A Hierarchy of Unary Primitive Recursive String-functions

Lila Santean* Institute for Informatics 8-10 Miciurin blvd. 71316 Bucharest 1, Romania

Abstract

Using a recent result of G.Asser, an extention of Ackermann-Peter hierarchy of unary primitive recursive functions to string-functions is obtained. The resulting hierarchy classifies the string-functions according to their lexicographical growth.

1 Introduction

Let N be the set of naturals i.e. $N = \{0, 1, 2, ...\}$. Consider a fixed alphabet $A = \{a_1, a_2, ..., a_r\}, r \ge 2$ and denote by A^* the free monoid generated by A under concatenation (with e the null string). The elements of A^* are called strings; if reffering to strings, " < " denotes the lexicographical order induced by $a_1 < a_2 < ... < a_r$. Denote by Fnc (respectively Fnc_A) the set of all unary number-theoretical (respectively, string) functions. By $I, Succ, C_m, Pd$ we denote the following number-theoretical functions:

$$I(x) = x,$$

$$Succ(x) = x + 1,$$

$$C_m(x) = m,$$

$$Pd(x) = x \div 1, \text{ where } x \div y = max\{x - y, 0\},$$

for all $x, m, y \in \mathbb{N}.$

By I^A , $Succ_i^A$, C_u^A , σ , π , we denote the following string-functions:

 $I^A(w) = w,$

^{*}Present address: Department of Mathematics, University of Turku, 20500 Turku, Finland

$$\begin{aligned} Succ_i^A(w) &= wa_i (1 \le i \le r), \\ C_u^A(w) &= u, \\ \sigma(e) &= a_1, \sigma(wa_i) = wa_{i+1} \text{ if } 1 \le i < r \text{ and } \sigma(wa_r) = \sigma(w)a_1 \\ \pi(e) &= e, \pi(\sigma(w)) = w, \\ \text{ for all } w, u \in A^* \end{aligned}$$

Furtheron one uses the primitive recursive bijections $c: A^* \longrightarrow N, \overline{c}: N \longrightarrow A^*$ given by

$$\begin{array}{ll} c(e) &=& 0, c(wa_i) = r \cdot c(w) + i, 1 \leq i \leq r, w \in A^*, \\ \overline{c}(0) &=& e, \overline{c}(m+1) = \sigma(\overline{c}(m)), m \in \mathbb{N}. \end{array}$$

To each f in *Fnc* one associates the string-function $s(f) \in Fnc_A$ defined by $s(f)(w) = \overline{c}(f(c(w)))$ and for each g in Fnc_A one associates the numbertheoretical function n(g) defined by $n(g)(x) = c(g(\overline{c}(x)))$. It is easily seen that for every string-function g, s(n(g)) = g and for every number-theoretical function f, n(s(f)) = f. For example, $s(Succ) = \sigma, n(I^A) = I, s(Pd) = \pi$. A mapping from Fnc^n to Fnc is called an operator in Fnc, and analogously for Fnc_A . We consider the following operators in Fnc and Fnc_A :

For every operator φ in Fnc, $s(\varphi)(f) = s(\varphi(n(f)))$, for every $f \in Fnc$; analogously, for every operator θ in Fnc_A , $n(\theta)(g) = n(\theta(s(g)))$, for every $g \in Fnc$. For example, $s(it_x) = \sigma - it_{A,c(x)}, n(\sigma - it_{A,w}) = it_{\overline{c}(w)}$.

2 Ackermann-Peter string-function

The primitive-recursive functions were introduced by Asser [1] and studied by various authors (see [4], [6], [8]). In order to study the complexity of such functions, we use as a measure of complexity the growth relatively to the lexicographical order. To this aim we use the string-version of the Ackermann-Peter unary function defined by Weichrauch [8]. The function, denoted by $A: A^* \longrightarrow A^*$, is given by means of the following three equations:

$$A_0(x) = \sigma(x) \tag{1}$$

$$A_{n+1}(e) = A_n(a_1) \tag{2}$$

$$A_{n+1}(\sigma(x)) = A_n(A_{n+1}(x)).$$
 (3)

The following technical results concern the monotonicity properties of the function A; they generalize the monotonicity properties of the number-theoretical Ackermann-Peter function (see [4]). **Lemma 1** For all naturals n and for all strings x over A^* , we have

$$A_n(x) > x.$$

Proof. We proceed by induction on n.

For n = 0 we have $A_0(x) = \sigma(x) > x$. We assume that $A_n(x) > x$ and we prove the inequality $A_{n+1}(x) > x$ by induction on x.

For $x = e, A_{n+1}(e) = A_n(a_1) > e$. Suppose now that $A_{n+1}(x) > x$. We use (3) and the first induction hypothesis to get

$$A_{n+1}(\sigma(x)) = A_n(A_{n+1}(x)) > A_{n+1}(x).$$

Finally, by the second induction hypothesis, that is $A_{n+1}(x) \ge \sigma(x)$, we obtain $A_{n+1}(\sigma(x)) > \sigma(x)$.

Lemma 2 For all naturals n and for all strings x over A^* , we have:

$$A_n(x) < A_n(\sigma(x)).$$

Proof. For n = 0,

$$A_0(x) = \sigma(x) < \sigma(\sigma(x)) = A_0(\sigma(x))$$

Assume that $A_n(x) < A_n(\sigma(x))$. In view of (3) and lemma 1 we have

$$A_{n+1}(\sigma(x)) = A_n(A_{n+1}(x)) > A_{n+1}(x).$$

Corollary 1 For all naturals n and all strings x, y from A^* , if x < y, then $A_n(x) < A_n(y)$.

Lemma 3 For all naturals n and for all strings x over A^* , we have

$$A_n(x) < A_{n+1}(x).$$

Proof. We proceed by double induction on n and x.

For n = 0 we have

$$A_0(x) = \sigma(x) < \sigma(\sigma(x)) = A_1(x).$$

Assume now that $A_n(x) < A_{n+1}(x)$ and we prove that $A_{n+1}(x) < A_{n+2}(x)$ by induction on x.

For x = e, in view of (2) and the first induction hypothesis, we get

$$A_{n+1}(e) = A_n(a_1) < A_{n+1}(a_1) = A_{n+2}(e).$$

In view of a new induction hypothesis, $A_{n+1}(x) < A_{n+2}(x)$, we deduce the relations:

$$A_{n+1}(\sigma(x)) = A_n(A_{n+1}(x)) < A_n(A_{n+2}(x)) < A_{n+1}(A_{n+2}(x)) = A_{n+2}(\sigma(x))$$

(we have also used the first induction hypothesis, relation (3) and corollary 1).

 \Box

Π

Corollary 2 For all naturals n and m, and for all strings x in A^* , if n < m, then

 $A_n(x) < A_m(x).$

Lemma 4 For all strings x of A^* we have: $A_2(x) = \sigma^{2c(x)+3}(e)$.

Proof. We proceed by induction on x.

For x = e, in view of (2) we have

$$A_2(e) = A_1(a_1) = \sigma(\sigma(a_1)) = \sigma^3(e) = \sigma^{2c(e)+3}(e).$$

Assuming that $A_2(x) = \sigma^{2c(x)+3}(e)$, we prove that $A_2(\sigma(x)) = \sigma^{2c(\sigma(x))+3}(e)$. Indeed, using (3) and the equality $c(\sigma(x)) = c(x) + 1$, we get:

$$A_2(\sigma(x)) = A_1(A_2(x)) = A_1(\sigma^{2c(x)+3}(e)) = \sigma^{2c(x)+5}(e) = \sigma^{2c(\sigma(x))+3}(e).$$

Lemma 5 For all naturals k and $n \ge 1$, there exists a natural i (which depends upon k) such that

$$A_n(\sigma^k(x)) < A_{n+1}(\pi^k(x)),$$

for every string x in A^* with c(x) > i.

Proof. We first notice that for every string x with c(x) > 3k - 1, we have $\sigma^k(x) < A_2(\pi^{k+1}(x))$.

Indeed, by lemma 4 we have

$$\begin{aligned} A_2(\pi^{k+1}(x)) &= \sigma^{2c(\pi^{k+1}(x))+3}(e) = \sigma^{2(c(x) \div k^{\perp} - 1)+3}(e) = \sigma^{2c(x) \div 2k+1}(e) \\ &> \sigma^{k+c(x)}(e) = \sigma^k(\sigma^{c(x)}(e)) = \sigma^k(x). \end{aligned}$$

Consequently, using corolary 1 and corollary 2,

$$A_n(\sigma^k(x)) < A_n(A_2(\pi^{k+1}(x))) < A_n(A_{n+1}(\pi^{k+1}(x))) = A_{n+1}(\pi^k(x)),$$

for all strings x with $c(x) > 3k \div 1$. In conclusion, we can take $i = 3k \div 1$.

Lemma 6 For all naturals n and strings x in A^* we have

$$A_{n+1}(x) = A_n^{c(x)+1}(a_1).$$

Proof. We proceed by induction on x.

For x = e, using (2) we obtain

$$A_{n+1}(e) = A_n(a_1) = A_n^{c(e)+1}(a_1).$$

Assuming that $A_{n+1}(x) = A_n^{c(x)+1}(a_1)$ we prove the equality

$$A_{n+1}(\sigma(x)) = A_n^{c(\sigma(x))+1}(a_1).$$

Indeed, using (3) we get:

$$A_n^{c(\sigma(x))+1}(a_1) = A_n^{c(x)+2}(a_1) = A_n(A_n^{c(x)+1}(a_1)) = A_n(A_{n+1}(x)) = A_{n+1}(\sigma(x)).$$

The monotonicity properties of the string Ackermann-Peter function will be freely used in what follows.

3 A hierarchy of unary primitive recursive string-functions

We are going to define an increasing sequence $(C_n)_{n\geq 0}$ of string-function classes whose union equals the class of the one-argument primitive recursive stringfunctions.

Definition 1 We say that the function $f : A^* \longrightarrow A^*$ is defined by *limited iteration at e* (shortly, *limited iteration*) from the functions $g : A^* \longrightarrow A^*$ and $h : A^* \longrightarrow A^*$ if it satisfies the following equations:

$$\begin{array}{rcl} f(e) &=& e,\\ f(\sigma(x)) &=& g(f(x)),\\ f(x) &\leq& h(x), \end{array}$$

for every x in A^* .

Definition 2 For a natural n we define C_n to be the smallest class of unary primitive recursive string-functions which contains the functions A_0, A_n and is closed under composition, limited iteration and s(diff) (the string-function operation corresponding to the arithmetical difference).

Lemma 7 For all naturals n, the class C_n contains the functions C_e^A , I^A , π and the functions $l_i(1 \le i \le r)$, sg and \overline{sg} defined by:

$$l_i(w) = a_i, 1 \le i \le r,$$

$$sg(w) = \begin{cases} e & \text{if } w = e \\ a_1 & \text{if } w \ne e \end{cases}$$

$$\overline{sg}(w) = \begin{cases} a_1 & \text{if } w = e \\ e & \text{if } w \ne e, \end{cases}$$

for all $w \in A^*.$

Proof. It follows from the following equalities:

$$\begin{array}{rcl} C_{e}^{A} & = & s(diff)(A_{0},A_{0}) \\ l_{i} & = & A_{0}^{i}(e), 1 \leq i \leq r \\ I^{A} & = & s(diff)(A_{0},l_{1}) \\ \overline{sg} & = & s(diff)(l_{1},I^{A}) \\ sg & = & s(diff)(l_{1},\overline{sg}) \\ \pi & = & s(diff)(I^{A},l_{1}) \end{array}$$

and from the definition 2.

Theorem 1 For all naturals $n, C_n \subseteq C_{n+1}$.

Proof. We shall prove by induction on n that for all natural numbers n and $k, A_n \in C_{n+k}$.

If n = 0, by definition 2, $A_0 \in C_m$, for every natural m. Assume that $A_n \in C_{n+k}, \forall k \in \mathbb{N}$. We shall prove that $A_{n+1} \in C_{n+k+1}, \forall k \in \mathbb{N}$.

Assertion: For every string $x, A_{n+1}(x) = f(\sigma(x))$, where

$$f(e) = e,$$

$$f(\sigma(x)) = A_n(g(f(x))), \text{ and}$$

$$g(x) = s(diff)(\sigma(x), sg(x)).$$

The equalities will be proved by induction on the string x. If x = e, from the definitions of the functions A_n and s(diff) we deduce:

$$\begin{array}{lll} f(\sigma(e)) &=& A_n(g(f(e))) = A_n(g(e)) = A_n(s(diff)(\sigma(e), sg(e))) \\ &=& A_n(s(diff)(a_1, e)) = A_n(a_1) = A_{n+1}(e). \end{array}$$

Supposing now that $A_{n+1}(x) = f(\sigma(x))$, we shall show that $A_{n+1}(\sigma(x)) = f(\sigma^2(x))$.

Indeed,

$$\begin{aligned} f(\sigma(\sigma(x))) &= A_n(g(f(\sigma(x)))) = A_n(g(A_{n+1}(x))) \\ &= A_n(s(diff)(\sigma(A_{n+1}(x)), sg(A_{n+1}(x)))) \\ &= A_n(s(diff)(\sigma(A_{n+1}(x)), a_1)) \\ &= A_n(\overline{c}(diff(c(\sigma(A_{n+1}(x))), c(a_1)))) \\ &= A_n(\overline{c}(diff(c(A_{n+1}(x))) + 1, 1))) \\ &= A_n(\overline{c}(c(A_{n+1}(x)))) = A_n(A_{n+1}(x)) \\ &= A_{n+1}(\sigma(x)). \end{aligned}$$

Using now definition 2, lemma 7, the induction hypothesis and the relations

$$f(x) = A_{n+1}(\pi(x)) \le A_{n+1}(x) \le A_{n+k+1}(x), x \in A^*,$$

we deduce that A_{n+1} is in C_{n+k+1} being obtained from functions belonging to C_{n+k+1} , using composition, limited iteration and s(diff).

Lemma 8 For all naturals n and all functions f in C_n , there exists a natural k such that $f(x) < A_n^k(x)$, for every string x in A^* .

Proof. We shall make use of the inductive definition of C_n . If $f(x) = A_0(x)$ then

$$f(x) < A_0(A_0(x)) \le A_n(A_n(x))$$

and we can take k = 2.

If $f(x) = A_n(x)$, then

$$f(x) \leq A_n(A_n(x))$$

and we can also take k = 2.

If $f(x) < A_n^p(x)$ and $g(x) < A_n^q(x)$, for all strings x in A^{*} then

$$\begin{array}{lcl} (f \circ g)(x) &=& f(g(x)) < A_n^p(g(x)) < A_n^{p+q}(x)), \\ s(diff)(f,g)(x) &\leq& f(x) < A_n^p(x). \end{array}$$

Finally, if f is obtained by limited iteration from g and h, $h(x) < A_n^k(x)$, then $f(x) \le h(x) < A_n^k(x)$.

Theorem 2 For every class $C_n, n \ge 1$, and every f in C_n , there exists a natural i (depending upon f) such that $f(x) < A_{n+1}(x)$ for every string x in A^* satisfying $c(x) \ge i$.

Proof. Assume that f is a function in $C_n, n \ge 1$. In view of lemma 8, we can find a natural $k \ge 2$ (which depends upon f) such that, for every string $x, f(x) < A_n^k(x)$. We shall show that the requested inequality holds for i = 3k.

From the monotonicity properties of Ackermann-Peter string-function, one can deduce the following relations:

$$A_n^k(x) = A_n^{k-1}(A_n(x)) \le A_n^{k-1}(A_n(\sigma^{k-1}(x))) < A_n^{k-1}(A_{n+1}(\pi^{k-1}(x))),$$

for every string x with $c(x) > 3k \div 1$.

Intermediate step: $A_{n+1}(x) = A_n^{k-1}(A_{n+1}(\pi^{k-1}(x)))$, for every string x with $c(x) \ge k$.

We shall prove the equality by induction on x. If c(x) = k, then we have

$$\begin{aligned} A_n^{k-1}(A_{n+1}(\pi^{k-1}(x))) &= A_n^{k-1}(A_{n+1}(\pi^{k-1}(\sigma^{c(x)}(e)))) \\ &= A_n^{k-1}(A_{n+1}(\pi^{k-1}(\sigma^k(e)))) = A_n^{k-1}(A_{n+1}(a_1)) \\ &= A_n^{k-1}(A_n^2(a_1)) = A_n^{k+1}(a_1) = A_n^{c(x)+1}(a_1) \\ &= A_{n+1}(x). \end{aligned}$$

If the equality holds for x, we can prove that

$$A_{n+1}(\sigma(x)) = A_n^{k-1}(A_{n+1}(\pi^{k-1}(\sigma(x)))).$$

Indeed,

$$\begin{aligned} A_n^{k-1}(A_{n+1}(\pi^{k-1}(\sigma(x)))) &= A_n^{k-1}(A_{n+1}(\sigma(\pi^{k-1}(x)))) \\ &= A_n^{k-1}(A_n(A_{n+1}(\pi^{k-1}(x)))) \\ &= A_n(A_n^{k-1}(A_{n+1}(\pi^{k-1}(x)))) \\ &= A_n(A_{n+1}(x)) = A_{n+1}(\sigma(x)), \end{aligned}$$

and the intermediate step is proved.

Returning to the proof of the theorem, we can now write

$$f(x) < A_n^k(x) < A_n^{k-1}(A_{n+1}(\pi^{k-1}(x))) = A_{n+1}(x),$$

for all strings x with $c(x) \ge 3k \div 1$ and taking $i = 3k \div 1$, the proof is finished.

Theorem 3 The set $\bigcup_{n=0}^{\infty} C_n$ coincides with the set of unary primitive recursive string-functions.

Proof. We shall make use of the characterization of the set of unary primitive recursive string-functions obtained in [5], namely as the smallest class of unary string-functions which contains σ and is closed under the operations

$$sub, \sigma - it_{A,e}, s(diff)$$

It is obvious that every function in $\bigcup_{n=0}^{\infty} C_n$ is primitive recursive. For the converse inclusion, all that remains to be proved is reduced to the closure of $\bigcup_{n=0}^{\infty} C_n$ to $\sigma - it_{A,e}$.

We shall show that if $f \in \bigcup_{n=0}^{\infty} C_n$ is obtained by pure iteration from $g \in \bigcup_{n=0}^{\infty} C_n$, there exists a function $h \in \bigcup_{n=0}^{\infty} C_n$ such that f is obtained by limited iteration from g and h and, therefore, f is in $\bigcup_{n=0}^{\infty} C_n$.

Indeed, let f be obtained by pure iteration from g in $C_m, m > 0$. We shall prove, by induction on the string x that f is majorated by A_{n+1} .

If x = e, we have $f(e) = e < A_{n+1}(e)$.

Supposing that $f(x) < A_{n+1}(x)$ and using the definition and the monotonicity properties of Ackermann-Peter function, we get:

$$f(\sigma(x)) = g(f(x)) < A_n(f(x)) < A_n(A_{n+1}(x)) = A_n(\sigma(x)).$$

Theorem 4 The function $\overline{A} : A^* \longrightarrow A^*$ defined by $\overline{A}(w) = A_{c(w)}(w)$ is not primitive recursive.

Proof. Assume, on the contrary, that \overline{A} is primitive recursive. From theorem 3 we get a natural n such that $\overline{A} \in C_n$. By theorem 2, there exists a natural i such that $A(x) < A_{n+1}(x)$ for every x with $c(x) \ge i$. Let x be a string satisfying the condition c(x) = n + i + 1. We arrive at a contradiction since

$$\overline{A}(x) = A_{c(x)}(x) = A_{n+i+1}(x) < A_{n+1}(x)$$

(see corollary 2). This completes the proof of the theorem.

4 Acknowledgements

We are grateful to Dr. Cristian Calude for drawing our attention to these problems and for many helpful remarks.

References

 G.Asser. Rekursive Wortfunktionen Z. Math. Logik Grundlag. Math. 6(1960), 258-278.

- [2] G.Asser. Primitive recursive word-functions of one variable, in E.Borger (ed.), Computation Theory and Logic, LNCS 270, Springer 1987, 14-19.
- [3] G.Asser. Zur Robinson Charakterisierung der Einstelligen Primitiv Rekursiven Wortfunktionen, Z. Math. Logik Grundlag. Math., 34(1988), 317-322.
- [4] C.Calude. Theories of Computational Complexity, North-Holland, Amsterdam, New-York, Oxford, Tokio, 1988.
- [5] C.Calude, L.Santean. On a Theorem of Gunter Asser, Z.Math. Logik Grundlag. Math., 1990.
- [6] F.W.v.Henke, K.Indermark, G.Rose, K.Weichrauch. On Primitive Recursive Wordfunctions, *Computing* 15(1975), 217-234.
- M.Tatarim. Darboux property and one-argument primitive recursive stringfunctions, *Revue Roumaine des Mathematiques Pures et Appliques*, 1987, 79-94.
- [8] K.Weichrauch. Teilklassen primitiv-rekursiver Wortfunktionen, Berichte der GMD 91(1974), 1-49.