}$	$m 2^{n}-2^{n-1}-m+1([3])$	$m, n \geq 1$
$L_{1}\left(L_{2} \cup L_{3}\right)$	$(m-1)\left(2^{n+p}-2^{n}-2^{p}+2\right)+2^{n+p-2}([4])$	$m, n, p \geq 1$
$L_{1}\left(L_{2} \cap L_{3}\right)$	$m 2^{n p}-2^{n p-1}$ ([4])	$m, n, p \geq 1$
$L_{1}^{*} \cup L_{2}$	$3 \cdot 2^{m-2} \cdot n-n+1([11])$	$m, n \geq 2$
$L_{1}^{*} \cap L_{2}$	$3 \cdot 2^{m-2} \cdot n-n+1([11])$	$m, n \geq 2$
$L_{1}^{R} \cup L_{2}$	$2^{m} \cdot n-n+1$ ([11])	$m, n \geq 2$
$L_{1}^{R} \cap L_{2}$	$2^{m} \cdot n-n+1$ ([11])	$m, n \geq 2$
$\left(L_{1} \cup L_{2}\right) L_{3}$	$m n 2^{p}-(m+n-1) 2^{p-1}($ Section 6)	$m, n, p \geq 2$
$\left(L_{1} \cap L_{2}\right) L_{3}$	$m n 2^{p}-2^{p-1}$ (Section 7)	$m, n \geq 1, p \geq 2$
$L_{1} L_{2} \cap L_{3}$	$\left(m 2^{n}-2^{n-1}\right) p$ (Section 8)	$m \geq 1, n, p \geq 2$
$L_{1} L_{2} \cup L_{3}$	$\left(m 2^{n}-2^{n-1}\right) p$ (Section 9)	$m \geq 1, n, p \geq 2$
$L_{1} L_{2} L_{3}$	$\begin{gathered} m 2^{n+p}-2^{n+p-1}-(m-1) 2^{n+p-2} \\ -2^{n+p-3}-(m-1)\left(2^{p}-1\right)([8]) \\ \hline \end{gathered}$	$m, n, p \geq 2$
$L_{1} \cup L_{2} \cup L_{3}$	$m n p$ ([8])	$m, n, p \geq 1$
$L_{1} \cap L_{2} \cap L_{3}$	$m n p$ ([8])	$m, n, p \geq 1$
$\left(L_{1} \cup L_{2}\right) \cap L_{3}$	$m n p$ ([8])	$m, n, p \geq 1$
$\left(L_{1} \cap L_{2}\right) \cup L_{3}$	$m n p$ ([8])	$m, n, p \geq 1$

Table 1: The state complexities of all the combinations of two basic operations, where L_{1}, L_{2}, and L_{3} are accepted by DFAs of m, n, and p states, respectively. Note that we only list the most general case for each combined operation in this table.

References

[1] H. Bordihn, M. Holzer, M. Kutrib: Determinization of finite automata accepting subregular languages, Theoretical Computer Science 410 (2009) 3209-3222
[2] C. Campeanu, K. Salomaa, S. Yu: Tight lower bound for the state com-
plexity of shuffle of regular languages, Journal of Automata, Languages and Combinatorics 7 (3) (2002) 303-310
[3] B. Cui, Y. Gao, L. Kari, S. Yu: State complexity of two combined operations: catenation-star and catenation-reversal, International Journal of Foundations of Computer Science, accepted
[4] B. Cui, Y. Gao, L. Kari, S. Yu: State complexity of two combined operations: catenation-union and catenation-intersection, International Journal of Foundations of Computer Science, accepted
[5] M. Daley, M. Domaratzki, K. Salomaa: State complexity of orthogonal catenation, in: Proceedings of DCFS 2008, Charlottetown, PE, Canada, July 16-18, 2008, 134-144
[6] M. Domaratzki: State complexity and proportional removals, Journal of Automata, Languages and Combinatorics 7 (2002) 455-468
[7] M. Domaratzki, A. Okhotin: State complexity of power, Theoretical Computer Science 410(24-25) (2009) 2377-2392
[8] Z. Ésik, Y. Gao, G. Liu, S. Yu: Estimation of state complexity of combined operations, Theoretical Computer Science 410 (35) (2009) 3272-3280
[9] Y. Gao, K. Salomaa, S. Yu: The state complexity of two combined operations: star of catenation and star of Reversal, Fundamenta Informaticae 83 (1-2) (2008) 75-89
[10] Y. Gao and S. Yu: State complexity approximation, in: Proceedings of Descriptional Complexity of Formal Systems (2009) 163-174
[11] Y. Gao and S. Yu: State complexity of union and intersection combined with star and reversal, Computing Research Repository (2010) arXiv:1006.3755v1
[12] M. Holzer, M. Kutrib: State complexity of basic operations on nondeterministic finite automata, in: Proceedings of CIAA 2002, Tours, France, July 3-5, 2002, LNCS 2608, 148-157
[13] J. E. Hopcroft, R. Motwani, J. D. Ullman: Introduction to Automata Theory, Languages, and Computation (2nd Edition), Addison Wesley, 2001
[14] J. Jirásek, G. Jirásková, A. Szabari: State complexity of concatenation and complementation of regular languages, International Journal of Foundations of Computer Science 16 (2005) 511-529
[15] G. Jirásková: State complexity of some operations on binary regular languages, Theoretical Computer Science 330 (2005) 287-298
[16] G. Jirásková, A. Okhotin: State complexity of cyclic shift, in: Proceedings of DCFS 2005, Como, Italy, June 30-July 2, 2005, 182-193
[17] G. Jirásková, A. Okhotin: On the state complexity of star of union and star of intersection, Turku Center for Computer Science TUCS Technical Report No. 825, 2007
[18] G. Liu, C. Martin-Vide, A. Salomaa, S. Yu: State complexity of basic language operations combined with reversal, Information and Computation 206 (2008) 1178-1186
[19] A. Maslov: Estimates of the number of states of finite automata, Soviet Mathematics Doklady, 11 (1970) 1373-1375
[20] G. Pighizzini, J. Shallit: Unary language operations, state complexity and Jacobsthal's function, International Journal of Foundations of Computer Science 13 (1) (2002) 145-159
[21] A. Salomaa, K. Salomaa, S. Yu: State complexity of combined operations, Theoretical Computer Science 383 (2007) 140-152
[22] A. Salomaa, K. Salomaa, S. Yu: Undecidability of the state complexity of composed regular operations, in: Proceedings of LATA 2011, Tarragona, Spain, May 26-31, 2011, LNCS 6638, 489-498
[23] A. Salomaa, D. Wood, S. Yu: On the state complexity of reversals of regular languages, Theoretical Computer Science 320 (2004) 293-313
[24] S. Yu, Y. Gao: State complexity research and approximation, in: Proceedings of DLT 2011, invited talk, Milan, Italy, 2011, LNCS 6795, 46-57
[25] S. Yu, Q. Zhuang, K. Salomaa: The state complexity of some basic operations on regular languages, Theoretical Computer Science 125 (1994) 315-328
[26] S. Yu: Regular languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol. 1, Springer-Verlag, 1997, 41-110
[27] S. Yu: State complexity of regular languages, Journal of Automata, Languages and Combinatorics 6 (2) (2001) 221-234
[28] S. Yu: On the state complexity of combined operations, in: Proceedings of CIAA 2006, Taipei, Taiwan, August 21-23, 2006, LNCS 4094, 11-22

[^0]: *This work is supported by Natural Science and Engineering Council of Canada Discovery Grant R2824A01, Canada Research Chair Award to L. K, and Natural Science and Engineering Council of Canada Discovery Grant 41630 to S. Y.

 Email addresses: bcui2@csd.uwo.ca (Bo Cui), ygao72@csd.uwo.ca (Yuan Gao), lila@csd.uwo.ca (Lila Kari), syu@csd.uwo.ca (Sheng Yu)

