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Abstract

This paper studies the state complexity of (L1L2)
R, LR

1 L2, L
∗
1L2, (L1 ∪L2)L3,

(L1∩L2)L3, L1L2∩L3, and L1L2∪L3 for regular languages L1, L2, and L3. We
first show that the upper bound proposed by [Liu, Martin-Vide, Salomaa, Yu,
2008] for the state complexity of (L1L2)

R coincides with the lower bound and
is thus the state complexity of this combined operation by providing some wit-
ness DFAs. Also, we show that, unlike most other cases, due to the structural
properties of the result of the first operation of the combinations LR

1 L2, L
∗
1L2,

and (L1 ∪ L2)L3, the state complexity of each of these combined operations is
close to the mathematical composition of the state complexities of the compo-
nent operations. Moreover, we show that the state complexities of (L1 ∩L2)L3,
L1L2 ∩ L3, and L1L2 ∪ L3 are exactly equal to the mathematical compositions
of the state complexities of their component operations in the general cases.
We also include a brief survey that summarizes all state complexity results for
combined operations with two basic operations.

Keywords: state complexity, combined operations, regular languages, finite
automata

1. Introduction

State complexity is a type of descriptional complexity based on the de-
terministic finite automaton (DFA) model. The state complexity of an op-
eration on regular languages is the number of states that are necessary and
sufficient in the worst case for the minimal, complete DFA to accept the re-
sulting language of the operation. While many results on the state complex-
ity of individual operations, such as union, intersection, catenation, star, re-
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versal, shuffle, power, orthogonal catenation, proportional removal, and cyclic
shift [1, 2, 5, 6, 7, 12, 14, 15, 16, 19, 20, 23, 25, 27], have been obtained in the
past 15 years, the research on state complexity of combined operations, which
was initiated by A. Salomaa, K. Salomaa, and S. Yu in 2007 [21], has recently
attracted more attention. This is because, in practice, a combination of sev-
eral individual operations, rather than only one individual operation, is often
performed.

In recent publications [3, 4, 8, 9, 10, 11, 17, 18, 21, 28], it has been shown
that the state complexity of a combined operation is usually not a simple math-
ematical composition of the state complexities of its component operations. For
example, let L1 be an m-state DFA language and L2 be an n-state DFA lan-
guage. Recall that the state complexity of L1 ∪ L2 (considered as f(m,n)) is
mn and the state complexity of L∗

2 (considered as g(n)) is 2n−1 + 2n−2. Thus,
the composition of these state complexities (g(f(m,n))) gives 2mn−1 + 2mn−2

as an upper bound of the state complexity of (L1 ∪ L2)
∗. However, this up-

per bound is too high to be reached and the state complexity of this combined
operation has been proven to be 2m+n−1 + 2m−1 + 2n−1 + 1. This is due to
the structural properties of the DFA that results from the first operation of a
combined operation.

For example, let us consider reversal combined with catenation (LR
1 L2). We

know that, on one hand, if a DFA is obtained for LR
1 , where m > 1, and it

reaches the upper bound of the state complexity of reversal (2m), then half of
its states are final [25]; on the other hand, in order to reach the upper bound of
the state complexity of catenation, the DFA of its left operand language has to
have only one final state [25]. This situation is depicted in Fig. 1. (In another

Figure 1: The set S1 of DFAs that are outputs of reversal when the upper bound for the state
complexity of reversal is achieved is disjoint from the set S2 of DFAs that are the left operand
for catenation which can achieve the upper bound for the state complexity of catenation.

example, the initial state of a DFA obtained from star is always a final state).
In general, the resulting language obtained from the first operation (such as
reversal, star, or union) may not be among the worst cases of the subsequent
operation (such as catenation).

It has been shown that there does not exist a general algorithm that, for an
arbitrarily given combined operation and a class of regular languages, computes
the state complexity of the operation on the class of languages [22, 24]. Thus, the
state complexity of every combined operation must be investigated individually.
Although the number of combined operations is unlimited, the study of the state
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complexity of combinations of two basic operations is clearly necessary since it
is the initial step towards the study of combinations of more operations.

There are in total 26 different combinations of two basic operations selected
from catenation, star, reversal, intersection, and union. Note that we consider
(LR

1 )
∗ and (L∗

1)
R as the same combined operation because (LR

1 )
∗ = (L∗

1)
R. The

combined operations (L∗
1)

∗ = L∗
1 and (LR

1 )
R = L1 are not counted, either.

Among the 26 combined operations, the state complexities of the following ones
have been studied in the literature: (L1∪L2)

∗ in [21], (L1∩L2)
∗ in [17], (L1L2)

∗,
(LR

1 )
∗ in [9], (L1 ∪L2)

R, (L1 ∩L2)
R, (L1L2)

R, L1L
∗
2, L1L

R
2 in [3], L1(L2 ∪L3),

L1(L2 ∩ L3) in [4], L∗
1 ∪ L2, L

∗
1 ∩ L2, L

R
1 ∪ L2, L

R
1 ∩ L2 in [11], L1L2L3, the

combined Boolean operations L1 ∪ L2 ∪ L3, L1 ∩ L2 ∩ L3, (L1 ∪ L2) ∩ L3, and
(L1 ∩ L2) ∪ L3 in [8], where L1, L2, and L3 are three regular languages.

In this paper, we study the state complexities of all the other combinations
of two basic operations, namely (L1L2)

R, LR
1 L2, L

∗
1L2, (L1∪L2)L3, (L1∩L2)L3,

L1L2 ∩ L3, and L1L2 ∪ L3 for regular languages L1, L2, and L3 accepted by
DFAs of m, n, and p states, respectively.

Although the state complexity of (L1L2)
R has been considered in [18], only

an upper bound has been obtained. In this paper, we prove, by providing some
witness DFAs, that the upper bound, 3 · 2m+n−2 − 2n + 1, proposed in [18] is
indeed the state complexity of this combined operation when m ≥ 2 and n ≥ 1.

We also show that, unlike some other combined operations, the state com-
plexities of (L1 ∩ L2)L3, L1L2 ∩ L3, and L1L2 ∪ L3 in general cases are equal
to the compositions of the state complexities of their component operations,
while the state complexities of LR

1 L2, L
∗
1L2 and (L1 ∪ L2)L3 are close to the

compositions.
In the next section, we introduce the basic definitions and notations used

in the paper. Then we prove our results on the state complexities of (L1L2)
R

in Section 3, LR
1 L2 in Section 4, L∗

1L2 in Section 5, (L1 ∪ L2)L3 in Section 6,
(L1 ∩ L2)L3 in Section 7, L1L2 ∩ L3 in Section 8, and L1L2 ∪ L3 in Section 9.
Section 10 summarizes our results and also provides an overview of the state
complexity results of all possible combined operations with two basic operations.

2. Preliminaries

A DFA is denoted by a 5-tuple A = (Q,Σ, δ, s, F ), where Q is the finite set
of states, Σ is the finite input alphabet, δ : Q × Σ → Q is the state transition
function, s ∈ Q is the initial state, and F ⊆ Q is the set of final states. A DFA
is said to be complete if δ(q, a) is defined for all q ∈ Q and a ∈ Σ. All the
DFAs we mention in this paper are assumed to be complete. We extend δ to
Q× Σ∗ → Q in the usual way.

A non-deterministic finite automaton (NFA) is denoted by a 5-tuple A =
(Q,Σ, δ, s, F ), where the definitions of Q, Σ, s, and F are the same to those of
DFAs, but the state transition function δ is defined as δ : Q × Σ → 2Q, where
2Q denotes the power set of Q, i.e. the set of all subsets of Q. An NFA can
have multiple initial states, which is not the usual convention. In this case, the
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NFA can be denoted by a 5-tuple A = (Q,Σ, δ, S, F ), where S is the set of the
initial states.

In this paper, the state transition function δ of a DFA is often extended to
δ̂ : 2Q × Σ → 2Q. The function δ̂ is defined by δ̂(R, a) = {δ(r, a) | r ∈ R}, for
R ⊆ Q and a ∈ Σ. We just write δ instead of δ̂ if there is no confusion.

A string w ∈ Σ∗ is accepted by a DFA (an NFA) if δ(s, w) ∈ F (δ(s, w)∩F ̸=
∅). Two states in a finite automaton A are said to be equivalent if and only if
for every string w ∈ Σ∗, if A is started in either state with w as input, it either
accepts in both cases or rejects in both cases. It is well-known that a language
which is accepted by an NFA can be accepted by a DFA, and such a language
is said to be regular. The language accepted by a DFA A is denoted by L(A).
The reader may refer to [13, 26] for more details about regular languages and
finite automata.

The state complexity of a regular language L, denoted by sc(L), is the number
of states of the minimal complete DFA that accepts L. The state complexity
of a class S of regular languages, denoted by sc(S), is the supremum among all
sc(L), L ∈ S. The state complexity of an operation on regular languages is the
state complexity of the resulting languages from the operation as a function of
the state complexity of the operand languages. Thus, in a certain sense, the
state complexity of an operation is a worst-case complexity.

3. State complexity of (L1L2)
R

In this section, we investigate the state complexity of (L1L2)
R for an m-state

DFA language L1 and an n-state DFA language L2, which has been an open
problem since 2008. In [18], the following theorem concerning the upper bound
of the state complexity of (L1L2)

R was proved.

Theorem 3.1 ([18]). Let L1 and L2 be an m-state DFA language and an n-
state DFA language, respectively, with m,n > 1. Then there exists a DFA with
no more than 3 · 2m+n−2 − 2n + 1 states that accepts (L1L2)

R.

In the following, we first show that this upper bound is reachable by some
worst-case examples for m,n ≥ 2 (Theorem 3.2). Then we investigate the state
complexity of (L1L2)

R when m = 1 (Theorem 3.3) or n = 1 (Theorem 3.4).
Finally, we summarize the state complexity of (L1L2)

R (Theorem 3.5).
Let us start with a general lower bound of the state complexity of (L1L2)

R

when m,n ≥ 2.

Theorem 3.2. Given two integers m,n ≥ 2, there exists a DFA M of m states
and a DFA N of n states such that any DFA accepting (L(M)L(N))R needs at
least 3 · 2m+n−2 − 2n + 1 states.

Proof. Let M = (QM ,Σ, δM , 0, {m− 1}) be a DFA, where QM = {0, 1, . . . ,m−
1}, Σ = {a, b, c, d}, and the transitions are given as:

• δM (i, a) = i+ 1 mod m, i = 0, . . . ,m− 1,
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• δM (i, h) = i, i = 0, . . . ,m− 1, h ∈ {b, c, d}.

Let N = (QN ,Σ, δN , 0, {n − 1}) be a DFA, shown in Figure 2, where QN =
{0, 1, . . . , n− 1}, Σ = {a, b, c, d}, and the transitions are given as:

• δN (i, a) = i, i = 0, . . . , n− 1,

• δN (i, b) = i+ 1 mod n, i = 0, . . . , n− 1,

• δN (i, c) = i, i = 0, . . . , n− 2, δN (n− 1, c) = n− 2,

• δN (i, d) = i, i = 0, . . . , n− 3, δN (n− 2, d) = n− 1, δN (n− 1, d) = n− 2.

Figure 2: Witness DFA N which shows that the upper bound of the state complexity of
(L(M)L(N))R, 3 · 2m+n−2 − 2n + 1, is reachable when m,n ≥ 2.

Next we construct a DFA D = (QD,Σ, δD, sD, FD) to accept (L(M)L(N))R,
where

QD = (R ∪ S)− T,

R = {⟨R1, R2⟩ | R1 ⊆ QM , R2 ⊆ QN − {0}},
S = {⟨R1, R2⟩ | R1 ⊆ QM , m− 1 ∈ R1, R2 ⊆ QN , 0 ∈ R2}
T = {⟨QM , R2⟩ | R2 ⊆ QN , R2 ̸= ∅},
sD = ⟨∅, {n− 1}⟩,
FD = {⟨R1, R2⟩ ∈ QD | 0 ∈ R1}.

For any g = ⟨R1, R2⟩ ∈ QD, h ∈ Σ, let R′
1 = {p ∈ QM | δM (p, h) ∈ R1},

R′
2 = {q ∈ QN | δN (q, h) ∈ R2}, and then δD is defined as follows,

δD(g, h) =


⟨R′

1, R
′
2⟩, if R′

1 ̸= QM , 0 /∈ R′
2,

⟨R′
1 ∪ {m− 1}, R′

2⟩, if R′
1 ∪ {m− 1} ̸= QM , 0 ∈ R′

2,
⟨QM , ∅⟩, if R′

1 = QM , 0 /∈ R′
2,

⟨QM , ∅⟩, if R′
1 ∪ {m− 1} = QM , 0 ∈ R′

2.

Since M is a complete DFA, each state of M has an outgoing transition with
each letter in Σ. It follows that Q′

M = {p ∈ QM | δM (p, h) ∈ QM} = QM for
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any h ∈ Σ. Note that 0 ∈ QM , so every state ⟨QM , R2 ⊆ QN ⟩ is a final state.
This means that all states starting with QM are equivalent. Thus, when we
construct the DFA D, all such equivalent states are combined into one state,
that is, ⟨QM , ∅⟩.

In the following, we will prove D is a minimal DFA.
(I) We first show that every state ⟨R1, R2⟩ ∈ QD, is reachable from sD. It

can be seen that ⟨∅, ∅⟩ = δD(sD, c) regardless of whether n = 2 or n > 2. Then
we consider the other 3 cases.

Case 1: R1 = ∅, R2 ̸= ∅.
It is trivial when n = 2, because m − 1 ∈ R1 ̸= ∅ if 0 ∈ R2. Therefore, we
only discuss n > 2 and use induction on the size of R2 to prove that the state
can be reached from sD. When |R2| = 1, let R2 be {i}, 1 ≤ i ≤ n − 1. Then
we have ⟨∅, {i}⟩ = δD(sD, bn−1−i). Now assume that ⟨∅, R2⟩ ∈ QD is reachable
from sD when |R2| = k. We will prove that ⟨∅, R′

2⟩ ∈ QD is also reachable
when |R′

2| = k + 1 ≤ n − 1. We assume R′
2 = {q1, q2, . . . , qk+1} such that

1 ≤ q1 < q2 < . . . < qk+1 ≤ n− 1. Then

⟨∅, R′
2⟩ = δD(⟨∅, R′′

2 ⟩, c(bd)qk+1−qk−1bn−1−qk+1), where

R′′
2 = {q1 + n− qk − 2, q2 + n− qk − 2, . . . , qk−1 + n− qk − 2, n− 2}.

Note that qk−1 + n− qk − 2 < n− 2 because qk−1 < qk.
Case 2: R1 ̸= ∅, R2 = ∅.

Let R1 be {p1, p2, . . . , pk} such that 0 ≤ p1 < p2 < . . . < pk ≤ m−1, 1 ≤ k ≤ m.
Then ⟨R1, ∅⟩ = δD(sD, w′), where

w′ = bnap2−p1bnap3−p2 · · · bnapk−pk−1bnam−1−pkc.

When R1 = {p1}, w′ is bnam−1−p1c.
Case 3: R1 ̸= ∅, R2 ̸= ∅.

Assume R1 = {p1, p2, . . . , pk} such that 0 ≤ p1 < p2 < . . . < pk ≤ m − 1,
1 ≤ k ≤ m − 1. Note that k cannot be m in this case, because all the states
starting with QM are equivalent and merged into ⟨QM , ∅⟩. We first use w′′ to
move the DFA D from sD to ⟨R1, {n− 1}⟩, where

w′′ = bnap2−p1bnap3−p2 · · · bnapk−pk−1bnam−1−pk .

Then ⟨R1, R2⟩ can be reached from ⟨R1, {n− 1}⟩ by the strings shown in Case
1 because they consist of the letters b, c, d and cannot change R1. If 0 shows up
in R2, pk must be m− 1 and it has been included in R1 during the processing
of w′′ and R1 ∪ {m− 1} = R1. If 0 /∈ R2, then 0 will not appear in the second
element of the two-tuples (states) when processing the strings in Case 1 from
the state ⟨R1, {n− 1}⟩. Thus, the set R1 will not be changed.

(II) Next, we show that any two different states ⟨R1, R2⟩, ⟨R′
1, R

′
2⟩ ∈ QD,

are distinguishable. It is obvious when one state is final and the other is not.
Therefore, we consider only when both the two states are final or non-final.
There are three cases in the following.
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1. R1 ̸= R′
1. Without loss of generality, we may assume that there exists x

such that x ∈ R1−R′
1. A string ax can distinguish the two states because

δD(⟨R1, R2⟩, ax) ∈ FD,

δD(⟨R′
1, R

′
2⟩, ax) /∈ FD.

Note that x ̸= m− 1 if 0 ∈ R′
2.

2. R1 = R′
1 = ∅, R2 ̸= R′

2. We may assume without loss of generality that
there exists x such that x ∈ R2 − R′

2. Then there always exists a string
bxam such that

δD(⟨R1, R2⟩, bxam) ∈ FD,

δD(⟨R′
1, R

′
2⟩, bxam) /∈ FD.

3. R1 = R′
1 ̸= ∅, R2 ̸= R′

2. Let p be an element of R1 and R′
1. Since ⟨R1, R2⟩

and ⟨R′
1, R

′
2⟩ are two different states, according to the definition of D, R1

and R′
1 cannot be QM , otherwise the two states would be the same. Thus,

we can find y ∈ QM −R1. We may assume without loss of generality that
there exists x such that x ∈ R2 −R′

2. Then there always exists a string t
such that one of δD(⟨R1, R2⟩, t) and δD(⟨R′

1, R
′
2⟩, t) is final and the other

is not, where

t =

 ap+1bxam−p−1ay+1am−1, if 0 /∈ R′
2,

amay, if 0 /∈ R2 and 0 ∈ R′
2,

bxay+1am−1, if 0 ∈ R2 and 0 ∈ R′
2.

Note that when 0 ∈ R2 or 0 ∈ R′
2, m− 1 must be in R1 and R′

1 according
to the definition of D and the condition of R1 = R′

1.

Thus, the states in D are pairwise distinguishable and D is a minimal DFA
accepting (L(M)L(N))R with 3 · 2m+n−2 − 2n + 1 states.

The lower bound given in Theorem 3.2 coincides with the upper bound shown
in Theorem 3.1 [18]. Thus, the bounds are tight when m,n ≥ 2.

Next, we consider the state complexity of (L1L2)
R when m = 1 or n = 1.

When m = 1, L1 is either Σ∗ or ∅. Clearly,

(L1L2)
R =

{
LR
2 Σ

∗, if L1 = Σ∗,
∅, if L1 = ∅.

The state complexity of LR
2 Σ

∗ will be proved later in Theorems 4.5, 4.6, 4.7
and Lemma 4.1 in Section 4. Here we just give the following result on the state
complexity of (L1L2)

R when m = 1, n ≥ 2.

Theorem 3.3. For any integer n ≥ 2, let L1 be a 1-state DFA language and
L2 be an n-state DFA language. Then 2n−1 + 1 states are both sufficient and
necessary in the worst case for a DFA to accept (L1L2)

R.
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Note that when m = 1, n ≥ 2, the general upper bound 3 ·2m+n−2−2n+1 =
2n−1 + 1. Similarly, when n = 1, L2 is either Σ∗ or ∅, and

(L1L2)
R =

{
Σ∗LR

1 , if L2 = Σ∗,
∅, if L2 = ∅.

The state complexity of Σ∗LR
1 has been proved in [3]. Thus, we have the fol-

lowing result on the state complexity of (L1L2)
R when m ≥ 1, n = 1.

Theorem 3.4. For any integer m ≥ 1, let L1 be an m-state DFA language
and L2 be a 1-state DFA language. Then 2m−1 states are both sufficient and
necessary in the worst case for a DFA to accept (L1L2)

R.

By summarizing Theorems 3.1, 3.2 and 3.3, we can obtain Theorem 3.5.

Theorem 3.5. For any integers m ≥ 1, n ≥ 2, let L1 be an m-state DFA
language and L2 be an n-state DFA language. Then 3 · 2m+n−2 − 2n + 1 states
are both sufficient and necessary in the worst case for a DFA to accept (L1L2)

R.

4. State complexity of LR
1 L2

In this section, we study the state complexity of LR
1 L2 for an m-state DFA

language L1 and an n-state DFA language L2. We first show that the upper
bound of the state complexity of LR

1 L2 is 3 · 2m+n−2 in general (Theorem 4.1).
Then we prove that this upper bound can be reached when m,n ≥ 2 (Theo-
rem 4.2). Next, we investigate the case when m = 1 and n ≥ 1 and prove the
state complexity can be lowered to 2n−1 in such a case (Theorem 4.4). Finally,
we show that the state complexity of LR

1 L2 is 2m−1 + 1 when m ≥ 2 and n = 1
(Theorem 4.7).

Now, we start with a general upper bound of the state complexity of LR
1 L2

for any integers m,n ≥ 1.

Theorem 4.1. Let L1 and L2 be two regular languages accepted by an m-state
DFA and an n-state DFA, respectively, m,n ≥ 1. Then there exists a DFA of
at most 3 · 2m+n−2 states that accepts LR

1 L2.

Proof. Let M = (QM ,Σ, δM , sM , FM ) be a DFA of m states and L1 = L(M).
Let N = (QN ,Σ, δN , sN , FN ) be another DFA of n states and L2 = L(N).

Let M ′ = (QM ,Σ, δM ′ , FM , {sM}) be an NFA with multiple initial states
and q ∈ δM ′(p, a) if δM (q, a) = p where a ∈ Σ and p, q ∈ QM . Clearly,

L(M ′) = L(M)R = LR
1 .

By performing the subset construction on NFAM ′, we can get an equivalent,
2m-state DFA A = (QA,Σ, δA, sA, FA) such that L(A) = LR

1 . Since M
′ has only

one final state sM , we know that FA = {I | I ⊆ QM , sM ∈ I}. Thus, A has
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2m−1 final states in total. Now we construct a DFA B = (QB,Σ, δB , sB, FB)
accepting the language LR

1 L2, where

QB = {⟨I, J⟩ | I ∈ QA, J ⊆ QN},

sB =

{
⟨sA, ∅⟩, if sA ̸∈ FA;
⟨sA, {sN}⟩, otherwise,

FB = {⟨I, J⟩ ∈ QB | J ∩ FN ̸= ∅},

δB(⟨I, J⟩, a) =

{
⟨I ′, J ′⟩, if δA(I, a) = I ′, δN (J, a) = J ′, a ∈ Σ, I ′ /∈ FA;
⟨I ′, J ′ ∪ {sN}⟩, if δA(I, a) = I ′, δN (J, a) = J ′, a ∈ Σ, I ′ ∈ FA.

From the above construction, we can see that all the states in B starting with
I ∈ FA must end with J such that sN ∈ J . There are in total 2m−1 ·2n−1 states
which don’t meet this.

Thus, the number of states of the minimal DFA accepting LR
1 L2 is no more

than
2m+n − 2m−1 · 2n−1 = 3 · 2m+n−2.

This result gives an upper bound for the state complexity of LR
1 L2. Next we

show that this bound is reachable when m,n ≥ 2.

Theorem 4.2. Given two integers m,n ≥ 2, there exists a DFA M of m states
and a DFA N of n states such that any DFA accepting L(M)RL(N) needs at
least 3 · 2m+n−2 states

Proof. Let M = (QM ,Σ, δM , 0, {m − 1}) be a DFA, shown in Figure 3, where
QM = {0, 1, . . . ,m− 1}, Σ = {a, b, c, d}, and the transitions are given as:

• δM (i, a) = i+ 1 mod m, i = 0, . . . ,m− 1,

• δM (i, b) = i, i = 0, . . . ,m− 2, δM (m− 1, b) = m− 2,

• δM (m− 2, c) = m− 1, δM (m− 1, c) = m− 2,
if m ≥ 3, δM (i, c) = i, i = 0, . . . ,m− 3,

• δM (i, d) = i, i = 0, . . . ,m− 1,

Note that M is in fact identical with the second witness DFA in the proof of
Theorem 3.2 after replacing d by a, a by b, b by c, and c by d.

Let N = (QN ,Σ, δN , 0, {n− 1}) be a DFA, shown in Figure 4, where QN =
{0, 1, . . . , n− 1}, Σ = {a, b, c, d}, and the transitions are given as:

• δN (i, a) = i, i = 0, . . . , n− 1,

• δN (i, b) = i, i = 0, . . . , n− 1,

• δN (i, c) = 0, i = 0, . . . , n− 1,

• δN (i, d) = i+ 1 mod n, i = 0, . . . , n− 1,
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Figure 3: Witness DFA M which shows that the upper bound of the state complexity of

L(M)RL(N),
3

4
2m+n, is reachable when m,n ≥ 2.

Figure 4: Witness DFA N which shows that the upper bound of the state complexity of

L(M)RL(N),
3

4
2m+n, is reachable when m,n ≥ 2.

Now we design a DFA A = (QA,Σ, δA, {m− 1}, FA), where QA = {P | P ⊆
QM}, Σ = {a, b, c, d}, FA = {P | 0 ∈ P , P ∈ QA}, and the transitions are
defined as:

δA(P, e) = {j | δM (j, e) = i, i ∈ P}, P ∈ QA, e ∈ Σ.

It is easy to see that A is a DFA that accepts L(M)R. Since M is identical with
the DFA shown in Figure 2 by replacing the corresponding letters, and it has
been proved in the proof of Theorem 3.2 that any state ⟨∅, R2⟩ of the resulting
DFA is reachable from the initial state, and any two different states ⟨∅, R2⟩ and
⟨∅, R′

2⟩ are distinguishable, then the DFA A constructed in the same manner for
L(M)R in the current proof is minimal.
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Now let B = (QB,Σ, δB , sB, FB) be another DFA, where

QB = {⟨P,Q⟩ | P ∈ QA − FA, Q ⊆ QN}
∪ {⟨P ′, Q′⟩ | P ′ ∈ FA, Q

′ ⊆ QN , 0 ∈ Q′},
Σ = {a, b, c, d},
sB = ⟨{m− 1}, ∅⟩,
FB = {⟨P,Q⟩ | n− 1 ∈ Q, ⟨P,Q⟩ ∈ QB},

and for each state ⟨P,Q⟩ ∈ QB and each letter e ∈ Σ,

δB(⟨P,Q⟩, e) =
{

⟨P ′, Q′⟩ if δA(P, e) = P ′ /∈ FA, δN (Q, e) = Q′,
⟨P ′, Q′⟩ if δA(P, e) = P ′ ∈ FA, δN (Q, e) = R′, Q′ = R′ ∪ {0}.

As we mentioned in the last proof, all the states starting with P ∈ FA must end
with Q ⊆ QN such that 0 ∈ Q. Clearly, B accepts the language L(M)RL(N)
and it has

2m · 2n − 2m−1 · 2n−1 = 3 · 2m+n−2

states. Now we show that B is a minimal DFA.
(I) Every state ⟨P,Q⟩ ∈ QB is reachable. We consider the following six

cases:

1. P = ∅, Q = ∅. ⟨∅, ∅⟩ is the sink state of B. δB(⟨{m− 1}, ∅⟩, b) = ⟨P,Q⟩.

2. P ̸= ∅, Q = ∅. Let P = {p1, p2, . . . , pk}, 1 ≤ p1 < p2 < . . . < pk ≤ m− 1,
1 ≤ k ≤ m − 1. Note that 0 /∈ P , because 0 ∈ P guarantees 0 ∈ Q.
δB(⟨{m− 1}, ∅⟩, w) = ⟨P,Q⟩, where

w = ab(ac)p2−p1−1ab(ac)p3−p2−1 · · · ab(ac)pk−pk−1−1am−1−pk .

Please note that w = am−1−p1 when k = 1.

3. P = ∅, Q ̸= ∅. In this case, let Q = {q1, q2, . . . , ql}, 0 ≤ q1 < q2 < . . . <
ql ≤ n− 1, 1 ≤ l ≤ n. δB(⟨{m− 1}, ∅⟩, x) = ⟨P,Q⟩, where

x = amdql−ql−1amdql−1−ql−2 · · · amdq2−q1amdq1b.

4. P ̸= ∅, 0 /∈ P , Q ̸= ∅. Let P = {p1, p2, . . . , pk}, 1 ≤ p1 < p2 < . . . < pk ≤
m − 1, 1 ≤ k ≤ m − 1 and Q = {q1, q2, . . . , ql}, 0 ≤ q1 < q2 < . . . < ql ≤
n−1, 1 ≤ l ≤ n. We can find a string uv such that δB(⟨{m−1}, ∅⟩, uv) =
⟨P,Q⟩, where

u = ab(ac)p2−p1−1ab(ac)p3−p2−1 · · · ab(ac)pk−pk−1−1am−1−pk ,

v = amdql−ql−1amdql−1−ql−2 · · · amdq2−q1amdq1 .
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5. P ̸= ∅, 0 ∈ P , m − 1 /∈ P , Q ̸= ∅. Let P = {p1, p2, . . . , pk}, 0 =
p1 < p2 < . . . < pk < m − 1, 1 ≤ k ≤ m − 1 and Q = {q1, q2, . . . , ql},
0 = q1 < q2 < . . . < ql ≤ n − 1, 1 ≤ l ≤ n. Since 0 is in P , according to
the definition of B, 0 has to be in Q as well. There exists a string u′v′

such that δB(⟨{m− 1}, ∅⟩, u′v′) = ⟨P,Q⟩, where

u′ = ab(ac)p2−p1−1ab(ac)p3−p2−1 · · · ab(ac)pk−pk−1−1am−2−pk ,

v′ = amdql−ql−1amdql−1−ql−2 · · · amdq2−q1amdq1a.

6. P ̸= ∅, {0,m − 1} ⊆ P , Q ̸= ∅. Let P = {p1, p2, . . . , pk}, 0 = p1 < p2 <
. . . < pk = m − 1, 2 ≤ k ≤ m and Q = {q1, q2, . . . , ql}, 0 = q1 < q2 <
. . . < ql ≤ n− 1, 1 ≤ l ≤ n. In this case, we have

⟨P,Q⟩ =
{

δB(⟨{0, 1, p2 + 1, . . . , pk−1 + 1}, Q⟩, a), if m− 2 /∈ P,
δB(⟨P − {m− 1}, Q⟩, b), if m− 2 ∈ P,

where states ⟨{0, 1, p2 + 1, . . . , pk−1 + 1}, Q⟩ and ⟨P − {m − 1}, Q⟩ have
been proved to be reachable in Case 5.

(II) We then show that any two different states ⟨P1, Q1⟩ and ⟨P2, Q2⟩ in QB

are distinguishable.

1. Q1 ̸= Q2. We may assume without loss of generality that there exists x
such that x ∈ Q1 −Q2. A string dn−1−x can distinguish them because

δB(⟨P1, Q1⟩, dn−1−x) ∈ FB ,

δB(⟨P2, Q2⟩, dn−1−x) /∈ FB .

2. P1 ̸= P2, Q1 = Q2. We may assume without loss of generality that there
exists y such that y ∈ P1 − P2. Then there always exists a string ayc2dn

such that

δB(⟨P1, Q1⟩, ayc2dn) ∈ FB ,

δB(⟨P2, Q2⟩, ayc2dn) /∈ FB .

Since all the states in B are reachable and pairwise distinguishable, DFA B
is minimal. Thus, any DFA accepting L(M)RL(N) needs at least 3 · 2m+n−2

states.

Theorem 4.2 gives a lower bound for the state complexity of LR
1 L2 when

m,n ≥ 2. It coincides with the upper bound shown in Theorem 4.1 exactly.
Thus, we obtain the state complexity of the combined operation LR

1 L2 form ≥ 2
and n ≥ 2.

Theorem 4.3. For any integers m,n ≥ 2, let L1 be an m-state DFA language
and L2 be an n-state DFA language. Then 3 · 2m+n−2 states are both necessary
and sufficient in the worst case for a DFA to accept LR

1 L2.
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In the rest of this section, we study the remaining cases when either m = 1
or n = 1.

We first consider the case when m = 1 and n ≥ 2. In this case, L1 = ∅ or
L1 = Σ∗. LR

1 L2 = L1L2 holds regardless of whether L1 is ∅ or Σ∗, since ∅R = ∅
and (Σ∗)R = Σ∗. It has been shown in [25] that 2n−1 states are both sufficient
and necessary in the worst case for a DFA to accept the catenation of a 1-state
DFA language and an n-state DFA language, n ≥ 2.

When m = 1 and n = 1, it is also easy to see that 1 state is sufficient and
necessary in the worst case for a DFA to accept LR

1 L2, because LR
1 L2 is either

∅ or Σ∗. Thus, we have Theorem 4.4 concerning the state complexity of LR
1 L2

for m = 1 and n ≥ 1.

Theorem 4.4. Let L1 be a 1-state DFA language and L2 be an n-state DFA
language, n ≥ 1. Then 2n−1 states are both sufficient and necessary in the worst
case for a DFA to accept LR

1 L2.

Now, we study the state complexity of LR
1 L2 for m ≥ 2 and n = 1. Let us

start with the following upper bound.

Theorem 4.5. For any integer m ≥ 2, let L1 and L2 be two regular languages
accepted by an m-state DFA and a 1-state DFA, respectively. Then there exists
a DFA of at most 2m−1 + 1 states that accepts LR

1 L2.

Proof. Let M = (QM ,Σ, δM , sM , FM ) be a DFA of m states, m ≥ 2, k1 final
states and L1 = L(M). Let N be another DFA of 1 state and L2 = L(N). Since
N is a complete DFA, as we mentioned before, L(N) is either ∅ or Σ∗. Clearly,
LR
1 · ∅ = ∅. Thus, we need to consider only the case L2 = L(N) = Σ∗.
We construct an NFA M ′ = (QM ,Σ, δM ′ , FM , {sM}) with k1 initial states

which is similar to the proof of Theorem 4.1. q ∈ δM ′(p, a) if δM (q, a) = p where
a ∈ Σ and p, q ∈ QM . It is easy to see that

L(M ′) = L(M)R = LR
1 .

By performing subset construction on the NFA M ′, we get an equivalent,
2m-state DFA A = (QA,Σ, δA, sA, FA) such that L(A) = LR

1 . FA = {I | I ⊆
QM , sM ∈ I} because M ′ has only one final state sM . Thus, A has 2m−1 final
states in total.

Define B = (QB ,Σ, δB , sB , {fB}) where fB /∈ QA, QB = (QA −FA)∪ {fB},

sB =

{
sA if sA /∈ FA,
fB otherwise.

and for any a ∈ Σ and P ∈ QB ,

δB(P, a) =

 δA(P, a) if δA(P, a) /∈ FA,
fB if δA(P, a) ∈ FA,
fB if P = fB .

The automaton B is exactly the same as A except that A’s 2m−1 final states
are made to be sink states and these sink, final states are merged into one,
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since they are equivalent. When the computation reaches the final state fB, it
remains there. Now, it is clear that B has

2m − 2m−1 + 1 = 2m−1 + 1

states and L(B) = LR
1 Σ

∗.

This theorem shows an upper bound for the state complexity of LR
1 L2 for

m ≥ 2 and n = 1. The upper bound can also be proved based on the results
in [1]. Next we show the upper bound is reachable.

Lemma 4.1. Given an integer m = 2 or 3, there exists an m-state DFA M
and a 1-state DFA N such that any DFA accepting L(M)RL(N) needs at least
2m−1 + 1 states.

Proof. When m = 2 and n = 1, we can construct the following witness DFAs.
Let M = ({0, 1},Σ, δM , 0, {1}) be a DFA, where Σ = {a, b}, and the transitions
are given as:

• δM (0, a) = 1, δM (1, a) = 0,

• δM (0, b) = 0, δM (1, b) = 0.

Let N be the DFA accepting Σ∗. Then the resulting DFA for L(M)RΣ∗ is
A = ({0, 1, 2},Σ, δA, 0, {1}) where

• δA(0, a) = 1, δA(1, a) = 1, δA(2, a) = 2,

• δA(0, b) = 2, δA(1, b) = 1, δA(2, b) = 2.

When m = 3 and n = 1, the witness DFAs are as follows. Let M ′ =
({0, 1, 2},Σ′, δM ′ , 0, {2}) be a DFA, where Σ′ = {a, b, c}, and the transitions
are:

• δM ′(0, a) = 1, δM ′(1, a) = 2, δM ′(2, a) = 0,

• δM ′(0, b) = 0, δM ′(1, b) = 1, δM ′(2, b) = 1,

• δM ′(0, c) = 0, δM ′(1, c) = 2, δM ′(2, c) = 1.

Let N ′ be the DFA accepting Σ′∗. The resulting DFA for L(M ′)RΣ′∗ is A′ =
({0, 1, 2, 3, 4},Σ′, δA′ , 0, {3}) where

• δA′(0, a) = 1, δA′(1, a) = 3, δA′(2, a) = 2, δA′(3, a) = 3, δA′(4, a) = 3,

• δA′(0, b) = 2, δA′(1, b) = 4, δA′(2, b) = 2, δA′(3, b) = 3, δA′(4, b) = 4,

• δA′(0, c) = 1, δA′(1, c) = 0, δA′(2, c) = 2, δA′(3, c) = 3, δA′(4, c) = 4.

The minimality of A and A′ can be easily checked by the reader.

The above result shows that the bound 2m−1 + 1 is reachable when m is
equal to 2 or 3 and n = 1. The last case is m ≥ 4 and n = 1.
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Theorem 4.6. Given an integer m ≥ 4, there exists a DFA M of m states and
a DFA N of 1 state such that any DFA accepting L(M)RL(N) needs at least
2m−1 + 1 states.

Proof. Let M = (QM ,Σ, δM , 0, {m − 1}) be a DFA, shown in Figure 5, where
QM = {0, 1, . . . ,m − 1}, m ≥ 4, Σ = {a, b, c, d}, and the transitions are given
as:

• δM (i, a) = i+ 1 mod m, i = 0, . . . ,m− 1,

• δM (i, b) = i, i = 0, . . . ,m− 2, δM (m− 1, b) = m− 2,

• δM (i, c) = i, i = 0, . . . ,m−3, δM (m−2, c) = m−1, δM (m−1, c) = m−2,

• δM (0, d) = 0, δM (i, d) = i+ 1, i = 1, . . . ,m− 2, δM (m− 1, d) = 1.

Figure 5: Witness DFA M which shows that the upper bound of the state complexity of
L(M)RL(N), 2m−1 + 1, is reachable when m ≥ 4 and n = 1.

Let N be the DFA accepting Σ∗. Then L(M)RL(N) = L(M)RΣ∗. Now we
design a DFA A = (QA,Σ, δA, {m−1}, FA) similar to the proof of Theorem 4.2,
where QA = {P | P ⊆ QM}, Σ = {a, b, c, d}, FA = {P | 0 ∈ P , P ∈ QA}, and
the transitions are defined as:

δA(P, e) = {j | δM (j, e) = i, i ∈ P}, P ∈ QA, e ∈ Σ.

It is easy to see that A is a DFA that accepts L(M)R. Since the transitions of
M on letters a, b, and c are exactly the same as those of DFA M in the proof of
Theorem 4.2, we can say that A is minimal and it has 2m states, among which
2m−1 states are final.

Define B = (QB ,Σ, δB , sB , {fB}) where fB /∈ QA, QB = (QA −FA)∪ {fB},
sB = {m− 1}, and for any e ∈ Σ and I ∈ QB ,

δB(I, e) =

 δA(I, e) if δA(I, e) /∈ FA,
fB if δA(I, e) ∈ FA,
fB if I = fB .
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The DFA B is the same as A except that A’s 2m−1 final states are changed
into sink states and merged to one sink, final state, as we did in the proof of
Theorem 4.5. Clearly, B has 2m − 2m−1 + 1 = 2m−1 + 1 states and L(B) =
L(M)RΣ∗. Next we show that B is a minimal DFA.

(I) Every state I ∈ QB is reachable from {m − 1}. The proof is similar to
that of Theorem 4.2. We consider the following four cases:

1. I = ∅. δA({m− 1}, b) = I = ∅.

2. I = fB. δA({m− 1}, am−1) = I = fB .

3. |I| = 1. Assume that I = {i}, 1 ≤ i ≤ m − 1. Note that i ̸= 0 because
all the final states in A have been merged into fB. In this case, δA({m−
1}, am−1−i) = I.

4. 2 ≤ |I| ≤ m − 1. Assume that I = {i1, i2, . . . , ik}, 1 ≤ i1 < i2 < . . . <
ik ≤ m− 1, 2 ≤ k ≤ m− 1. δA({m− 1}, w) = I, where

w = ab(ac)i2−i1−1ab(ac)i3−i2−1 · · · ab(ac)ik−ik−1−1am−1−ik .

(II) Any two different states I and J in QB are distinguishable.
Since fB is the only final state in QB , it is inequivalent to any other state.

Thus, we consider the case when neither of I and J is fB.
We may assume without loss of generality that there exists x such that

x ∈ I − J . x is always greater than 0 because all the states which include 0
have been merged into fB . Then a string dx−1a can distinguish these two states
because

δB(I, d
x−1a) = fB ,

δB(J, d
x−1a) ̸= fB .

Since all the states in B are reachable and pairwise distinguishable, B is a
minimal DFA. Thus, any DFA accepting L(M))RΣ∗ needs at least 2m−1 + 1
states.

After summarizing Theorem 4.5, Theorem 4.6 and Lemma 4.1, we obtain
the state complexity of the combined operation LR

1 L2 for m ≥ 2 and n = 1.

Theorem 4.7. For any integer m ≥ 2, let L1 be an m-state DFA language and
L2 be a 1-state DFA language. Then 2m−1 + 1 states are both sufficient and
necessary in the worst case for a DFA to accept LR

1 L2.

5. State complexity of L∗
1L2

In this section, we investigate the state complexity of L(A)∗L(B) for two
DFAs A and B of sizes m,n ≥ 1, respectively. We first notice that, when
n = 1, the state complexity of L(A)∗L(B) is 1 for any m ≥ 1. This is because
B is complete (L(B) is either ∅ or Σ∗), and we have either L(A)∗L(B) = ∅
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or Σ∗ ⊆ L(A)∗L(B) ⊆ Σ∗. Thus, L(A)∗L(B) is always accepted by a 1 state
DFA. Next, we consider the case where A has only one final state, which is also
the initial state. In such a case, L(A)∗ is also accepted by A, and hence the
state complexity of L(A)∗L(B) is equal to that of L(A)L(B). We will show
that, for any A of size m ≥ 1 in this form and any B of size n ≥ 2, the state
complexity of L(A)L(B) (also L(A)∗L(B)) is m(2n−1)−2n−1+1 (Theorems 5.1
and 5.2), which is lower than the state complexity of catenation in the general
case. Lastly, we consider the state complexity of L(A)∗L(B) in the remaining
case, that is when A has at least one final state that is not the initial state and
n ≥ 2. We will show that its upper bound (Theorem 5.3) coincides with its lower
bound (Theorem 5.4), and the state complexity is 5 · 2m+n−3 − 2m−1 − 2n + 1.

Now, we consider the case where the DFA A has only one final state, which
is also the initial state, and first obtain the following upper bound of the state
complexity of L(A)L(B) (L(A)∗L(B)), for any DFA B of size n ≥ 2.

Theorem 5.1. For integers m ≥ 1 and n ≥ 2, let A and B be two DFAs with
m and n states, respectively, where A has only one final state, which is also the
initial state. Then there exists a DFA of at most m(2n − 1) − 2n−1 + 1 states
that accepts L(A)L(B), which is equal to L(A)∗L(B).

Proof. Let A = (Q1,Σ, δ1, s1, {s1}) and B = (Q2,Σ, δ2, s2, F2). We construct a
DFA C = (Q,Σ, δ, s, F ) such that

Q = Q1 × (2Q2 − {∅})− {s1} × (2Q2−{s2} − {∅}),
s = ⟨s1, {s2}⟩,
F = {⟨q, T ⟩ ∈ Q | T ∩ F2 ̸= ∅},
δ(⟨q, T ⟩, a) = ⟨q′, T ′⟩, for a ∈ Σ, where q′ = δ1(q, a) and T ′ = R ∪ {s2}

if q′ = s1, T
′ = R otherwise, where R = δ2(T, a).

Intuitively, Q contains the pairs whose first component is a state of Q1 and
second component is a subset of Q2. Since s1 is the final state of A, without
reading any letter, we can enter the initial state of B. Thus, states ⟨q, ∅⟩ such
that q ∈ Q1 can never be reached in C, because B is complete. Moreover, Q
does not contain those states whose first component is s1 and second component
does not contain s2.

Clearly, C has m(2n − 1)− 2n−1 + 1 states, and we can verify that L(C) =
L(A)L(B).

Next, we show that this upper bound can be reached by some witness DFAs
in this specific form.

Theorem 5.2. For any integers m ≥ 1 and n ≥ 2, there exist a DFA A of m
states and a DFA B of n states, where A has only one final state, which is also
the initial state, such that any DFA accepting the language L(A)L(B), which is
equal to L(A)∗L(B), needs at least m(2n − 1)− 2n−1 + 1 states.
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Figure 6: Witness DFA A which shows that the upper bound of the state complexity of
L(A)∗L(B), m(2n − 1)− 2n−1 +1, is reachable when A has only one final state, which is also
the initial state, and m,n ≥ 2.

Figure 7: Witness DFA B which shows that the upper bound of the state complexity of
L(A)∗L(B), m(2n−1)−2n−1+1, is reachable, when A has only one final state, which is also
the initial state, and m,n ≥ 2.

Proof. When m = 1, the witness DFAs used in the proof of Theorem 2.1 in [25]
can be used to show that the upper bound proposed in Theorem 5.1 can be
reached.

Next, we consider the case when m ≥ 2. We provide witness DFAs A and
B, depicted in Figures 6 and 7, respectively, over the three letter alphabet
Σ = {a, b, c}.

A is defined as A = (Q1,Σ, δ1, 0, {0}) where Q1 = {0, 1, . . . ,m− 1}, and the
transitions are given as

• δ1(i, a) = i+ 1 mod m, for i ∈ Q1,

• δ1(i, x) = i, for i ∈ Q1, where x ∈ {b, c}.

B is defined as B = (Q2,Σ, δ2, 0, {n − 1}) where Q2 = {0, 1, . . . , n − 1},
where the transitions are given as
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• δ2(i, a) = i, for i ∈ Q2,

• δ2(i, b) = i+ 1 mod n, for i ∈ Q2,

• δ2(0, c) = 0, δ2(i, c) = i+ 1 mod n, for i ∈ {1, . . . , n− 1}.

Following the construction described in the proof of Theorem 5.1, we con-
struct a DFA C = (Q,Σ, δ, s, F ) that accepts L(A)L(B) (also L(A)∗L(B)). To
prove that C is minimal, we show that (I) all the states in Q are reachable from
s, and (II) any two different states in Q are not equivalent.

For (I), we show that all the states in ⟨q, T ⟩ ∈ Q are reachable by induction
on the size of T .

The basis clearly holds, since, for any i ∈ Q1, the state ⟨i, {0}⟩ is reachable
from ⟨0, {0}⟩ by reading string ai, and the state ⟨i, {j}⟩ can be reached from
the state ⟨i, {0}⟩ on string bj , for any i ∈ {1, . . . ,m− 1} and j ∈ Q2.

In the induction steps, we assume that all the states ⟨q, T ⟩ such that |T | < k
are reachable. Then we consider the states ⟨q, T ⟩ where |T | = k. Let T =
{j1, j2, . . . , jk} such that 0 ≤ j1 < j2 < . . . < jk ≤ n − 1. We consider the
following three cases:

1. j1 = 0 and j2 = 1. For any state i ∈ Q1, the state ⟨i, T ⟩ ∈ Q can be
reached as

⟨i, {0, 1, j3, . . . , jk}⟩ = δ(⟨0, {0, j3 − 1, . . . , jk − 1}⟩, bai),

where {0, j3 − 1, . . . , jk − 1} is of size k − 1.

2. j1 = 0 and j2 > 1. For any state i ∈ Q1, the state ⟨i, {0, j2, . . . , jk}⟩ can
be reached from the state ⟨i, {0, 1, j3 − j2 +1, . . . , jk − j2 +1}⟩ by reading
string cj2−1.

3. j1 > 0. In such a case, the first component of the state ⟨q, T ⟩ cannot be 0.
Thus, for any state i ∈ {1, . . . ,m− 1}, the state ⟨i, {j1, j2, . . . , jk}⟩ can be
reached from the state ⟨i, {0, j2 − j1, . . . , jk − j1}⟩ by reading string bj1 .

Next, we show that any two distinct states ⟨q, T ⟩ and ⟨q′, T ′⟩ in Q are not
equivalent. We consider the following two cases:

1. q ̸= q′. Without loss of generality, we assume q ̸= 0. Then the string
w = cn−1am−qbn can distinguish the two states, because δ(⟨q, T ⟩, w) ∈ F
and δ(⟨q′, T ′⟩, w) ̸∈ F .

2. q = q′ and T ̸= T ′. We may assume without loss of generality that there
exists j such that j ∈ T−T ′. It is clear that, when q ̸= 0, string bn−1−j can
distinguish the two states, and when q = 0, string cn−1−j can distinguish
the two states since j cannot be 0.

Due to (I) and (II), the DFA C needs at least m(2n − 1) − 2n−1 + 1 states
and is minimal.

In the rest of this section, we focus on the case where the DFA A contains
at least one final state that is not the initial state. Thus, this DFA is of size at
least 2. We first obtain the following upper bound for the state complexity.
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Theorem 5.3. Let A = (Q1,Σ, δ1, s1, F1) be a DFA such that |Q1| = m > 1 and
|F1−{s1}| = k1 ≥ 1, and B = (Q2,Σ, δ2, s2, F2) be a DFA such that |Q2| = n >
1. Then there exists a DFA of at most 2m+n−2+3 ·2m+n−k1−2−2m−k1 −2n+1
states that accepts L(A)∗L(B).

Proof. We denote F1 − {s1} by F0. Then |F0| = k1 ≥ 1.
We construct a DFA C = (Q,Σ, δ, s, F ) for the language L∗

1L2, where L1

and L2 are the languages accepted by DFAs A and B, respectively.
Let Q = {⟨p, t⟩ | p ∈ P and t ∈ T} − {⟨p′, t′⟩ | p′ ∈ P ′ and t′ ∈ T ′}, where

P = {R | R ⊆ (Q1 − F0) and R ̸= ∅} ∪ P ′,

T = 2Q2 − {∅},
P ′ = {R | R ⊆ Q1, s1 ∈ R, and R ∩ F0 ̸= ∅},
T ′ = 2Q2−{s2} − {∅}.

The initial state s is s = ⟨{s1}, {s2}⟩.
The set of final states is defined to be F = {⟨p, t⟩ ∈ Q | t ∩ F2 ̸= ∅}.
The transition relation δ is defined as follows:

δ(⟨p, t⟩, a) =
{

⟨p′, t′⟩ if p′ ∩ F1 = ∅,
⟨p′ ∪ {s1}, t′ ∪ {s2}⟩ otherwise,

where, a ∈ Σ, p′ = δ1(p, a), and t′ = δ2(t, a).
Intuitively, C is equivalent to the NFA C ′ obtained by first constructing

an NFA A′ that accepts L∗
1, then catenating this new NFA with DFA B by λ-

transitions. Note that, in the construction of A′, we need to add a new initial and
final state s′1. However, this new state does not appear in the first component of
any of the states in Q. The reason is as follows. First, note that this new state
does not have any incoming transitions. Thus, from the initial state s′1 of A′,
after reading a nonempty string, we will never return to this state. As a result,
states ⟨p, t⟩ such that p ⊆ Q1 ∪ {s′1}, s′1 ∈ p, and t ∈ 2Q2 is never reached in
DFA C except for the state ⟨{s′1}, {s2}⟩. Then we note that in the construction
of A′, states s′1 and s1 should reach the same state on any letter in Σ. Thus, we
can say that states ⟨{s′1}, {s2}⟩ and ⟨{s1}, {s2}⟩ are equivalent, because neither
of them is final if s2 ̸∈ F2, and they are both final states otherwise. Hence, we
merge this two states and let ⟨{s1}, {s2}⟩ be the initial state of C.

Also, we notice that states ⟨p, ∅⟩ such that p ∈ P can never be reached in
C, because B is complete.

Moreover, C does not contain those states whose first component contains a
final state of A and whose second component does not contain the initial state
of B.

Therefore, we can verify that DFA C indeed accepts L∗
1L2, and it is clear

that the size of the state set of C is

|Q| = (2m−1 + 2m−1−k1 − 1)(2n − 1)− (2m−1 − 2m−k1−1)(2n−1 − 1)

= 2m+n−2 + 3 · 2m+n−k1−2 − 2m−k1 − 2n + 1.

20



Then we show that this upper bound is reachable by some witness DFAs.

Figure 8: Witness DFA A which shows that the upper bound of the state complexity of
L(A)∗L(B), 5 · 2m+n−3 − 2m−1 − 2n + 1, is reachable when m,n ≥ 2.

Figure 9: Witness DFA B which shows that the upper bound of the state complexity of
L(A)∗L(B), 5 · 2m+n−3 − 2m−1 − 2n + 1, is reachable when m,n ≥ 2.

Theorem 5.4. For any integers m,n ≥ 2, there exist a DFA A of m states and
a DFA B of n states such that any DFA accepting L(A)∗L(B) needs at least
5 · 2m+n−3 − 2m−1 − 2n + 1 states.

Proof. We define the following two automata over a four letter alphabet Σ =
{a, b, c, d}.

Let A = (Q1,Σ, δ1, 0, {m−1}), shown in Figure 8, where Q1 = {0, 1, . . . ,m−
1}, and the transitions are defined as

• δ1(i, a) = i+ 1 mod m, for i ∈ Q1,

• δ1(0, b) = 0, δ1(i, b) = i+ 1 mod m, for i ∈ {1, . . . ,m− 1},

21



• δ1(i, x) = i, for i ∈ Q1, x ∈ {c, d}.

Let B = (Q2,Σ, δ2, 0, {n−1}), shown in Figure 9, where Q2 = {0, 1, . . . , n−
1}, and the transitions are defined as

• δ2(i, x) = i, for i ∈ Q2, x ∈ {a, b},

• δ2(i, c) = i+ 1 mod n, for i ∈ Q2,

• δ2(i, d) = 0, for i ∈ Q2.

Let C = {Q,Σ, δ, ⟨{0}, {0}⟩, F} be the DFA accepting the language L(A)∗L(B)
which is constructed from A and B exactly as described in the proof of Theo-
rem 5.3.

Now, we prove that the size of Q is minimal by showing that (I) any state
in Q can be reached from the initial state, and (II) no two different states in Q
are equivalent.

We first prove (I) by induction on the size of the second component t of the
states in Q.

The basis holds, since, for any i ∈ Q2, the state ⟨{0}, {i}⟩ can be reached
from the initial state ⟨{0}, {0}⟩ on the string ci. In the proof of Theorem 3.3
in [25], a witness DFA is used to prove the state complexity of star operation
on regular languages. The DFA A above is a modification of that witness DFA
by adding c− and d− loops to each state. With similar construction of the
resulting DFA for star, it has been proved in [25] that any p ∈ P is reachable
from {0} on some string over letters a and b. Since a− and b− transitions do
not change the second element {i} in the state, it is clear that the state ⟨p, {i}⟩
of Q, where p ∈ P and i ∈ Q2, is reachable from the state ⟨{0}, {i}⟩ on the same
string.

In the induction steps, assume that all the states ⟨p, t⟩ in Q such that p ∈ P
and |t| < k are reachable. Then we consider the states ⟨p, t⟩ in Q where p ∈ P
and |t| = k. Let t = {j1, j2, . . . , jk} such that 0 ≤ j1 < j2 < . . . < jk ≤ n− 1.

Note that states such that p = {0} and j1 = 0 are reachable as follows:

⟨{0}, {0, j2, . . . , jk}⟩ = δ(⟨{0}, {0, j3 − j2, . . . , jk − j2}⟩, cj2am−1b).

Then states such that p = {0} and j1 > 0 can be reached as follows:

⟨{0}, {j1, j2, . . . , jk}⟩ = δ(⟨{0}, {0, j2 − j1, . . . , jk − j1}⟩, cj1).

Once again, with the same strings over letters a and b in the proof of Theorem
3.3 in [25], states ⟨p, t⟩ in Q, where p ∈ P and |t| = k, can be reached from the
state ⟨{0}, t⟩.

Next, we show that any two states in Q are not equivalent. Let ⟨p, t⟩ and
⟨p′, t′⟩ be two different states in Q. We consider the following two cases:

1. p ̸= p′. We may assume without loss of generality that there exists i such
that i ∈ p− p′. It is clear that string am−1−idcn is accepted by C starting
from the state ⟨p, t⟩, but it is not accepted starting from the state ⟨p′, t′⟩.
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2. p = p′ and t ̸= t′. We may assume without loss of generality that there
exists j such that j ∈ t − t′. Then the state ⟨p, t⟩ reaches a final state
on string cn−1−j , but the state ⟨p′, t′⟩ does not on the same string. Note
that, when m− 1 ∈ p, we can say that j ̸= 0.

Due to (I) and (II), DFA C has at least 5 ·2m+n−3−2m−1−2n+1 reachable
states, and any two of them are not equivalent.

6. State complexity of (L1 ∪ L2)L3

In this section, we study the state complexity of (L1 ∪ L2)L3, where L1, L2

and L3 are regular languages accepted by DFAs of m,n, p states, respectively.
We first show that the state complexity of (L1∪L2)L3 is mn2p−(m+n−1)2p−1

when m,n, p ≥ 2 (Theorem 6.1). Next, we investigate the case when m = 1 or
n = 1 and p ≥ 2 and show that the state complexity is mn2p − 2p−1 in such a
case (Theorem 6.2). Then we prove that the state complexity of (L1 ∪L2)L3 is
mn when m = 1 or n = 1 and p = 1 (Theorem 6.3). Finally, we show that the
state complexity of (L1 ∪ L2)L3 is mn −m − n + 2 when m,n ≥ 2 and p = 1
(Theorem 6.4).

Now let us start with the state complexity of (L1 ∪ L2)L3 for any integers
m,n, p ≥ 2.

Theorem 6.1. Let L1, L2 and L3 be three regular languages accepted by an m-
state DFA, an n-state DFA and a p-state DFA, respectively, m,n, p ≥ 2. Then
mn2p − (m + n − 1)2p−1 states are sufficient and necessary in the worst case
for a DFA to accept (L1 ∪ L2)L3.

Proof. We first show that mn2p − (m+ n− 1)2p−1 states are sufficient. It has
been proved in [25] that the state complexity of L(U)L(V ) is upper bounded
by u2v − k2v−1, where U and V are u-state and v-state automata, respectively,
and U has k final states. Thus, the state complexity of (L1 ∪ L2)L3 is no more
than mn2p − k′2p−1 by the mathematical composition of the state complexity
of union and catenation, where k′ is the number of final states in the DFA
accepting L1 ∪L2. We can easily get the upper bound mn2p − (m+n− 1)2p−1

when the DFAs for L1 and L2 both have a single final state. Note that in the
minimal, complete DFA for arbitrary L1∪L2, the number of final states k′ may
be less than (m+ n− 1). However, it is clear that

(mn− (m+ n− 1) + k′)2p − k′2p−1 ≤ mn2p − (m+ n− 1)2p−1.

Now let us prove thatmn2p−(m+n−1)2p−1 states are necessary in the worst
case. Let A = (QA,Σ, δA, 0, {m− 1}) be a DFA, where QA = {0, 1, . . . ,m− 1},
Σ = {a, b, c, d}, and the transitions are given as:

• δA(i, a) = i+ 1 mod m, i = 0, . . . ,m− 1,

• δA(i, e) = i, i = 0, . . . ,m− 1, e ∈ {b, c, d}.
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Let B = (QB,Σ, δB , 0, {n − 1}) be a DFA, where QB = {0, 1, . . . , n − 1}, Σ =
{a, b, c, d}, and the transitions are given as:

• δB(i, e) = i, i = 0, . . . , n− 1, e ∈ {a, c, d},

• δB(i, b) = i+ 1 mod n, i = 0, . . . , n− 1.

Let C = (QC ,Σ, δC , 0, {p − 1}) be a DFA, where QC = {0, 1, . . . , p − 1}, Σ =
{a, b, c, d}, and the transitions are given as:

• δC(i, e) = i, i = 0, . . . , p− 1, e ∈ {a, b},

• δC(i, c) = i+ 1 mod p, i = 0, . . . , p− 1,

• δC(i, d) = 1, i = 0, . . . , p− 1.

Next we construct a DFA D = (QD,Σ, δD, sD, FD), where

QD = M ∪N ∪ P,

M = {⟨i, j,K⟩ | i ∈ QA − {m− 1}, j ∈ QB − {n− 1}, K ⊆ QC},
N = {⟨i, j,K⟩ | i = m− 1, j ∈ QB , K ⊆ QC , 0 ∈ K},
P = {⟨i, j,K⟩ | i ∈ QA, j = n− 1, K ⊆ QC , 0 ∈ K},
sD = ⟨0, 0, ∅⟩,
FD = {⟨i, j,K⟩ ∈ QD | p− 1 ∈ K},

and for any g = ⟨i, j,K⟩ ∈ QD, a ∈ Σ, δD(g, a) = ⟨i′, j′,K ′⟩, where

• if δA(i, a) = i′ ̸= m− 1 and δB(j, a) = j′ ̸= n− 1, then δC(K, a) = K ′,

• if δA(i, a) = i′ = m− 1 and δB(j, a) = j′, then K ′ = δC(K, a) ∪ {0},

• if δA(i, a) = i′ and δB(j, a) = j′ = n− 1, then K ′ = δC(K, a) ∪ {0}.

Clearly, D accepts (L(A) ∪ L(B))L(C). We will prove D is a minimal DFA
in the following.

(I) We first show that every state ⟨i, j,K⟩ ∈ QD, is reachable from sD by
induction on the size of K.

When |K| = 0, we can see i ̸= m−1 and j ̸= n−1 according to the definition
of D. The state ⟨i, j, ∅⟩ is reachable from sD by reading aibj . When |K| = 1,
let K be {k1}, 0 ≤ k1 ≤ p − 1. We have δD(sD, amck1aibj) = ⟨i, j,K⟩. Note
that if i = m− 1 or j = n− 1, then K has to be {0} in this case.

Assume that any state ⟨i′, j′,K ′⟩ ∈ QD such that |K ′| = q ≥ 1 is reachable
from sD. We will prove that ⟨i, j,K⟩ ∈ QD such that |K| = q+1 is reachable in
the following. Let K = {l1, l2, . . . , lq+1} and K ′ = {l2− l1, . . . , lq+1− l1}, where
0 ≤ l1 < l2 < . . . < lq+1 ≤ p− 1. Then

δD(⟨0, 0,K ′⟩, amcl1aibj) = ⟨i, j,K⟩.

Since |K ′| = q and ⟨0, 0,K ′⟩ is reachable from sD according to the induction
hypothesis, the state ⟨i, j,K⟩ is also reachable. As we mentioned, if i = m−1 or
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j = n− 1, then l1 has to be 0. Thus, we have proved every state ⟨i, j,K⟩ ∈ QD,
can be reached from sD.

(II) Next, we show that any two different states ⟨i1, j1,K1⟩, ⟨i2, j2,K2⟩ ∈ QD,
are distinguishable. We consider the following three cases.

1. K1 ̸= K2. We may assume without loss of generality that there exists x
such that x ∈ K1 − K2. A string cp−1−x can distinguish the two states
because

δD(⟨i1, j1,K1⟩, cp−1−x) ∈ FD,

δD(⟨i2, j2,K2⟩, cp−1−x) /∈ FD.

2. i1 ̸= i2, K1 = K2. Without loss of generality, we assume that i1 > i2.
Then there always exists a string bn−j2dam−1−i1cp−1 such that

δD(⟨i1, j1,K1⟩, bn−j2dam−1−i1cp−1) ∈ FD,

δD(⟨i2, j2,K2⟩, bn−j2dam−1−i1cp−1) /∈ FD.

3. i1 = i2, j1 ̸= j2, K1 = K2. Without loss of generality, we assume j1 > j2 in
this case. Then we can distinguish the two states with am−i1dbn−1−j1cp−1

because

δD(⟨i1, j1,K1⟩, am−i1dbn−1−j1cp−1) ∈ FD,

δD(⟨i2, j2,K2⟩, am−i1dbn−1−j1cp−1) /∈ FD.

Thus, the states in D are pairwise distinguishable and D is a minimal DFA
accepting (L(A) ∪ L(B))L(C) with mn2p − (m+ n− 1)2p−1 states.

Nest, we consider the case when m = 1 or n = 1, and p ≥ 2. When m = 1,
n ≥ 2, p ≥ 2, the resulting language (L1 ∪ L2)L3 is either Σ∗L3 or L2L3 whose
state complexities are 2p−1 and n2p − 2p−1, respectively [25]. Clearly, the state
complexity of (L1 ∪L2)L3 should be the latter one. When m ≥ 2, n = 1, p ≥ 2,
the case is symmetric and the state complexity is m2p−2p−1. When m = n = 1,
n ≥ 2, (L1 ∪ L2)L3 is either Σ∗L3 or ∅ and the state complexity is 2p−1. Thus,
we can get Theorem 6.2.

Theorem 6.2. Let L1, L2 and L3 be three regular languages accepted by an
m-state DFA, an n-state DFA and a p-state DFA, respectively, with m = 1 or
n = 1, and p ≥ 2. Then mn2p − 2p−1 states are sufficient and necessary in the
worst case for a DFA to accept (L1 ∪ L2)L3.

Now let us investigate the case when p = 1. In this case, the language L3 is
either Σ∗ or ∅. In [25], it has been proved that the state complexity of L1Σ

∗ is
m. Therefore, the mathematical composition of the state complexities of union
and catenation for (L1∪L2)L3 when p = 1 is mn. This upper bound is reachable
when m = 1 or n = 1, and p = 1, because

(L1 ∪ L2)Σ
∗ =

 L1Σ
∗, if m ≥ 2, n = 1, L2 = ∅,

L2Σ
∗, if m = 1, L1 = ∅, n ≥ 2,

Σ∗, if m = n = 1, L1 = Σ∗ or L2 = Σ∗.
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Thus, Theorem 6.3 in the following holds.

Theorem 6.3. Let L1, L2 and L3 be three regular languages accepted by an
m-state DFA, an n-state DFA and a 1-state DFA, respectively, m = 1 or n = 1.
Then mn states are sufficient and necessary in the worst case for a DFA to
accept (L1 ∪ L2)L3.

Now the only case left is m,n ≥ 2 and p = 1. The upper bound can be
lowered in this case, because the multiple final states in the resulting DFA
for L1 ∪ L2 are merged to one sink, final state to accept (L1 ∪ L2)Σ

∗. There
are m + n − 1 such final states in the worst case. Thus, the upper bound is
mn−m−n+2 in this case and it is easy to see that L1 = {w ∈ {a, b}∗ | |w|a ≡
m − 1 mod m}, L2 = {w ∈ {a, b}∗ | |w|b ≡ n − 1 mod n}, and L3 = {a, b}∗
are the witness regular languages that reach the upper bound.

Theorem 6.4. Let L1, L2 and L3 be three regular languages accepted by an
m-state DFA, an n-state DFA and a 1-state DFA, respectively, m,n ≥ 2. Then
mn−m− n+2 states are sufficient and necessary in the worst case for a DFA
to accept (L1 ∪ L2)L3.

7. State complexity of (L1 ∩ L2)L3

In this section, we investigate the state complexity of (L1∩L2)L3, where L1,
L2 and L3 are regular languages accepted by DFAs ofm,n, p states, respectively.
We first show that the state complexity of (L1 ∩ L2)L3 is mn2p − 2p−1 when
m,n ≥ 1, p ≥ 2 (Theorem 7.1). Next, we prove the case when m,n ≥ 1, p = 1
and show that the state complexity is mn in this case (Theorem 7.2).

Let us start with the state complexity of (L1∩L2)L3 for any integers m,n ≥
1, p ≥ 2.

Theorem 7.1. Let L1, L2 and L3 be three regular languages accepted by an
m-state DFA, an n-state DFA and a p-state DFA, respectively, m,n ≥ 1, p ≥ 2.
Then mn2p − 2p−1 states are sufficient and necessary in the worst case for a
DFA to accept (L1 ∩ L2)L3.

Proof. The state complexity of (L1 ∩ L2)L3 is upper bounded by mn2p − 2p−1

because it is the mathematical composition of the state complexities of intersec-
tion and catenation [25]. Thus, we only need to prove that mn2p − 2p−1 states
are necessary in the worst case. When m = 1 and p ≥ 2, (L1 ∩ L2)L3 is either
L2L3 or ∅. The state complexity of L2L3 is n2p−2p−1 [25] which coincides with
the upper bound we obtained. The case when n = 1 and p ≥ 2 is symmetric.

When m,n, p ≥ 2, we use the same witness DFAs A, B and C in the proof
of Theorem 6.1. Next we construct a DFA D = (QD,Σ, δD, sD, FD), where

QD = M −N,

M = {⟨i, j,K⟩ | i ∈ QA, j ∈ QB , K ⊆ QC},
N = {⟨i, j,K⟩ | i = m− 1, j = n− 1, K ⊆ QC − {0}},
sD = ⟨0, 0, ∅⟩,
FD = {⟨i, j,K⟩ ∈ QD | p− 1 ∈ K},
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and for any g = ⟨i, j,K⟩ ∈ QD, a ∈ Σ, δD is defined as follows,

δD(g, a) =

 ⟨δA(i, a), δB(j, a), δC(K, a) ∪ {0}⟩, if δA(i, a) = m− 1
and δB(j, a) = n− 1,

⟨δA(i, a), δB(j, a), δC(K, a)⟩, otherwise.

It is easy to see that D accepts (L(A) ∩ L(B))L(C). In the following, we
will show D is minimal with a similar method as in the proof of Theorem 6.1.

(I) First, we prove that any state ⟨i, j,K⟩ ∈ QD can be reached from sD by
induction on the size of K.

When |K| = 0, we have i ̸= m − 1 or j ̸= n − 1 according to the definition
of D. The state ⟨i, j, ∅⟩ can be reached from sD by aibj . When |K| = 1, let
K = {k1}, 0 ≤ k1 ≤ p − 1. Then δD(sD, am−1bn−1abck1aibj) = ⟨i, j,K⟩. If
i = m− 1 and j = n− 1, K must be {0} when |K| = 1.

Assume any state ⟨i′, j′,K ′⟩ ∈ QD such that |K ′| = q ≥ 1 can be reached
from sD. In the following we will prove ⟨i, j,K⟩ ∈ QD such that |K| = q + 1
is also reachable. Let K = {l1, l2, . . . , lq+1} and K ′ = {l2 − l1, . . . , lq+1 − l1},
where 0 ≤ l1 < l2 < . . . < lq+1 ≤ p− 1. Then

δD(⟨0, 0,K ′⟩, am−1bn−1abcl1aibj) = ⟨i, j,K⟩.

Since ⟨0, 0,K ′⟩ where |K ′| = p is reachable as the induction hypothesis, the
state ⟨i, j,K⟩ is also reachable. Again, if i = m − 1 and j = n − 1, l1 must be
0. Thus, all states in D are reachable from sD.

(II) Next, we prove that any two different states ⟨i1, j1,K1⟩ and ⟨i2, j2,K2⟩
in QD, are distinguishable. There are three cases to be considered.

1. K1 ̸= K2. Without loss of generality, we may assume that there exists x
such that x ∈ K1 − K2 and a string cp−1−x distinguishes the two states
because

δD(⟨i1, j1,K1⟩, cp−1−x) ∈ FD,

δD(⟨i2, j2,K2⟩, cp−1−x) /∈ FD.

2. i1 ̸= i2, K1 = K2. Without loss of generality, we may assume i1 > i2.
Then there exists a string bn−1−j1dam−1−i1cp−1 such that

δD(⟨i1, j1,K1⟩, bn−1−j1dam−1−i1cp−1) ∈ FD,

δD(⟨i2, j2,K2⟩, bn−1−j1dam−1−i1cp−1) /∈ FD.

3. i1 = i2, j1 ̸= j2, K1 = K2. Without loss of generality, assume that j1 > j2.
Then the two states can be distinguished by am−1−i1dbn−1−j1cp−1 because

δD(⟨i1, j1,K1⟩, am−1−i1dbn−1−j1cp−1) ∈ FD,

δD(⟨i2, j2,K2⟩, am−1−i1dbn−1−j1cp−1) /∈ FD.

Thus, all states in D are distinguishable and D is a minimal DFA for (L(A) ∩
L(B))L(C) with mn2p − 2p−1 states.
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Next, we consider the case when m,n ≥ 1 and p = 1. Since L3 is accepted by
a 1-state DFA, it is either ∅ or Σ∗. When L3 = ∅, (L1 ∩ L2)L3 is also ∅. When
L3 = Σ∗, we have (L1 ∩L2)L3 = (L1 ∩L2)Σ

∗. As we mentioned in the previous
section, the state complexity of L1Σ

∗ is m [25]. Thus, the state complexity of
(L1 ∩ L2)Σ

∗ is upper bounded by mn and the reader can easily prove that the
upper bound is reached by L1 = {w ∈ {a, b}∗ | |w|a ≡ m − 1 mod m} and
L2 = {w ∈ {a, b}∗ | |w|b ≡ n− 1 mod n} when m,n ≥ 2. For m = 1 or n = 1,
and p = 1, we have

(L1 ∩ L2)Σ
∗ =

 L1Σ
∗, if m ≥ 2, n = 1, L2 = Σ∗,

L2Σ
∗, if m = 1, L1 = Σ∗, n ≥ 2,

Σ∗, if m = n = 1, L1 = L2 = Σ∗.

Thus, we can get Theorem 7.2 after summarizing the subcases above.

Theorem 7.2. Let L1, L2 and L3 be three regular languages accepted by an
m-state DFA, an n-state DFA and a 1-state DFA, respectively, m,n ≥ 1. Then
mn states are sufficient and necessary in the worst case for a DFA to accept
(L1 ∩ L2)L3.

8. State complexity of L1L2 ∩ L3

In this section, we investigate the state complexity of L1L2 ∩ L3 for regular
languages L1, L2, and L3 accepted by m-state, n-state, and p-state DFAs,
respectively. It is clear that, when p = 1, L3 can only be either Σ∗ or ∅. We do
not need to consider the case L3 = ∅. Thus, L1L2∩L3 = L1L2. Therefore, when
p = 1, the state complexity of L1L2∩L3 is equal to that of L1L2. In the following
theorem, we show that the state complexity of L1L2∩L3 is (m2n−2n−1)p when
m ≥ 1, n ≥ 2, and p ≥ 2, and it is mp when m ≥ 1, n = 1, and p ≥ 2.

Theorem 8.1. Let L1, L2, and L3 be languages accepted by m-state, n-state,
and p-state DFAs, respectively, then, we have:

(1) when m ≥ 1, n ≥ 2, and p ≥ 2, the state complexity of L1L2 ∩ L3 is
(m2n − 2n−1)p.

(2) when m ≥ 1, n = 1, and p ≥ 2, the state complexity of L1L2 ∩ L3 is mp.

Proof. For (1), Denote by A, B, and C the m-state, n-state, and p-state DFAs,
respectively. Since the claimed state complexity is exactly the composition of
the state complexities of catenation and intersection, the construction of a DFA
E that accepts L1L2∪L3 is as follows. We first construct a DFA D that accepts
L1L2. Then, the set of the states of E is a Cartesian product of the sets of the
states of D and C, the initial state of E is a pair of the initial states of D and
C, and each final state of E consists of a final state of D and a final state of C.
Moreover, the transitions of E simulate the transitions of D and C on the first
element and the second element of each state of E, respectively. Since the state
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complexity of L1L2 is m2n − 2n−1 when m ≥ 1 and n ≥ 2, the total number of
states in E is upper bounded by (m2n − 2n−1)p.

To prove (1), we just need to show that this upper bound can be reached by
some witness DFAs.

We first consider the case where m ≥ 2, n ≥ 2, and p ≥ 2. Let us define the
following DFAs A, B, and C over the same alphabet Σ = {a, b, c}.

Let A = (Q1,Σ, δ1, 0, F1), where Q1 = {0, 1, . . . ,m− 1}, F1 = {m− 1}, and
the transitions are given as:

• δ1(i, a) = (i+ 1) mod m, i ∈ Q1,

• δ1(i, b) = i+ 1, if i ≤ m− 3, δ1(m− 2, b) = 0,

• δ1(m− 1, b) = (m− n+ 1) mod (m− 1),

• δ1(i, c) = i, i ∈ Q1.

Let B = (Q2,Σ, δ2, 0, F2), where Q2 = {0, 1, . . . , n − 1}, F2 = {n − 1}, and
the transitions are given as:

• δ2(i, a) = i+ 1, i ≤ n− 2, δ2(n− 1, a) = n− 1,

• δ2(i, b) = (i+ 1) mod n, i ∈ Q2,

• δ2(i, c) = i, i ∈ Q2.

Let C = (Q3,Σ, δ3, 0, F3), where Q3 = {0, 1, . . . , p − 1}, F3 = {p − 1}, and
the transitions are given as:

• δ3(i, x) = i, i ∈ Q3 and x ∈ {a, b},

• δ3(i, c) = (i+ 1) mod p, i ∈ Q3.

Note that, in DFAs A and B, the transitions on letters a and b are exactly the
same as those defined in the DFAs in [15] that prove the lower bound of the
state complexity of catenation. Moreover, no state will change after reading a
letter c. Let D = (Q4,Σ, δ4, 0, F4) be the DFA accepting L(A)L(B). Thus, D
does not move on letter c, it has |Q4| = m2n − 2n−1 reachable states, and any
two states in Q4 are not equivalent.

Then, as described at the beginning of this proof, we construct the DFA
E = (Q5,Σ, δ5, ⟨0, 0⟩, F5), where Q5 is a Cartesian product of Q4 and Q3. For
each state in Q5, δ5 simulates the transitions of D on its first element and
simulates the transitions of C on its second element. Furthermore, each state in
F5 consists of a final state in F4 and the final state in F3. Next we show that (I)
all the states in Q5 are reachable and (II) any two of them are not equivalent. It
is clear that (I) is true, because, using the proof of Theorem 1 in [15], any state
⟨s, 0⟩, s ∈ Q4, can be reach from the initial state ⟨0, 0⟩ by reading a string over
letters a and b, and then, any state ⟨s, i⟩, s ∈ Q4, can be reached from the state
⟨s, 0⟩ by reading ci. For (II), let ⟨s1, i1⟩ and ⟨s2, i2⟩ be two different states in Q5.
If s1 = s2, then there exists a string w1 such that, by reading w1, we can reach
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a final state in F4 from the state s1. Thus, string w1c
p−i1−1 will distinguish the

states ⟨s1, i1⟩ and ⟨s2, i2⟩. If s1 ̸= s2, then there exists a string w2 such that w2

leads s1 to a final state in F4 but does not lead s2 to any final state in F4. Thus,
string w2c

p−i1−1 will distinguish the states ⟨s1, i1⟩ and ⟨s2, i2⟩. After verifying
(I) and (II), we can say that the size of Q5 is (m2n − 2n−1)p, and therefore this
number is the state complexity of L1L2 ∩ L3 when m ≥ 2, n ≥ 2, and p ≥ 2.

Next we consider the case where m = 1, n ≥ 2, and p ≥ 2. We use the
alphabet Σ = {a, b, c}. L1 is Σ∗, and we use the same DFA C for L3. Here we
define F = (Q6,Σ, δ6, 0, F6) for L2, where Q6 = {0, 1, . . . , n− 1}, F6 = {n− 1},
and the transitions are given as follows:

• δ6(0, a) = 0, δ6(i, a) = i+ 1, 1 ≤ i ≤ n− 2, δ6(n− 1, a) = 1,

• δ6(0, b) = 1, δ6(i, b) = i, 1 ≤ i ≤ n− 1,

• δ6(i, c) = i, i ∈ Q6.

Note that, without the transitions on letter c, F is the second witness DFA
in [25] that proves the lower bound of the state complexity of catenation when
m = 1 and n ≥ 2. Thus, the proof for this case is very similar to that in the
previous case and hence is omitted.

For (2), recall that the state complexity of L1L2 is m when m ≥ 1 and
n = 1. Thus, mp is the composition of the state complexities of catenation and
intersection, and it is an upper bound of the state complexity of L1L2∩L3 when
m ≥ 1, n = 1, and p ≥ 2. To prove (2), we just need to show the existence of
worst case examples that reach this upper bound. Let

L1 = {w ∈ {a, b}∗ | |w|a ≡ m− 1(mod m)},
L2 = {a, b}∗, and
L3 = {w ∈ {a, b}∗ | |w|b ≡ p− 1(mod p)}.

It is clear that L1, L2, and L3 are accepted by m−, 1−, and p−state DFAs,
respectively. The DFA accepting L1L2 has m states. Then the proof method is
exactly the same as the previous ones, and hence is omitted.

9. State complexity of L1L2 ∪ L3

In this section, we investigate the state complexity of L1L2 ∪ L3 for regular
languages L1, L2, and L3 accepted by m-state, n-state, and p-state DFAs,
respectively. When p = 1, L3 is either Σ∗ or ∅. Thus, L1L2 ∪ L3 is either Σ∗

or L1L2. Therefore, when p = 1, the state complexity of L1L2 ∪ L3 is equal to
that of L1L2. For the other cases, we will show that the state complexity of
L1L2 ∪ L3 is mp− p+ 1 when m ≥ 1, n = 1, and p ≥ 2 (Lemma 9.1), and it is
(m2n − 2n−1)p when m ≥ 1, n ≥ 2, and p ≥ 2 (Theorem 9.1).

We first consider the case where m ≥ 1, n = 1, and p ≥ 2.

Lemma 9.1. Let L1, L2, and L3 be languages accepted by m-state, n-state,
and p-state DFAs, respectively. Then, when m ≥ 1, n = 1, and p ≥ 2, the state
complexity of L1L2 ∪ L3 is mp− p+ 1.
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Proof. Let us denote by A, B, and C the m-state, n-state, and p-state DFAs,
respectively.

We first show that mp− p+ 1 is an upper bound of the state complexity of
L1L2 ∪ L3. In the construction of a DFA E that accepts L1L2 ∪ L3, we first
construct a DFA D that accepts L1L2. Then, the set of the states of E is a
Cartesian product of the state sets of D and C, the initial state of E is a pair of
the initial states of D and C, and each final state of E contains a final state of D
or the final state of C. Moreover, the transitions of E simulates the transitions
of D and C on the first element and the second element of each state of E,
respectively. Note that B has only one state and it will go back to this state on
any letter in Σ. As a result, the final state f of D will return to itself on any
letter in Σ as well.

We know that, when m ≥ 1 and n = 1, the state complexity of L1L2 is m.
Thus, E has at most mp states. Because f will return to itself on any letter in
Σ, all the states ⟨f, i⟩, where i is a state of C, are clearly equivalent. Therefore,
mp−p+1 is an upper bound of the state complexity of L1L2∪L3 when m ≥ 1,
n = 1, and p ≥ 2.

To show that this upper bound is reachable, we use the language L2 =
{a, b}∗, and the DFAs G and H in the proof of Theorem 8.1 for L1 and L3,
respectively. The proof is straightforward, and hence is omitted.

For the remaining cases, that is when m ≥ 1, n ≥ 2, and p ≥ 2, we obtain
the following result.

Theorem 9.1. Let L1, L2, and L3 be languages accepted by m-state, n-state,
and p-state DFAs, respectively. Then, when m ≥ 1, n ≥ 2, and p ≥ 2, the state
complexity of L1L2 ∪ L3 is (m2n − 2n−1)p.

Proof. Let us denote by A, B, and C the m-state, n-state, and p-state DFAs,
respectively.

Since the claimed state complexity is exactly the composition of the state
complexities of catenation and union, the construction of a DFA E that accepts
L1L2 ∪ L3 is as follows. We first construct a DFA D that accepts L1L2. Then,
the set of the states of E is a Cartesian product of the sets of the states of D
and C, the initial state of E is a pair of the initial states of D and C, and each
final state of E contains a final state of D or the final state of C. Moreover, the
transitions of E simulates the transitions of D and C on the first element and
the second element of each state of E, respectively. Since the state complexity
of L1L2 is m2n − 2n−1 when m ≥ 1 and n ≥ 2, the total number of states in
E is upper bounded by (m2n − 2n−1)p. To prove the theorem, we just need to
show that there exist witness DFAs that reach this upper bound.

We first consider the case where m = 1, n ≥ 2, and p ≥ 2. We use the
alphabet Σ = {a, b, c, d}, and L1 = Σ∗.

Define B = (Q2,Σ, δ2, 0, F2) that accepts L2, where Q2 = {0, 1, . . . , n − 1},
F2 = {n−1}, the transitions on letters a, b, and c are exactly the same as those
defined in the DFA F used in the proof of Theorem 8.1, and the transitions on
letter d are given as δ2(i, d) = 0, i ∈ Q2.
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Define C = (Q3,Σ, δ3, 0, F3) that accepts L3, where Q3 = {0, 1, . . . , p − 1},
F3 = {p−1}, the transitions on letters a, b, and c are exactly the same as those
defined in the DFA C used in the proof of Theorem 8.1, and the transitions on
letter d are given as δ3(i, d) = i, i ∈ Q3.

As described at the beginning of this proof, we first construct the DFA
D. Note that, without the transitions on letters c and d, B is the second
witness DFA in [25] that proves the lower bound of the state complexity of
catenation when m = 1 and n ≥ 2. Thus, D has 2n−1 states, all these states
are reachable, and any two of the states are not equivalent. After constructing
E = (Q5,Σ, δ5, ⟨0, 0⟩, F5) we just need to show that (I) all the states in Q5 are
reachable, and (II) any two states in Q5 are not equivalent. The reachability of
all the states in Q5 is immediate since all the transitions on letters a, b, and c
of B and C are exactly the same as those defined in the DFAs F and C used in
the proof of Theorem 8.1, respectively.

For (II), let ⟨s1, i1⟩ and ⟨s2, i2⟩ be two different states in Q5. We consider
the following two cases:

1 i1 ̸= i2. The string dcp−1−i1 will distinguish these two states.

2 i1 = i2. We have s1 ̸= s2, and there exists a string w ∈ {a, b}∗ such that,
after reading w, we can reach a final state of D from s1, but we cannot
reach any final state of D from s2. As a result, if i1 is not a final state of
C, then w will distinguish ⟨s1, i1⟩ from ⟨s2, i2⟩, otherwise, the string cw
will distinguish these two states.

Since E has 2n−1p reachable states and any two of them are not equivalent,
we have showed the existence of witness DFAs that prove the state complexity
of L1L2 ∪ L3 to be (m2n − 2n−1)p when m = 1, n ≥ 2, and p ≥ 2.

In the following, we consider the case where m ≥ 2, n ≥ 2, and p ≥ 2.
We use the same DFAs A, B, and C used in the proof of Theorem 8.1 for L1,
L2, and L3, respectively, and denote them by A′, B′, and C ′. As described at
the beginning of this proof, we construct D′ and E′ for L1L2 and L1L2 ∪ L3,
respectively. Note that the only difference between E′ and the DFA E used in
the proof of Theorem 8.1 is the definitions of their final state sets. Here, each
final state of E′ contains a final state of B′ or the final state of C ′. Thus, we
can say that, E′ has (m2n − 2n−1)p states, and all these states are reachable
from its initial state. The proof for the reachability of the states of E′ is exactly
the same as the proof for the reachability of the states of the DFA E used in
the proof of Theorem 8.1.

In order to prove the theorem, we need to show that any two states in E′

are not equivalent in the next step. Before proving this, we need some details
about the construction of D′. The DFAs A′ and B′ are obtained by adding the
transitions on letter c to the DFAs in [15] that prove the lower bound of the
state complexity of catenation. Thus, the set of the states of D′ can be written
in the same form as used in [15]:

Q4 = {{i} ∪ S | i ∈ Q1 − {m− 1} and S ⊆ Q2} ∪ {{m− 1} ∪ S | S ⊆ Q2 − {0}},
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i.e., any state in Q4 consists of exactly one state of Q1 and some states of Q2,
and if a set in Q4 contains the state m− 1, then it does not contain the state 0
of Q2. We know that there are m2n − 2n−1 reachable states in Q4 and any two
of them are not equivalent.

Now, we show that any two states in E′ are not equivalent. Let ⟨t1, j1⟩ and
⟨t2, j2⟩ be two different states in E′. We consider the following two cases:

1 j1 = j2. Then, t1 ̸= t2, and there exists a string w that will distinguish t1
from t2 in D′. Therefore, if j1 is the final state of C ′, then string cw will
distinguish ⟨t1, j1⟩ from ⟨t2, j2⟩, otherwise, w will distinguish these two
states.

2 j1 ̸= j2. We have three sub-cases. (1) t1 = t2 and t1 is not a final state of D′.
The string cp−j1−1 will distinguish ⟨t1, j1⟩ from ⟨t2, j2⟩. (2) t1 = t2 and t1
is a final state of D′. Let us rewrite t1 as t1 = {i} ∪ T , where i ∈ Q1 and
T ⊆ Q2. The string am−ibn−1cp−j1−1 will distinguish ⟨t1, j1⟩ from ⟨t2, j2⟩,
since after reading am−ibn−1 t1 will not reach any final state of D′. (3)
t1 ̸= t2. Then, there exists a string w′ ∈ {a, b}∗ that leads the state t1 to
a final state of D′ but does not lead the state t2 to any final state of D′.
Thus, string w′cp−j1−1 will distinguish the two states.

We have showed that E′, which is constructed from A′, B′, and C ′, has
(m2n − 2n−1)p reachable states, and any two of its states are not equivalent.
Therefore, the state complexity of L1L2 ∪L3 is equal to the composition of the
state complexities of catenation and union, which is (m2n − 2n−1)p.

10. Conclusion

In this paper, we completed the investigation of the state complexity of com-
bined operations with two basic operations, by studying the state complexities
of (L1L2)

R, LR
1 L2, L

∗
1L2, (L1 ∪L2)L3, (L1 ∩L2)L3, L1L2 ∩L3, and L1L2 ∪L3

for regular languages L1, L2, and L3. In particular, we solved an open problem
posed in [18] by showing that the upper bound proposed in [18] for the state
complexity of (L1L2)

R coincides with the lower bound and is thus indeed the
state complexity of this combined operation when m ≥ 2 and n ≥ 1. Also, we
showed that, due to the structural properties of DFAs obtained from reversal,
star, and union, the state complexities of LR

1 L2, L
∗
1L2, and (L1∪L2)L3 are close

to the mathematical compositions of the state complexities of their individual
participating operations, although they are not exactly the same. Furthermore,
we showed that, in the general cases, the state complexities of (L1 ∩ L2)L3,
L1L2 ∩ L3, and L1L2 ∪ L3 are exactly equal to the mathematical compositions
of the state complexities of their component operations.

A summary of the state complexity for all combinations of two basic opera-
tions on regular languages is presented in Table 1.

The results obtained and summarized in this paper are on regular languages.
Therefore, future work might address the state complexity of the same opera-
tions for sub-families of the family of regular languages, such as finite languages
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and codes. Another interesting research direction is to investigate the state
complexity of combined operations composed of language operations other than
the basic ones, e.g. shuffle [2], proportional removal [6, 19], cyclic shift [16, 19],
etc.
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Operation State complexity Most General Case
(L1 ∪ L2)

∗ 2m+n−1 − 2m−1 − 2n−1 + 1 ([21]) m,n ≥ 2
(L1 ∩ L2)

∗ 2mn−1 + 2mn−2 ([17]) m,n ≥ 2
(L1L2)

∗ 2m+n−1 + 2m+n−4 − 2m−1 − 2n−1 +m+ 1 ([9]) m,n ≥ 2
(LR

1 )
∗ = (L∗

1)
R 2m ([9]) m ≥ 1

(L1 ∪ L2)
R 2m+n − 2m − 2n + 2 ([18]) m,n ≥ 3

(L1 ∩ L2)
R 2m+n − 2m − 2n + 2 ([18]) m,n ≥ 3

(L1L2)
R 3 · 2m+n−2 − 2n + 1 ([18] and Section 3) m ≥ 2, n ≥ 1

L∗
1L2 5 · 2m+n−3 − 2m−1 − 2n + 1, m,n ≥ 2

the DFA for L1 has at least one final state
that is not the initial state (Section 5)

L1L
∗
2 (3m− 1)2n−2, m,n ≥ 2

the DFA for L2 has at least one final state
that is not the initial state ([3])

LR
1 L2 3 · 2m+n−2 (Section 4) m,n ≥ 2

L1L
R
2 m2n − 2n−1 −m+ 1 ([3]) m,n ≥ 1

L1(L2 ∪ L3) (m− 1)(2n+p − 2n − 2p + 2) + 2n+p−2 ([4]) m,n, p ≥ 1
L1(L2 ∩ L3) m2np − 2np−1 ([4]) m,n, p ≥ 1
L∗
1 ∪ L2 3 · 2m−2 · n− n+ 1 ([11]) m,n ≥ 2

L∗
1 ∩ L2 3 · 2m−2 · n− n+ 1 ([11]) m,n ≥ 2

LR
1 ∪ L2 2m · n− n+ 1 ([11]) m,n ≥ 2

LR
1 ∩ L2 2m · n− n+ 1 ([11]) m,n ≥ 2

(L1 ∪ L2)L3 mn2p − (m+ n− 1)2p−1 (Section 6) m,n, p ≥ 2
(L1 ∩ L2)L3 mn2p − 2p−1 (Section 7) m,n ≥ 1, p ≥ 2
L1L2 ∩ L3 (m2n − 2n−1)p (Section 8) m ≥ 1, n, p ≥ 2
L1L2 ∪ L3 (m2n − 2n−1)p (Section 9) m ≥ 1, n, p ≥ 2
L1L2L3 m2n+p − 2n+p−1 − (m− 1)2n+p−2 m,n, p ≥ 2

−2n+p−3 − (m− 1)(2p − 1) ([8])
L1 ∪ L2 ∪ L3 mnp ([8]) m,n, p ≥ 1
L1 ∩ L2 ∩ L3 mnp ([8]) m,n, p ≥ 1
(L1 ∪ L2) ∩ L3 mnp ([8]) m,n, p ≥ 1
(L1 ∩ L2) ∪ L3 mnp ([8]) m,n, p ≥ 1

Table 1: The state complexities of all the combinations of two basic operations, where L1,
L2, and L3 are accepted by DFAs of m, n, and p states, respectively. Note that we only list
the most general case for each combined operation in this table.
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