
Fundamenta Informaticae 71 (2006) 453–475 453

IOS Press

A Formal Language Analysis of DNA Hairpin Structures

L. Kari and E. Losseva
Department of Computer Science
The University of Western Ontario
London, ON, N6A 5B7, Canada�

lila,elena � @csd.uwo.ca

S. Konstantinidis
Dept. of Mathematics and Computing Science
Saint Mary’s University
Halifax, Nova Scotia, B3H 3C3, Canada
s.konstantinidis@smu.ca

P. Sosı́k �
Facultad de Informática
Universidad Politécnica de Madrid
Campus de Montegancedo s/n
Boadilla del Monte 28660, Madrid, Spain
and Institute of Computer Science
Silesian University, 74601 Opava
Czech Republic
petr.sosik@fpf.slu.cz

G. Thierrin
Department of Mathematics
The University of Western Ontario
London, ON, N6A 5B7, Canada
thierrin@uwo.ca

Abstract. The concept of hairpin structures in formal languages is motivated from the biocompu-
ting and bioinformatics fields. Hairpin (-free) DNA structures have numerous applications to DNA
computing and molecular genetics in general. A word is called hairpin-free if it cannot be written
in the form �����	��
����� , with certain additional conditions, for an involution � (a function � with the
property that ��� equals the identity function). A particular involution, the so-called Watson-Crick
involution, can characterize binding of two DNA strands.

We study algebraic and decision properties, finiteness and descriptional complexity of hairpin (-free)
languages. We show an existence of polynomial-time algorithms deciding hairpin-freeness of regular
and context-free sets. Two related DNA secondary structures are considered, taking into the account
imperfect bonds (bulges, mismatches) and multiple hairpins. Finally, effective methods for design
of long hairpin-free DNA words are given.

Keywords: DNA computing, DNA hairpin, involution, formal language
�
Address for correspondence: Facultad de Informática, Universidad Politécnica de Madrid, Campus de Montegancedo s/n,

Boadilla del Monte 28660, Madrid, Spain

454 L. Kari et al. / A Formal Language Analysis of DNA Hairpin Structures

1. Introduction

The primary motivation for the study of hairpin-free structures arises from the areas of DNA computing
and bioinformatics, where such structures are important for the design of information-encoding DNA
molecules. The reader is referred to [1, 22] for an overview of the DNA computing paradigm. A sin-
gle strand of deoxyribonucleic acid (DNA) consists of a sugar-phosphate backbone and a sequence of
nucleotides attached to it. This sequence is oriented and, by convention, its beginning and its end are
called 5’ and 3’ end, respectively. There are four types of nucleotides denoted by A, C, T, and G. Two
single strands can bind (anneal) to each other if they have opposite polarity (strand’s orientation) and
are pairwise Watson-Crick complementary: A is complementary to T, and C to G. The ability of DNA
strands to anneal to each other allows for creation of various secondary structures. A DNA hairpin is a
particular type of secondary structure important in many applications. An example of a hairpin structure
is shown in Figure 1.

GC T AT C
GAT AGC A

C C
A
T

AC C T

G
C

A
TGAC

CTG

Figure 1. A single-stranded DNA molecule forming a hairpin loop.

Hairpin-like secondary structures play an important role in insertion/deletion operations with DNA.
Hairpin-freeness is crucial in the design of primers for the PCR reaction [6]. Hairpins are the main
tool used in the Whiplash PCR computing techniques [25]. In [27] hairpins serve as a binary information
medium for DNA RAM. Last, but not least, hairpins are basic components of recently investigated “smart
drugs” [3]. Therefore, in the above mentioned applications, one needs to construct (sets of) hairpin
(-free) DNA molecules, or to test existing sets of DNA molecules for hairpin-freeness and study their
properties. We refer e.g. to [16, 17, 20, 21, 23] for a characterization and design of DNA languages with
or without hairpins and other undesired bonds. Coding properties of hairpin-free languages have been
studied in [14, 15], and their language-theoretic characterizations in [23]. Hairpins have also been studied
in the context of bio-operations occurring in single-celled organisms (see the hairpin inversion operation
defined as one of the three molecular operations that accomplish gene assembly in ciliates [8, 10]).

In addition, the results presented in this paper also contribute to mathematical characterization of
regularities in formal words and languages. In this sense the definition of hairpin-free words can be
understood as a generalization of repetition-freeness. A word � is called hairpin-

�
-free if �������	��
�������

implies � � ��� ���
for a chosen involution
�� Considering the special case when

� ��� �
 is the identity
involution and � is the empty word, we obtain the square-freeness (see below).

For a general overview and fundamental results in combinatorics on words, the reader is referred
to [7, 18]. If � is a nonempty word, then ��� is called a square and ����� is called a cube. Important
questions about avoiding squares and cubes in infinite words have been answered in [9]. See [19] for
combinatorics on finite words. Words of the form ���	����� with a bounded length of � have been studied
e.g. in [5]. Unfortunately, many techniques and results known in combinatorics on words are non-
applicable in the case of hairpin-free words. One of the main reasons is that in the case of an antimorphic
involution, analogies of the famous defect theorem and its consequences are no longer valid.

L. Kari et al. / A Formal Language Analysis of DNA Hairpin Structures 455

The paper is organized as follows. Section 2 introduces basic formal concepts and definitions. In
Section 3 we present the concept of hairpin-free words and languages and study their elementary pro-
perties. Problems related to finiteness of hairpin-free languages are addressed in Section 4, and decision
problems in Section 5. In Section 6 we study descriptional complexity of hairpin (-free) languages with
respect to possible applications. In the next section, two important variants of the hairpin definition are
studied. The first one takes into the account imperfect DNA bonds (mismatches, bulges), the second one
is related to hairpin-based nanomachines. Finally, effective methods for design of long hairpin-free DNA
words are given in Section 8.

2. Formal language prerequisites

We will use
�

to denote a finite alphabet and
���

its corresponding free monoid. The cardinality of the
alphabet

�
is denoted by � � � � For a word � � � � � denotes the length of � � The empty word is denoted by� � and

��� � ������� �
	 � A language is an arbitrary subset of
��� � For a word ��� �� and

�������
we

denote by ��� the word obtained as catenation of
�

copies of � � Similarly,
� � is the set of all words from���

of length
� � By convention, ��� � � and

� � � � �
	 � We also denote
��� � � � ��� ��� �������� � � �

By convention,
��� � ��� for

� � � �
A mapping �! ��#"$���

is called a morphism (anti-morphism) of
���

if � ������ � � �� � � ����
(respectively � ������ � � ���� � �� � � for all � � � � ��� , and � � � � � � . See [12] for a general overview of
morphisms. An involution
 �%�&"'�

is defined as a map such that
)(is the identity function. An
involution
 can be extended to a morphism or an antimorphism over

�*� � In both cases
+(is the identity
over

���
and
-, � �
�� If not stated otherwise,
 refers to an arbitrary morphic or antimorphic involution

in this paper.

In our examples we shall refer to the DNA alphabet . � �0/ �21 �43��25 	 � By convention, DNA strands
are described by strings over this alphabet in orientation from 5’ to 3’ end. On this alphabet several
involutions of interest are defined. The simplest involution is the identity function 6 . An antimorphic
involution which maps each letter of the alphabet to itself is called a mirror involution and it is denoted
by 7 . The DNA complementarity involution 8 is a morphism given by 8 � / � � 3 , 8 � 3 � � / , 8 � 1 � � 5 ,
8 � 5 � � 1 . For example, 6 � / 19591:3�5 � � / 19591:3�5 � 7 � 5:3�19591 / � � 8 � 3�59195 / 1 � �

Finally, the antimorphic involution ; � 7&8 (the composite function of 7 and 8 , which is also equal to
8<7), called the Watson-Crick involution, corresponds to the DNA bond formation of two single strands.
If for two strings � � � �=. � it is the case that ; �� ��� � , then the two DNA strands represented by � � �
anneal as Watson-Crick complementary sequences.

A nondeterministic finite automaton (NFA) is a quintuple > � �@? � � �BA �
�DC �DE � � where ? is the finite

and nonempty set of states,
A
� is the start state,

C
is the set of final states, and

E
is the set of productions

of the form
A � "%F

, for
A � F � ? , � � � � If for every two productions

A � � "%F � and
A � ("%F (of an

NFA we have that � �HG� � (then the automaton is called a DFA (deterministic finite automaton). The
language accepted by the automaton > is denoted by I � > � . The size � > � of the automaton > is the
number � ? �KJ � E � .

An analogous notation we use for a pushdown automaton (PDA) and a deterministic pushdown au-
tomaton (DPDA). We refer the reader to [13, 26] for their definitions and for further elements of formal
language theory.

456 L. Kari et al. / A Formal Language Analysis of DNA Hairpin Structures

3. Involutions and hairpins

Definition 3.1. If
 is a morphic or antimorphic involution of
�*�

and
�

is a positive integer, then a word� � ��� is said to be
 -k-hairpin-free or simply hp(
 ,k)-free if � � ���	��
������� for some � � � � � � � � �*�
implies � � ��� �

.

Notice that the words � and � � � are hp(
 ,1)-free. More generally, words of length less than
� �

are hp(
 ,k)-free. If we interpret this definition for the DNA alphabet . and the Watson-Crick involution
; , then a hairpin structure with the length of bond (i.e., the number of complementary nucleotide pairs
bound together) greater than or equal to

�
is a word that is not hp(; ,k)-free.

Definition 3.2. Denote by ����� �
 � � � the set of all hp(
 ,k)-free words in
�*�

. The complement of ����� �
 � � �
is ��� �
 � � � � ����� ����� �
 � � � .

Notice that ��� �
 � � � is the set of words in
���

which are hairpins of the form ���	��
������� where the
length of � is at least

�
. It is also the case that ��� �
 � � J � ��� ��� �
 � � � for all

�
	��
.

Definition 3.3. A language I is called
 -k-hairpin-free or simply hp �
 � � � -free if I � ����� �
 � � � .
It is easy to see from the definition that a language I is hp �
 � � � -free if and only if

� � � ���
����� ����� I ���
for all � with � � � � �

. An analogous definition was given in [14] where a
 -k-hairpin-free language is
called
 -subword-

�
-code. The authors focused on their coding properties and relations to other types of

codes. Restrictions on the length of a hairpin were also considered, namely that �� � � � �� for some� � � � The reader can verify that our Proposition 3.3 remains valid and the results in Section 6 change
only slightly if we apply this additional restriction.

Example.

1. Let
� � � � ��� 	 with
������ � � �
�� � � ��� . Then ����� �
 � � � ��� � � � � �

This example shows that in general the product of hp �
 � � � -free words is not an hp �
 � � � -free word.
Indeed, � and

�
are hp �
 � � � -free, but the product � � is not.

2. If
 � 8 is the DNA complementary involution over . � , then:

����� �
 � � � � �0/ �21 	 � � �0/ �25 	 � � � 3��21 	 � � � 3��25 	 �

3. Let
 � 7 be the mirror involution and let � ������� �
 � � � . Since
������ ��� for all � � � , � cannot
contain two occurrences of the same letter � . This implies that ����� �
 � � � is finite. For example, if� � � � ��� 	 , then:

����� �
 � � � � � � � � ��� � � � ��� � 	
We focus first on the important special case when

� � � � Observe that ��� �
 � � � ��������� ��� � ���
������ ��� �
Recall also the definition of an embedding order: ���� � if and only if

� ��� � � (����� � � � � � � � � � � (� (����� �!�	� �	�!� � �
for some integer " with �$# � ��% � ��� �

A language I is called right &� -convex [11, 28] if �'(� � � � �*I implies � �=I . The following
result is well known: All languages (over a finite alphabet) that are right)� -convex are regular.

L. Kari et al. / A Formal Language Analysis of DNA Hairpin Structures 457

Proposition 3.1. The language ��� �
 � � � is right � -convex.

Proof:
If � � � � � (����� �
 � � � and � � � � (� � � � ��� � then � � � � � � � (� (� � � ��� �
 � � � � Therefore, if � �
��� �
 � � � and �� � � � then � can be constructed from � by a sequence of insertions, and hence � �
��� �
 � � � � ��

Let I � ��� be a nonempty language and let:

? � I � � � ��� � � � �� � � � � �#I 	 �

Hence ? � I � is the set of all the words � � ��� in the form � ��� � � � � (� (����� � �	� �	� � � � with � �
� � � (����� � � �#I and � # � ��� .

Recall further that a set � with � G� � � ���
is called a � �����
	������� over

��
iff �� ��� and� � � ��� imply ����� . That is, a hypercode is an independent set with respect to the embedding order.

Proposition 3.2. Let
 be a morphic or antimorphic involution. Then there exists a unique hypercode �
such that ��� �
 � � � � ? � � � .
Proof:
Let � � �)����� ��
������ � then ? � � � � �)����� ��� � ���
������ ��� � ��� �
 � � � � The uniqueness of � is imme-
diate. ��

Example. Consider the hypercodes for the earlier three examples.

1. For
� � � � ��� 	 and the involution (morphic or antimorphic)
������ � � �
�� � � ��� , the hypercode is

� � � � � ��� � 	 .
2. For the DNA complementarity involution 8 we have � � �0/ 3��43 / �2195 �2591 	 .
3. The mirror involution over

� � ��� 	 � gives the hypercode � � � � � ��� � 	 �
Proposition 3.1, true for the case

� � � , cannot in general be extended to the case
��	 � as the

language ��� �
 � � � is not (� -convex. However, the weaker regularity property remains valid.

Proposition 3.3. The languages ��� �
 � � � and ����� �
 � � � � � � � , are regular.

Proof:
One can easily derive ��� �
 � � � � ��� ��� �

�
��� � ���
�� � � ��� � ��� ��� �

�
��� � ���
�� � � ��� � Every language��� � ���
�� � � ��� with � � � � �

is regular, hence ��� �
 � � � is a union of a finite number of regular lan-
guages. Therefore both ��� �
 � � � and its complement ����� �
 � � � are regular. ��

458 L. Kari et al. / A Formal Language Analysis of DNA Hairpin Structures

4. Finiteness of hairpin-free languages

In this section we give the necessary and sufficient conditions under which the language ����� �
 � � � is
finite, for a chosen

��� � � We study first the interesting special case of 7 � the mirror involution, over a
binary alphabet

� �
Recall that ��� � 7 � � � is the set of all words containing two non-overlapping mirror parts of length at

least
� � In the next proposition we show that the longest hp � 7 � � � -free word is of length 31. This also

implies that the language ����� � 7 � � � is finite. The proof requires several technical lemmata whose proofs
can be found in the Appendix. In these lemmata we assume that � � � � � �
Definition 4.1. A run in a word � is a subword of � of the form � � , with � � � and

��� � , such that
� � � � � � for some word � that does not end with � , and some word � that does not start with � . If both� and � are nonempty the run is called internal.

Lemma 4.1. Suppose that � is a word in ����� � 7 � � � . The following statements hold true.

1. If � # is any run in � then � �� . If the run is internal then � �� .
2. The word � cannot contain three different runs � #�� � � #	� � � #�
 with � � � � (� � � ��

. If � contains two
runs � % and � # with � ���#���

then � starts with � % � � # , or � ends with � # � � % . Moreover not both �
and

�
can be greater than

�
.

3. The word � cannot contain three different internal runs � (. If � contains two internal runs �)(then
they occur as in ����� � �-(� � (� ����� .

4. The above statements also hold if we replace � with
�

and vice-versa.

Lemma 4.2. Suppose that a word in ����� � 7 � � � contains a subword � of the form

� ��� � ��� � ����� ����� ��� � � �
with " ���

and � # � � # � � for each � . Then there are at most three indices � such that � # ��� # � � .
Lemma 4.3. Suppose that a word � is in ����� � 7 � � � and contains two runs �

%
and � # with � ������

and� � � . Then � � � � � .
Lemma 4.4. Suppose that a word � is in ����� � 7 � � � and contains no two runs �

%
and �

#
with � ��� ���

and
contains two internal runs

� (and one internal run
� � with � ���

and � is of the following form

� ��� � � � � � � ����� � ��� � � � � � � ��� � � � ��� � � �
where all � # ’s and � % ’s are positive except possibly for � � � � . Then � � � � � .
Lemma 4.5. If a word � is in ����� � 7 � � � and of the form

� ��� � � � � � � ����� � ��� � � � � � � ��� � � � ��� � � �
such that � �

� � � � � ���
, and

� � � � � � � � , and
� � � # � � # 	 �

for all � � � � � � � � " , then � � � � �
.

Moreover, the following word of length 30 satisfies the above premises:

��� � (� � (� � � � � � � (� � (� � �

L. Kari et al. / A Formal Language Analysis of DNA Hairpin Structures 459

Proposition 4.1. Let
�

be a binary alphabet. For every word �'� �=�
in ����� � 7 � � � we have that

� � � � � . Moreover the following word of length
� � is in ����� � 7 � � �

� � � � � � � � � � � � (� � (� (� � �
Proof:
Without loss of generality we can assume that � starts with � . Then � would be of the form

� ��� � � � � � � ����� � ��� � � � � � � ��� � � � ��� � � �
where all � # ’s and � % ’s are positive except possibly for � � � � . We distinguish the following cases.

Case 1: There are two runs �
#

and �
%

in � with � ��� ���
. By Lemma 4.3, � � � � � as required.

In the next 7 cases, we assume that the first case does not hold and that there is exactly one run � � in
� with

� ���
.

Case 2: The run � � is � ��� and there is a run
� #

with � � �
. If � � � � ���

then Lemma 4.5 implies
that � � � � �

. So assume that �$� � � �
. If there are two internal runs

� (in � then Lemma 4.4 implies
that � � � � � . So assume further that there is at most one internal run

� (. Note that if � � � � � �
and � � � � 	 �

then
� � ��� �

is the run
� (. Let � be the quantity � � � (�� � J � � � � J � � � � , where � � �

if � � � � � �
and � � � � 	 �

, and ��� � if � � � � � � or � � � � � �
. Hence, � �� . Moreover,

� � � �� J � � � � �0J � � � � (��J � ��� � ��J�� � � .
Case 3: The run � � is � ��� and there is no run

� #
with � ���

. Using again the quantity � of Case 2, we
have that � � � �� J � � � � �KJ � � � �-(�KJ � � (�� �KJ�� �	�

.

Case 2’: The run � � is � � ��� � and there is a run
� #

with � ���
. Then the word 7 � � � is of the same

form as the word � is and the run
� #

occurs in 7 � � � . Hence, Case 2 applies to 7 � � � and, therefore, both
7 � � � and � are of length at most 31.

Case 3’: The run � � is � � ��� � and there is no run
� #

with � ��
. Then the word 7 � � � is of the same

form as the word � is and no run
� #

, with � ���
, occurs in 7 � � � . Hence, Case 3 applies to 7 � � � and,

therefore, both 7 � � � and � are of length at most 28.

Case 4: The run � � is internal and there is one internal run
� %

with
� � �

. Then
� � � � . If �

contains two internal runs
� (then Lemma 4.4 implies that � � � � � . Next assume that � contains at

most one internal run
� (and consider the quantity � � � � � (�� �BJ � � � � J � � � � as in Case 2. If � contains

at most one internal run �)(then

� � � � � J
� � � � �KJ � � � (�KJ � � � � ��J � � � � ��J�� � J � J � J � J � J � � �	
 �

Next assume further that � contains two internal runs � (. Then Lemma 4.1 implies that � contains� � (� � (� . Also,
� � � � J � J � � � � (��J � J � J�� � � J�� �

If � � � � � �
and � � � � 	!�

then � � �
and � � � � �

. If � � � � � �
then � � � and � � � � � . If� � � � � � and � � � � � � then � � � � � . Finally, if � � � � � � and � � � � � �

then � ends with � � �-(,
which contradicts the fact that � contains

� � (� � (� .
Case 4’: The run � � is internal and there is one external run

� %
with

� � �
. Then � � � � � � and the

run
� %

is
� � ��� �

, as � �
	��

. Let ��� be the word resulting by exchanging the letters � and
�

in � . Then the
word 7 � ��� � satisfies the premises of Case 2, which implies that � is of length at most 31.

460 L. Kari et al. / A Formal Language Analysis of DNA Hairpin Structures

Case 5: The run � � is internal and there is no run
� %

with
� ���

. Using again the quantity � of Case 2,
we have that � � � � � J

� � � � �0J � � � � �KJ � � � � (��J � � (�� ��J�� �	

.

Case 6: Here the first case does not hold and there is no run � � with
� ���

. If there is an internal run� %
with

� ���
then � � � � � J

� � � � �BJ � ��� � �DJ � � � � (�DJ � � (�� �DJ � �	

. If there is an external run

� %
with� � �

then
� % � � � ��� �

and � � � � � � , and one can verify that � � � � � . If there is no run
� %

with
� � �

then one can verify that � � � � �
.

Finally, by inspection one verifies that � � � � � � � � � � � � (�� � (�� (� � is indeed in ����� � 7 � � � . ��

Corollary 4.1. Consider a binary alphabet
� � Then ����� � 7 � � � is finite if and only if

� � �
Proof:
Let

� � � � ��� 	 . By Proposition 4.1, the set ����� � 7 � � � is finite. Consider the language I � � ��� � � � � � � � �
Its subwords of length 5 form the set

����� � � I � � � � � � � � � � � � � � � ��� � � � � ��� � � � � � � � � � � ��� � � � � 	 � For its
mirror image 7 � I � � we obtain

����� � � 7 � I � � � � � � � � � � ��� � � � � � � � � � � � � � � � � ��� � � � � ��� � � � � 	 � As these
two sets are mutually disjoint, I � � ����� � 7 � � � �

Finally, notice that for
�
	 � � finiteness of ����� � 7 � � � implies also finiteness of ����� � 7 � � � � � � Hence

the facts that ����� � 7 � � � is finite and ����� � 7 � � � is infinite conclude the proof. ��

Proposition 4.2. Let
 be a morphic or antimorphic involution. The language ����� �
 � � � over a non-
singleton alphabet

�
is finite if and only if one of the following holds:

(a)
 � 6 , the identity involution;
(b)
 � 7 , the mirror involution, and either

� � � or � � � � �
and

� � �
Proof:

(a) Let
 be a morphism. Assume first that
 G� 6 � Then there are � ��� � � � � G� � �
such that
������ � � �

Then � � � ����� �
 � � � for any
� � � � hence ����� �
 � � � is infinite.

Assume now that
 � 6 and let � be any word of length
� � � � � �9J � � Since there exist � � � �

distinct words of length
�

, there are at least two non-overlapping subwords of length
�

in � which
are identical. Hence � � ���	����� for some � � � � and � � � � � � ��� . Therefore ����� � 6 � � � is finite
since it cannot contain any word longer than

� � � � ��J � �
(b) Let
 be an anti-morphism. Assuming that
 G� 7 � the same arguments as above show that

����� �
 � � � is infinite.

Assume now that
 � 7 � Apparently ����� � 7 � � � is finite as shown in the examples above. For
� � � � �

we know that ����� � 7 � � � is finite iff
� �

by Corollary 4.1. Finally, for � � � 	 �
and

��	 � the language ����� � 7 � � � is infinite as it always contains the hp � 7 � � � -free set ��� � � � �
(regardless to renaming the symbols). ��

5. Decision problems

Proposition 3.3 suggests the existence of fast algorithms solving some problems important from the
practical point of view. We investigate two such problems now. Let
 be a fixed morphic or antimorphic
involution and let

� � � be an arbitrary but fixed integer (in practice the value of
�

would be small).

L. Kari et al. / A Formal Language Analysis of DNA Hairpin Structures 461

Hairpin-Freedom Problem.

Input: A nondeterministic automaton > �
Output: Yes/No depending on whether I � > � is hp �
 � � � -free.

Maximal Hairpin-Freedom Problem.

Input: A deterministic automaton > � accepting a hairpin-free language, and a NFA > (�
Output: Yes/No depending on whether there is a word ���#I � > (� � I � > � � such that I � > � � � � � 	 is

hp �
 � � � -free.

In what follows, we assume that > and > � are finite automata in the case of regular languages,
and pushdown automata in the case of context-free languages. > (is always a nondeterministic finite
automaton.

Proposition 5.1. The hairpin-freeness problem for regular languages is decidable in linear time (w.r.t.
� > �).
Proof:
By definition, I � > � is hp �
 � � � -free iff I � > � � ����� �
 � � � iff I � > � � ��� �
 � � � � ��� Denote by > � a
NFA accepting the language ��� �
 � � � � One can construct an NFA > � of size

� � � > � � ��� > � � � accepting the
language I � > � � ��� �
 � � � � Recall that the size of > � is given by the number of its states and transitions
(see Section 2). Hence the problem whether I � > � � � � is solvable in time

� � � > � � � � � � � > � � ��� > � � �
The automaton > � is fixed for a chosen

� � ��

Proposition 5.2. The maximal hairpin-freeness problem for regular languages is decidable in time pro-
portional to � > � �0��� > (� �

Proof:
We want to determine whether there exists a word � � ����� �
 � � � such that ����#I � > � � , but � �#I � > (� .
It is decidable in time

� � � > � � ��� > (� ��� > �� � � whether � ����� �
 � � � � I � > (� � � I � > � � � � . The size of
an NFA accepting ����� �
 � � � is denoted by � > �� � � The automaton > �� is fixed for a chosen

� � ��

As an immediate consequence, for a given block code � of length � it is decidable in linear time with
respect to � � ����� , whether there is a word ��� ���&� � such that �!� � � 	 is hp �
 � � � -free. This is of
particular interest since the lab sets of DNA molecules form often a block code.

Notice also that for a finite set ? of DNA sequences (which is the case of practical interest) the size
of the automaton > (or > �) is in the worst case proportional to the total length of all sequences in ?��

Proposition 5.3. The hairpin-freeness problem for context-free languages is decidable in cubic time
(w.r.t. � > �).

462 L. Kari et al. / A Formal Language Analysis of DNA Hairpin Structures

Proof:
As in the proof of Proposition 5.1, I � > � is hp �
 � � � -free iff I � > � � ��� �
 � � � � ��� Given a PDA >
accepting I � > � and an NFA > � accepting ��� �
 � � � � there exist a PDA > � accepting the language
I � > � � ��� �
 � � � � Furthermore, > � can be constructed in time

� � � > � �0��� > � � and so is its size. Details
are left to the reader.

Let
5

be a CFG such that I � 5 � � I � > � � . The standard construction of
5

in [13] (Theorem 7.31)
takes cubic time w.r.t. � > � � . Finally, it is possible to decide in linear time w.r.t. � 5 � (see Section 7.4.3 of
[13]) whether I � 5 � ��� or not. ��

Proposition 5.4. The maximal hairpin-freeness problem for deterministic context-free languages is de-
cidable in time

� � � � > � �0��� > (� � � � �
Proof:
We want to determine if

� � � ����� �
 � � � such that � ���I � > � � , but � � I � > (� . Denote > � ���� � � � ��� ��� � ��� � �DC � �DE � � � and let > �(� ��� (� � ��� (�DC (�DE (� be a NFA accepting the language ����� �
 � � � �
I � > (� � Consider the PDA > � ��� � � ��� ��� � ��� � �DC �DE � , where � ��� �
	 � (, � � � � � � ��� (� . For� � � � ��� � � (, and

� � � we define:

(1) � � ��� � � � " � � � � ��� � �� if and only if � � � " � � � � � and
� � " � � � � �

(2) � � ��� � � � " � � � � ��� �� if and only if ��� � " � � � � �
Let

C � � � � ��� � � � �� C � and
� � C (� Then I � > � � � ����� �
 � � � � I � > (� � � I � > � � � and the size of >

is
� � � > � � � � > (� � � Finally, as in the previous proof, we can decide in time

� � � > � � � � � � � � > � � � � > (� � � �
whether I � > � is empty or not. ��

6. Descriptional complexity

In the algorithms presented in Section 5, a construction of automata (NFA or DFA) accepting the lan-
guages ��� �
 � � � and ����� �
 � � � is crucial. Particularly, the sizes of these automata are multiplicative
constants for time complexity of the algorithms in Section 5. To investigate descriptional complexity of
the languages ��� �
 � � � and ����� �
 � � � � we recall the following technical tool from [4].

Definition 6.1. A set of pairs of strings
� �� # � � # � ��� � � � � � � � � � " 	 is called a fooling set for a language

I if for any � ��� in
� � � � � � � � � " 	 �

(1) � #� # �#I � and
(2) if � G� �

then � #� % G�#I or � % � # G�#I �
Lemma 6.1. Let � be a fooling set of a cardinality " for a regular language I � Then any NFA accepting
I needs at least " states.

Now we can characterize the minimal size of automata accepting languages ��� �
 � � � and ����� �
 � � � �
We use the operator � for catenation.

Proposition 6.1. The number of states of a minimal NFA accepting the language ��� �
 � � � �	� � � , over
an alphabet

�
of the cardinality � 	 � � is between �
� and

� ��� � and its size is at most
� � �0��J���� � � � �

L. Kari et al. / A Formal Language Analysis of DNA Hairpin Structures 463

aa

ba

a,b

a,b

a,b

a,b

a,b

a
a

b

a b
q

1

S

S

q

b

a

a

b

b

ab

a,b

qbb

b a

ba
ab

q

S 1
p

p

p

Figure 2. An example of an NFA accepting the language
���
������ ���

Proof:
Let > � � �@? � � �BA � �DC �DE � be an NFA accepting ��� �
 � � � �

(i) The reader can easily verify that the set � � � � � �
�� � � � � � � � � 	 is a fooling set for ��� �
 � � � �
Therefore � ? � � �K� �

(ii) Let ? � � A � � � � � ��� � � � , � 	 � � � � � ��� � � 	 �
Let further

C � � � � 	 � The set of productions
E

is defined as follows:

A
	 � " A �
if and only if � � � � � for each � � �=� � , (� � � ���

A
	 � " � �
if and only if � � � � � for each � � � � , � � � � ���

� � � " � �
for all � � � � � � � ���

� � � " � 	 if and only if
����	��� � � � for each � � � � , � � � � ���
� � � " � 	 if and only if �	� � � � for each � � �=� � , (� � � � �

Finally, let
A � � " A � and � � � " � � for all � � � � An example of the automaton > � for the case� � � � ��� 	 �	� � �

and
 being an antimorphism,
������ � � �
�� � � ��� � is at Fig. 2. The reader can
verify that I � > � � � ��� �
 � � � � and that � ? � � �K� � � E � � ��� � � � therefore � > � �

� � ����J ��� � � � ���
Note that for � � � we have ��� �
 � � � � � (� ��� � therefore the size of the minimal automaton accepting
��� �
 � � � is � > � � �

� � J � �

464 L. Kari et al. / A Formal Language Analysis of DNA Hairpin Structures

Proposition 6.2. Assume that there are distinct letters � ��� � � such that � �
�� � � � Then the number
of states of a minimal NFA accepting ����� �
 � � � ���H� � , over an alphabet

�
with the cardinality � � is at

least
� � � , (������4(�

Proof:
We take into the account only the cases � �����

the case � � �
is trivial. Denote

� � � �	� � � ��� 	 � We can
factorize the set

� �� � 1 � � 1 (� 1 � � where
1 � � 1 (��1 � are mutually disjoint sets such that
�� 1 � � � 1 (

and
��� � ��� for all � � 1 � � Obviously � 1 � � � � 1 (� �
Denote ��� � 1 � � 1 � � � then � � � � � � � � � � � Consider the set of pairs of strings

� ��
���
� ��� � �

� �
� � ��� ��� �
 ����� � � �

� �������� � � 1 � � 1 � ����� (1)

We show that � is a fooling set for ����� �
 � � � �
(i) Consider an arbitrary pair �� � � � � � � Let � � � � be a substring of ����� If � contains � � then
�� ���

cannot be in ��� as
������ � �
and

�
is not in ����� If � does not contain � � then � � � �� and � is a

subword of either � or ��� Assume that � is a part of � � Then, by definition of
1 � and

1 � � there is
no occurrence of
�� ��� in � which would not overlap ��� Also,
�� ��� is not a subword of � as � � �
and hence
�� ��� G� � 1 (� 1 � � �
�� � � � If � is a subword of � � the situation is analogous. Therefore,��� � ����� �
 � � � �

(ii) Let �� � � � � �� � � � � � be two distinct elements of � � associated with the sets �
�
� � � � 1 � � 1 � �

in the sense of (1). Let us assume without loss of generality that there is a � � �
�
� � � Then
�� ��� � � 1 (� 1 � � and
�� ��� G�
�� � � �

�
hence
�� ��� is a subword of � � � Simultaneously � is a subword

of � � therefore ��� � G� ����� �
 � � � �
We can conclude that � � � � ��� � � � � , (���� �4(� and hence the statement follows by Lemma 6.1. ��

Corollary 6.1. Let
�

be an alphabet such that � � � � � � � � � � Let there be distinct letters � ��� � �
such that ���
�� � � � Then the number of states of a minimal DFA over the alphabet

� �
accepting either

��� �
 � � � or ����� �
 � � � � � � � , is between
� � � , (������4(and

� � � � �
Proof:
Observe that the numbers of states of minimal DFA’s accepting ��� �
 � � � and ����� �
 � � � are the same since
these languages are mutual complements. Then the lower bound follows by Proposition 6.2. The upper
bound follows by Proposition 6.1 and by the subset construction of a DFA equivalent to the NFA > �
mentioned there. ��

Considering the important special case of the DNA alphabet when � � � �
Proposition 6.1 and Corol-

lary 6.1 give the following result.

Corollary 6.2. Consider the DNA alphabet . � �0/ �21 �43��25 	 and the Watson-Crick involution ; �
(i) The size of a minimal NFA accepting ��� � ; � � � is at most ��� � � � � The number of its states is between� � and

� � � � �

L. Kari et al. / A Formal Language Analysis of DNA Hairpin Structures 465

(ii) The number of states of either a minimal DFA or an NFA accepting ����� � ; � � � is between
� (�� � �

and
� � � (� � �

Note: after careful inspection of the automaton in the proof of Proposition 6.1, one can improve these
bounds slightly for the case � � � � Particularly, the actual size in the case (i) above is at most (�� � � � J � ��
and the number of states does not exceed

�� � � � � (� �
The above results indicate that the size of a minimal NFA for ��� � ; � � � grows exponentially with

� �
However, one should recall that

�
is the minimal length of bond allowing for a stable hairpin. Therefore�

is rather low in practical applications (often
� � �

or
� � �

) and the construction of the automaton
remains computationally tractable.

7. Variants of hairpins

7.1. Scattered hairpins

It is a known fact that parts of two DNA molecules could form a stable bond even if they are not exact
mutual Watson-Crick complements. They may contain some mismatches and even may have different
lengths. Hybridizations of this type are addressed e.g. in [2] and [20]. Motivated by this observation, we
consider now a generalization of hairpins.

Definition 7.1. Let
 be an involution of
���

and let
�

be a positive integer. A word � � � � � for� � � � � � ��� � is
 - � -scattered-hairpin-free or simply shp �
 � � � -free if for all
F � �*� � F � � �
�� F �� � �

implies � F ��� �
.

GC T AT C
GAT AGC A

C C
A
T

AC C T

A

AA

CTG
C C

A
TGAC

CTG

Figure 3. An example of a scattered hairpin – a word in � ���
�������� � .
Definition 7.2. We denote by 	������ �
 � � � the set of all shp �
 � � � -free words in

�=� �
and by 	���� �
 � � � its

complement
���� 	������ �
 � � � �

Definition 7.3. A language I is called
 -k-scattered-hairpin-free or simply shp(
 ,k)-free if I � 	������ �
 � � � �
Lemma 7.1. 	���� �
 � � � � ?
��

� ��� �
�
�� � �� .

Based on the above immediate result, analogous statements as in Section 3 hold also for scattered
hairpins. Proofs are straightforward and left to the reader.

Proposition 7.1. (i) The language 	���� �
 � � � is right � -convex.

466 L. Kari et al. / A Formal Language Analysis of DNA Hairpin Structures

(ii) The languages 	���� �
 � � � and 	������ �
 � � � are regular.

(iii) There exists a unique hypercode � such that 	���� �
 � � � � ? � � � .
As in Section 5, we can also define the scattered-hairpin-freeness problem and maximal scattered-

hairpin-freeness problem. Then we easily obtain the following results whose proofs are analogous to
those in Section 5.

Corollary 7.1. (i) The scattered-hairpin-freeness problem is decidable in linear time for regular lan-
guages and in cubic time for context-free languages.

(ii) The maximal scattered-hairpin-freeness problem is decidable in time
� � � > � � � � > (� � for regular

languages and in time
� � � � > � �0��� > (� � � � for deterministic context-free languages.

Also the size of the minimal automaton accepting the language 	���� �
 � � � is similar to the case of
��� �
 � � � in Section 6.

Proposition 7.2. The number of states of a minimal NFA accepting the language 	���� �
 � � � � � � � , over
an alphabet

�
with the cardinality � � is between �
� and

� ��� � and its size is at most � �0� J � ��� � � �

Proof:
Let > � � �@? � � �BA � �DC �DE � be an NFA accepting 	���� �
 � � � � The statement is trivial for the cases � � �
or
� � � � Assume for the rest of the proof that

� � �
and � � � �

(i) The reader can easily verify that the set
C � � � � �
�� � � � � � � � � 	 is a fooling set for ��� �
 � � � �

Therefore � ? � � �K� �
(ii) Let

? � � A � � � � � ��� � � � , � 	 � � � � � ��� � � 	 �
Let further

C � � � � 	 � The set of productions
E

is defined as follows:

A
	 � " A �
if and only if � � � � � for each � � �=� � , (� � � ���

A
	 � " � �
if and only if � � � � � for each � � � � , � � � � ���

� � � " � 	 if and only if
����	��� � � � for each � � � � , � � � � ���
� � � " � 	 if and only if �	� � � � for each � � �=� � , (� � � � �
	 � " 	 for all 	 � ? � � � � �

By the above construction similar to that of Proposition 6.1, I � > � � � 	���� �
 � � � � and � ? � � ��� �
� E � � ��� J � ��� � � � therefore � > � � �� ��� J � ��� � � � ��

L. Kari et al. / A Formal Language Analysis of DNA Hairpin Structures 467

7.2. Hairpin frames

In this section we point out the following two facts. First, long DNA and RNA molecules can form com-
plicated secondary structures as that shown in Figure 4. Second, simple hairpins can be useful in various
DNA computing techniques and nanotechnologies, as in [3, 25, 27] and others. Hence, sometimes it is
desirable to design DNA strands forming simple hairpins but avoiding more complex structures. This
motivates another extension of the results from Section 3.

Definition 7.4. The pair �� �
����� � of a word � in the form � � ���	��
������� � for � � � � � � � � �=� � is called
an hp-pair of � . The sequence of hp-pairs �� � �
��� � � � � �� (�
��� (� � � ����� � ���% �
����% � � of the word � in the
form: ����� � � � � �
��� � ��� � � (� (� (
��� (��� (����� � % ��% � %
����% ��� %
is called an hp-frame of degree

�
of � or simply an hp(

�
)-frame of � .

An hp-pair is an hp-frame of degree 1. The definition of hairpin frames characterizes secondary
structures containing several complementary sequences such as that in Fig. 4.

GC T AT C
GAT AG

C−G
C

T−A
C−G
C−G
A−T

GC AC C
GT GGC

A
C C

A
T

AC C T

AG
A

T G
CT

A−T
C−G

A
G

T

C
T

C

A

Figure 4. An example of a hairpin frame – a word in
���
���� ��� �������

A word � is said to be an hp(fr,
�
)-word if it contains at least one hp-frame of degree

�
. Observe that

there may be more ways of finding hp-pairs in � � resulting in hp-frames of various degrees. Obviously,
any hp(fr,

�
)-word is also hp(fr, �) for all � � � �

Definition 7.5. For an involution
 we denote by ��� �
 � ��� ��� � the set of all hp(fr,
�
)-words � � � � � and

by ����� �
 � ��� ��� � its complement in
���

.

The results in Section 3, concerning the languages ��� �
 � � � and ����� �
 � � � , can easily be extended for
the case of hairpin frames. Proofs are left to the reader.

Lemma 7.2. ��� �
 � ��� ��� � � ��� �
 � � � % �

 �
�����

� � � � �
������ � � % �

468 L. Kari et al. / A Formal Language Analysis of DNA Hairpin Structures

Proposition 7.3. (i) The language ��� �
 � ��� ��� � is right � -convex.

(ii) The languages ��� �
 � ��� ��� � and ����� �
 � ��� ��� � are regular.

(iii) There exists a unique hypercode � such that ��� �
 � ��� ��� � � ? � � � �
Corollary 7.2. (i) The hp(fr,

�
)-freeness problem is decidable in linear time for regular languages and

in cubic time for context-free languages.

(ii) The maximal hp(fr,
�
)-freeness problem is decidable in time

� � � > � �
��� > (� � for regular languages
and in time

� � � � > � �0��� > (� � � � for deterministic context-free languages.

Proposition 7.4. The size of a minimal NFA accepting the language ��� �
 � ��� ��� � ��� � � , over an alphabet�
with the cardinality � � is at most

� � � J � � J � �
Proof:
The statement follows by the construction of an NFA > � �@? � � �BA � �DC �DE � accepting the language
��� �
 � ��� ��� � � Let ? � � A �

�BA � � � � � �BA %
	 � � � �# � � � � � � � � 	 �
Let further

C � � A % 	 � and denote
� � � � � � � � � � � � 	 � The set of productions

E
is defined as follows:

A # , � � �
" � �# � � �#
���� � �

" A # for all � � � � �& � � �A � " A
for all

A � ? � � � � �
The reader can verify that I � > � � � ��� �
 � ��� ��� � � and that � > � � � � � J � � J � � ��

Unlike the cases of hairpins or scattered hairpins, the size of the minimal NFA accepting ��� �
 � ��� ��� �
is
� � � � � � However, if we considered also a minimal length

�
of the hairpin bonds, we would obtain the

same exponential size of the automaton as in Section 6, but multiplied by
� �

8. Construction of long hairpin-free words

In this section we discuss the problem of constructing long hp �
 � � � -free words for the cases where
 is
the Watson-Crick involution and
 � 6 . This question is relevant to various encoding problems of DNA
computing. For example, in [27] the authors consider " -bit memory elements that are represented by
DNA words of the form � � � � � �
��� � � ����� � �	�!� � ��
���!��� � � � � �
such that (i) all the � ’s and � ’s have length 20 and the � ’s have length 7, and (ii) the only bonds permitted
in a word of this form are the bonds between � # and
���!# � for all � � � � � � � � " . This encoding problem
can be solved if we first construct a long hp �
 � � � -free word � of length � � � J � � J � � ":J � � � � � ":J � � .
Then � can be written in the form � � � � � � ����� � �	�!� � �	� � � �
and is such that no bonds can occur between any two subwords of length

�
of � . Here

�
is the pa-

rameter that represents the smallest length of a block of nucleotides that can form a stable bond with a
corresponding block of complementary nucleotides – see also the relevant discussion in [20].

L. Kari et al. / A Formal Language Analysis of DNA Hairpin Structures 469

For the case where
 is the Watson-Crick involution we consider the method of [20] for constructing�
 � � � � � � -bond-free languages I . Such a language I has the property that, for any two subwords � and� of I of length
�

, one has that � G�
����� . Note that each word of I is a hp �
 � � � -free word. Moreover,
if I is infinite then it contains arbitrarily long words, hence, also words of length

� � " J � �
, for any " ,

as required in the encoding problem discussed in the beginning of this section. We also note that if I is�
 � � � -bond-free then it is �
 � � � � -bond-free for any
�
�
� �

. The method of [20] is based on the subword
closure language operation

�
: Let ? be a set of words of length

�
. Then ?�� is the set of all words �

of length at least
�

such that any subword of � of length
�

belongs to ? . We note that given the set ?
one can construct a deterministic finite automaton accepting ?�� in linear time [20]. The method is as
follows. Let ? be any set of words of length

�
such that ? �
��@? � ��� . Then ?�� is a �
 � � � � � � -bond-free

language. In our case, we wish to choose ? such that ?�� is infinite. For example, let ? (be the set�0/:/ � / 1 �21 / �2191 � / 5 �25 / 	 . In [20] the authors show an automaton accepting ? �(. As ? �(contains
the set � / 191 / 5 / 1 � � it follows that ? �(is infinite as well.

For the case of
 � 6 , we consider a totally different approach. Let � � � � denote the minimum
Hamming distance between any two different codewords of a code K. A language � is said to be a solid
code if (i) no word of � is a subword of another word of � , and (ii) a proper and nonempty prefix of �
cannot be a suffix of � . � is a uniform code if � � � �

for an "��� � See [24] or Chapter 8 in [26] for
background information on codes.

Proposition 8.1. Let
��� �

and let � be a uniform solid code of length
�

. If � � � � 	�� � � �
	 , or
� � � � � � � � �
	 and there are no different codewords with a common prefix of length

� � � �
	 , then the
word � � � � � � � is hp(
 � �)-free for all " ������� � � � and for all pairwise different codewords � � � � � � � � � .

Proof:
Assume there is � � � � such that � � � � � � � � ���	����� for some words � � � � � . If � � � is a multiple of

�
then � � � % for some

� � � . As the � # ’s are different, � � � cannot be a multiple of
�

. Hence, � � A�� � � � � ,
where

F 	��
and

A��
is a proper and nonempty suffix of � � and � � � � is a proper and nonempty prefix of

� � � � ; a contradiction. Now suppose � � � is not a multiple of
�

. Then, � � A % � % � � for some nonempty
suffix

A % and prefix � % � � . Again, the second occurrence of � cannot be in � . Hence, � � A�� � � � � for
some

F � �
. Hence,

A % � % � � � A�� � � � � . If � A % � G� � A�� � , say � A % � 	 � A�� � , then a prefix of � � � � is also a suffix
of
A % ; which is impossible. Hence,

A %�� A�� and � % � � � � � � � .
Note that � � � � ��� � � �
	 and, therefore,

� � � �
	 � � � � % � � A % � � � � � � � A�� � � 	 � � � � � A % � � �BA�� � � 	 � � A % � � � � � � � � % � � � . Hence, � � % � � � �� � � �
� . Similarly, � A % � �� � � �
� . Also, as
� � � A % � J � � % � � � ,

one has that � A % � � � � % � � � � � � � � �
	 � � � � �
� 	 . If � � � � � � � � �
	 then � % � � � � � � � implies that � % � � and
� � � � have a common prefix of length

� � � �
	 ; a contradiction. If � � � � 	�� � � �
	 then both �$% � � and
A %

are shorter than � � � �
� which contradicts with
� � � A % �KJ � � % � � � . ��

Suppose the alphabet size � � � is � 	 �
. We can choose any symbol � � � and consider the alphabet� � � � � � � 	 . Then for any uniform code

C � � � , �� it follows that the code
C � � 	 is a uniform

solid code of length
� C � � 	 � � � . We are interested in cases where the code

C
is a linear code of

type � � � � � � � ��� . That is,
C

is of length
� � � , cardinality � � � � � � , and � � C � � � , and there is an

� � 	 � � � � � � ��� matrix
5

over
� � such that

C � � �! "� # � � 5 � � ��� � �� 	 , where # � is the � � 	 � �
identity matrix and is the multiplication operation between an � -dimensional row vector and � � 	 � �
matrix. Thus, � � C iff � � � � for some ��� � �� and � � � � , � , �� and ��� �� 5 .

470 L. Kari et al. / A Formal Language Analysis of DNA Hairpin Structures

Proposition 8.2. Let
C

be a linear code over
� � of type � � � � � � � � � � �
	 � . If � � � � �
	 or

�
is

even then the word � � � � � � is hp(
 � �)-free for all " ������ � C � and for all pairwise different codewords
� � � � � � � � � in

C � � 	 .
Proof:
It is sufficient to show that � � C � � 	 � � � � � �
	 and there are no different words in

C � � 	 with a common
prefix of length

� � � �
	 . Obviously � � C � � 	 � � � � C � � � � � �
	 . As
C

is generated by a matrix � # � � 5 � ,
where

5
is a matrix in

� � � � � , � , � �� , it follows that there can be no different words in
C

with a common
prefix of length � . If � � � � �
	 then there can be no different words in

C � � 	 with a common prefix
of length

� � � �
	 . If
�

is even, consider the well known bound on � C � : � C � � � � � � , � ,�� � �4(�� � � . Hence,
� � � � � � � � � � � �4(�� which gives � � � � �
	 . Hence, again, we are done. ��

By the above one can construct an hp(
 � �)-free word of length " � , for some " ������� � C � , for every
choice of " different words in

C � � 	 . It is interesting that, for
� � � � and � � � � �

, the famous Golay
code

5 � (of type � � � � � � ��� satisfies the premises of the above Proposition.

Acknowledgements

Research was partially supported by the Canada Research Chair Grant to L.K., NSERC Discovery Grants
R2824A01 to L.K. and R220259 to S.K., and by the Czech Science Foundation, grant No. 201/06/0567
to P.S.

References

[1] Amos, M.: Theoretical and Experimental DNA Computations, Springer-Verlag, Berlin, 2005.

[2] Andronescu, M., Dees, D., Slaybaugh, L., Zhao, Y., Condon, A., Cohen, B., Skiena, S.: Algorithms for
testing that sets of DNA words concatenate without secondary structure. Proc. 8th Workshop on DNA-Based
Computers (M. Hagiya, A. Ohuchi, Eds.), LNCS 2568, Springer-Verlag, Berlin, 2002, 182–195.

[3] Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical
control of gene expression. Nature, 429, 2004, 423–429.

[4] Birget, J. C.: Intersection and union of regular languages and state complexity, Information Processing Let-
ters, 43, 1992, 185–190.

[5] Brodal, G. S., Lyngsø, R. B., Pedersen, C. N. S., Stoye, J.: Finding maximal pairs with bounded gap. Proc.
10th Annual Symposium on Combinatorial Pattern Matching (CPM) (M. Crochemore and M. Paterson, Eds.),
LNCS 1645, Springer-Verlag, Berlin, 1999, 134–149.

[6] Calladine, C. R., Drew, H. R.: Understanding DNA: The Molecule and How It Works, 2nd edition, Academic
Press, San Diego, 1999.

[7] Choffrut, C., Karhumäki, J.: Combinatorics of words, in [26], 329–438.

[8] Daley, M., Kari, L.: Some properties of ciliate bio-operations, Proc. of DLT 2002 (M. Ito, M. Toyama, Eds.),
LNCS 2450, Springer-Verlag, Berlin, 2003, 116–127.

[9] Dekking, F. M.: On repetitions of blocks in binary sequences, J. Combin. Theory Ser. A, 20, 1976, 292–299.

L. Kari et al. / A Formal Language Analysis of DNA Hairpin Structures 471

[10] Ehrenfeucht, A., Harju, T., Petre, I., Prescott, D., Rozenberg, G.: Computation in Living Cells: Gene Assem-
bly in Ciliates, Springer-Verlag, Berlin, 2004.

[11] Haines, L. H.: On free monoids partially ordered by embedding, J. of Combinatorial Theory, 6, 1969, 94–98.

[12] Harju, T., Karhumäki, J.: Morphisms, in [26], 439–510.

[13] Hopcroft, J., Ullman, J., Motwani, R.: Introduction to Automata Theory, Languages, and Computation, 2nd
ed., Addison-Wesley, 2001.

[14] Jonoska, N., Kephart, D., Mahalingam, K.: Generating DNA code words, Congressus Numerantium, 156,
2002, 99–110.

[15] Jonoska, N., Mahalingam, K.: Languages of DNA based code words, Proc. DNA Computing, 9th Interna-
tional Workshop on DNA Based Computers (J. Chen and J. H. Reif, Eds.), LNCS 2943, Springer-Verlag,
Berlin, 2004, 61–73.

[16] Kobayashi, S.: Testing structure-freeness of regular sets of biomolecular sequences, Proc. DNA 10 (C. Feretti,
G. Mauri, C. Zandron, Eds.), LNCS 3384, Springer-Verlag, Berlin, 2005, 192–201.

[17] Kijima, A., Kobayashi, S.: Efficient algorithms for testing structure-freeness of finite sets of biomolecular
sequences, Proc. DNA 11 (A. Carbone et al., Eds.), London, The University of Western Ontario, 2005, 278–
288.

[18] Lothaire, M.: Algebraic Combinatorics on Words, Cambridge University Press, 2002.

[19] de Luca, A.: On the combinatorics of finite words, Theoretical Computer Science, 218, 1999, 13–39.

[20] Kari, L., Konstantinidis, S., Sosı́k, P.: Bond-free languages: formalizations, maximality and construction
methods, Proc. DNA 10 (C. Feretti, G. Mauri, C. Zandron, Eds.), LNCS 3384, Springer-Verlag, Berlin, 2005,
169–181.

[21] Mauri, G., Ferretti, C.: Word Design for Molecular Computing: A Survey, Proc. DNA Computing, 9th
International Workshop on DNA Based Computers (J. Chen and J. H. Reif, Eds.), LNCS 2943, Springer-
Verlag, Berlin, 2004, 37–46.

[22] Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Paradigms, Springer Verlag,
Berlin, 1998.

[23] Păun, G., Rozenberg, G., Yokomori, T.: Hairpin languages, Intern. J. Found. Computer Sci., 12 (6), 2001,
849–857.

[24] Roman, S.: Coding and Information Theory, Springer-Verlag, New York, 1992.

[25] Rose, J. A., Deaton, R. J., Hagiya, M., Suyama, A.: PNA-mediated Whiplash PCR, Proc. DNA Computing,
7th International Workshop on DNA Based Computers (N. Jonoska and N. C. Seeman, Eds.), LNCS 2340,
Springer-Verlag, Berlin, 2002, 104–116.

[26] Rozenberg, G., Salomaa, A. (Eds.): Handbook of Formal Languages, vol. 1, Springer Verlag, Berlin, 1997.

[27] Takahashi, N., Kameda, A., Yamamoto, M., Ohuchi, A.: Aqueous computing with DNA hairpin-based RAM.
Proc. DNA 10, Tenth International Meeting on DNA Computing (G. Mauri, C. Ferretti, Eds.), University of
Milano-Bicocca, 2004, 50–59.

[28] Thierrin, G.: Convex languages, Proc. IRIA Symp. North Holland, 1972, 481–492.

472 L. Kari et al. / A Formal Language Analysis of DNA Hairpin Structures

Appendix

Proof of Lemma 4.1:

1. If � � � then � would contain a subword of the form � � � � � ; a contradiction. If the run is internal
and � � � then � would contain a subword of the form

� � � � � � � ; a contradiction again.

2. First note that if � contained the three runs then it would also contain the subwords � � � and
� � � ,

which is impossible. Similarly, if � contains the two runs � % and � # , they can appear in � only
as in ����� � % � � # ����� . Also, not both runs can be internal as in ����� � � % ����� � # � ����� , otherwise � would
contain

� � � and � � � . The fact that at least one of � and
�

is
�

is evident.

3. If � contained three internal runs � (then the subword
� �-(� would occur twice. For the same

reason, if � has two runs �)(they must occur as specified in the statement.

4. Follows by symmetry. ��

Proof of Lemma 4.2:
Suppose there are four indices � with � # ��� # � � . Then � can be written in the form

�	� �
� �	� � � �	� (� �	� � � �	� � � �

such that � � �
� �
	 � ��� � and � � � � �
	 � � ��� and � # � � �
	 � � ��� � for � � � � � ��� . Note that � � � �

occurs both in �	� �
� �	� � � and �	� � � �	� � � . This implies that both � � and � � are nonempty (else, also

� � � �
would occur in �). Hence, � � and � � can be written in the form

� � � � � and
� � � � � , respectively, and this

implies that � (must be nonempty (else the subword
� � � � would follow � � � � in �). So � is of the form

�	� �
� � � � � � � ��� � � � � � � (��� � � � � � � � ��� � �	� � � �

Again, both � � (and � � � must be nonempty and, moreover, they do not start with � . Hence, each of � � (and� � � starts with
�

and, therefore, � contains two internal runs
���

and
���

with 	 �BA � �
. By Lemma 4.1 and

the positions of the two runs in � , there can be no other internal run
� �

, with
F � �

, to the left of
� � � (� .

This implies that � � � cannot start with
�

and that
� � � � occurs as a subword in

� � � � � � � ��� , which contradicts
the fact that � � � � occurs in � (� �	� � . ��

Proof of Lemma 4.3:
We shall prove the statement for ����� . By Lemma 4.1, � starts with � % � � # , or ends with � # � � % , such that
� ��� � �

. We shall prove the statement for the former case, as the other case would follow by symmetry.
We distinguish two cases depending on whether � contains an internal run �<(– there can be no two
internal runs �-(in � , else �-(� � and � � � (would occur in � .

Case 1: No internal run �)(. Then � is of the form

� % � � # � � � � ��� ����� � � � � � � ��� � � � � �
where

�H� � and � is in
� � � � � �-(. If

� � � the statement is evident. We assume that
��� �

. We note
that there can be no three different runs

� � with � � �
(otherwise � would contain

� (�� � and
� � � (as

L. Kari et al. / A Formal Language Analysis of DNA Hairpin Structures 473

subwords). By Lemma 4.1, the length of � % � � # is at most 11. By Lemma 4.2, � contains up to 3 pairs of
runs � � ��� . Then � � � � � J � 	 � J � � (� � J � ��� � � J � � � � � � �	

, or � � � � � J � 	 � J � � � � � J � � � � �	�
.

Hence, � � � �	

.

Case 2: There is an internal run �)(. Then � is of the form

� % � � # � ��� � ��� ����� � ��� � � � ��� � ��� � � (� � ��� � � � ��� ����� � ��� � � � ��� ��� � � �
such that �� 	 � �

and �
�

� �
(else � (� � and � � � (would occur in �). Hence,

� (� (occurs as a
subword of � . We note that 	 � �

implies � � � � (else � (� (would occur in �) and
� � � (occurs to the

left of the internal run �)(. Also,
� 	 	 J � implies � � � � � �

(else � (� � would occur to the right of � � �)()
and

� (� � occurs to the right of the internal run � (. Hence, it follows that 	 � � or
� � 	 J � .

First consider the subcase of 	 � � . If
� � 	 J � then � � � � �

. So we continue assuming
�
	 	 J � .

Then � � �
(otherwise, �-(� (would occur in � as a separate subword from

� (� (). Moreover, Lemma 4.1
implies that one of � � and � � � � is 2 and the other is at least 3. If � � � �

and � � � � � �
then there can be

no other run
� � with � � �

and � � � � � J � J � � � (�� �0J � � � � �
J � � � � � � � � . If � � � �
and � � � � � �

then there can be no other internal run
� (in � . If there is another run

� � with � ���
then

� � 	 J �
and��� � and � � � � � J � J � � � � � � � � � � � � � . Else, � � � � � J � � � � � (�DJ � � � � � � � � J � � � � �BJ � � � � � � � �

.
Now consider the subcase of

� � 	 J � and 	 � �
. Then

� ��� % � � # � ��� � ��� ����� � ��� � � � ��� � ��� � � (� ��� � �
Recall that � � � � . First assume that � is not empty. Then � �

� �
(else � would contain � � �)(and � (� �)

and one of � � and � � is 2 and the other is at least 3. If � � �
�

there is no other run
� � in � with � � �

,
and � � � � � J � � � � � J � � J � � J � � J � � � �(�	�

. If � � � �
there is at most another internal run

� (. Also,
here ����� (implies � �

�
(else, � would contain �)(� (and

� (�� (as subwords). Hence, � � � � �
. Now

assume that � is empty. If there is no index
F � 	 with � � � �

then � � � � � J � � � � � J �� � J � � J � �
�	�

.
If there is an index

F � 	 such that � �:� �
then the largest such

F
would be equal to 	 � � (else, � � � �

would occur to the left of
� ��� � and

� � � � would occur to the right of
� ��� �). Also there can be no other

index
A � F

with �
�

� �
, otherwise

� � � (would occur to the left of
� � � � � and

� (�� � would occur in� � � � � � � � �). Hence, � is of the form

� % � � # � � ��� ����� � � ��� � � � � � � ��� � � � � � (� � � �
with at most 3 � � ��� ’s in � . If one of � � , � and � � is at least 3 then the other would be 2 and � �

�
. This

implies � � � �	

. If � � , � ���

�
� �

then � � �� and � � � � � . ��

Proof of Lemma 4.4:
By Lemma 4.1, there can be no other internal run

� �
with

F � �
. We distinguish two cases depending

on whether
� (� � (occurs to the left or to the right of

� � . In both cases, we make use of the quantity
� � � � J � � � � J

F
, where

F
is the length of the only internal run � � , with

F � �
, if it exists, or

F � �
otherwise. Note that if � � or � � � � is greater than

�
then

F � � – recall there can be no two runs � # and� % with � ��� ��
. Also, if the run � � exists then

F � and � � J � J � �
 . Similarly, if
F � � then

� � � J � � J � �
 .
Case 1: the word � is of the form

������� � � � ��� � ����� � ����� � � � � � (��� � � (����� � � � � � ����� � � ����� � ��� � � � � � ��� � ��� � � � � ��� � � � ����� � ��� � � � ��� ��� � ��� ��� � � �

474 L. Kari et al. / A Formal Language Analysis of DNA Hairpin Structures

where � �
� �

and
� 	 � J � , and

� " , or
� � "#J � and � � � � 	 �

. Also, � � , �
� �

, else
� � � (

would occur to the right of
� (�� � (. First we consider the subcase of

� " . Here � �
� �

(else,
� (� �

would occur to the right of
� (�� � () and � � �

�
(else, � � � � � � � � � � � contains �-(� (����� � (� (). Moreover one

of � � , � and � � is 2 and the other is at least 3. If � � � � � � then � �� and depending on whether the
run � � , with

F � �
, is equal to � � � we have that � � � � � J � � � J

� � � � ��J � � � (� � J � � � � (� J � � � � or
� � � � � J � � J � � � � �4J � � � (� �4J �� � J

� � J � � � (�4J � � � � . Hence, � � � � �
. If � � � � 	�� then � � � � � �

(else there would be another internal run
� �

with
A � �

). Again, by considering whether the run � � , withF ���
, is equal to � � � one verifies that � � � � � .

Now we consider the subcase of
� � " J � and � � � � 	�� . Then � is of the form

��� ��� � � � � � � ����� � � ��� � � � � � (��� � � (� ��� � � � � � � ��� � � ����� � � � � � � � � � � � � � � � �
Here we note that

� � � 	 �&J � implies that � � � � � � (else
� (�� (would occur to the left of �)(� (), and

similarly � �
� �

implies that � � � � . If there is up to one internal run � (then one verifies that � � � �	

.

If there are two internal runs �)(in � then their position depends on the value of � � , � . If � � , � �
�

then
also � � , (�

�
. Moreover, � � � � � � because

� � � 	 � J � , and there can be no internal run � � withF ���
(else � � � (would occur to the left of �)(� � (). Then � � � � J � � � � �4J � � � (� �4J � � � � (�4J � �

� � . If� � , �
���

then
� � ��� �0J � (else � � �-(would occur to the right of �)(� �). Here one verifies that � � � � �

if � �
� �

, and � � � �	

if � � �

�
.

Case 2: the word � is of the form

������� � � � ��� � ����� � ��� � � � � � ��� � ��� � � � � ��� � � � ����� � ����� � � � � � (��� � � (����� � � � � � ����� � � ����� � ��� � � � ��� ��� � ��� ��� � � �
where � �

���
and

� � � , and � J � " , or � J � � " J � and � � � � 	�� . Also, � �
� �

, else
� (� � would

occur to the left of
� � � (. First we consider the subcase of

� � �
. Then � � , �

� �
and � � �

�
(else � (� (

and
� (�� (would occur in �). Moreover, � � � �� �� � � � � �)(�
J � J � �

� � � � (�
J �� � J � � (� � J � J �
	 J� � � � �
J � � � (�� �0J � � � � which implies � � � � � J � J � � � � . If � � � � � � then � � and � � � � �
. If� � � � 	�� and " J � 	 � J � then � � � � � � and � � � � � . If � � � � 	�� and " J ��� � J � then � � � � � � ,� � � � � �

and � � � � � .
Now we consider the subcase of

� � � . Then � is of the form

��� ��� � � � � � � � � � � � � � � � � ����� � � ��� � � � � � (��� � � (� ��� � � � � � � ��� � � ����� � � � � � � � � ��� � � � ��� � � �
Here � �

� �
implies � � � � . If � � � � � � then � J � � � � and � � � � � . If � � � � � � and �0J � � "�J �

then � � � � � �
and � � � � �

. If � � � � � � and �<J � � " J � then � � � � � � . One verifies that again
� is of length at most 31 by considering the following three possibilities: (i) � 	 � J � , which implies� � � � � � ; (ii) � � � J � and � � �

�
; and (iii) � � � J � and � �

���
, which implies that � � � � � � and� � �

�
. ��

Proof of Lemma 4.5:
By Lemma 4.1, � � J � � � � J � � � � �� J � �� � � J ��� � J � 	 � � � and � contains at most two internal
runs � (and at most two internal runs

� (. If it is not the case that there are two internal runs � (and two
internal runs

� (, then � � � � � J � � � � ��J � �� � � � � (�� ��J � � � (� � � � (�� � J � � � � (� 	 � �	

. If there are two

internal runs �-(and two internal runs
� (then � (� � (would occur to the right of

� (�� � ((else � � � (would
occur to the right of � ��� � �). Hence

� � ����� � � � � (� � (� � ��� (� � (� � (��� ��� � ��� ��� � �

L. Kari et al. / A Formal Language Analysis of DNA Hairpin Structures 475

where � � � � (� � � ��� � and � � ��� � � � . Hence, � � � � � J � � � � J � � ��J � � (� . Now note that � G� � implies� � � � (� � (else
� � � � occurs in � and � � � � in � � or � (), and � �HG� � implies that � � � and also

implies that, either � (� � , or � � ��� (� � � . In any case it follows that � � � � �
. ��

