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Abstract

The paper studies some variants of deletion operations which general-
ize the left/right quotient of languages. The main emphasis is put on how
these deletions can be expressed as a combination of other operations, and
on closure properties of various language families under deletion. Some
results are the expected ones: the sequential (iterated sequential, dipolar)
deletion from a regular language produces a regular set regardless of the
complexity of the deleted language. On the other hand, it still remains a
challenging open problem whether or not the family of regular languages
is closed under iterated parallel deletion with singletons.

1 Introduction

The operations of deleting symbols or strings of symbols from a given word (and
the natural extensions of such operations to languages) are most fundamental
in formal language theory and combinatorics of words. Left and right quotient
are special cases of such deletion operations. Examples of the wide range of
applications of these operations are bottom-up parsing (a symbol is deleted and
replaced by a nonterminal) developmental systems (deletion means death of a
cell or a string of cells) and cryptography (decryption may begin by deleting
some ”garbage” portions in the cryptotext).

1The work reported here is part of the project 11281 of the Academy of Finland
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The most natural extension of the left (right) quotient w \ u (u/w) is the
sequential deletion u >w: instead of erasing w from the left (right) extremity
of u, we delete any possible occurrence of w in u. The result of the sequential
deletion u >w will be thus a set of words instead of a single one, as w may
appear more than once as a subword in u. The operation of sequential dele-
tion can be viewed as one rewriting step in a special Thue system (see [1], [2],
[5]). Consequently, some of the results concerning iterated sequential deletion
(reduction in a special Thue system) have already been obtained in the context
of Thue system theory.

As its name suggests, the parallel deletion u >w performs a task similar to
the sequential deletion, but in parallel: all the non-overlapping occurrences of w
are simultaneously erased from u. An operation similar to the parallel deletion
has been defined and studied in [12]. The difference is that in our variant no
restriction is imposed on the alphabets of the operands (the two languages can
be over the same alphabet).

Deletion operations and various related problems have been investigated in
[6], [7], [14], [8], [9], [10], [11]. This paper concentrates on the closure properties
of various language families under deletion operations. Closure properties will
be studied from two points of view: (i) the preservation of certain properties,
such as regularity, under deletion operations and (ii) the structure of deletion
operations expressed in terms of other operations. We believe that such a study
will shed light on deletion operations in language theory in general, as well as
in the case of the more specific language families investigated.

Section 2 studies the sequential and parallel deletion and their iterated ver-
sions. It is shown for example that by sequentially deleting from a regular
language an arbitrary one, the result is still regular. The closure of the family
of regular languages under iterated parallel deletion remains open.

In Section 3 some more sophisticated versions of deletion are defined. The
permuted deletion u >w consists in erasing from u not only w, but all words
which are obtained from w by arbitrarily permuting its letters. The dipolar
deletion u ⇀↽ w, the study of which has arised from the necessity of solving
certain language equations (see [9]), consists in erasing from u a prefix and a
suffix whose catenation equals w.

In the operations mentioned so far, the deletion takes place in an arbitrary
position of a word. As a result, the quotient is not a particular case of any of
them as we cannot force the place of the deletion. A natural idea of controlling
the position of the deletion is that each letter determines what can be deleted
after it. The controlled deletion is studied in Section 4.

Finally, opposed to the previous variants of deletion, where the word to be
erased was treated as a whole, the scattered deletion u >w sparsely erases from
u the letters of w, in the same order. Section 5 is concerned with the closure
properties of some language families under scattered variants of deletion.

In the following, Σ will denote an alphabet, that is a finite nonempty set, and
Σ∗ the set of all words over Σ. For a word w, lg(w) is the length of w, Na(w) the
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number of occurrences of the letter a in w and com(w) the commutative closure
of w (all words obtained from w by arbitrarily permuting its letters). REG,
CF, CS will denote the family of regular, context-free and context-sensitive
languages, respectively. For further formal language notations and notions the
reader is referred to [13].

2 Sequential and parallel deletion

The sequential deletion (shortly, SD) is the simplest and most natural general-
ization of left/right quotient. If u, v are words over Σ, the deletion of v from
u consists of erasing v not only from the left/right extremity of u, but from an
arbitrary place in u:

u >v = {w| u = w1vw2, w = w1w2, w1, w2 ∈ Σ∗}.

If v is not a subword of u, the result of the deletion is the empty set. The
operation can be extended to languages in the natural fashion.

Example 1 Let L1 = {abababa, ab, ba2, aba}, L2 = {aba}. The sequential
deletion of L2 from L1 is L1 >L2 = {baba, abba, abab, λ}.

The sequential deletion is a partial operation in the sense that when per-
forming L1 >L2, not all words from L1 and L2 contribute to the result. Indeed,
the words from L1 which do not contain any word from L2 as a subword, as
well as the words from L2 which are not subwords of any word of L1, do not
contribute.

The left and right quotient can be obtained by using the sequential deletion
and a marker which forces the position of the deletion. If L1, L2 are languages
over Σ then,

L2\L1 = (#L1) >(#L2),

L1/L2 = (L1#) >(L2#),

where # is a new symbol which does not belong to Σ.
The next result is analogous to one obtained for left/right quotient (see for

example [4], p.50).

Theorem 1 If L1, L2 are languages over the alphabet Σ, L2 arbitrary and L1

a regular one, then L1 >L2 is a regular language.

Proof. Let L1, L2 be languages over Σ and let A = (S, Σ, s0, F, P ) be a finite
automaton that accepts L1. For two states s, s′ in S denote:

Ls,s′ = {w ∈ Σ∗| sw=⇒∗s′ in A}.
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The language Ls,s′ is regular for each s, s′ in S. Consider the automaton:

A′ = (S, Σ ∪ {#}, s0, F, P ′)
P ′ = P ∪ {s#−→s| s, s′ ∈ S and L2 ∩ Ls,s′ 6= ∅},

where # is a new symbol which does not occur in Σ.
The theorem follows as we have

L1 >L2 = h(L(A′) ∩ Σ∗#Σ∗)

where h is the morphism h : (Σ ∪ {#})∗ −→ Σ∗, h(#) = λ, h(a) = a, ∀a ∈ Σ.

Corollary 1 The language L1 >L2 can be effectively constructed if L1 is a
regular language and L2 is a regular or context-free language.

Corollary 2 For any regular language L1 there exist finitely many languages
that can be obtained from L1 by sequential deletion.

Proof. It follows from the preceding theorem by the fact that the automaton
A is finite. This implies that there are finitely many different possibilities of
constructing the automaton A′.

If the language to be deleted is a regular one, the sequential deletion can be
simulated by a generalized sequential machine (gsm) with erasing.

Theorem 2 Any family of languages which is closed under gsm-mapping is
closed under sequential deletion with regular languages.

Proof. Let A = (S, Σ, s0, F, P ) be a finite automaton that recognizes the lan-
guage R. Construct the gsm with erasing,

g = (Σ, Σ, S ∪ {s′0, sf}, s′0, {sf}, P ′),
P ′ = P ∪ {s′0a−→as′0| a ∈ Σ} ∪ {s′0a−→s| s0a−→s ∈ P}∪

{sa−→sf | sa−→s′ ∈ P, s′ ∈ F} ∪ {sfa−→asf | a ∈ Σ}∪
{s′0a−→sf | s0a−→s ∈ P, s ∈ F} ∪ {s′0a−→asf | a ∈ Σ, λ ∈ R}.

The theorem now holds as we have L >R = g(L) ∪ {λ| λ ∈ L ∩ R}. Indeed,
given a word v ∈ L as an input and a word w ∈ R, the gsm g works as follows:
the rules of P erase the word w from v while the ones of the type s′0a−→as′0
and sfa−→asf cross over the letters which will remain in v−→w.

A parallel variant of deletion will be defined in the sequel. Given words u
and v, the parallel deletion (shortly PD) of v from u, denoted u >v, consists
of the words obtained by simultaneously erasing from u all the non-overlapping
occurrences of v. The definition is extended to languages in the natural way.
Given a word u and a language L2, the parallel deletion u >L2 consists of the
words obtained by erasing from u all the non-overlapping occurrences of words
in L2.
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Definition 1 Let L1, L2 be languages over the alphabet Σ. The parallel deletion
(shortly, PD) of L2 from L1 is:

L1 >L2 =
⋃

u∈L1

(u >L2), where

u >L2 = {u1u2 . . . ukuk+1| k ≥ 1, ui ∈ Σ∗, 1 ≤ i ≤ k + 1 and
∃vi ∈ L2, 1 ≤ i ≤ k such that u = u1v1 . . . ukvkuk+1,
where {ui} ∩ [Σ∗(L2 − {λ})Σ∗] = ∅, 1 ≤ i ≤ k + 1}.

The parallel deletion u >L2 erases from u the non-overlapping occurrences
of words from L2. Moreover, a supplementary condition has to be fulfilled:
between two occurrences of words of L2 to be erased, no nonempty word from
L2 appears as a subword. This assures that all occurrences of words from L2

have been erased from u, and is taken care of by the last line of the definition.
The reason why λ had to be excluded from L2 is obvious. If this wouldn’t be
the case and λ would belong to L2, the condition {ui} ∩ Σ∗L2Σ

∗ = ∅ would
imply {ui}∩Σ∗ = ∅ – a contradiction. Note that words from L2 can still appear
as subwords in u >L2, as the result of catenating the remaining pieces of u.

Example 2 Let L1 = {abababa, aababa, abaabaaba}, L2 = {aba}. The parallel
deletion of L2 from L1 is L1 >L2 = {b, abba, aba, aab, λ}.

If the language to be deleted is regular, the parallel deletion L >R can be
expressed as a morphic image of the intersection between a regular language
and the image of L under a rational transduction.

Theorem 3 Any family of languages closed under intersection with regular lan-
guages, rational transductions and morphisms is closed under parallel deletion
with regular languages.

Proof. We begin by proving the following:
Claim. If L, R are languages over Σ, L a λ-free language and R a regu-

lar one, then there exist a rational transducer g, a morphism h and a regular
language R′ such that:

L >R = h(g(L) ∩ R′).

Indeed, let A = (S, Σ, s0, F, P ) be a finite automaton that accepts the lan-
guage R. Let us consider the rational transducer:

g = (Σ, Σ ∪ {#}, S ∪ {s′0}, s
′

0, {s
′

0}, P
′),

P ′ = P ∪ {s′0a−→as′0| a ∈ Σ}∪
{s′0a−→s| s0a−→s ∈ P, a ∈ Σ}∪
{s′0a−→#s′0| s0a−→s ∈ P, a ∈ Σ, s ∈ F}∪
{sa−→#s′0| sa−→s′ ∈ P, a ∈ Σ, s′ ∈ F}∪
{s′0−→#s′0| λ ∈ R}.
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The rational transducer g performes the following task: given a word of L
as an input, it replaces arbitrary many words of R from it with the marker #,

g(L) = L ∪ {u1#u2# . . . uk#uk+1| k ≥ 1, ui ∈ Σ∗, 1 ≤ i ≤ k + 1
and ∃u ∈ L, vi ∈ R, 1 ≤ i ≤ k : u = u1v1 . . . ukvkuk+1}.

If we consider now the morphism h which erases the marker, h : (Σ∪{#})∗−→Σ∗

defined by h(#) = λ, h(a) = a, a ∈ Σ and R′ the regular set:

R′ = [(Σ ∪ {#})∗(R − {λ})(Σ ∪ {#})∗]c ∩ (Σ∗#Σ∗)+,

then h, g and R′ satisfy the equality of the Claim. Indeed, the first set of the
intersection in R′ takes care that between two erased words (marked with #)
no other candidate for erasing occurs. The second set takes care of that the
words from L which do not contain any candidate for erasing are not retained
in the final result. This is done by retaining only those words in which at least
one erasing (marker) occurs.

Let us return now to the proof of the theorem and let L and R be languages
over Σ, R a regular one.

If λ is not a subword of L, the theorem follows from the preceding Claim.
If λ belongs to L but not to R, then L >R = ((L − {λ}) >R) and we can

use the proof of the Claim for L − {λ} and R.
If λ belongs to L ∩ R, then L >R = [(L− {λ}) >R] ∪{λ} and we can use

again the same proof to show that (L − {λ}) >R belongs to the family.

The families CF and CS are closed under neither sequential nor parallel
deletion. Moreover, in the context-sensitive case, there exists a language from
which the PD of a single word produces a non- context-sensitive language.

Proposition 1 The family of context-free languages is closed under neither
sequential nor parallel deletion.

Proof. Let L1, L2 be the context- free languages:

L1 = #{aib2i| i > 0}∗, L2 = #a{biai| i > 0}∗.

(Similar languages have been used in [3], p.40, to show that CF is not closed
under left quotient.)

The language L1 >L2 is not context-free. Indeed, if it would be context-
free, then also the language

(L1 >L2) ∩ b+ = {b2n

| n > 0}

would be context-free, which is a contradiction.
The same example can be used to prove that CF is not closed under par-

allel deletion, because the presence of the marker assures us that L1 >L2 =
L1 >L2.
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As the family CS is not closed under left quotient with regular languages, it
follows that it is not closed under SD with regular languages either. However,
as the following theorem implies, CS is closed under sequential deletion with
singletons.

Theorem 4 Any family of languages which is closed under λ-free gsm mappings
and linear erasing is closed under sequential deletion with singletons.

Proof. Let L be a language in such a family and let w be a word over the same
alphabet Σ. If w ∈ L then L >{w} = [(L − {w}) >{w}] ∪ {λ}. If w = λ
then L >{λ} = L. Therefore the theorem will hold if we prove that L >{w}
belongs to our family for w nonempty and not belonging to L.

We can modify the proof of Theorem 2 such that the constructed gsm is λ-
free. Indeed, consider the gsm which instead of erasing the letters of w, replaces
them with a new symbol #.

It is easy to see that if h : (Σ ∪ {#})∗−→Σ∗ is the morphism defined by
h(#) = λ, h(a) = a, ∀ a ∈ Σ then h(g(L)) = L >{w}.

If the length of w is lg(w) = n then, for every word α ∈ g(L) we have:

lg(α) ≤ (n + 1)lg(h(α))

which proves that h is an (n + 1)- linear erasing with respect to g(L).

The family CS is not closed under parallel deletion.

Proposition 2 There exist a context-sensitive language L1 and a word w over
an alphabet Σ such that L1 >w is not a context-sensitive language.

Proof. Let L be a recursively enumerable language (which is not context- sen-
sitive) over an alphabet Σ and let a, b be two letters which do not belong to Σ.
Then there exists a context-sensitive language L1 such that (see [13], p.89):

(i) L1 consists of words of the form aibα where i ≥ 0 and α ∈ L;

(ii) For every α ∈ L, there is an i ≥ 0 such that aibα ∈ L1.

It is easy to see that aL1 >{a} = bL which is not a context-sensitive
language. We have concatenated a to the left of L1 in order to avoid the case
i = 0, when the corresponding words from L would have been lost.

A natural step following the definition of the sequential and parallel deletion
is to consider their iterated versions. The iterated sequential and iterated parallel
deletion have somewhat unexpected properties. While the result of iterated SD
from a regular language is regular regardless of the complexity of the deleted
language (see [5] for a proof of this result in the context of Thue systems theory),
the families CF and CS are not closed even under iterated SD with singletons
(for the case of CF languages, see [5]). It is an open problem whether REG is
closed under iterated PD or iterated PD with singletons.
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Definition 2 Let L1, L2 be languages over the alphabet Σ. The iterated se-
quential deletion of order n, L1 >

nL2, is defined inductively by the equations:

L1 >
0L2 = L1, L1 >

i+1L2 = (L1 >
iL2) >L2, i ≥ 0.

The iterated sequential deletion (iterated SD) of L2 from L1 is then defined as:

L1 >
∗L2 =

⋃∞

n=0
(L1 >

nL2).

The iterated parallel deletion (iterated PD) of L2 from L1 is defined by re-
placing in the preceding definition the sequential deletion ” >” with the parallel
deletion ” >”.

Example 3 Let L1 = {anbncn| n ≥ 0} and L2 = {ab}. Then,

L1 >
∗L2 = {ambmcn| n, m ≥ 0, n ≥ m} = L1 >

∗L2.

However, in general, the results of the iterated SD and iterated PD do not
coincide.

Example 4 Let L1 = {w ∈ {a, b}∗| Na(w) = Nb(w)} and L2 = {a, b}. Then,

L1 >
∗L2 = {a, b}∗, L1 >

∗L2 = L1, whereas L1 >L2 = {λ}.

Given two languages L1 and L2 over the alphabet Σ, the following inclusions
hold L1 >L2 ⊆ L1 >

∗L2 ⊆ L1 >
∗L2. Indeed, any parallel deletion can be

simulated by a string of sequential deletions. On the other hand, the preceding
example shows that the reverse inclusions do not hold.

Proposition 3 There exist a context-free language L over {a, b, #} and a word
w over {a, b} such that L >

∗{w} and L >
∗{w} are not context-free languages.

Proof. Let L be the language L = {ai#b2i| i > 0}∗, and w = ba.
The theorem follows from the equalities:

(L >
∗ba) ∩ a#+b+ = (L >

∗ba) ∩ a#+b+ = {a#nb2n

| n > 0}.

The family of context-sensitive languages is closed under neither iterated SD
nor iterated PD, as shown below.

Proposition 4 Let Σ be an alphabet and a, b letters which do not occur in Σ.
There exist a context-sensitive language L1 over Σ ∪ {a, b} and a word w over
{a, b} such that L1 >

∗w and L1 >
∗w are not context-sensitive languages.

Proof. Let L be the recursively enumerable (which is not context- sensitive)
language and L1 the context-sensitive language defined in Proposition 2.

It is obvious that (L1 >
∗{a}) ∩ bΣ∗ = (L1 >

∗{a}) ∩ bΣ∗ = bL, and bL is
not a context-sensitive language.
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3 Exotic variants of deletion

We now investigate a couple of somewhat unsusual types of deletion, namely
the permuted and the dipolar deletion. These operations have been defined as
a necessary tool for solving some language equations (see [9]).

The permuted SD of the word v from the word u, (u >v), is the set obtained
by erasing from u arbitrary occurrences (but one at a time in the sequential case)
of words which are letter-equivalent to v:

u >v = u >com(v).

The permuted PD, (u >v), is the set obtained by erasing from u all the non-
overlapping occurrences of words which are letter-equivalent to v:

u >v = u >com(v).

If none of the words letter-equivalent to v is a subword of u, the result of the
permuted SD, as well as of the permuted PD is the empty set.

It follows from the definitions that any family of languages which is closed
closed under sequential (parallel) deletion and commutative closure is closed
under permuted sequential (parallel) deletion.

Consequently, for example REG is closed under permuted SD, but in this
case the result cannot be effectively constructed. Indeed, Theorem 1 states that
the result of the sequential deletion from a regular language is always regular.
However, Corollary 1 emphasises that the result of the sequential deletion from
a regular language can be effectivelly constructed only in case the language
to be sequentially deleted is regular or context-free. As there exist regular
languages whose commutative closure is not context-free, Corollary 1 cannot be
applied in the case of permuted SD. In the particular case where the language
to be (permuted sequentially) deleted is a singleton, Corollary 1 is applicable.
Therefore the proof of the closure of REG under permuted sequential deletion
with singletons is effective.

In the parallel case one obtains the following non-closure result.

Proposition 5 The family of regular languages is not closed under permuted
parallel deletion.

Proof. Consider the regular languages L1 = $a∗b∗##a∗b∗$, L2 = #$(ab)∗.
Then the permuted PD of L2 from L1 is:

L1 >L2 = {$anbm#| m, n ≥ 0, m 6= n} ∪ {#anbm$| m, n ≥ 0, m 6= n} ∪ {λ}.

Indeed, let u = $anbm##apbq$ be a word in L1 and w a word in com(L2).
Because of the presence of the markers, the result of the permuted PD

$anbm##apbq$ >w, w ∈ com(L2)
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is not empty iff either

w = $arbr#, r ≥ 0 and m = n = r,

or
w = #asbs$, s ≥ 0 and p = q = s.

The situations being similar, let us assume that the first case holds.
Then, if p = q, the result of the operation will be {λ}, as the word #apbp$ ∈

com(L2) will be deleted in parallel with w from u ∈ L1. In order to obtain a
nonempty word, the condition p 6= q must be satisfied.

In the second case, reasoning similarily, one deduces that the condition m 6=
n must be fulfilled in order to get a nonempty word in the result of the deletion.

It has therefore been shown that the words v in the language L1 >L2 have
one of the following forms:

v = $anbm#, n, m ≥ 0, n 6= m,
v = #apbq$, p, q ≥ 0, p 6= q,
v = λ.

As words of this form can be obtained in L1 >L2 for any numbers n, m, p,
q ≥ 0, the equality is proved.

The theorem now follows because the language

{$anbm#| n, m ≥ 0, n 6= m} ∪ {#anbm$| n, m ≥ 0, n 6= m} ∪ {λ}

is not a regular one.

The family of context-free languages is not closed even under permuted SD
with regular languages as shown below.

Proposition 6 The family of context-free languages is closed under neither
permuted sequential nor permuted parallel deletion with regular languages.

Proof. Consider the regular language L2 = ##(a2b2c2)
∗ and the context-free

language L1 = {an
1 bm

1 cl
1#cl

2b
m
2 an

2#| n, m, l ≥ 0}.
Then the permuted SD of L2 from L1 is:

L1 >L2 = L1 >com(L2) = {an
1 bn

1 cn
1 | n ≥ 0}.

Indeed, let u = an
1 bm

1 cl
1#cl

2b
m
2 an

2# and w ∈com(L2). The set

an
1 bm

1 cl
1#cl

2b
m
2 an

2# >w

is not empty iff w = #cr
2b

r
2a

r
2# and m = n = l = r. This, in turn, implies that

the only word in u >w is ar
1b

r
1c

r
1.

As such a word can be obtained in L1 >com(L2) for every r ≥ 0, the
requested equality follows.
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Because of the presence of the markers, the permuted SD and PD coincide,

L1 >L2 = L1 >L2.

The theorem now follows as the language {an
1 bn

1 cn
1 | n ≥ 0} is not a context-

free one.

In the particular case when the language to be deleted is a singleton, the per-
muted SD and PD preserve the families of regular and context-free languages.
This follows as any family of languages which is closed under SD (respectively
PD) with singletons and under finite union is closed under permuted SD (per-
muted PD) with singletons. The same argument can be used to show that CS
is closed under permuted SD.

The family of context-sensitive languages will not be closed under permuted
SD and permuted PD as it is not closed under permuted SD with regular lan-
guages and under permuted PD with singletons.

Proposition 7 There exists a context-sensitive language L1 over the alphabet
Σ∪{a, b} and a regular language R over {a, b} such that L1 >R is not context-
sensitive.

Proof. Let L be a recursively enumerable (which is not context-sensitive) lan-
guage over Σ and L1 be the context-sensitive language over Σ ∪ {a, b}, defined
in Proposition 2. It is easy to see that (L1 >a∗b)∩Σ∗ = L, which implies that
L1 >a∗b is not context-sensitive.

As the word to be deleted in Proposition 2 consists of one letter only, the
same proof can be used to show that CS is not closed under permuted PD with
singletons.

The following operation, the dipolar deletion, has been introduced in [6] in
the context of solving certain language equations.

The dipolar deletion of the word v from the word u is the set consisting of
the words obtained from u by erasing a prefix and a suffix whose catenation
equals v:

u ⇀↽ v = {w ∈ Σ∗| ∃ v1, v2 ∈ Σ∗ : u = v1wv2, v = v1v2}.

Example 5 Let L1 = {abaab, aabab, ababa} and L2 = {ab}. The dipolar dele-
tion L1 ⇀↽ L2 = {aba, baa, aab}.

Proposition 8 The family of context-sensitive languages is not closed under
dipolar deletion with regular languages.

Proof. Let L1, L2 be languages over an alphabet Σ and #, $ be letters which do
not occur in Σ. The theorem follows from the fact that we have

#L1$ ⇀↽ #L2 = (L2\L1)$,

and the family of context-sensitive languages is not closed under left quotient
with regular languages.
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Theorem 5 The family of context-sensitive languages is closed under dipolar
deletion with singletons.

Proof. Let L be a language and w be a word over the same alphabet Σ. The
theorem follows as we have

L ⇀↽ {w} =

w1w2=w⋃

w1,w2

(w1\L)/w2,

and CS is closed under left and right quotient with singletons and under finite
union.

Proposition 9 The family of context-free languages is not closed under dipolar
deletion.

Proof. The proof is similar to that of Proposition 1. Let L1, L2 be the languages
defined by:

L1 = #{aib2i| i > 0}∗$,
L2 = #a{biai| i > 0}∗.

Then we have
(L1 ⇀↽ L2) ∩ b+$ = {b2n

$| n > 0},

which is not a context-free language.

The following result is analogous to Theorem 1: the result of the dipolar dele-
tion from a regular language is regular regardless the complexity of the deleted
language.

Theorem 6 Let L, R be two languages over the alphabet Σ. If R is a regular
language then the language R ⇀↽ L is regular.

Proof. Let A = (S, Σ, s0, F, P ) be a finite automaton that accepts the language
R, in which all the states are useful. A state is called useful if there exists a
path containing it which starts from the initial state and ends in a final state.
For every two states s1, s2 in S define:

Ls1,s2
= {w ∈ Σ∗| s1w=⇒∗s2 in A}.

We have that:

R ⇀↽ L =
⋃

(s1,s2)∈S′

Ls1,s2
, (∗)

where
S′ = {(s1, s2) ∈ S × S| ∃sf ∈ F : Ls0,s1

Ls2,sf
∩ L 6= ∅}.

The theorem now follows as R ⇀↽ L is a regular language, being equal to a
finite union of regular languages.
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Corollary 3 The language R ⇀↽ L can be effectively constructed if R is a reg-
ular language and L is a regular or context-free language.

Proof. The claim follows from the proof of the preceding theorem. Indeed,
if R is a regular language and L is regular (context-free) then the language
Ls0,s1

Ls2,sf
∩L is regular (context-free) for any states s1, s2, sf . As the empti-

ness problem is decidable for regular (context-free) languages, the set S′ and
therefore the language R ⇀↽ L, can be effectively constructed.

Corollary 4 For any regular language R there exist finitely many languages
that can be obtained from R by dipolar deletion.

Proof. It follows from the preceding theorem by the fact that the automaton
A is finite. This implies that there are finitely many different possibilities of
constructing the union from (*).

The languages that can be obtained from R by dipolar deletion will be among
the languages:

LS′ =
⋃

(s1,s2)∈S′

Ls1,s2
,

where S′ is an arbitrary subset of S × S. There exists at most 2card(S×S) such
different languages.

4 Controlled deletion

We have dealt so far with operations where the deletion took place in arbitrary
places of a word. As a consequence, the left/right quotient are not particular
cases of any of these operations, because one cannot fix the position where
the deletion takes place. A natural idea of controlling the position where the
deletion is performed is that every letter determines what can be deleted after
it. The left/right quotient will be obtained then as a particular case of controlled
deletion.

Definition 3 Let L be a language over the alphabet Σ. For each letter a of the
alphabet, let ∆(a) be a language over Σ. The ∆-controlled sequential deletion
from L (shortly, controlled SD) is defined as:

L >∆ =
⋃

u∈L
(u >∆), where

u >∆ = {u1au2 ∈ Σ∗| u = u1avu2 for some
u1, u2 ∈ Σ∗, a ∈ Σ and v ∈ ∆(a)}.

The function ∆ : Σ−→2Σ∗

is called a control function.

13



As a language operation, the ∆-controlled SD has the arity card(Σ) + 1.
If one imposes the restriction that for a distinguished b ∈ Σ, ∆(b) = L2, and

∆(a) = ∅ for any letter a 6= b, a special case of controlled SD is obtained: the

sequential deletion next to the letter b, denoted by L
b
> L2. The SD next to

a letter is a binary operation. The words in L
b
> L2 are obtained by erasing

from words in L one occurrence of a word of L2 which appears immediately
next to a letter b. The words from L which do not contain the letter b followed
by a word from L2 do not contribute to the result.

Example 6 Let L be the language L = {abba, aab, bba, aabb} and ∆ the control
function ∆(a) = b, ∆(b) = a. Then we have:

L >∆ = {aba, abb, aa, bb, aab},

L
a

> {b} = {aba, aa, aab},

L
b
> {a} = {abb, bb}.

In general, if L is a language over Σ and ∆ : Σ−→2Σ∗

a control function,

L >∆ =
⋃

a∈Σ
(L

a
> ∆(a)) =

⋃
u∈L

⋃
a∈Σ

(u
a

> ∆(a)).

The sequential deletion L1 >L2 can be expressed in terms of controlled SD
by using a control function which has the value L2 for all letters in Σ and a
marker. Indeed,

L1 >L2 = h(#L1 >∆),

where ∆(#) = ∆(a) = L2, ∀a ∈ Σ and h is the morphism that erases the marker
#.

The left quotient can be obtained from the SD next to a letter by using a
marker and the morphism h which erases the marker:

L2\L1 = h(#L1

#
> L2).

Notice that if the letter a does not occur in the word u then u
a

> ∆(a) = ∅.
This happens also if a occurs in u but no word of the form av, v ∈ ∆(a) exists
in u. In particular, if λ belongs to L, λ does not contribute to the result of the
controlled SD:

L >∆ = (L − {λ}) >∆, ∀ L ⊆ Σ∗, ∆ : Σ−→2Σ∗

.

A parallel variant of the controlled deletion will be defined in the sequel. Let
u ∈ Σ∗ be a word and ∆ : Σ−→2Σ∗

be a control function which does not have
∅ as its value. The set u >∆ is obtained by finding all the non-overlapping
occurrences of ava, va ∈ ∆(a), in u, and by deleting va from them. Between
any two occurrences of words of the type ava, va ∈ ∆(a), in u, no other words
of this type may remain.

14



Definition 4 Let L be a language over an alphabet Σ and ∆ : Σ−→2Σ∗

be a
control function such that ∆(a) 6= ∅, ∀a ∈ Σ. The ∆- controlled parallel deletion
from L (shortly, controlled PD) is defined as:

L >∆ =
⋃

u∈L
(u >∆), where

u >∆ = {u1a1u2a2 . . . ukakuk+1| k ≥ 1, aj ∈ Σ, 1 ≤ j ≤ k,
ui ∈ Σ∗, 1 ≤ i ≤ k + 1, and there exist vi ∈ ∆(ai), 1 ≤ i ≤ k,
such that u = u1a1v1 . . . ukakvkuk+1,where
{ui} ∩ Σ∗(∪a∈Σa∆(a))Σ∗ = ∅, 1 ≤ i ≤ k + 1.}

The last line is a formalization of the condition that no word ava, va ∈ ∆(a),
may occur in u between aivi, 1 ≤ i ≤ k, vi ∈ ∆(ai).

The arity of the ∆-controlled parallel deletion is card(Σ) + 1.
If one imposes the restriction that for a distinguished letter b ∈ Σ we have

∆(b) = L2, and ∆(a) = λ for any letter a 6= b, a special case of controlled PD is
obtained: parallel deletion next to the letter b. The parallel deletion next to b is

denoted by
b
>. Let us examine the set u

b
> L2, where u is a nonempty word

and L2 is a language over an alphabet Σ. If u = bk, k > 0, and no word of the

form bv, v ∈ L2 occurs as a subword in u, the set u
b
> L2 equals the empty

set. If u contains at least one letter different from b, u is retained in the result

as we can erase λ near that letter. The other words in u
b
> L2 are obtained

by finding all the nonoverlapping occurrences of words of the type bvi, vi ∈ L2,
in u, and deleting vi from them. There may exist more than one possibility of
finding such a decomposition of u into subwords.

Example 7 Let L = {abababa, a3b3, abab} and ∆(a) = b, ∆(b) = a. Then:

L >∆ = {a4, ab3, a2b2, ab2a2, a3b, a3b2, a2, ab2}.

As in the sequential case, if the empty word belongs to L, this does not
influence the result of the controlled PD:

L >∆ = (L − {λ}) >∆, ∀L ⊆ Σ∗, ∆ : Σ−→2Σ∗

, ∆(a) 6= ∅, ∀a ∈ Σ.

If the control function has as values regular languages for every letter of the
alphabet, the controlled SD can be simulated by a gsm with erasing. Conse-
quently, any family of languages which is closed under erasing gsm mappings
will be closed under controlled SD.

Theorem 7 Let L be a language over Σ and ∆ : Σ−→2Σ∗

a control function
whose values are regular languages. There exists a gsm g such that:

L >∆ = g(L).
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Proof. According to a previous remark, one can assume that L is λ-free. One can
construct now a gsm similar to the one of Theorem 2, with the only modification
that every letter a triggers a different derivation (the one corresponding to the
automaton which recognizes the language ∆(a)).

The family of context-free languages is closed under neither controlled SD
nor controlled PD as it is not closed under SD and PD next to one letter.

Proposition 10 There exist two context-free languages L1, L2 over an alphabet

Σ and a letter # in Σ such that L1

#
> L2 and L1

#
> L2 are not context-free

languages.

Proof. Let Σ = {a, b, #} and L1, L2 be the context-free languages:

L1 = #{aib2i| i > 0}∗, L2 = a{biai| i > 0}∗.

Then, (L1

#
> L2) ∩ #b+ = (L1

#
> L2) ∩ #b+ = {#b2n

| n > 0}, which is not
a context-free language.

If the control function has as values only nonempty regular languages then
the controlled PD, L >∆, can be expressed as a morphic image of an intersec-
tion between a regular language and the image of L through a gsm with erasing.
Consequently, any family of languages which is closed under morphisms, inter-
section with regular languages and erasing gsm will be closed under controlled
PD.

Theorem 8 Let L be a language over Σ and ∆ : Σ−→2Σ∗

a control function
whose values are nonempty regular languages. There exist a gsm g, a morphism
h and a regular language R′ such that:

L >∆ = h(g(L) ∩ R′).

Proof. Similar to the one of Theorem 3.

The family of context-sensitive languages is not closed under controlled SD
and controlled PD. However, in the particular case when the control function
has as values only singletons, CS is closed under these operations.

Proposition 11 Let Σ be an alphabet and a, b, # symbols which do not belong
to Σ. There exists a context-sensitive language L′

1 over the alphabet Σ∪{a, b, #}

and a regular language R over {a, b}∗ such that L′

1

#
> R and L′

1

#
> R are not

context-sensitive languages.
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Proof. Let L be the recursively enumerable language (which is not context-
sensitive) over Σ and L1 the context-sensitive language over Σ ∪ {a, b}, defined
in Proposition 2.

Because # is a symbol which does not belong to Σ ∪ {a, b} then

(#L1)
#

> (a∗b) = [(#L1)
#

> (a∗b)] ∩ #Σ∗ = #L.

Theorem 9 The family of context-sensitive languages is closed under controlled
sequential and controlled parallel deletion with singletons.

Proof. We can assume, without loss of generality, that L is a λ-free language.
One can modify the construction in Theorem 3 such that g is not a rational
transducer (CS is not closed under rational transductions) but a λ-free gsm (CS
is closed under λ-free gsm’s). Instead of erasing the words, the modified gsm
g will replace each of their letters with a marker (in this way the erasing rules
are transformed into non-erasing ones). As we are erasing only singletons, the
morphism h which deletes the markers is a linear erasing with respect to g(L).
Indeed, if p = max{lg(∆(a))| a ∈ Σ}, then for any word w ∈ g(L) we have
lg(w) ≤ (p + 1)lg(h(w)).

5 Scattered deletion

The variants of deletion dealt with so far have been considered only from the
compact point of view. A scattered variant of the sequential deletion has been
defined in [14]. Given two words u and v, if the letters of v can also be found in u,
in the same order, the scattered sequential deletion erases them from u without
taking into account their places; else, the result of the scattered sequential
deletion of v from u is the empty set:

u >v = {u1u2 . . . uk+1 ∈ Σ∗| k ≥ 1, u = u1v1u2v2 . . . ukvkuk+1,
v = v1v2 . . . vk, ui ∈ Σ∗, 1 ≤ i ≤ k + 1, vi ∈ Σ∗, 1 ≤ i ≤ k}.

The parallel variants of deletion do not have their natural scattered counter-
parts. Therefore we shall use in the sequel the term scattered deletion instead
of scattered sequential deletion.

Example 8 Consider the languages L1 = {anbncn| n ≥ 1}, L2 = {ab2c3}. The
scattered deletion of L2 from L1 is:

L1 >L2 = {an+2bn+1cn| n ≥ 0},

whereas the ordinary sequential deletion is L1 >L2 = ∅.
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Indeed, we notice that the necessary condition for a set u > v to be nonempty
is much weaker than in the case of sequential deletion. The word v does not
need to be a subword of u but u has to contain the letters of v, in the same
order.

In general, L1 >L2 ⊆ L1 > L2 for any two languages L1, L2 over an al-
phabet Σ.

As expected, the families of regular and context-free languages are closed
under scattered deletion with regular languages because we have:

Theorem 10 If L, R are languages over the alphabet Σ, R a regular one, the
scattered deletion L >R is the image of L through a gsm mapping.

Proof. Let A = (S, Σ, s0, F, P ) be a finite automaton that recognizes the lan-
guage R. We construct the gsm with erasing:

g = (Σ, Σ, S, s0, F, P ′) where P ′ = P ∪ {sa−→as| s ∈ S, a ∈ Σ}.

We have L >P = g(L). Indeed, given u ∈ L as an input and v ∈ R, the gsm
works as follows: the rules of P erase the symbols which come from v, in the
correct order, whereas those of the form sa−→as cross the symbols that will
remain in u > v.

However, in general, the family of context-free languages is not closed under
scattered deletion. In fact a stronger result holds.

Proposition 12 There exist two linear languages L1 and L2 such that the scat-
tered deletion of L2 from L1 is not a context-free language.

Proof. Let L1, L2 be the linear languages

L1 = {an(bc)n(df)m| n, m ≥ 1},
L2 = {cndn| n ≥ 1}.

One can easily see that:

(L1 > L2) ∩ a∗b∗f∗ = {anbnfn| n ≥ 1}.

As CF is closed under intersection with regular sets but {anbnfn|n ≥ 1} is
not a context-free language, it follows that the language L1 >L2 is not context-
free.

As it is not closed under right and left quotient with regular languages, CS
is not closed under scattered deletion either.

Proposition 13 The family of context-sensitive languages is not closed under
scattered deletion with regular languages.

18



Proof. Let Σ be an alphabet and denote Σ′ = {a′| a ∈ Σ}. To every word
w ∈ Σ∗ corresponds a word w′ ∈ Σ′∗, obtained from w by changing every letter
a into a′.

A λ-free gsm g can be easily constructed to satisfy:

g(L) = {w1w
′

2| w1, w2 ∈ Σ∗, w1w2 ∈ L}, (∗)

where L is an arbitrary λ-free language over Σ.
If we define now the λ-free morphism h : Σ∗−→Σ′∗, h(a) = a′, ∀a ∈ Σ, the

following equality holds:

L1/L2 = {[g(L1) > h(L2)] ∩ Σ∗} ∪ {λ| λ ∈ L1 ∩ L2}

for every two languages L1, L2 over Σ.
As CS is closed under λ-free gsm mapping, λ-free morphism, union and inter-

section but it is not closed under right and left quotient with regular languages,
it follows that it is not closed under scattered deletion with regular languages
either.

In the particular case when the language to be deleted is a singleton, CS is
closed under scattered deletion. This follows because the amount of erasing is
limited to the letters of a single word.

The controlled deletion does not have its natural scattered counterpart.
However, a scattered variant of the permuted sequential deletion has been de-
fined in [14]. Given two words u and v, if the letters of v can also be found in
u, they are erased without taking into account their places or their order; else,
the result of the permuted scattered SD of v from u is the empty set:

u >v = u >com(v).

As we refer all the time to the sequential case, the term permuted scattered
deletion will be used in the sequel instead of permuted scatterred sequential
deletion.

The permuted scattered deletion is a generalization of SD and scattered SD.
In general,

L1 >L2 ⊆ L1 > L2 ⊆ L1 >L2,

for all languages L1, L2 over an alphabet Σ.
As L1 >L2 = L1 >com(L2), if one replaces the language to be deleted with

a letter-equivalent language, the result of the permuted scattered SD remains
unchanged.

None of the families REG, CF, CS is closed under permuted scattered SD.
The operation is still family preserving if the language to be erased is a singleton.

Proposition 14 The family of regular languages is not closed under permuted
scattered deletion.
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Proof. Let L1, L2 be the regular languages:

L1 = {(bc)m(df)p| m, p ≥ 1},
L2 = {(cd)n| n ≥ 0}.

One can prove that (L1 >L2) ∩ b∗f∗ = {bmfm| m ≥ 1}.

Proposition 15 The family of context-free languages is not closed under per-
muted scattered deletion with regular languages.

Proof. Let L1, L2 be the context-free respectively regular languages:

L1 = {an(bc)n(df)m| n, m ≥ 1},
L2 = {(cd)n| n ≥ 1}.

The relation (L1 >L2) ∩ a∗b∗f∗ = {anbnfn| n ≥ 1} is obvious.

Proposition 16 The family of context-sensitive languages is not closed under
permuted scattered deletion with regular languages.

Proof. Let L be the recursively enumerable language (which is not context-
sensitive) over an alphabet Σ and L1 the context-sensitive language over Σ ∪
{a, b} defined in Proposition 2. Then, (L1 >a∗b) ∩ Σ∗ = L.

Any family of languages which is closed under scattered deletion with finite
sets is closed under permuted scattered deletion with singletons.

6 Conclusions and open problems

Deletion operations and various related problems have recently become of inter-
est and more thoroughly investigated. The notion of deletion set and decidability
problems connected to it have been considered in [10], [11]. The particular case
of sequential deletion where the language to be deleted is a singleton has been
studied in [8]. The operation thus obtained is called derivative and it generalizes
the classical notions of left/right derivative.

The dual insertion operations corresponding to the deletion ones have been
defined in [6]. The situation where the insertion and deletion are inverse to each
other, which is not generally the case, is considered in [7]. The results have some
non-language-theoretical applications like those in cryptography: after inserting
in some predefined ways garbage letters into the original message, the decryption
is carried out by deleting them. The study of suitable pairs of insertion/deletion
having the requested cryptographical properties is currently under progress.

Finally, language equations involving insertion and deletion operations and
decidability problems arising from them are studied in [9].

Some specific open problems connected with the operations considered so far
are the closure of the family of regular languages under iterated parallel deletion
and under iterated parallel deletion with singletons.
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