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a b s t r a c t

We investigate the power of (1-reversal) counter machines (finite automata with multiple
counters, where each counter can ‘‘reverse’’ only once, i.e., once a counter decrements, it
can no longer increment) and one-way multihead finite automata (finite automata with
multiple one-way input heads) as a language acceptor. They can be non-deterministic
as well as augmented with a pushdown stack. First, we prove that adding a pushdown
stack properly strengthens the deterministic countermachines. Non-deterministic counter
machines with a pushdown stack are then compared with multihead finite automata. The
proof of their incomparability involves an interesting technique: an assumption that a
language be accepted by a non-deterministic countermachinewould bring a contradictory
algorithm to decide an undecidable language. Furthermore, we will show that over
bounded languages, these two kinds of machines have the same power, and neither
non-determinism nor a pushdown stack makes them stronger.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Ways of strengthening finite state machines include making the computation non-deterministic, allowing the state
control read more than one letter on the input tape simultaneously using multiple heads, and augmenting them with read-
write unbounded memories such as stack, counter, etc. Non-determinism does not add any power to finite automata (FA)
or Turing machines (TM). In contrast, non-determinism increases the power of pushdown automata (a PDA is a finite state
machine with a stack, that is, semi-infinite tape which operates on a last-in-first-out basis). The significance of deterministic
PDA (DPDA) in theory and applications, among others, has motivated research on the power as a language acceptor which
non-determinism brings to finite state machines.

As a PDA is obtained by augmenting an FA with a stack, finite state machines can be further reinforced by having more
than one stack attached to it. It is well known that two stacks already endow the PDA Turing universality, even if we limit
the size of the stack alphabet Γ to 1 (such a stack is called a counter) [1]. This universality is not true anymore once an upper
bound is imposed on the number of reversals which the counters canmake during the computation (a reversal is a shift from
the non-decreasingmode to the non-increasingmode, or vice versa). Ibarra has introduced the finite statemachinewith such
counters as the reversal-bounded counter machine [2]. Non-Turing universality of reversal-bounded counter machines was
proved there by showing that if the Parikh image of a language accepted by such a machine is semilinear. This semilinearity
makes possible to strengthen FAs while keeping their several useful properties like emptiness decidable. For other related
results, see [3–8]. Rosenberg proposed anothermethod to strengthen finite statemachines by equipping themwithmultiple
input heads, which move independently on the input tape [9].
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As we shall see in detail in Section 2, unless the number of counters matters, we can assume that they make at most
one reversal; such a counter is called 1-reversal. Equipping a (non-deterministic: N) FA or PDA with either 1-reversal
counters (C) or multiple one-way input heads (MH) brings four classes of finite state machines, that is, the classes of
counter machines (NCM), pushdown counter machines (NPCM), one-way multihead finite automata (NMHFA), and one-
way multihead pushdown automata (NMHPDA). Their deterministic variants are also of interest. Their abbreviations are
obtained by replacing N in those of the non-deterministic classeswith D. The investigation on the inclusion hierarchy among
these eight classes is the primary purpose of this paper.

More specifically, our questions are of the following types:

Q1. whether a pushdown stack or non-determinism strictly strengthens 1-reversal counter machines;
Q2. whether the machines in a class can be simulated by a machine in another class;
Q3. does there exist a class of languages over which some of these classes possess equivalent power as a language acceptor.

Section 3 addresses Q1 and Q2. First, we propose a language that is accepted by a DPCM but cannot be accepted by any
NCM (Theorem 1). This means that the pushdown stack strictly increases the power of deterministic counter machines as a
language acceptor. A technique used toward this end deserves special note: on the supposition that an NCM accepted this
language, we could design an algorithm to decide the halting problem for Turing machines.

The problem of whether nondeterminism strictly strengthens counter machines remains open in this paper. On this, we
have a remark.

Remark 1. In the conference version of this paper, [10], we claimed that

Lb = {ai1#ai2# · · ·#ain | n ≥ 2, i1, . . . , in ≥ 0such that i1 + i2 + · · · + ik = ik+1 + · · · + in for some 1 ≤ k < n }

is in NCM \ DPCM. This is true if the input tape of DPCM is not augmented with the right end-marker $. In the presence of
$, however, Lb can be accepted by a DPCMM . In fact, a counter ofM counts the number of a’s, while it copies the input onto
its stack. Once the input head reaches $, then it starts popping the stack. When a is popped, the counter decrements by 2.
The input is accepted if the stack top is # when the counter becomes 0.

It is more common to assume the existence of $ for counter machines. In this case, a language in NCM \ DPCM is to be
found.

Section 4 is devoted to Q3. We introduce a class of languages over which a weak machine DCM can simulate a strong
machine NMHPDA. That is the class of bounded languages. Ibarra and Seki have proved that over this class, DCM = NPCM
[11]. We generalize this equation over to the multihead finite state machine classes (Corollary 6) by making use of the
simulation of NMHPDA by DCM (Lemma 5) with a simulation of DCM by DMHFA (Theorem 3).

2. Preliminaries

Let Σ be an alphabet and by Σ∗ we denote the set of all words over Σ including the empty word ϵ. For a word w ∈ Σ∗,
|w| denotes its length and wR denotes its reverse.

Let us recall the definition of reversal-bounded (pushdown) counter machines [2]. A reversal-bounded counter machine
is a finite automaton augmented with reversal-bounded counters. We can further augment a reversal-bounded counter
machine with a pushdown stack to obtain a reversal-bounded pushdown counter machine.

A pushdown k-counter machineM is formally represented by a 7-tuple (Q , Σ, Γ , δ, q0, Z0, F), where Q , Σ, Γ , F are the
respective sets of states, input letters, stack symbols, and final states, q0 is the initial state, and Z0 ∈ Γ is the particular stack
symbol called the start symbol. We define the transition δ in a way that is different from but equivalent to the convention as
a relation fromQ ×Σ ×Γ ×{0, 1}k intoQ ×{S, R}×Γ ∗

×{−1, 0, +1}k. S and R indicate the direction inwhichM moves its
input head (S: stay, R: right).M is said to be deterministic if δ is a function. A configuration ofM is given by a (k + 3)-tuples
(q, w$, x, c1, . . . , ck) denoting the fact thatM is in the state q,w is the ‘‘unexpended’’ input with the right end-marker $, the
stack contains the word x, and c1, c2, . . . , ck are the values contained in the k counters. Among configurations, we define a
relation⊢M as follows: (q, aw$, Xα, c1, . . . , ck) ⊢M (p, w′$, βα, c1 + e1, . . . , ck + ek) if δ(q, a, X, λ(c1), . . . , λ(ck)) contains
(p, d, β, e1, . . . , ek), where d ∈ {S, R}, e1, . . . , ek ∈ {−1, 0, +1},

λ(ci) =


0 if ci = 0
1 otherwise and w′

=


aw if d = S
w if d = R.

The transition with the indicator S corresponds to the ϵ-transition in the conventional definition of pushdown counter
machines, whereas that with R corresponds to the transition which consumes an input symbol. The reflexive and transitive
closure of ⊢M is written as ⊢

∗

M . The subscript is dropped from ⊢M and ⊢
∗

M whenever the particularM is understood. A word
w ∈ Σ∗ is accepted byM if (q0, w$, Z0, 0, . . . , 0) ⊢

∗ (qf , $, α, c1, . . . , ck) for some qf ∈ F . The set of all words accepted by
M is denoted by L(M). By ignoring the pushdown stack through the description so far, we can obtain the analogous definition
and notions for counter machines (no pushdown stack).

By a reversal of counter, we mean an alternation between non-decreasing mode and non-increasing mode. A counter
machine is reversal-bounded if there exists a constant c such that any computation involves at most c reversals of each of its
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counter. At the cost of increase in the number of states and counters, we can assume c = 1. Indeed, we simulate a counter
making r-reversals by ⌈

r+1
2 ⌉ counters each of which makes only 1-reversal (1-reversal counter) in such a way that the first

1-reversal counter simulates the k-reversal counter until the first two reversals, and the second one simulates until the
fourth reversal, and so on. This simulation apparently requires the finite state control. Likewise, we can consider the
1-reversal stack. A machine with a 1-reversal stack is said to be 1-turn.

For an integer k ≥ 0, let NCM(k) be the class of counter machines with k 1-reversal counters, and then let NCM =
k=0 NCM(k). By a slight abuse of notation, we employ NCM(k) to denote also a counter machine with k counters as well

as the class of languages accepted by such a machine. Their deterministic subclasses are denoted by DCM(k) and DCM,
respectively. Let us denote the class of pushdown machines with k 1-reversal counters (pushdown k-counter machines)
by NPCM(k), and NPCM =


k=0 NPCM(k). DPCM(k) and DPCM are their deterministic subclasses. Needless to say,

NCM(0) = DCM(0) = FA, while NPCM(0) = PDA and DPCM(0) = DPDA.
A (non-deterministic) multihead finite automaton M with k heads (written as NMHFA(k)) is a machine with k one-

way input heads operating on an input string with a right end marker $. At the start of the computation, the heads are
on the leftmost symbol of the input string and M is in its initial state. A move of the machine is a transition of the form
δ(q, a1, . . . , ak) = {(p, d1, . . . , dk)}, where q is the current state, a1, . . . , ak are the symbols scanned by heads, p is the next
state, and d1, . . . , dk are the movements of the heads, which can be R or S (one position to the right, or do not move). Note
that the heads are non-sensing (i.e., the heads cannot sense the presence of the other heads on the same position). An input is
accepted ifM eventually enters an accepting state and all heads are on the right endmarker. Themachine can be augmented
with a pushdown stack (NMHPDA) in the obvious way. They can be deterministic (DMHFA, DMHPDA).

3. Comparison among machine classes

In this section,we compare the four countermachine classes (DCM,NCM,DPCM,NPCM) and the fourmultihead automata
classes (DMHFA, NMHFA, DMHPDA, NMHPDA) with respect to their power as language acceptor. By definition, it should be
clear that DCM ⊆ NCM,DPCM ⊆ NPCM and DMHFA ⊆ NMHFA,DMHPDA ⊆ NMHPDA.

First of all, we will prove that there exists a language accepted by a DPCM that cannot be accepted by any NCM
(Theorem 1). An example is the marked palindrome language Lpal = {x#xR | x ∈ {0, 1}+} (recall that R denotes reverse). It
is obvious that this can be accepted by a 1-turn DPDA. Suppose Lpal were accepted by M ∈ NCM(k) for some k ≥ 0. Using
a result by Baker and Book [12], we may assume that M operates in linear time. Consider an input u#uR, where |u| = n.
Clearly, the number of possible configurations when the input head of M reaches # is O(nk). Now consider another input
v#vR, where |v| = n and v ≠ u. It follows that since there are 2n binary strings of length n, u#vR would be accepted by M
for n large enough. This is a contradiction.

Now Theorem 1 has been proved. However, we would like to mention another proof, which employs an interesting
technique and can be used also for proving the existence of a language that is in DMHFA\NPCM (Theorem 2). This technique
allows us to construct a contradictory algorithm to decide an undecidable on the assumption that a specific language be
accepted by an NCM.

Theorem 1. There is a language accepted by a 1-turn DPDA that cannot be accepted by any NCM.

Proof. For a ∈ Σ , let L ⊆ {a}∗ be a unary recursively enumerable language that is not decidable (such L exists) and M
be a Turing machine accepting L. Let Q and Σ be the state set and worktape alphabet of M and let q0 ∈ Q be the initial
state of M . Let Σ ′

= Q ∪ Σ ∪ {#}. The halting computation of M on the input ad can be represented by the string
ID1#ID3 · · ·#ID2k−1##IDR

2k · · ·#IDR
4#ID

R
2 for some k ≥ 2 (without loss of generality, we can assume that the length of a

computation is even), where ID1 = q0ad and ID2k are the initial and halting configurations of M , and (ID1, ID2, . . . , ID2k) is
a sequence of configurations ofM on input ad, i.e., configuration IDi+1 is a valid successor of IDi.

Now consider the languages

L1 = {ID1# · · ·#ID2k−1##IDR
2k · · ·#IDR

2 | ID2k is a halting configuration,

k ≥ 2, ID1 = q0ap(p ≥ 1), and IDi+1 is a valid successor of IDi for odd i},
L2 = {ID1# · · ·#ID2k−1##IDR

2k · · ·#IDR
2 | ID2k is a halting configuration,

k ≥ 2, ID1 = q0ap(p ≥ 1), and IDi+1 is a valid successor of IDi for even i}.

Clearly, L1 and L2 can be accepted by 1-turn DPDAs. Note that their intersection is a set of all halting computations ofM .
Now we will prove that L1 or L2 cannot be accepted by any NCM, and this suffices for our purpose. Suppose they were

accepted by NCMs M1,M2 with n1, n2 1-reversal counters, respectively. From these NCMs, we can construct an NCM M
accepting L1 ∩ L2 [2]. UsingM , a contradictory algorithm to decide L could be constructed in the following way:

1. On an input ad, construct a finite automaton accepting q0ad#Σ ′∗.
2. From the finite automaton and the NCMM (accepting L1 ∩ L2), construct an NCMM ′ which accepts q0ad#Σ ′∗

∩ L1 ∩ L2.
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3. Test if the language accepted byM ′ is empty. This is possible since the emptiness problem for NCMs (or even for NPCMs)
is decidable [2].

Note that ad ∉ L if and only if the language accepted byM ′ is empty. �

Corollary 1. DPCM is strictly more powerful than DCM.

The construction of contradictory algorithm has a broad range of applications. Let us employ it in order to prove that the
following language:

LID = {ID1#ID2# · · ·#IDk | ID1 = q0ap for some p ≥ 1, IDk is a
halting configuration, and IDi+1 is a valid successor of IDi for i ≥ 1}

can be accepted by a DMHFA(2) but cannot be accepted by any NPCM. Note that, unlike in L1 or L2, even IDs are not reversed
in LID. It is easy to observe that LID ∈ DMHFA(2). By replacing NCM and L1 ∩ L2 by NPCM and LID, Step 2 produces an NPCM
that accepts q0ad#Σ ′∗

∩LID. Since the emptiness problem for NPCMs is decidable, this algorithm is contradictory that decides
the halting problem for TMs on blank tape.

Theorem 2. LID ∈ DMHFA(2) \ NPCM.

We will further strengthen Theorem 2 up to the incomparability between DMHFA and NPCM. As mentioned above, Lpal
can be accepted by a 1-turn DPDA. Let us prove that this language cannot be accepted by any DMHFA. This may have already
been known, but we have not been able to find an appropriate reference. We give a proof below for completeness. The proof
uses an idea in [13], which is based on the Kolmogorov complexity.

For a word w ∈ Σ∗, let K(w) be the Kolmogorov complexity of w, and let K(w|y) be the conditional Kolmogorov
complexity of w with respect to a given extra information y. A word w is said to be random if K(w) ≥ |w|, and it is
known that there exist random words. We state a simple well-known fact that if a word uvw is random, then K(v|uw) ≫

|v| − O(log |uvw|) (see [13]).

Lemma 1. Lpal ∉ DMHFA(2).

Proof. Suppose that there were a DMHFA(2) M such that L(M) = Lpal. Let hr , hl be the rightmost and leftmost heads of M ,
respectively.

Let us consider a random word w = w1w2 satisfying |w1| = |w2| ≫ log |w| + |M|, where |M| denotes the (program)
size ofM . Note that w1 ≠ w2 because of the randomness of w. Then as an input, we put I1 = ∗w1 ∗ w2 ∗ $ ∗ wR

2 ∗ wR
1∗ into

M . For this input, we say that wi (i = 1, 2) is checked if there is a time t when hr is on wR
i while hl is on wi.

We claim that both w1 and w2 have to be checked. Indeed, suppose that w1 were not checked. Consider the computation
of K on I1. Let IDin(hr) (IDout(hr)) be the configuration ofM when hr first reaches the first (resp. second) * sign in ∗wR

1∗ of I1.
The analogous notation is defined for hl. Note that these IDs can be described of length O(log |w|). Given these IDs and w2,
we can reconstruct w1 by a short program as follows: For a word x with |x| = |w1|, let P(x) = ∗0|w1| ∗ w2 ∗ $ ∗ wR

2 ∗ x∗.
We simulateM on this program P(x) starting with IDin(hr) and IDin(hl). If IDin(hr) ⊢

∗

P(x) IDout(hr) and IDin(hl) ⊢
∗

P(x) IDout(hl)

hold, then M accepts I1(x) = ∗w1 ∗ w2 ∗ $ ∗ wR
2 ∗ x∗. This can happen if and only if x = wR

1 (otherwise, an input not in Lpal
would be accepted by M). Therefore, K(w1|w2) = O(log |w|), but this contradicts the above-mentioned fact on conditional
Kolmogorov complexity.

Now, the claim has been verified so that both w1 and w2 have to be checked, but clearly it cannot be done by one-way
multihead FA (if w2 is checked, then hl is on w2 so that it cannot return back to w1 in order to check w1.) �

Theorem 2 and Lemma 1 provide the next result.

Corollary 2. DMHFA(2) and NPCM are incomparable.

This result is now improved to the incomparability between DMHFA and NPCM. In order to prove that Lpal ∉ DMHFA(n),
in the proof of Lemma 1, we split the random string w into n substrings of the same length as w = w1w2 · · · wn.

Corollary 3. DMHFA and NPCM are incomparable.

Actually, even non-determinism does not help for multihead automata to accept Lpal. If a language L is accepted by an
NMHFA(k) M and w ∈ L, then there must exist an accepting computation of M for w and it can be regarded as a sequence
of transition rules. By appending an encoding of such a sequence to each word in L, one can generate a language L′ and this
language can be accepted by a DMHFA(k + 1). Using this idea, we can prove that Lpal ∉ NMHFA.

Corollary 4. NMHFA and NPCM are incomparable.

Having related the group of the counter machine classes with that of the multihead automata classes, nowwe prove that
DCM ⊆ DMHFA in order to strengthen this connection further.

It is known (see, e.g., [14]) that one can prevent a DPDA from falling into an infinite loop. Using a similar technique, an
analogous result can be proved for DCM.
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Lemma 2. Any DCM M can be converted to an equivalent DCM M ′ with the property that, for every input, M ′ does not go into
an infinite loop on a symbol on the input tape.

Proof. LetM have s states. M ′ is constructed as follows:

1. M ′ simulatesM .
2. IfM has made more than smoves while remaining on the symbol without at least one of the following happening:

(a) a positive counter decrementing,
(b) a zero counter becoming positive (note that when a positive counter becomes zero from being positive, it can no

longer become positive again),

thenM is looping on the symbol.M ′ then has two cases to handle:

Case 1: During the looping, M does not enter any accepting state. In this case, M ′ enters a special (new) reject state r and
scans the remaining input in state r until the head falls off the input.

Case 2: During the looping, M enters an accepting state. In this case, M ′ enters a special (new) accepting state f (thus
accepting the input if there is no more symbol to the right of the head). Then M ′, in state f , on any input enters a
special rejecting state r and scans the remaining input in state r until the head falls off the input. �

Lemma 3. Any DCM M can be converted to an equivalent DCM M ′ such that there exist constants c1, c2, and for any input w,
the values of counters are at most c1|w| + c2 during the computation by M ′ on w.

Proof. We concern the value of counters so that it makes sense to assume k ≥ 1. Let M ′ be the DCM converted from the
DCM M in Lemma 2. Recall that M has the s states, and let c = s × 2k. M ′ is designed in a way that if M ′ makes more than
c moves without moving its head at all and c ≥ s, then during that time either a positive counter is decrementing or a zero
counter becomes positive.

We claim that during the computation by M ′ on an input of length n, the value of each counter can be at most
(c + 2)k−1(c + 1)(n + k), i.e., O(n), by induction on the number of counters. Without loss of generality, we can assume
that at the point when a counter reaches its highest value during the computation, the other counters are zero because
otherwise while decrementing another counter with value n′ up to 0, M ′ can further increment the counter at least by cn′.
In order to make the value of a counter as large as possible, we employ the following strategies:

1. at each transition,M ′ will increase the values of all counters which are in non-decreasing mode;
2. M ′ never decrease two counters at the same transition.

For the case k = 1, more than c transitions should not occur uninterruptedly without moving its head. According to the
first strategy, M should increment the counter from the very beginning transition, and once being decremented, M cannot
increment the counter any more. Thus the value of this counter can be at most (c + 1)n + c ≤ (c + 1)(n + 1).

Now suppose that the claim holds for some k − 1 and consider the case when M ′ has k counters. Let us assume that M
decrements (k − 1)-th counter for the first time while M ′ moving its head from the (m − 1)-th input symbol to the m-th
one. At the point, the value of (k − 1)-th or k-th counter can reach at most (c + 2)k−2(c + 1)(m + k − 1) according to the
induction hypothesis, even if M ′ makes the other counters to be 0. While decrementing the (k − 1)-th counter up to 0, the
k-th counter can increase at most by (c + 1) · (c + 2)k−2(c + 1)(m + k − 1) + c. By expending the rest of the input (n − m
symbols), we can increase at most (c + 1)(n − m) + c. Thus, the k-th counter can become largest when m = n and the
value is

(c + 2)k−2(c + 1)(n + k − 1) + (c + 1) · (c + 2)k−2(c + 1)(n + k − 1) + c ≤ (c + 2)k−1(c + 1)(n + k).

Thus, the induction step is verified and the claim holds. By letting c1 = (c + 2)k−1(c + 1) and c2 = k(c + 2)k−1(c + 1), this
lemma holds. �

Theorem 3. For any k ≥ 0, DCM(k) ⊆ DMHFA(2k + 1).

Proof. LetM ∈ DCM(k). Each 1-reversal counter C ofM can be simulated by two input heads H1 and H2, which are initially
positioned on the leftmost symbol of the input. When C increments by 1, H1 is moved one position to the right. When C
reverses, both heads are moved simultaneously to the right until H1 reaches the end marker before continuing with the
simulation of C . After that, decrementing C would correspond to moving H2 one position to the right. When H2 reaches the
end marker, this indicates that C has the value zero. This simulation works if the counter values are bounded by n, where n
is the length of the input. If the counter values are bounded by c1n + c2 for some constant c1, c2 (i.e., the counter values are
linearly bounded), then H1 (resp. H2) operates modulo c1, i.e., H1 (resp. H2) is moved one position to the right for every c1
increments (resp. decrements) of C . The existence of such c1, c2 is guaranteed by Lemma 3. �

Due to Theorems 2 and 3, the following proper inclusion holds.

Corollary 5. DCM ( DMHFA.
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4. Counter machines and multihead automata over bounded languages

The languages classes over which these machine classes become comparable or become equally powerful are of interest.
The class of bounded languages is one of such. A language L is bounded if it is a subset of w∗

1 · · · w∗

k for some integer k ≥ 1
and (not necessarily distinct) words w1, . . . , wk ∈ Σ∗. We can assume that wi is different from wi+1 for 1 ≤ i ≤ k − 1.
If all of w1, . . . , wk are letters (elements of Σ), then L is especially called letter-bounded. For example, any language that
is a subset of a∗

1a
∗

2a
∗

1a
∗

2a
∗

3a
∗

1 is (letter-)bounded, while (a1 + a2)∗ is not even bounded, where a1, a2, a3 ∈ Σ . The balanced
language Lb is not bounded, either.

For a bounded language L ⊆ w∗

1 · · · w∗

k , there corresponds a subset Q (L) of Nk defined by Q (L) = {(i1, . . . , ik) |

w
i1
1 · · · w

ik
k ∈ L}. A subset Q of Nk is a semilinear set if

Q =

m
i=1


vi
0 +

ri
j=1

tjvi
j | tj ≥ 0


for some m ≥ 1, ri ≥ 1 (1 ≤ i ≤ m), and vi

j ∈ Nk (1 ≤ i ≤ m and 0 ≤ j ≤ ri). If Q (L) is semilinear, then L is bounded
semilinear.

Theorem 4 ([11]). Over bounded languages, DCM = NPCM.

The proof of this theorem given in [11] consists of proving that if a bounded language L is accepted by an NPCM, then L
is bounded semilinear, and that, from Q (L), we can construct a DCM accepting L. This means that if a class of machines has
a property that all bounded languages accepted by a machine in this class are semilinear, then this is a subclass of DCM.

Remark 2. The actual result proved in [11] is stronger than Theorem 4. The equation holds even on some of the machine
classes that are obtained from respective DCM,NCM,DPCM,NPCM by letting their input head move two-ways under
restrictions on the number of turn (finite-turn input head) or on the number of crossing each input letter (finite-crossing
input head). Ibarra and Seki proved that if a bounded language is accepted by a finite-crossing two-way DPCM, then it is
bounded semilinear, and hence, can be accepted by a one-way DCM. The analogous problem for finite-crossing two-way
NPCM remains open to our knowledge.

We will expand this equation so as to include classes of multihead automata of various kinds. Due to Theorems 3 and 4,
it suffices to prove that, over bounded languages, NMHPDA ⊆ DCM holds.

Lemma 4. Over letter-bounded languages, NMHPDA ⊆ DCM.

Proof. It is known that, given an NMHPDA accepting a letter-bounded language L, we can effectively construct a semilinear
set Q such that Q = Q (L) [15]. From Q , we can construct a DCM for L, as mentioned above. �

Lemma 5. Over bounded languages, NMHPDA ⊆ DCM.

Proof. Let L ⊆ w∗

1w
∗

2 · · · w∗

k be bounded language accepted by an NMHPDA. For a new alphabet ∆ = {a1, a2, . . . , ak}, we
define a homomorphism h : ∆∗

→ Σ∗ as h(ai) = wi for 1 ≤ i ≤ k. Then, let L′
= h−1(L) ∩ a∗

1a
∗

2 · · · a∗

k . It is easy to see that
L′

∈ NMHPDA. Since being letter-bounded, L′ can be accepted by a DCM. A way to convert this DCM into a DCM that accepts
L is given in [11]. �

Combining this lemma with Theorem 3, now we can strengthen Theorem 4 as follows.

Corollary 6. Over bounded languages, DCM = NPCM = DMHFA = NMHPDA.

It is known that the universe problem, determining if a given machine accepts all words in Σ∗, is undecidable for
NCM(1). As a corollary, the containment and equivalence problems for this class are also undecidable. On the other hand,
the containment and equivalence problems for DCM are decidable [2]. Thus, Corollary 6 leads us to the following result on
decidability for NPCM and NMHPDA over bounded languages.

Theorem 5. Both containment and equivalence problems for NPCM and NMHPDA over bounded languages are decidable.

5. Conclusion

In this paper, we investigated the relative computational power of various classes of machines, which can be obtained by
augmenting FA with a stack, 1-reversal counters, multiheads, or non-determinism. Among the eight machine classes thus
obtained, we proved inclusion, incomparability, and equivalence relations.
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