http://dx.doi.org/10.1016/j.ic.2017.01.009
0890-5401/© 2017 Elsevier Inc. All rights reserved.

This paper is a continuation of the theoretical analysis of overlap assembly as a formal language operation, that was started in [1] and [2]. In [1], the authors proposed a formal language operation called "self-assembly", inspired by the linear self-assembly of DNA single strands via Watson-Crick complementarity. The authors obtained closure properties of various language classes under iterated overlap assembly, and studied the question of whether or not a given language can be generated through assembly and, if so, what is the minimal generator. In [2], the aforementioned formal operation of self-assembly was renamed overlap assembly, to avoid confusion with other usages of the syntagm self-assembly, such as in the context of DNA computing by two-dimensional self-assembly of DNA rectangular tiles, [19-21]. The paper [2] explored closure properties of basic language families under overlap assembly, decision problems, as well as the potential use of iterated overlap assembly to generate combinatorial DNA libraries.

In this paper, following Section 2 comprising definitions, notations and basic properties, in Section 3 we correlate the overlap assembly operation with the superposition operation introduced in [22] and determine additional closure properties of some language classes under iterated overlap assembly. A string w is terminal with respect to a language L if $w \in L$ and the result of the overlap assembly between w and L equals $\{w\}$; the terminal set $T(L)$ contains all words that are terminal with respect to L. In Section 4 we investigate the closure properties of terminal sets of complete languages (languages closed under overlap assembly). In Section 5 we study three decision problems: deciding the completeness of an arbitrary language, deciding whether a string is terminal with respect to a language, and deciding whether a language is generated by an overlap assembly operation between two given languages. Section 6 contains concluding remarks.

2. Basic definitions and notations

An alphabet Σ is a finite nonempty set of symbols. Σ^{*} denotes the set of all words over Σ, including the empty word λ. Σ^{+}is the set of all nonempty words over Σ. For words $w, x, y, z \in \Sigma^{*}$ such that $w=x y z$ we call the subwords x, y, and z prefix, infix, and suffix of w, respectively. The sets $\operatorname{pref}(w), \inf (w)$, and $\operatorname{suff}(w)$ contain, respectively, all prefixes, infixes, and suffixes of w. A prefix (resp., infix or suffix) x of w is proper if $x \neq w$. We employ the following notation: $\operatorname{Pref}(w)=\operatorname{pref}(w) \backslash\{w\}, \operatorname{Inf}(w)=\inf (w) \backslash\{w\}$, and $\operatorname{Suff}(w)=\operatorname{suff}(w) \backslash\{w\}$. This notation is naturally extended to languages; for example, $\operatorname{Suff}(L)=\bigcup_{w \in L} \operatorname{Suff}(w)$. The complement of a language $L \subseteq \Sigma^{*}$ is $L^{c}=\Sigma^{*} \backslash L$.

Let \mathbb{N} be the set of non-negative integers and k be a positive integer. A subset Q of \mathbb{N}^{k} is a linear set if there exist vectors $\vec{v}_{0}, \vec{v}_{1}, \ldots, \vec{v}_{n} \in \mathbb{N}^{k}$ such that $Q=\left\{\vec{v}_{0}+i_{1} \vec{v}_{1}+\cdots+i_{n} \vec{v}_{n} \mid i_{1}, \ldots, i_{n} \in \mathbb{N}\right\}$. A finite union of linear sets is called a semilinear set.

Let $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$. The Parikh map of a language $L \subseteq \Sigma^{*}$, denoted $\Psi(L)$, is defined as

$$
\Psi(L)=\left\{\left(|w|_{a_{1}}, \ldots,|w|_{a_{k}}\right) \mid w \in L\right\},
$$

where $|w| a_{i}$ is the number of a_{i} 's in w.

2.1. The overlap assembly

An involution is a function $\theta: \Sigma^{*} \rightarrow \Sigma^{*}$ with the property that θ^{2} is the identity. θ is called an antimorphism if $\theta(u v)=$ $\theta(v) \theta(u)$. Traditionally, the Watson-Crick complementarity of DNA strands has been modeled as an antimorphic involution over the DNA alphabet $\Delta=\{A, C, G, T\},[23,24]$.

Using the convention that a word x over this alphabet represents the DNA single strand x in the 5^{\prime} to 3^{\prime} direction, the overlap assembly of a strand $u v$ with a strand $\theta(w) \theta(v)$ first forms a partially double-stranded DNA molecule with v in $u v$ and $\theta(v)$ in $\theta(w) \theta(v)$ attaching to each other, see Fig. 1(a). The DNA polymerase enzyme will extend the 3^{\prime} end of $u v$ with the strand w, see Fig. 1(b). Similarly, the 3^{\prime} end of $\theta(w) \theta(v)$ will be extended, resulting in a full double strand whose upper strand is $u v w$, see Fig. 1(c). Formally, the overlap assembly between $u v$ and $\theta(w) \theta(v)$ is $u v w$. Assuming that all involved DNA strands are initially double-stranded, that is, whenever the strand x is available, its Watson-Crick complement $\theta(x)$ is also available, one can further simplify this model and, given two words x, y over an alphabet Σ, define the overlap assembly of x with $y,[1]$, as:

$$
x \bar{\odot} y=\left\{z \in \Sigma^{+} \mid \exists u, w \in \Sigma^{*}, \exists v \in \Sigma^{+}: x=u v, y=v w, z=u v w\right\}
$$

The definition of overlap assembly can be extended to languages in the natural way.
The iterated overlap assembly $\mu_{*}(L)$ of a language L is defined as:

$$
\mu_{0}(L)=L, \quad \mu_{i+1}(L)=\mu_{i}(L) \bar{\odot} \mu_{i}(L), \quad \mu_{*}(L)=\bigcup_{i \geq 0} \mu_{i}(L)
$$

Since $w \in w \odot w$ for any nonempty word w, it easily follows that $\mu_{i}(L) \subseteq \mu_{i+1}(L)$ for $L \in \Sigma^{+}$.
A string $w \in L$ is said to be terminal with respect to the language L if $w \bar{\odot} L=L \bar{\odot} w\{w\}$. A set of strings $T(L) \subseteq L$ is said to be the (maximal) terminal set of L if every $w \in T(L)$ is terminal with respect to L and for all $w \in L \backslash T(L), w$ is not terminal with respect to L, that is,

$$
T(L)=\{w \in L \mid w \bar{\odot} L=L \bar{\odot} w=\{w\}\}
$$

Fig. 1. (a) The two input DNA single-strands, $u v$ and $\theta(w) \theta(v)$ bind to each other through their complementary segments v and $\theta(v)$, forming a partially double-stranded DNA complex. (b) DNA polymerase extends the 3^{\prime} end of the strand $u v$. (c) DNA polymerase extends the 3^{\prime} end of the other strand. The resulting DNA double strand is considered to be the output of the overlap assembly of the two input single strands.

A complete language is a language closed under overlap assembly, that is, $L \bar{\odot} L=L$. For every language L, the language $\mu_{*}(L)$ is complete and $\mu_{*}(L)=L$ if and only if L is complete. The investigation of the terminal set $T(L)$ makes most sense if L is complete, but it is well-defined for all languages L.

2.2. Basic properties of the overlap assembly

In this section we present a few basic properties of the (iterated) overlap assembly and complete languages. The operation of overlap assembly is not associative, as seen in the next example.

The following example shows that overlap assembly is not associative

$$
(a b a \bar{\odot} a) \bar{\odot} b a c=\{a b a c\}, \quad a b a \bar{\odot}(a \bar{\odot} b a c)=\emptyset
$$

The words in the example are chosen such that a and bac cannot form an overlap; note that, however, $a b a \bar{\odot} b a c=(a b a \bar{\odot}$ a) $\bar{\odot}$ bac in this example.

However, overlap assembly does satisfy a property related to associativity, as seen in the following result.
Lemma 2.1. For languages L_{x}, L_{y} and L_{z}, we have $\left(\left(L_{x} \bar{\odot} L_{y}\right) \bar{\odot} L_{z}\right) \cup\left(L_{x} \bar{\odot} L_{z}\right)=\left(L_{x} \bar{\odot}\left(L_{y} \bar{\odot} L_{z}\right)\right) \cup\left(L_{x} \bar{\odot} L_{z}\right)$.
Proof. Consider a word $w \in\left(\left(L_{x} \bar{\odot} L_{y}\right) \bar{\odot} L_{z}\right) \cup\left(L_{x} \bar{\odot} L_{z}\right)$. If $w \in\left(L_{x} \bar{\odot} L_{z}\right)$, then w clearly belongs to $\left(L_{x} \bar{\odot}\left(L_{y} \bar{\odot} L_{z}\right)\right) \cup\left(L_{x} \bar{\odot} L_{z}\right)$. Otherwise, there exist $x \in L_{x}, y \in L_{y}$ and $z \in L_{z}$ such that $w=(x \bar{\odot} y) \bar{\odot} z$. Because $w \notin x \bar{\odot} z$, we can factorize $y=u y^{\prime} v$ such that $w=x y^{\prime} z, u$ is a nonempty suffix of x, and v is a nonempty prefix of z. We conclude $u y^{\prime} z \in(y \bar{\odot} z)$ and $w=x y^{\prime} v \in$ $x \bar{\odot}(y \bar{\odot} z)$. The converse inclusion follows by similar arguments.

The next lemma considers a word $w \in \mu_{*}(L)$ and its infixes that belong to L. It is not difficult to see that the entire word w is "covered" by overlapping words from L. We formalize this observation by saying that every two consecutive letters in the word w are covered by an infix v of w that belongs to L.

Lemma 2.2. Let $L \in \Sigma^{*}$ be any language and $w=a_{1} a_{2} \cdots a_{n} \in \mu_{*}(L)$ for letters $a_{1}, a_{2}, \ldots, a_{n} \in \Sigma$. For each integer k with $1 \leq k<n$ there exist integers j, ℓ such that $1 \leq j \leq k<\ell \leq n$ and $a_{j} a_{j+1} \cdots a_{\ell} \in L$.

Proof. The statement is trivially true if $|w|=n<2$ or $w \in \mu_{0}(L)=L$. By induction, assume that the statement holds for all words in $\mu_{i}(L)$ and consider $w \in \mu_{i+1}(L) \backslash \mu_{i}(L)$. We have $w \in x \bar{\odot} y$ for some $x, y \in \mu_{i}(L)$. If $k<|x|$, we find j, ℓ such that $1 \leq j \leq k<\ell \leq|x|$ and $a_{j} a_{j+1} \cdots a_{\ell} \in L$ because x is a proper prefix of w. Here, we know that we can always find j and ℓ because of the inductive hypothesis that the statement is valid for all $x \in \mu_{i}(L)$. If $k \geq|x| \geq n-|y|+1$, we find j, ℓ such that $n-|y|+1 \leq j \leq k<\ell \leq n$ and $a_{j} a_{j+1} \cdots a_{\ell} \in L$ because y is a proper suffix of w. Again, we are using the inductive hypothesis that the statement is valid for all $y \in \mu_{i}(L)$.

Lemma 2.2 leads to the following statement, that allows us to identify non-terminal words in a language $\mu_{*}(L)$.
Lemma 2.3. For a language L and a word $w \in \mu_{*}(L) \backslash T\left(\mu_{*}(L)\right)$, there exist $z \in \mu_{*}(L) \backslash\{w\}$ and $x \in L$ such that $z \in w \bar{\odot}$ or $z \in x \bar{\odot} w$.

Proof. A word $w \in \mu_{*}(L)$ is not terminal with respect to $\mu_{*}(L)$ if there exists $y \in \mu_{*}(L)$ and $v \neq w$ such that $v \in w \bar{\odot}$ or $v \in y \bar{\odot} w$. Due to symmetry, we only consider the case when $v \in w \bar{\odot} y$. Let $y=y_{1} y_{2}$ such that $v=w y_{2}$ and y_{1} is a suffix of w. We will use Lemma 2.2 with the following interpretation: since $y=y_{1} y_{2} \in \mu_{*}(L)$, there are $x_{1}, x_{2} \in \Sigma^{+}$ with $x=x_{1} x_{2} \in L$ such that x_{1} is a suffix of y_{1} and x_{2} is a prefix of y_{2}. Let $z=w x_{2}$ and observe that $z \in w \odot x$ and $z \in \mu_{*}(L) \backslash\{w\}$.

Finally, let us state a simple observation on complete languages.

Lemma 2.4. For any $L \subseteq \Sigma^{*}$ and $\# \notin \Sigma$, the languages $\# L$ and $L \#$ are complete.

Proof. Since every word in \#L contains exactly one letter \#, this letter has to match in an overlap assembly. Therefore, $\# w \in \# x \bar{\odot} \# y$ for $x, y, w \in \Sigma^{+}$if and only if x is a prefix of y and $w=y$.

2.3. Automata models, augmented with counters

We will use the following notations for language acceptors:

- DFA (NFA) $=$ deterministic (nondeterministic) finite automaton. DFAs and NFAs are equivalent, and they accept exactly the regular languages.
- DPDA (NPDA) = deterministic (nondeterministic) pushdown automaton, i.e., a DFA (NFA) augmented with a pushdown stack. NPDAs accept exactly the context-free languages (CFLs).
- DCA (NCA) is a DPDA (NPDA) which uses only one stack symbol in addition to the bottom stack symbol which is never erased. DCAs (NCAs) are strictly weaker than DPDAs (NPDAs).
- DLBA (NLBA) $=$ deterministic (nondeterministic) linear-bounded automaton, i.e., a two-way deterministic (nondeterministic) finite automaton that can read and re-write the tape. The machines have left and right input end markers. NLBAs accept exactly the context-sensitive languages (CSLs). It is a long-standing open problem whether or not DLBAs are strictly weaker than NLBAs.
- DTM (NTM) $=$ deterministic (nondeterministic) Turing machines. DTMs and NTMs are equivalent, and they accept exactly the recursively enumerable languages. Halting DTMs and NTMs are equivalent, and they accept exactly the recursive languages.

We refer the reader to [25] for the formal definitions of these devices.
A counter is an integer variable that can be incremented by 1 , decremented by 1 , left unchanged, and tested for zero. It starts at zero and cannot store negative values. Thus, a counter is a pushdown stack on a unary alphabet, in addition to the bottom of the stack symbol which is never altered. Note that a DCA (NCA) is equivalent to a DFA (NFA) which is augmented with a counter.

An automaton (DFA, NFA, DPDA, NPDA, DCA, NCA, etc.) can be augmented with a finite number of counters, where the "move" of the machine also now depends on the status (zero or non-zero) of the counters, and the move can update the counters. It is well known that a DFA augmented with two counters is equivalent to a DTM [26].

In this paper, we will restrict the augmented counter(s) to be reversal-bounded in the sense that each counter can only reverse (i.e., change mode from non-decreasing to non-increasing and vice-versa) at most r times for some given r. In particular, when $r=1$, the counter reverses only once, i.e., once it decrements, it can no longer increment. Note that a counter that makes r reversals can be simulated by $\left\lceil\frac{r+1}{2}\right\rceil 1$-reversal counters [27]. Closure and decidable properties of various machines augmented with reversal-bounded counters have been studied in the literature (see, e.g., [27,28]). We will use the notation DFCM, NFCM, DPCM, NPCM, DNCM, NFCM, etc., to denote a DFA, NFA, DPDA, NPDA, DCA, NCA, etc., augmented with reversal-bounded counters.

Automata with reversal-bounded counters can "count", as seen in the following example.

Example 2.1. $L=\left\{x x^{r}\left|x \in\{a, b\}^{+},|x|_{a}=|x|_{b}\right\}\right.$ can be accepted by an NPCM M with two 1-reversal counters. Briefly, M operates as follows: It scans the input and uses the pushdown stack to check that the input is a palindrome (this requires M to "guess" the middle of the string) while using two counters C_{1} and C_{2} to store the numbers of a 's and b 's it encounters. Then, at the end of the input, on λ-transitions (i.e., without reading any input symbol), M decrements C_{1} and C_{2} simultaneously and verifies that they become zero at the same time. Note that the counters are 1-reversal.

A nondeterministic stack automaton (NSA) is a generalization of an NPDA in that during the computation, the machine can enter the stack in a read-only mode. It can only push and pop by returning to the top of the stack [29]. The deterministic version is denoted by DSA.

A nondeterministic stack-counter automaton (NSCA) is a special case of an NSA in that the stack alphabet is unary, except for the bottom of the stack symbol which is never altered and only used for this purpose [30]. So, again, the machine can enter the unary storage in a read-only mode, i.e., it can only go up and down the unary storage and not alter the stack. It can only push or pop by returning to the top of the stack. So the (unary) stack height can vary during the computation. The deterministic version is denoted by DSCA.

An NSCA (DSCA) is strictly more powerful than an NCA (DCA) as the following example shows.

Example 2.2.

1. $L_{1}=\left\{a^{n k} \mid n, k \geq 1\right\}$ can be accepted by an NSCA M_{1} which on λ-moves first writes $B a^{n}$ on the stack, where B is the bottom of the stack symbol and $n \geq 1$ is nondeterministically chosen. Then M_{1} goes up and down the stack (on a read-only mode) and checks that the length of the input is $n k$ for some k. Note that after M_{1} has written $B a^{n}$, it will no longer pop or write on the stack.
2. $L_{2}=\left\{a^{1} \# a^{2} \# \ldots \# a^{k} \mid k \geq 1\right\}$ can be accepted by a DSCA M_{2} which on a λ-move first writes B (the bottom of the stack symbol) on the stack. Then for each $1 \leq i \leq k, M_{1}$ pushes a on the stack (i.e., increases the length by 1) and then goes down the stack and checks that the next input segment a^{i} is exactly the numbers of a 's on the stack. Note that M_{2} does not do any popping.

The languages L_{1} and L_{2} above cannot be accepted by NCAs, since these languages have non-semilinear Parikh maps but languages accepted by NCAs (in fact, by NPCMs) have semilinear Parikh maps [27].
$\operatorname{NSPACE}(S(n))$ and $\operatorname{NTIME}(T(n))$ denote the classes of languages accepted by nondeterministic Turing machines in $S(n)$ space and $T(n)$ time, respectively. $\operatorname{DSPACE}(S(n))$ and $\operatorname{DTIME}(T(n))$ are the corresponding deterministic classes. PTIME denotes the class of languages accepted by deterministic Turing machines in polynomial time.

3. The related superposition operation

The superposition operation is a binary operation proposed by Bottoni, Labella, Manca, and Mitrana in [22] to model the action of the DNA Polymerase enzyme. The result of the superposition operation between words $x, y \in \Sigma^{+}$, denoted by $x \diamond y$, consists of the set of all words $z \in \Sigma^{+}$obtained by any of the four following cases (${ }^{-}$denotes the morphic complement, that is, ${ }^{-}$is a morphism such that $\overline{\bar{u}}=u$ for all words u):

1. If there exist $u, v \in \Sigma^{*}, w \in \Sigma^{+}$such that $x=u w, y=\bar{w} v$, then $z=u w \bar{v} \in x \diamond_{1} y$.
2. If there exist $u, v \in \Sigma^{*}$ such that $x=u \bar{y} v$, then $z=u \bar{y} v \in x \diamond_{2} y$.
3. If there exist $u, v \in \Sigma^{*}, w \in \Sigma^{+}$such that $x=w v, y=u \bar{w}$, then $z=\bar{u} w v \in x \diamond_{3} y$.
4. If there exist $u, v \in \Sigma^{*}$ such that $y=u \bar{x} v$, then $z=\bar{u} x \bar{v} \in x \diamond_{4} y$.

The superposition operation can be naturally extended to languages. For more on the superposition operation between two words (languages), the reader is referred to [22,31].

The superposition operation and the overlap assembly are closely related. In particular, when we replace the complement - by the identity, then case 1 above is identical to overlap assembly, i.e., $x \bar{\odot} y=x \diamond_{1} y$; case 3 above is symmetrical to the overlap assembly, i.e., $x \bar{\odot} y=y \diamond_{3} x$; furthermore, cases 2 and 4 above give $x \diamond_{2} y=y \diamond_{4} x=x$ if y is an infix of x. However, in the general case of two languages or when we consider a "real" complement function, the overlap assembly $L_{x} \bar{\odot} L_{y}$ does not give the same result as the superposition $L_{x} \diamond L_{y}$.

If ${ }^{-}$is the identity, then the overlap assembly of a language L with itself gives $\mu_{1}(L)=L \bar{\odot} L=L \diamond L$ and, moreover, the iterated overlap assembly coincides with the analogously defined ${ }^{1}$ iterated superposition $\mu_{*}(L)=\diamond^{*}(L)$. In other words, the iterated overlap assembly is a special case of the iterated superposition. Therefore, the (positive) closure results for the iterated superposition, obtained in [22,31], also hold for the iterated overlap assembly. Indeed, the same results were independently obtained in [1], in its study of closure properties of iterated overlap assembly:

Proposition 1 ([1]). The language classes of regular, context-sensitive, recursive and recursively enumerable languages are closed under iterated overlap assembly.

The result that the family of context-free languages is not closed under iterated overlap assembly (resp., iterated superposition) was proven in [1] (resp., [22]). The following statement strengthens that result.

Theorem 3.1. There is a language L accepted by a 1-reversal DCA (i.e., a DFA with one counter that makes only 1 reversal) whose iterated overlap assembly, $\mu^{*}(L)$, cannot be accepted by any NPCM (i.e., an NPDA with reversal-bounded counters).

Proof. Let $L=\left\{\$ a^{i} \# \$ a^{i+1} \# \mid i \geq 1\right\}$. Clearly, L can be accepted by a 1 -reversal DCA. Suppose $\mu_{*}(L)$ could be accepted by an NPCM. Then $\mu_{*}(L) \cap \$ a \#\left(\$ a^{+} \#\right)^{+}=\left\{\$ a^{1} \# \$ a^{2} \# \cdots \$ a^{k} \# \$ a^{k+1} \# \mid k \geq 1\right\}$ could also be accepted by an NPCM. This is not possible since the Parikh map of this language is not semilinear, but it is known that the Parikh map of any NPCM language is semilinear [27].

[^0]In contrast to the previous result, for any k and NFCM language $L, \mu_{k}(L)$ can be accepted by an NFCM. This follows from the fact that $L \bar{\odot} L$ is an NFCM language if L is an NFCM language [2].

In [22], the notion of a maximal (adult) language is defined, which is analogous to the terminal set of a language. The authors consider maximal (adult) words with respect to the iterated superposition of some language L : A word x is a maximal word with respect to $\diamond^{*}(L)$ if $x \in \diamond^{*}(L)$ and $x \diamond\left(\diamond^{*}(L)\right) \subseteq\{x\}$. Also, max $\diamond^{*}(L)$ is defined as the set of all maximal words with respect to $\diamond^{*}(L)$. We immediately obtain that $T\left(\mu_{*}(L)\right)$ is the special case of $\max \diamond^{*}(L)$ where the complement ${ }^{-}$is replaced by the identity. From the results in $[22,31]$ we obtain the following result for terminal sets of complete, regular languages:

Proposition 2. The terminal set $T(L)$ of a complete, regular language L is regular. In particular, the terminal set $T\left(\mu_{*}(L)\right)$ is regular if L is regular.

It is known from [22] that there exists a context-sensitive language L such that the maximal language max $\diamond^{*}(L)$ is undecidable. This result can be strengthened as follows.

Theorem 3.2. There exists a (complete) language $L \in \operatorname{DSPACE}(\log n)$, such that $T(L)$ and $T\left(\mu_{*}(L)\right)$ are undecidable.

Proof. Let M be a deterministic Turing machine with input alphabet Σ and let $\$$, \# $\notin \Sigma$. Note that the languages $L_{1}=\$ \Sigma^{*} \#$ and

$$
L_{2}=\left\{\$ w \#^{n} \mid w \in \Sigma^{*}, n \geq 1, \text { and } M \text { accepts } w \text { using at most } \log (n) \text { space }\right\}
$$

can be decided in deterministic log-space. Observe that the language $L=L_{1} \cup L_{2}$ is complete (Lemma 2.4), hence $T(L)=$ $T\left(\mu^{*}(L)\right)$; no word in L_{2} belongs to $T(L)$; and a word $\$ w \# \in L_{1}$ belongs to $T(L)$ if and only if M does not accept w. Because M may accept an undecidable language, we cannot decide $T(L)$ in general.

A closure property of superposition with respect to the language class PTIME has been stated in [31]. Thus, we have:
Proposition 3. The class PTIME is closed under iterated overlap assembly.

4. Iterated overlap assembly and terminal sets

In this section we further explore the iterated overlap assembly and terminal sets. In the previous section we have seen that the terminal set of a complete context-sensitive language can be undecidable (Theorem 3.2). In this section we will show that the terminal set of a complete context-free language is always context-sensitive (Theorem 4.2). We also show that, for a context-free language L, the language $T\left(\mu_{*}(L)\right.$) is context-sensitive (Theorem 4.3). We establish space and time complexities for deciding $T(L)$ when L is complete and given via certain automata models (Theorem 4.4 and Corollaries 4.5-4.8). Lastly, we establish a relation between Schützenberger constants and the iterated overlap assembly (Theorem 4.9).

We start with an observation about terminal sets of complete languages.

Theorem 4.1. The terminal set of a complete language L is given by

$$
T(L)=L \backslash(\operatorname{Pref}(L) \cup \operatorname{Suff}(L))
$$

Proof. First, we prove $T(L) \subseteq L \backslash(\operatorname{Pref}(L) \cup \operatorname{Suff}(L))$ by contradiction: suppose there were $w \in T(L) \cap \operatorname{Pref}(L) \subseteq L$. $w \in \operatorname{Pref}(L)$ implies that there is $x \in L$ such that w is a proper prefix of x. Therefore, $x \in w \bar{\odot} x \subseteq w \bar{\odot}$ which contradicts that $w \in T(L)$ since the latter implies that $w \bar{\varnothing} L=w$. A similar case can be made when $w \in T(L) \cap \operatorname{Suff}(L)$.

Now, let $w \in L \backslash(\operatorname{Pref}(L) \cup \operatorname{Suff}(L))$ and suppose that $w \notin T(L)$. The latter implies that there is $x \neq w$ such that $x \in w \bar{\odot} L$ or $x \in L \bar{\odot} w$; by symmetry, we assume $x \in w \bar{\odot}$. Note that $x \in L$ because L is complete. Also, $x \in w \bar{\odot} L$ and $x \neq w$ imply that w is a proper prefix of x. Since w is a proper prefix of $x \in L$ we obtain a contradiction. If we initially assume that $x \in L \bar{\odot} w$, we will similarly obtain a contradiction that w is a proper suffix of $x \in L$.

Note that Proposition 2 now follows as a corollary of Theorem 4.1, since regularity is preserved under the used operations. Next, we consider terminal sets of context-free languages.

Theorem 4.2. The terminal set of a complete, context-free language L is not necessarily a context-free language, but is always a context-sensitive language.

Proof. We first prove that $T(L)$ for a complete, context-free language L may not be context-free using a counter-example. Let

$$
L=\left\{\# a^{i} b^{j} c^{k} \mid i, j, k \geq 1, k \leq i \vee k \leq j\right\}
$$

Note that L is clearly context-free and complete (using Lemma 2.4), but the terminal set $T(L)$ is not context-free:

$$
T(L)=\left\{\# a^{i} b^{j} c^{k} \mid i, j, k \geq 1, k=\max \{i, j\}\right\}
$$

If L is a context-free language, then the language $M=\operatorname{Pref}(L) \cup \operatorname{Suff}(L)$ is context-free as well. Because the family of context-sensitive languages is closed under intersection [25] and complementation [32,33], we have that $T(L)=L \cap M^{c}$ is context-sensitive.

Later, in Corollary 4.7, we will see that $T(L)$ is, in fact, in $\operatorname{DSPACE}\left(\log ^{2} n\right)$ and also in $\operatorname{DTIME}\left(n^{2.373}\right)$.
So far, we have seen that the iterated overlap assembly of a context-free language is context-sensitive (Proposition 1), and that the terminal set of a context-sensitive language can be undecidable (Theorem 3.2). Next we prove that, for context-free language L, the language $T\left(\mu_{*}(L)\right.$) is context-sensitive.

Theorem 4.3. The terminal set of $\mu_{*}(L)$ is context-sensitive if L is context-free.
Proof. In order to decide $w \in T\left(\mu_{*}(L)\right)$ we decide the two properties which are necessary and sufficient to decide the theorem statement.

1. $w \in \mu_{*}(L)$ and
2. $\left(\operatorname{pref}(w) \cap \operatorname{Suff}(L) \cap \Sigma^{+}\right) \cup\left(\operatorname{suff}(w) \cap \operatorname{Pref}(L) \cap \Sigma^{+}\right)=\emptyset$.

Both properties can be decided in linear space when L is context-free; if L is context-free, it is also context-sensitive and hence $\mu_{*}(L)$ is context-sensitive (i.e. decidable in linear space) by Proposition 1 . Furthermore, it is clear that properties 1 and 2 are necessary for w to belong to $T\left(\mu_{*}(L)\right)$. If property 2 is not true, then there is a string in $w \bar{\odot} L$ or $L \bar{\odot} w$ other than w and that falsifies that w is in $T\left(\mu_{*}(L)\right)$.

In order to show that the conditions are sufficient, we prove the contrapositive. Consider $w \notin T\left(\mu_{*}(L)\right)$. If $w \notin \mu_{*}(L)$, then condition 1 is violated. Otherwise, there exist $z \in \mu_{*}(L) \backslash\{w\}$ and $x \in L$ such that $z \in w \bar{\odot} x$ or $z \in x \bar{\odot} w$, by Lemma 2.3. If $z \in w \bar{\odot} x$, then $\operatorname{suff}(w) \cap \operatorname{Pref}(L) \cap \Sigma^{+} \neq \emptyset$; and if $z \in x \bar{\odot} w$, then $\operatorname{pref}(w) \cap \operatorname{Suff}(L) \cap \Sigma^{+} \neq \emptyset$ - hence, property 2 is violated.

Next, we investigate the terminal set $T(L)$ for various complete languages L. For convenience, we assume that all (oneway) machines have a right end marker in their read-only input tape. For nondeterministic machines, this assumption can be made without loss of generality, since such a machine can "guess" the end of the input and simulate the computation on the end marker using λ-moves at the end of the input.

Theorem 4.4. If L is a complete language accepted by an NSCA, then $T(L)$ is in $\operatorname{NSPACE}(\log n)$ and is also in PTIME.
Proof. Let L be accepted by an NSCA M. We claim that $\operatorname{Pref}(L)$ and $\operatorname{Suff}(L)$ can be accepted by NSCAs. We construct an NSCA M_{1} accepting $\operatorname{Pref}(L) . M_{1}$, when given input x, will accept x if there is some nonempty y such that $x y$ is accepted by M. M_{1} operates as follows: It simulates M on x faithfully. Then after processing x, M_{1}, on λ-moves, guesses some suffix-string y symbol-by-symbol and continues simulating the computation of M on y and accepts if M accepts. Similarly, an NSCA M_{2} accepting $\operatorname{Suff}(L)$ can be constructed, but in this case, given input x, M_{2}, on λ-moves, guesses some nonempty prefix-string y and simulates M. After guessing and processing y, M_{2} reads x and continues simulating M and accepts if M accepts. Clearly, from M_{1} and M_{2}, we can also construct an NSCA M_{3} accepting $L_{3}=\operatorname{Pref}(L) \cup \operatorname{Suff}(L)$.

It is known that every NSCA can be converted to an equivalent quasi-real time NSCA, i.e., there is a d such that during the computation, the number of consecutive λ moves on the input is bounded by d (hence the NSCA runs in linear time) [30]. We can then convert M_{3} to an equivalent quasi-real time NSCA M_{4}. It follows that the stack-counter values during the accepting computation is linear on the length of the input. Clearly, the stack-counter can be simulated by two ordinary counters whose values would also be linear in the length of the input. Hence the stack-counter of M_{4} can be stored in $\log n$ space on a read/write tape. It follows that $L_{3}=\operatorname{Pref}(L) \cup \operatorname{Suff}(L)$ is in $\operatorname{NSPACE}(\log n)$. Now the complement L_{3}^{c} of L_{3} is also in NSPACE $(\log n)[32,33]$. Since NSPACE $(\log n)$ is clearly closed under intersection, by Theorem $4.1, T(L)=L \backslash(\operatorname{Pref}(L) \cup$ $\operatorname{Suff}(L))=L \cap L_{3}^{c}$ is also in $\operatorname{NSPACE}(\log n)$. That $T(L)$ is in PTIME follows from the fact that NSPACE $(\log n) \subseteq$ PTIME.

We can use a similar construction as in the proof of Theorem 4.4 to obtain the following results.
Corollary 4.5. If L is a complete language accepted by an NCA, then $T(L)$ is in $\operatorname{NSPACE}(\log n)$ and $\operatorname{DTIME}\left(n^{2}\right)$.

Proof. $T(L)$ in NSPACE $(\log n)$ follows from Theorem 4.4 since NCA is a special case of NSCA. The time complexity follows from the proof of Theorem 4.4 and the fact that every language accepted by an NCA is in $\operatorname{DTIME}\left(n^{2}\right)$ [34] and that this class is closed under complementation and intersection.

Corollary 4.6. If L is a complete language accepted by an NFCM, then $T(L)$ is in NSPACE $(\log n)$ and also in PTIME.

Proof. If L is accepted by an NFCM M, then, as in the proof of Theorem 4.4, we can construct an NFCM M_{3} accepting $L_{3}=\operatorname{Pref}(L) \cup \operatorname{Suff}(L)$. It is known that for any NFCM, there is a fixed constant d such that any string of length n accepted by the NFCM can be accepted in $d n$ steps, i.e., the values of the counters are at most $d n$ [35]. It follows that any NFCM language is in $\operatorname{NSPACE}(\log n)$. Then, as in the proof of Theorem 4.4, $T(L)=L \cap L_{3}^{c}$ is in $\operatorname{NSPACE}(\log n)$ and, hence, also in PTIME.

The next corollary strengthens Theorem 4.2.

Corollary 4.7. If L is a complete language accepted by an NPDA (i.e., L is a complete context-free language), then $T(L)$ is in $\operatorname{DSPACE}\left(\log ^{2} n\right)$ and $\operatorname{DTIME}\left(n^{2.373}\right)(=$ complexity of matrix multiplication $)$.

Proof. This follows by similar constructions as in Theorem 4.4 using the fact that every language accepted by an NPDA is in $\operatorname{DSPACE}\left(\log ^{2} n\right)$ and also in $\operatorname{DTIME}\left(n^{2.373}\right)$ ($=$ complexity of matrix multiplication [36]), and the fact that these classes are closed under complementation and intersection.

Similarly, since the family of linear context-free languages (i.e., languages accepted by 1 -reversal NPDAs) is in DTIME $\left(n^{2}\right)$ [37], we have:

Corollary 4.8. If L is a complete linear context-free language, then $T(L)$ is in $\operatorname{DTIME}\left(n^{2}\right)$.

Lastly, we consider the relation between Schützenberger constants [38] and the iterated overlap assembly. A word $w \in$ Σ^{+}is a (Schützenberger) constant for L if $w \in \inf (L)$ and for all words $u_{1}, u_{2}, v_{1}, v_{2} \in \Sigma^{*}$, we have that

$$
u_{1} w v_{1} \in L \text { and } u_{2} w v_{2} \in L \Longrightarrow u_{1} w v_{2} \in L
$$

The existence of constants in a language seems to have a close connection to languages that are generated by some biologically inspired systems; for example, every splicing language has a constant [39].

Theorem 4.9. Every word $w \in \Sigma^{+}$in $\mu_{*}(L) \backslash \operatorname{Inf}(L)$ is a constant for $\mu_{*}(L)$. If, in addition, w satisfies $w \in \inf \left(T\left(\mu_{*}(L)\right)\right)$, then w is a constant for $T\left(\mu_{*}(L)\right)$ as well.

Proof. Let $w \in \mu_{*}(L) \backslash \operatorname{Inf}(L)$ and let $u_{1}, v_{1}, u_{2}, v_{2} \in \Sigma^{*}$ such that $u_{1} w v_{1} \in \mu_{*}(L)$ and $u_{2} w v_{2} \in \mu_{*}(L)$. In order to show that w is a constant, we show that $u_{1} w \in \mu_{*}(L)$ and $w v_{2} \in \mu_{*}(L)$; this implies that $u_{1} w v_{2} \in u_{1} w \bar{\odot} w v_{2} \subseteq \mu_{*}(L)$.

Let x_{1} be the longest prefix of $u_{1} w$ that belongs to $\mu_{*}(L)$. If u_{1} is a proper prefix of x_{1}, then $u_{1} w \in x_{1} \bar{\sigma} \subseteq \mu_{*}(L)$. Otherwise, x_{1} would be prefix of u_{1} which is not possible: Suppose x_{1} is a prefix of u_{1} and let x_{2} be such that $x_{1} x_{2}=u_{1} w v_{1}$. Lemma 2.2 implies that there are $y_{1}, y_{2} \in \Sigma^{+}$with $y_{1} y_{2} \in L$ such that y_{1} is a suffix of x_{1} and y_{2} is a prefix of x_{2}. Since w is no proper infix of a word in L, it is no infix of y_{2} either. We obtain that $x_{1} y_{2} \in x_{1} \bar{\odot} y_{1} y_{2} \subseteq \mu_{*}(L)$ is a prefix of $u_{1} w$; this contradicts the choice of x_{1} which is supposed to be the longest prefix with that property. By a symmetric argument, we can show that $w v_{2} \in \mu_{*}(L)$. We conclude that w is a constant for $\mu_{*}(L)$.

Now, consider the case when $u_{1} w v_{1} \in T\left(\mu_{*}(L)\right)$ and $u_{2} w v_{2} \in T\left(\mu_{*}(L)\right)$ and, hence, $w \in \inf \left(T\left(\mu_{*}(L)\right)\right)$. As we showed above, $u_{1} w v_{2} \in \mu_{*}(L)$. In order to obtain a contradiction, suppose that $u_{1} w v_{2} \notin T\left(\mu_{*}(L)\right)$. By Lemma 2.3 there exist $z \in$ $\mu_{*}(L) \backslash\left\{u_{1} w v_{2}\right\}$ and $x \in L$ such that $z \in u_{1} w v_{2} \bar{\odot} x$ or $z \in x \bar{\odot} u_{1} w v_{2}$. Due to symmetry, we only consider the case when $z \in u_{1} w v_{2} \bar{\odot} x$. Let y be the nonempty suffix of x such that $z=u_{1} w v_{2} y$. Because x cannot have w as proper infix, we have $u_{2} w v_{2} y \in u_{2} w v_{2} \bar{\odot} x$ which contradicts the premise $u_{2} w v_{2} \in T\left(\mu_{*}(L)\right)$.

5. Decision problems

In this section we consider three decision problems: whether a language is complete (Subsection 5.1), whether a string is terminal with respect to a language (Subsection 5.2), and whether the overlap assembly of two given languages equals a given third one (Subsection 5.3).

5.1. Deciding the completeness of a language

The problem of deciding if a given language is complete was studied in [1] for language classes in Chomsky hierarchy. In this subsection we narrow the gap between the language classes whose completeness is decidable and those for which it is undecidable. Recall first a result from [1]:

Proposition 4 ([1]).

1. It is decidable if any given regular language is complete.
2. It is undecidable if any given context-free (resp., context-sensitive, recursively enumerable) language is complete.

The following shows that Proposition 4, part 1 holds for DFCMs (i.e., DFAs augmented with reversal bounded counters).
Theorem 5.1. It is decidable, given a $D F C M M$, if $L(M)$ is complete.
Proof. Given a DFCM M accepting L, we construct an NFCM M^{\prime} accepting $L^{\prime}=L \bar{\odot} L$ as follows:
M^{\prime}, when given input z, guesses a partition $z=u v w$ for some u, v, w with $v \neq \lambda$, and checks that $u v$ is in L by running M on $u v$, and $v w$ is in L by running another copy of M on $v w$, and accepts z if and only if M accepts $u v$ and $v w$. Note that M^{\prime} uses two sets of counters of M to simulate the two copies of M. Clearly, $L\left(M^{\prime}\right)=L \varnothing L$. It follows that $L \odot L=L$ if and only if $L\left(M^{\prime}\right) \subseteq L$, and if and only if $L\left(M^{\prime}\right) \cap L^{c}=\emptyset$. Since the family of DFCM languages is effectively closed under complementation, we can construct from M a DFCM accepting L^{c} [27]. The result follows, since we can construct, given two NFCMs, an NFCM accepting their intersection language, and emptiness of NFCMs is decidable [27].

In contrast to Theorem 5.1, for the case of NFCM we have the following result which strengthens Proposition 4, part 2:
Theorem 5.2. It is undecidable, given a 1-reversal NCA (i.e., an NFA augmented with one counter which makes only 1 reversal) M, whether $L(M)$ is complete.

Proof. We reduce the problem to the undecidability of the halting problem for deterministic Turing machines (DTMs) on an initially blank tape.

Let Z be single-tape DTM. Without loss of generality, we assume that if Z halts on an initially blank tape, it makes at least two moves. Assume that Z does not write blanks. A configuration (ID) of Z can be represented by a string $x q y$, where $x y$ is the non-zero content of the tape and q is the state of the TM. The initial configuration, $I D_{1}=q_{0}$ (the initial state). We may assume that the TM halts in a unique halting state f. Thus the halting $I D$ is of the form $x f y$ for some x, y.

We construct a 1 -reversal NCA M which accepts the language:
$L(M)=\left\{w \mid w \neq I D_{1} \# I D_{2} \cdots \# I D_{k}\right.$, where $k \geq 3, I D_{1}$ is the initial configuration of Z on an initially blank tape, $I D_{k}$ is a halting configuration of Z, and $I D_{i+1}$ is the valid successor of $\left.I D_{i}, 1 \leq i \leq k-1\right\}$.

The construction of M is straightforward (see, e.g., [35]). For completeness, we briefly sketch it here. Given input w, M accepts w if
(1) w is not of the format above, or
(2) $I D_{1}$ is not the initial configuration, or
(3) $I D_{k}$ is not a halting configuration, or
(3) $I D_{i+1}$ is not the valid successor of $I D_{i}$ for some i.

Clearly, M's finite-state control can check (1), (2), (3). To check (4), M nondeterministically moves its input head to the beginning of some nondeterministically chosen $I D_{i}$ and records a nondeterministically chosen position d within $I D_{i}$ by incrementing the counter to value d. Then M moves to the beginning of $I D_{i+1}$ and decrements the counter to zero to find the corresponding position in $I D_{i+1}$. By doing this, M can detect if there is a discrepancy in the symbols in the three positions $d-1, d, d+1$ of $I D_{i+1}$ with respect to the symbols in the corresponding positions in $I D_{i}$.

Let Σ be the alphabet over which $L(M)$ is defined. Clearly, $L(M)=\Sigma^{*}$ (which is complete) if Z does not halt on blank tape. However, if Z halts on blank tape, $L(M)=\Sigma^{*} \backslash\{x\}$ for exactly one string x of the form $I D_{1} \# I D_{2} \# \cdots \# I D_{k}, k \geq 3$, and it is not complete because: $I D_{1} \# I D_{2}$ is in $L(M)$ (since it is not x) and $I D_{2} \# \ldots \# I D_{k}$ is also in $L(M)$ (since it is not x). Hence, $x=I D_{1} \# I D_{2} \# \cdots \# I D_{k}$ is in $L(M) \bar{\odot} L(M)$, but it is not in $L(M)$. It follows that $L(M)$ is complete if and only if Z does not halt on blank tape, which is undecidable.

5.2. Deciding the terminality of strings

We now investigate the problem of deciding whether a given string is terminal with respect to a language. The following result gives sufficient conditions for the decidability of whether a string w is terminal with respect to a language.

Theorem 5.3. Let \mathcal{M} be a class of machines, and let \mathcal{L} be the corresponding class of accepted languages, satisfying:

1. if L is in \mathcal{L}, then for any string w in $L, w \bar{\odot} L$ and $L \bar{\odot}$ are also in \mathcal{L};
2. \mathcal{L} is closed under intersection with regular sets;
3. \mathcal{L} has a decidable emptiness problem;
and items 1 and 2 are effective. Then it is decidable, given a machine M in \mathcal{M} and a string w in $L(M)$, if w is terminal with respect to $L(M)$.

Proof. Let L be a language accepted by a machine $M \in \mathcal{M}$ and w be a string in L. Then, by item 1 , we can construct machines in \mathcal{M} accepting $L_{1}=w \bar{\odot} L$ and $L_{2}=L \bar{\odot} w$. To check that $L_{1}=\{w\}$, we do the following: since \mathcal{L} is closed under intersection with regular sets (item 2) and has a decidable emptiness problem (item 3), we check that $L_{1} \cap\{w\}^{c}=\emptyset$ (note that $w \in L_{1}$ is always true). Similarly, we can check that $L_{2}=\{w\}$.

Almost all classes of one-way nondeterministic machines satisfy condition 1 in Theorem 5.3. Indeed, given M accepting L and $w \in L$, we construct a machine M^{\prime} accepting $w \bar{\odot} L$ which, on a given input z, guesses a decomposition of z into $u v x$ and checks that $u v=w$ and $v x$ is accepted by M. Similarly, we can construct a machine $M^{\prime \prime}$ to accept $L \bar{\odot} w$.

As examples, the classes of languages accepted by NPCMs and NSAs satisfy condition 1 of Theorem 5.3, while condition 2 is also clearly satisfied. Since emptiness for NPCMs and NSAs is decidable [27,29], we have:

Corollary 5.4. It is decidable, given an NPCM (resp., NSA) M and a string w in $L(M)$, whether w is terminal with respect to $L(M)$.
Next we show that condition 3 in Theorem 5.3 is a necessary condition. We say that a class of languages \mathcal{L} is closed under distinct-symbol concatenation if, given $L \in \mathcal{L}$ and a symbol $\$$, not in the alphabet of $L, \$ L$ and $L \$$ are in \mathcal{L}.

Theorem 5.5. Let \mathcal{M} be a class of machines, and \mathcal{L} be the corresponding class of accepted languages. Assume that \mathcal{L} is effectively closed under distinct-symbol concatenation and union with a singleton language. If \mathcal{L} has an undecidable emptiness problem, then it is undecidable, given a language L in \mathcal{L} and a string w in L, whether w is terminal with respect to L.

Proof. Let M_{1} be a machine in \mathcal{M} accepting a language $L_{1} \subseteq \Sigma^{*}$. Let $\%, \#, \$$ be new symbols not in Σ. Consider the string $w=\% \#$. Construct a machine M in \mathcal{M} accepting the language $L=\{\% \#\} \cup\left\{\% \# x \$ \mid x \in L_{1}\right\}$. Clearly, \%\# $\bar{\odot} L=L \bar{\odot} \% \#=\{\% \#\}$ if and only if $L_{1}=\emptyset$. We cannot decide if w is terminal, since emptiness for \mathcal{L} is undecidable.

An example of a class \mathcal{L} such as the one in Theorem 5.5 is the class of languages accepted by real-time DFAs augmented with two unrestricted counters (real-time deterministic 2 -counter machines). Real-time here means that the machines have no λ-moves. It is known that it is undecidable, given a deterministic machine Z which has no input tape but with two counters that are initially zero, whether it will halt [26]. We construct from Z, a real-time deterministic 2 -counter machine M which (unlike Z) has an input tape. M, when given a unary input string a^{n}, simulates Z 's counters faithfully while reading a symbol a (of the input) on each move of Z, and accepts if and only if Z halts after reading exactly n a's. Clearly if Z halts after n steps, M will accept a^{n}. If Z does not halt, M will not accept a^{n} for any n. Hence, $L(M)=\emptyset$ if and only if Z does not halt, and M operates in real-time. It follows that the emptiness problem for real-time deterministic 2-counter machines is undecidable. Now it is obvious that if L is accepted by a real-time deterministic 2 -counter machine M and $\$$ is a new symbol, then $\$ L$ and $L \$$ can also be accepted by real-time deterministic 2-counter machines. If $\{x\}$ is a singleton language, then $L \cup\{x\}$ can be accepted by a real-time deterministic 2 -counter machine M^{\prime} which simulates M and also incorporates in the finite-state control the string x; so M^{\prime} can detect and accept if the input is x. Hence, the assumptions in Theorem 5.5 are satisfied, and we have:

Corollary 5.6. It is undecidable, given a real-time deterministic 2-counter machine M and a string w in $L(M)$, whether w is terminal with respect to $L(M)$.

As above, we can also construct a (one-way) real-time deterministic $\log n$ space-bounded DTM to simulate Z. Hence, the emptiness problem for these machines is also undecidable. Thus, we have:

Corollary 5.7. It is undecidable, given a real-time deterministic $\log n$ space-bounded DTM M and a string w in $L(M)$, whether w is terminal with respect to $L(M)$.

5.3. Deciding the given decomposition of a language

Finally, we consider the problem of deciding, given languages L, L_{1}, L_{2}, whether $L=L_{1} \bar{\odot} L_{2}$.

Theorem 5.8.

1. It is undecidable, given a language L accepted by a 1-reversal NCA and regular languages L_{1} and L_{2}, whether $L=L_{1} \odot L_{2}$.
2. It is undecidable, given a regular language L and languages L_{1} and L_{2} accepted by 1-reversal DPDAs (resp., DCAs), whether $L=L_{1} \bar{\odot} L_{2}$.

Proof. For part 1, let $L \subseteq \Sigma^{+}$be accepted by a 1-reversal NCA and let $L_{1}=L_{2}=\Sigma^{+}$. Hence, $L_{1} \bar{\odot} L_{2}=\Sigma^{+}$. The result follows, since it is undecidable whether the language accepted by a 1 -reversal NCA is equal to Σ^{+}(as seen in the proof of Theorem 5.2).

For part 2, let $L_{1}^{\prime}, L_{2}^{\prime} \subseteq \Sigma^{+}$be accepted by 1 -reversal DPDAs (resp., DCAs). Let $\#, \$$ be new symbols not in Σ. Let $L=\{\$ \$\}$, $L_{1}=\# L_{1}^{\prime} \$ \cup\{\$ \$\}$, and $L_{2}=\# L_{2}^{\prime} \$ \cup\{\$ \$\}$. Clearly, L_{1} and L_{2} can also be accepted by 1 -reversal DPDAs (resp., DCAs). Then $L=L_{1} \bar{\odot} L_{2}$ if and only if $L_{1}^{\prime} \cap L_{2}^{\prime}=\emptyset$. The result now follows since it is undecidable if the intersection of two languages accepted by 1-reversal DPDAs (resp., DCAs) is empty [25,27].

In contrast to Theorem 5.8, part 2 , when L is accepted by a deterministic machine we have the following result.
Theorem 5.9. It is decidable, given a language L accepted by a DFCM (resp., DPCM) and regular languages L_{1} and L_{2}, whether $L=$ $L_{1} \bar{\odot} L_{2}$.

Proof. Clearly, $L_{3}=L_{1} \bar{\odot} L_{2}$ is regular. Now $L=L_{1} \bar{\odot} L_{2}$ if and only if $L \cap L_{3}^{c}=\emptyset$, and $L^{c} \cap L_{3}=\emptyset$. The result follows since the class of DFCM (resp., DPCM) languages is closed under intersection with regular sets and complementation, and has a decidable emptiness problem [27,40].

Finally, in contrast to Theorem 5.8, when the problem concerns "containment", we have:

Theorem 5.10.

1. It is decidable, given languages L_{1} and L_{2} accepted by NFCMs and a language L accepted by a DPCM, whether $L_{1} \bar{\odot} L_{2} \subseteq L$.
2. It is decidable, given a language L accepted by an NPCM and regular languages L_{1} and L_{2}, whether $L \subseteq L_{1} \bar{\odot} L_{2}$.

Proof.

1. Clearly, $L_{1} \bar{\odot} L_{2} \subseteq L$ if and only if $\left(L_{1} \bar{\odot} L_{2}\right) \cap L^{c}=\emptyset$ (where L^{c} is the complement of L). If L_{1} and L_{2} are accepted by NFCMs, we can effectively construct an NFCM accepting $L_{1} \bar{\odot} L_{2}$ [2]. If L is accepted by a DPCM, we can effectively construct a DPCM accepting L^{c}. Since the languages accepted by NPCMs are effectively closed under intersection with languages accepted by NFCMs [27], and the emptiness problem for languages accepted by NPCMs is decidable, the result follows.
2. If L_{1} and L_{2} are regular languages accepted by DFAs, we can effectively construct a DFA accepting $L_{1} \bar{\odot} L_{2}$ [2]. The result follows since the complement of a regular language is regular, NPCM languages are effectively closed under intersection with regular sets [27], and the emptiness problem for NPCMs is decidable [27].

6. Concluding remarks

This paper continues the exploration, started in [1] and [2], of the properties of the overlap assembly operation. In particular, it strengthens the results given in [1] regarding the closure of language classes under iterated overlap assembly and the decidability of the completeness of a language. It also enhances the results regarding closure properties of terminating sets of languages (which are almost equivalent to maximal (adult) languages in [22,31]). Finally, it investigates the problem of deciding whether a given string is terminal with respect to a language, and the problem of deciding if a given language can be generated by an overlap assembly operation of two given others. Further directions of research include investigations of decision problems such as those studied in Section 5.3 for various other language classes, and finding an efficient algorithm that, given a language L, outputs a pair of languages (if they exist) whose overlap assembly equals L.

Acknowledgments

We thank the reviewers for their comments which improved the presentation of our results.

References

[1] E. Csuhaj-Varjú, I. Petre, G. Vaszil, Self-assembly of strings and languages, Theor. Comput. Sci. 374 (1-3) (2007) 74-81.
[2] S.K. Enaganti, O.H. Ibarra, L. Kari, S. Kopecki, On the overlap assembly of strings and languages, Nat. Comput. (2016) 1-11.
[3] D. Cheptea, C. Martín-Vide, V. Mitrana, A new operation on words suggested by DNA biochemistry: hairpin completion, in: Proc. Transgressive Computing, TC, 2006, pp. 216-228.
[4] F. Manea, V. Mitrana, Hairpin completion versus hairpin reduction, in: S.B. Cooper, B. Löwe, A. Sorbi (Eds.), Proc. Computability in Europe, CiE, in: LNCS, vol. 4497, 2007, pp. 532-541.
[5] F. Manea, C. Martín-Vide, V. Mitrana, On some algorithmic problems regarding the hairpin completion, Discrete Appl. Math. 157 (2009) $2143-2152$.
[6] S. Kopecki, On iterated hairpin completion, Theor. Comput. Sci. 412 (29) (2011) 3629-3638.
[7] C. Martín-Vide, G. Păun, J. Pazos, A. Rodríguez-Patón, Tissue P systems, Theor. Comput. Sci. 296 (2) (2003) 295-326.
[8] S.K. Enaganti, L. Kari, S. Kopecki, A formal language model of DNA polymerase activity, Fundam. Inform. 138 (2015) 179-192.
[9] W.P. Stemmer, DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution, Proc. Natl. Acad. Sci. 91 (22) (1994) 10747-10751.
[10] P.D. Kaplan, Q. Ouyang, D.S. Thaler, A. Libchaber, Parallel overlap assembly for the construction of computational DNA libraries, J. Theor. Biol. 188 (3) (1997) 333-341.
[11] Q. Ouyang, P.D. Kaplan, S. Liu, A. Libchaber, DNA solution of the maximal clique problem, Science 278 (5337) (1997) 446-449.
[12] A.R. Cukras, D. Faulhammer, R.J. Lipton, L.F. Landweber, Chess games: a model for RNA based computation, Biosystems 52 (1-3) (1999) 35-45.
[13] D. Faulhammer, A.R. Cukras, R.J. Lipton, L.F. Landweber, Molecular computation: RNA solutions to chess problems, Proc. Natl. Acad. Sci. 97 (4) (2000) 1385-1389.
[14] G. Franco, C. Giagulli, C. Laudanna, V. Manca, DNA extraction by XPCR, in: C. Ferretti, G. Mauri, C. Zandron (Eds.), Proc. DNA Computing, (DNA 11), in: LNCS, vol. 3384, 2005, pp. 104-112.
[15] G. Franco, V. Manca, C. Giagulli, C. Laudanna, DNA recombination by XPCR, in: A. Carbone, N.A. Pierce (Eds.), Proc. DNA Computing, (DNA 12), in: LNCS, vol. 3892, 2006, pp. 55-66.
[16] V. Manca, G. Franco, Computing by polymerase chain reaction, Math. Biosci. 211 (2) (2008) 282-298.
[17] G. Franco, A polymerase based algorithm for SAT, in: M. Coppo, E. Lodi, G. Pinna (Eds.), Theoretical Computer Science, in: LNCS, vol. 3701, Springer, Berlin, Heidelberg, 2005, pp. 237-250.
[18] G. Franco, V. Manca, Algorithmic applications of XPCR, Nat. Comput. 10 (2) (2011) 805-819.
[19] E. Winfree, X. Yang, N. Seeman, Universal computation via self-assembly of DNA: some theory and experiments, in: L. Landweber, E. Baum (Eds.), Proc. DNA Computing, (DNA 2), in: DIMACS, vol. 44, 1998, pp. 191-213.
[20] E. Winfree, Algorithmic Self-Assembly of DNA, Ph.D. thesis, California Institute of Technology, 1998.
[21] E. Winfree, T. Eng, G. Rozenberg, String tile models for DNA computing by self-assembly, in: A. Condon, G. Rozenberg (Eds.), Proc. DNA Computing, (DNA 6), in: LNCS, vol. 2054, 2001, pp. 63-88.
[22] P. Bottoni, A. Labella, V. Manca, V. Mitrana, Superposition based on Watson-Crick-like complementarity, Theory Comput. Syst. 39 (4) (2006) 503-524.
[23] L. Kari, R. Kitto, G. Thierrin, Codes, involutions, and DNA encodings, in: W. Brauer, H. Ehrig, J. Karhumäki, A. Salomaa (Eds.), Formal and Natural Computing, in: LNCS, vol. 2300, 2002, pp. 376-393.
[24] S. Hussini, L. Kari, S. Konstantinidis, Coding properties of DNA languages, in: N. Jonoska, N.C. Seeman (Eds.), Proc. DNA Computing, (DNA 7), in: LNCS, vol. 2340, 2002, pp. 57-69.
[25] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley Inc., 1978.
[26] M.L. Minsky, Recursive unsolvability of Post's problem of "Tag" and other topics in theory of Turing machines, Ann. Math. 74 (3) (1961) 437-455.
[27] O.H. Ibarra, Reversal-bounded multicounter machines and their decision problems, J. ACM 25 (1) (1978) 116-133.
[28] O.H. Ibarra, Automata with reversal-bounded counters: a survey, in: Proc. Descriptional Complexity of Formal Systems, DCFS, 2014, pp. 5-22.
[29] S. Ginsburg, S.A. Greibach, M.A. Harrison, One-way stack automata, J. ACM 14 (2) (1967) 389-418.
[30] S. Ginsburg, G.F. Rose, The equivalence of stack-counter acceptors and quasi-realtime stack-counter acceptors, J. Comput. Syst. Sci. 8 (2) (1974) 243-269.
[31] F. Manea, V. Mitrana, J. Sempere, Some remarks on superposition based on Watson-Crick-like complementarity, in: V. Diekert, D. Nowotka (Eds.), Developments in Language Theory, in: LNCS, vol. 5583, 2009, pp. 372-383.
[32] N. Immerman, Nondeterministic space is closed under complementation, SIAM J. Comput. 17 (5) (1988) 935-938.
[33] R. Szelepcsényi, The method of forced enumeration for nondeterministic automata, Acta Inform. 26 (3) (1988) 279-284.
[34] S.A. Greibach, A note on the recognition of one counter languages, Inform. Théor. Appl. 9 (2) (1975) 5-12.
[35] B.S. Baker, R.V. Book, Reversal-bounded multipushdown machines, J. Comput. Syst. Sci. 8 (3) (1974) 315-332.
[36] V.V. Williams, Multiplying matrices faster than Coppersmith-Winograd, in: Proc. ACM Symposium on Theory of Computing, STOC, 2012 , pp. 887-898.
[37] T. Kasami, A note on computing time for recognition of languages generated by linear grammars, Inf. Control 10 (2) (1967) 209-214.
[38] M.-P. Schützenberger, Sur certaines opérations de fermeture dans les langages rationnels, Symp. Math. 15 (1975) 245-253.
[39] P. Bonizzoni, N. Jonoska, Existence of constants in regular splicing languages, Inf. Comput. 242 (2015) 340-353.
[40] O.H. Ibarra, H.-C. Yen, On the containment and equivalence problems for two-way transducers, Theor. Comput. Sci. 429 (2012) 155-163.
Sponsor names 1
Do not correct this page. Please mark corrections to sponsor names and grant numbers in the main text. 2
University of Western Ontario, country=Canada, grants= 6
University of Western Ontario, country=Canada, grants= 7
NSF, country=United States, grants=CCF-1117708 9

[^0]: ${ }^{1}$ When ${ }^{-}$is not the identity, the iterated superposition has to be defined slightly different than the iterated overlap assembly, because $L \subseteq L \diamond L$ does not necessarily hold. In $[22,31]$ two iterated versions of the superposition are defined which turn out to yield the same language.

