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Abstract

In the paper, we continue our study on the state complexity of combined oper-

ations on regular languages. We study the state complexities of
k∪

i=1

L2
i ,

k∩
i=1

L2
i ,

k∪
i=1

LR
i , and

k∩
i=1

LR
i , for regular languages Li, 1 ≤ i ≤ k. We obtain the exact

bounds for these combined operations and show that the state complexities of
k∪

i=1

L2
i and

k∩
i=1

L2
i are the same as the mathematical compositions of the state

complexities of their component individual operations, while, on the other hand,

the state complexities of
k∪

i=1

LR
i and

k∩
i=1

LR
i are lower than the corresponding

mathematical compositions.

Keywords: state complexity, combined operations, regular languages, finite
automata

1. Introduction

State complexity of finite automata which is the number of states of finite
automata, is an important, ongoing topic in formal languages and automata the-
ory. Nowadays, finite automata of very large sizes are widely used in software
engineering, programming languages, natural language and speech processing,
and other practical areas. These applications make the research on state com-
plexity essential and well-motivated.

The earliest research on state complexity dates back to the 1950s [20]. How-
ever, most results were obtained after 1990 with the help of powerful computers
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and software for experiments, e.g. Grail+ [29]. Existing literature includes
studies of the state complexity of individual operations, such as catenation,
union, intersection, star, reversal, shuffle, power, proportional removal, cyclic
shift, etc [1, 4, 5, 6, 11, 13, 14, 15, 19, 25, 26, 27].

However, in practice, it is often the case that the operation to be performed
on finite automata is not just a single individual operation, but a combination of
several individual operations in some specific order. This motivated the study
of state complexity of combined operations which started in 2007 [23]. In [23],
the state complexities of (L1 ∪ L2)

∗ and (L1 ∩ L2)
∗ are investigated, and it is

pointed out that the mathematical composition of the state complexities of the
component individual operations of a combined operation cannot be directly
used as the state complexity of the combined operation. Indeed, the state
complexity of the combined operation can be much lower than its corresponding
mathematical composition. For example, let L1 and L2 be two regular languages
accepted by m- and n-state deterministic finite automata (DFAs), respectively.
The state complexity of L∗

1 is known to be 3
42

m and the state complexity of
L1L2 is m2n − 2n−1 [18, 27]. Then the mathematical composition of these two
state complexities for the combined operation (L1L2)

∗ is

3

4
22

m2n−2n−1

.

However, the state complexity of (L1L2)
∗ is only [8]

2m+n−1 + 2m+n−4 − 2m−1 − 2n−1 +m+ 1.

From this example, we can see that although the mathematical composition of
the state complexities of component individual operations does serve as an up-
per bound of the state complexity of the combined operation, this upper bound
usually cannot be reached. Recently, it has also been shown that there does not
exist a general algorithm to compute the state complexities of combined opera-
tions even if all the state complexities of individual operations are known [24].
Thus, the state complexity of each combined operation should be investigated
separately.

A number of results on the state complexity of combined operations have
been obtained in the past four years. Most of these results are concerned with
the combined operations that consist of two different individual operations,
e.g. (L1 ∪ L2)

∗, (L1 ∩ L2)
∗, (L1L2)

∗, (LR
1 )

∗ (L1 ∪ L2)
R, (L1 ∩ L2)

R, (L1L2)
R,

etc [2, 3, 8, 10, 16, 17, 23]. Besides these basic combined operations, only a few
combined operations composed of arbitrarily many individual operations have
been investigated, including Lk, L1L2 · · ·Lk, and combined Boolean operations
on L1, L2, . . . , Lk [6, 7, 9]. Clearly, combined operations with arbitrarily many
individual operations are more general than basic combined operations because
the latter can be viewed as the special cases of the former. Therefore, combined
operations with arbitrarily many individual operations should be the emphasis
of the study of state complexity of combined operations.

In this paper, we study the state complexities of four particular combined
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operations on k operand languages,
k∪

i=1

L2
i ,

k∩
i=1

L2
i ,

k∪
i=1

LR
i , and

k∩
i=1

LR
i , where Li

is a regular language accepted by an ni-state DFA, 1 ≤ i ≤ k. We show that

the state complexities of
k∪

i=1

L2
i and

k∩
i=1

L2
i are both

k∏
i=1

(ni2
ni − 2ni−1)

for ni ≥ 3 and k ≥ 2, the same as the mathematical compositions of the state
complexities of their component operations.

For
k∪

i=1

LR
i and

k∩
i=1

LR
i , we prove that their state complexities are both

k∏
i=1

(2ni − 1) + 1

for ni ≥ 3 and k ≥ 2. In contrast to the other two combined operations, in
this case the state complexities of these two combined operations are lower than
the mathematical compositions of the state complexities of their component
operations.

In the next section, we introduce the basic definitions and notations used in

the paper. In Sections 3 and 4, we investigate the state complexities of
k∪

i=1

L2
i ,

k∩
i=1

L2
i , respectively. In Section 5, the state complexities of

k∩
i=1

LR
i and

k∪
i=1

LR
i

are shown. In Section 6, we conclude the paper.

2. Preliminaries

A DFA is denoted by a 5-tuple A = (Q,Σ, δ, s, F ), where Q is the finite set
of states, Σ is the finite input alphabet, δ : Q × Σ → Q is the state transition
function, s ∈ Q is the initial state, and F ⊆ Q is the set of final states. A DFA
is said to be complete if δ(q, a) is defined for all q ∈ Q and a ∈ Σ. All the
DFAs we mention in this paper are assumed to be complete. We extend δ to
Q× Σ∗ → Q in the usual way.

A non-deterministic finite automaton (NFA) is denoted by a 5-tuple A =
(Q,Σ, δ, s, F ), where the definitions of Q, Σ, s, and F are the same to those of
DFAs, but the state transition function δ is defined as δ : Q × Σ → 2Q, where
2Q denotes the power set of Q, i.e. the set of all subsets of Q. An NFA can
have multiple initial states, which is not the usual convention. In this case, the
NFA can be denoted by a 5-tuple A = (Q,Σ, δ, S, F ), where S is the set of the
initial states.

In this paper, the state transition function δ of a DFA is often extended to
δ̂ : 2Q × Σ → 2Q. The function δ̂ is defined by δ̂(R, a) = {δ(r, a) | r ∈ R}, for
R ⊆ Q and a ∈ Σ. We just write δ instead of δ̂ if there is no confusion.
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A string w ∈ Σ∗ is accepted by a DFA (an NFA) if δ(s, w) ∈ F (δ(s, w)∩F ̸=
∅). Two states in a finite automaton A are said to be equivalent if and only if
for every string w ∈ Σ∗, if A is started in either state with w as input, it either
accepts in both cases or rejects in both cases. It is well-known that a language
which is accepted by an NFA can be accepted by a DFA, and such a language
is said to be regular. The language accepted by a DFA A is denoted by L(A).
The reader may refer to [12, 22, 28] for more details about regular languages
and finite automata.

The state complexity of a regular language L, denoted by sc(L), is the number
of states of the minimal complete DFA that accepts L. The state complexity
of a class S of regular languages, denoted by sc(S), is the supremum among all
sc(L), L ∈ S. The state complexity of an operation on regular languages is the
state complexity of the resulting languages from the operation as a function of
the state complexity of the operand languages. Thus, in a certain sense, the
state complexity of an operation is a worst-case complexity.

3. State complexity of L2
1 ∪ L2

2 ∪ · · · ∪ L2
k

We first consider the state complexity of
k∪

i=1

L2
i , where Li, 1 ≤ i ≤ k is a

regular language accepted by an ni-state DFA. It has been proved that the state
complexity of L2

1 is n12
n1 − 2n1−1 [21] and the state complexity of L1 ∪ L2 is

n1n2 [18, 27]. Their mathematical composition is

k∏
i=1

(ni2
ni − 2ni−1).

In the following, we show that this upper bound of the state complexity of
k∪

i=1

L2
i

can be reached.

Theorem 3.1. For integers ni ≥ 3 and k ≥ 2, there exists a DFA Ni of ni

states such that any DFA accepting
k∪

i=1

L(Ni)
2 needs at least

k∏
i=1

(ni2
ni − 2ni−1)

states.

Proof. Let Ni = (QNi ,Σ, δNi , 0, FNi) be a DFA, where QNi = {0, 1, . . . , ni−1},
ni ≥ 3, Σ = {ai,j | 1 ≤ i ≤ k, j ∈ {1, 2}}, FNi = {ni − 1}, and the transitions of
Ni are

δNi(p, ai,1) = p+ 1 mod ni, p = 0, 1, . . . , ni − 1,

δNi(1, ai,2) = 0, δNi(p, ai,2) = p, p = 0, 2, 3 . . . , ni − 1,

δNi(p, c) = p, c ∈ Σ− {ai,1, ai,2}, p = 0, 1, . . . , ni − 1.
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......210
ai,1 ai,1 ai,1

ai,1

c

ai,1

ai2 , c ai2 , c ai2 , c

ai,2

ni − 1

Figure 1: Witness DFA Ni for Theorems 3.1.

The transition diagram of Ni is shown in Figure 1.
It has been shown in [21] that the minimal DFA that accepts the square of an

ni-state DFA language has ni2
ni−2ni−1 states in the worst case. The DFA Ni is

a modification of the witness DFA used in [21] by adding c-loops to every state,
where c ∈ Σ− {ai,1, ai,2}. So we can similarly design an (ni2

ni − 2ni−1)-state,
minimal DFA N ′

i = (QN ′
i
,Σ, δN ′

i
, sN ′

i
, FN ′

i
) that accepts L(Ni)

2, where

QN ′
i
= QNi × 2QNi − FNi × 2QNi

−{0},

sN ′
i
= ⟨0, ∅⟩,

FN ′
i
= {⟨u, V ⟩ ∈ QN ′

i
| V ∩ FNi ̸= ∅},

and for ⟨u, V ⟩ ∈ QN ′
i
and a ∈ Σ,

δN ′
i
(⟨u, V ⟩, a) =

{
⟨δNi(u, a), δNi(V, a)⟩, if ni − 1 /∈ δNi(u, a);
⟨δNi(u, a), δNi(V, a) ∪ {0}⟩, otherwise.

Then we construct the DFA A = (Q,Σ, δ, s, F ) that accepts
k∪

i=1

L(Ni)
2,

where

Q = {⟨p1, p2, . . . , pk⟩ | pi ∈ QN ′
i
, 1 ≤ i ≤ k},

s = ⟨sN ′
1
, sN ′

2
, . . . , sN ′

k
⟩,

δ(⟨p1, p2, . . . , pk⟩, a) = ⟨δN ′
1
(p1, a), δN ′

2
(p2, a), . . . , δN ′

k
(pk, a)⟩, a ∈ Σ,

F = {⟨p1, p2, . . . , pk⟩ ∈ Q | ∃i(pi ∈ FN ′
i
, 1 ≤ i ≤ k)}.

In the following, we show that the DFA A is minimal.

(I) All the states in Q are reachable.
For an arbitrary state ⟨p1, p2, . . . , pk⟩ in Q, there always exists a string
w1w2 · · ·wk such that δ(s, w1w2 · · ·wk) = ⟨p1, p2, . . . , pk⟩, where

δN ′
i
(sN ′

i
, wi) = pi, wi ∈ {ai,1, ai,2}∗, 1 ≤ i ≤ k.

(II) Any two different states ⟨p1, p2, . . . , pk⟩ and ⟨q1, q2, . . . , qk⟩ in Q are dis-
tinguishable.

5



Without loss of generality, we assume that pi ̸= qi, 1 ≤ i ≤ k. Let
pj = ⟨uj , Vj⟩ and qj = ⟨xj , Yj⟩ for all 1 ≤ j ≤ k. Then there exists a
string w = w1w2 · · ·wk such that

δ(⟨p1, p2, . . . , pk⟩, w) ∈ F,

δ(⟨q1, q2, . . . , qk⟩, w) /∈ F,

where wi ∈ {ai,1, ai,2}∗, δN ′
i
(pi, wi) ∈ FN ′

i
and δN ′

i
(qi, wi) /∈ FN ′

i
, and for

1 ≤ l ≤ k, l ̸= i,

wl = anl−xl

l,1 (al,1al,2a
nl

l,1)
nl−1al,2(al,1al,2)

nl−2.

Note that

δN ′
l
(⟨xl, Yl⟩, anl−xl

l,1 (al,1al,2a
nl

l,1)
nl−1) = ⟨0, QNl

⟩

and
δN ′

l
(⟨0, QNl

⟩, al,2(al,1al,2)nl−2) = ⟨0, {0}⟩ /∈ FN ′
l
.

Since all the states in A are reachable and pairwise distinguishable, A is a

minimal DFA. Thus, any DFA that accepts
k∪

i=1

L(Ni)
2 has at least

k∏
i=1

(ni2
ni − 2ni−1)

states, for k ≥ 2 and ni ≥ 3.

This result gives a lower bound for the state complexity of
k∪

i=1

L(Ni)
2. It

coincides with the upper bound we stated at the beginning of the section. There-
fore, we have the following theorem.

Theorem 3.2. For integers ni ≥ 3 and k ≥ 2,
k∏

i=1

(ni2
ni − 2ni−1) states are

both sufficient and necessary in the worst case for a DFA to accept
k∪

i=1

L(Ni)
2,

where Ni is an ni-state DFA.

4. State complexity of L2
1 ∩ L2

2 ∩ · · · ∩ L2
k

In this section, we study the state complexity of
k∩

i=1

L2
i , where Li is a regular

language accepted by an ni-state DFA, 1 ≤ i ≤ k. Since L
2 ̸= L2, we cannot

directly obtain the state complexity of
k∩

i=1

L2
i from that of

k∪
i=1

L2
i through De
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Morgan’s laws. The mathematical composition of the state complexities of
square and intersection is also

k∏
i=1

(ni2
ni − 2ni−1)

because the state complexity of L1 ∩L2 is the same as that of L1 ∪L2. We will

show that this upper bound of the state complexity of
k∩

i=1

L2
i can be reached by

some worst-case examples.

Theorem 4.1. For integers ni ≥ 3 and k ≥ 2, there exists a DFA Ni of ni

states such that any DFA accepting
k∩

i=1

L(Ni)
2 needs at least

k∏
i=1

(ni2
ni − 2ni−1)

states.

Proof. We use the same DFA Ni as in the proof of Theorem 3.1. Construct an
(ni2

ni − 2ni−1)-state, minimal DFA N ′
i = (QN ′

i
,Σ, δN ′

i
, sN ′

i
, FN ′

i
) for L(Ni)

2 in
the same way as in the proof of Theorem 3.1.

Then we construct the DFA A = (Q,Σ, δ, s, F ) that accepts
k∩

i=1

L(Ni)
2 ex-

actly as described in the proof of Theorem 3.1 except that

F = {⟨p1, p2, . . . , pk⟩ ∈ Q | ∀i(pi ∈ FN ′
i
, 1 ≤ i ≤ k)}.

Next, we will show that A is minimal. The proof for the reachability of an
arbitrary state in A is omitted, because it is the same as that in the proof of
Theorem 3.1.

We now prove that any two different states ⟨p1, p2, . . . , pk⟩ and ⟨q1, q2, . . . , qk⟩
of A are distinguishable. We may assume, without loss of generality that pi ̸= qi,
1 ≤ i ≤ k. Then there exists a string w = w1w2 · · ·wk such that

δ(⟨p1, p2, . . . , pk⟩, w) ∈ F,

δ(⟨q1, q2, . . . , qk⟩, w) /∈ F,

where wi ∈ {ai,1, ai,2}∗,

δN ′
i
(pi, wi) ∈ FN ′

i
,

δN ′
i
(qi, wi) /∈ FN ′

i
,

and for 1 ≤ l ≤ k, l ̸= i, wl ∈ {al,1, al,2}∗ and δN ′
l
(pl, wl) ∈ FN ′

l
.
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Since all the states in A can be reached from the initial state and are pairwise

distinguishable, the DFA A is minimal. Thus, any DFA that accepts
k∩

i=1

L(Ni)
2

has at least
k∏

i=1

(ni2
ni − 2ni−1)

states, for ni ≥ 3 and k ≥ 2.

The lower bound shown in Theorem 4.1 coincides with the mathematical
composition of the state complexities of square and intersection. Thus, the
following theorem holds.

Theorem 4.2. For integers ni ≥ 3 and k ≥ 2,
k∏

i=1

(ni2
ni − 2ni−1) states are

both sufficient and necessary in the worst case for a DFA to accept
k∩

i=1

L(Ni)
2,

where Ni is an ni-state DFA.

5. State complexity of LR
1 ∩ LR

2 ∩ · · · ∩ LR
k and LR

1 ∪ LR
2 ∪ · · · ∪ LR

k

In this section, we investigate the state complexity of
k∩

i=1

LR
i , where Li,

1 ≤ i ≤ k is a regular language accepted by an ni-state DFA. It has been shown
that the state complexity of LR

1 is 2n1 and the state complexity of L1 ∩ L2 is

n1n2 [18, 27]. Then their mathematical composition is 2

k∑
i=1

ni

which is an upper

bound of the state complexity of
k∩

i=1

LR
i . In the following, we will show this

upper bound can be lowered.

Theorem 5.1. For any ni-state DFA Ni = (QNi ,Σ, δNi , sNi , FNi), 1 ≤ i ≤ k,
k ≥ 2, there exists a DFA of at most

k∏
i=1

(2ni − 1) + 1

states that accepts
k∩

i=1

L(Ni)
R.

Proof. Let Ni = (QNi ,Σ, δNi , sNi , FNi) be a DFA of ni states, 1 ≤ i ≤ k, k ≥ 2.
Let N ′

i = (QNi ,Σ, δN ′
i
, sN ′

i
, FN ′

i
) be an NFA with multiple initial states, where

sN ′
i
= FNi ,

FN ′
i
= {sNi},

δN ′
i
(p, a) = {q | δNi

(q, a) = p}, a ∈ Σ and p, q ∈ QNi
.
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Clearly, the NFA N ′
i accepts L(Ni)

R. By performing the subset construction on
the NFAN ′

i , we can get an equivalent, 2ni-state DFAAi = (QAi ,Σ, δAi , sAi , FAi)
such that L(Ai) = L(Ni)

R. Note that ∅ is a state in QAi
.

Now let A = (Q,Σ, δ, s, F ) be another DFA, where

s = ⟨sA1 , sA2 , . . . , sAk
⟩,

Q = {⟨p1, p2, . . . , pk⟩ | pi ∈ QAi , 1 ≤ i ≤ k},
δ(⟨p1, p2, . . . , pk⟩, a) = ⟨δA1(p1, a), δA2(p2, a), . . . , δAk

(pk, a)⟩, a ∈ Σ,

F = {⟨p1, p2, . . . , pk⟩ ∈ Q | ∀i(pi ∈ FN ′
i
, 1 ≤ i ≤ k)}.

It is easy to see that

L(A) =
k∩

i=1

L(Ai) =
k∩

i=1

L(Ni)
R.

The number of states in A is 2

k∑
i=1

ni

. However, some of these states are in-
deed equivalent. Consider two different states ⟨∅, p2, . . . , pk⟩ and ⟨q1, ∅, . . . , qk⟩.
Clearly,

⟨∅, p2, . . . , pk⟩ /∈ F,

⟨q1, ∅, . . . , qk⟩ /∈ F,

and for any string w ∈ Σ∗,

δ(⟨∅, p2, . . . , pk⟩, w) = ⟨∅, p′2, . . . , p′k⟩ /∈ F,

δ(⟨q1, ∅, . . . , qk⟩, w) = ⟨q′1, ∅, . . . , q′k⟩ /∈ F,

because ∅ is a sink state in Ai. We can see that the two states ⟨∅, p2, . . . , pk⟩
and ⟨q1, ∅, . . . , qk⟩ are equivalent. Thus, all the states ⟨p1, p2, . . . , pk⟩ such that
pi = ∅, 1 ≤ i ≤ k, can be merged into one state. The number of states

⟨t1, t2, . . . , tk⟩ ∈ Q such that none of t1, t2, . . . , tk is ∅, is
k∏

i=1

(2ni − 1). Then

there are in total
k∏

i=1

(2ni − 1) + 1

states in A. Thus, we obtain the upper bound in the statement of Theorem 5.1.

Theorem 5.2. For integers ni ≥ 3 and k ≥ 2, there exists a DFA Ni of ni

states such that any DFA accepting
k∩

i=1

L(Ni)
R needs at least

k∏
i=1

(2ni − 1) + 1

states.
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Proof. Let Ni = (QNi
,Σ, δNi

, 0, FNi
) be a DFA, where QNi

= {0, 1, . . . , ni−1},
ni ≥ 3, Σ = {ai,j | 1 ≤ i ≤ k, j ∈ {1, 2, 3}}, FNi = {0}, and the transitions of
Ni are

δNi(0, ai,1) = ni − 1, δNi(p, ai,1) = p− 1, p = 1, . . . , ni − 1,

δNi(0, ai,2) = 1, δNi(p, ai,2) = p, p = 1, 2, 3 . . . , ni − 1,

δNi(0, ai,3) = 1, δNi(1, ai,3) = 0, δNi(p, ai,3) = p, p = 2, 3 . . . , ni − 1,

δNi(p, c) = p, c ∈ Σ− {ai,1, ai,2, ai,3}, p = 0, 1, . . . , ni − 1.

The transition diagram of Ni is shown in Figure 2.

......210
ai,1, ai,3

ni − 1

ai,2, ai,3

c ai2 , ai3 , cai2 , c

ai,1 ai,1 ai,1

ai,1

ai2 , ai3 , c

Figure 2: Witness DFA Ni for Theorems 5.2.

It has been shown in [27] that the minimal DFA that accepts the reversal
of an ni-state DFA language has 2ni states in the worst case. The DFA Ni in
this proof is a modification of the witness DFA used in [27] by adding c-loops
to every state, where c ∈ Σ − {ai,1, ai,2, ai,3}. So we can similarly design an
2ni -state, minimal DFA Ai = (QAi ,Σ, δAi , sAi , FAi) that accepts L(Ni)

R, where

QAi = 2QNi ,

sAi = FNi = {0},
FAi = {P ∈ QAi | 0 ∈ P},

and for P ∈ QAi and a ∈ Σ,

δAi(P, a) = {q ∈ QNi | δNi(q, a) ∈ P}.

Then we construct the DFA A = (Q,Σ, δ, s, F ) that accepts
k∩

i=1

L(Ni)
R,

where

Q = {⟨P1, P2, . . . , Pk⟩ | Pi ∈ QAi , Pi ̸= ∅, 1 ≤ i ≤ k} ∪ {⟨∅, ∅, . . . , ∅⟩},
s = ⟨sA1 , sA2 , . . . , sAk

⟩,
F = {⟨P1, P2, . . . , Pk⟩ ∈ Q | ∀i(pi ∈ FAi , 1 ≤ i ≤ k)}.

and for P = ⟨P1, P2, . . . , Pk⟩ ∈ Q and a ∈ Σ,

δ(P, a) =

{
⟨∅, ∅, . . . , ∅⟩, if ∃i(δAi(Pi, a) = ∅, 1 ≤ i ≤ k),
⟨δA1(P1, a), δA2(P2, a), . . . , δAk

(Pk, a)⟩, otherwise.
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As we mentioned in the proof of Theorem 5.1, the states such that at least one
of their components is ∅, are equivalent. Thus, we can merge them into one
state, that is, ⟨∅, ∅, . . . , ∅⟩ and the number of states in A is

k∏
i=1

(2ni − 1) + 1.

In the following, we show that the DFA A is minimal.

(I) All the states in Q are reachable.
For an arbitrary state ⟨P1, P2, . . . , Pk⟩ in Q, there always exists a string
w1w2 · · ·wk such that δ(s, w1w2 · · ·wk) = ⟨P1, P2, . . . , Pk⟩, where

δAi(sAi , wi) = Pi, wi ∈ {ai,1, ai,2, ai,3}∗, 1 ≤ i ≤ k.

(II) Any two different states ⟨P1, P2, . . . , Pk⟩ and ⟨R1, R2, . . . , Rk⟩ in Q are
distinguishable.
When ⟨P1, P2, . . . , Pk⟩ = ⟨∅, ∅, . . . , ∅⟩ and ⟨R1, R2, . . . , Rk⟩ ̸= ⟨∅, ∅, . . . , ∅⟩,
the two states can be easily distinguished by a string w = w1w2 · · ·wk

where
δAi(Ri, wi) ∈ FAi , 1 ≤ i ≤ k,

because

δ(⟨∅, ∅, . . . , ∅⟩, w) = ⟨∅, ∅, . . . , ∅⟩ /∈ F,

δ(⟨R1, R2, . . . , Rk⟩, w) ∈ F.

Next, let us consider the case when neither of the two states is ⟨∅, ∅, . . . , ∅⟩.
Without loss of generality, we assume that Pi ̸= Ri, 1 ≤ i ≤ k. Then there
exists a string w = w1w2 · · ·wk such that

δ(⟨P1, P2, . . . , Pk⟩, w) ∈ F,

δ(⟨R1, R2, . . . , Rk⟩, w) /∈ F,

where wi ∈ {ai,1, ai,2, ai,3}∗,

δAi(Pi, wi) ∈ FAi ,

δAi(Ri, wi) /∈ FAi ,

and for 1 ≤ j ≤ k, j ̸= i, wj ∈ {aj,1, aj,2, aj,3}∗,

δAj (Pj , wj) ∈ FAj .

Since all the states in A are reachable and pairwise distinguishable, A is a
minimal DFA. Thus, we obtain the lower bound stated in Theorem 5.2.
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The lower bound of the state complexity of
k∩

i=1

L(Ni)
R in Theorem 5.2 co-

incides with the upper bound in Theorem 5.1. Therefore, we get the following
theorem.

Theorem 5.3. For any integers ni ≥ 3 and k ≥ 2, the number of states that are

both sufficient and necessary in the worst case for a DFA to accept
k∩

i=1

L(Ni)
R,

where Ni is an ni-state DFA, is

k∏
i=1

(2ni − 1) + 1.

The state complexity of
k∪

i=1

LR
i is the same as that of

k∩
i=1

LR
i , since

k∪
i=1

LR
i =

k∩
i=1

LR
i =

k∩
i=1

Li
R

according to De Morgan’s laws and LR
i = Li

R
, where Li denotes the complement

of Li, and the state complexity of the complementation of an n-state DFA
language is n. Thus, we have the following theorem.

Theorem 5.4. For any integers ni ≥ 3 and k ≥ 2, the number of states that are

both sufficient and necessary in the worst case for a DFA to accept
k∪

i=1

L(Ni)
R,

where Ni is an ni-state DFA, is

k∏
i=1

(2ni − 1) + 1.

6. Conclusion

In this paper, we studied the state complexities of union and intersection
of squares of k regular languages, and union and intersection of reversals of k
regular languages. We obtained the state complexities of the four particular

combined operations
k∪

i=1

L2
i ,

k∩
i=1

L2
i ,

k∪
i=1

LR
i , and

k∩
i=1

LR
i , where Li is a regular

language accepted by an ni-state DFA, ni ≥ 3, 1 ≤ i ≤ k, and k ≥ 2. The
state complexities of the first two combined operations are equal. They are also
exactly the same as the mathematical compositions of the state complexities
of their component individual operations. The state complexities of the lat-
ter two combined operations are also equal, but lower than the corresponding
mathematical compositions.
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In this paper, all the results are proved with increasing alphabets. In the

worst-case example for
k∪

i=1

L2
i and

k∩
i=1

L2
i , an alphabet of the size 2k was used.

The witness DFA for
k∩

i=1

LR
i is over a 3k-letter alphabet. It is interesting to study

whether the sizes of these alphabets can be reduced. However, it is impossible
to design a worst-case example for arbitrary k ≥ 2 and ni ≥ 3 with a fixed
alphabet. Note that there are a limited number of different DFAs with a fixed
number of states if the alphabet is fixed. Thus, when k is large enough, some
of the operand DFAs with the same number of states may be indeed the same
according to pigeonhole principle. Therefore, the study of state complexity of
operations on k operand languages uses increasing alphabets in general.

Another possible future topic could be the state complexities of these com-
bined operations on a smaller, fixed alphabet when k is also fixed. We expect
more results on the state complexities of combined operations with arbitrarily
many individual operations and operand languages.

References

[1] C. Campeanu, K. Salomaa, S. Yu: Tight lower bound for the state com-
plexity of shuffle of regular languages, Journal of Automata, Languages and
Combinatorics 7 (3) (2002) 303-310.

[2] B. Cui, Y. Gao, L. Kari, S. Yu: State complexity of two combined op-
erations: catenation-star and catenation-reversal, International Journal of
Foundations of Computer Science, accepted.

[3] B. Cui, Y. Gao, L. Kari, S. Yu: State complexity of two combined oper-
ations: catenation-union and catenation-intersection, International Journal
of Foundations of Computer Science, accepted.

[4] M. Daley, M. Domaratzki, K. Salomaa: State complexity of orthogonal
catenation, in: Proceedings of Descriptional Complexity of Formal Systems,
Charlottetown, PE, Canada, July 16-18, 2008, 134-144.

[5] M. Domaratzki: State complexity and proportional removals, Journal of
Automata, Languages and Combinatorics 7 (2002) 455-468.

[6] M. Domaratzki, A. Okhotin: State complexity of power, Theoretical Com-
puter Science 410(24-25) (2009) 2377-2392.
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