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Abstract

A (non-circular) de Bruijn sequence w of order n is a word such
that every word of length n appears exactly once in w as a factor.
In this paper, we generalize the concept to different settings: the
multi-shift de Bruijn sequence and the pseudo de Bruijn sequence.
An m-shift de Bruijn sequence of order n is a word such that every
word of length n appears exactly once in w as a factor that starts
at a position im + 1 for some integer i« > 0. A pseudo de Bruijn
sequence of order n with respect to an antimorphic involution 6 is
a word such that for every word u of length n the total number of
appearances of v and 6(u) as a factor is one. We show that the
number of m-shift de Bruijn sequences of order n is ala(m~—)(@"~1)
for 1 <n <mandis (a™)®" " for 1 <m < n, where a is the size of
the alphabet. We provide two algorithms for generating a multi-shift
de Bruijn sequence. The multi-shift de Bruijn sequence is important
for solving the Frobenius problem in a free monoid. We show that the
existence of pseudo de Bruijn sequences depends on the given alphabet
and antimorphic involution, and obtain formulas for the number of
such sequences in some particular settings.

1 Introduction

If a word w can be written as w = zyz, then the words z, y, and z are
called the prefiz, factor, and suffiz of w, respectively. A word w over X is
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called a de Bruijn sequence of order n if each word in X" appears exactly
once in w as a factor. For example, 00110 is a binary de Bruijn sequence of
order 2 since each binary word of length two appears in it exactly once as
a factor: 00110 = (00)110 = 0(01)10 = 00(11)0 = 001(10). The de Bruijn
sequence can be understood by the following game. Suppose there is an
infinite supply of balls, each of which is labeled by a letter in ¥, and suppose
there is a glass pipe that can hold balls in a vertical line. On the top of
that pipe is an opening, through which one can drop balls into that pipe,
and on the bottom is a trap-door, which can support the weight of at most
n balls. When there are more than n balls in the pipe, the trap-door opens
and those balls at the bottom drop off until only n balls remain. If we put
balls with letters in the order as appeared exactly in a de Bruijn sequence
of order n on the alphabet 3, then every n ball sequence will appear exactly
once in the pipe. It is easy to see that a de-Bruijn sequence of order n, if
it exists, is of length | X |" +n — 1 and its suffix of length n — 1 is identical
to its prefix of length n — 1. So, sometimes a de-Bruijn sequence is written
in a circular form by omitting the last n — 1 letters.

The de Bruijn sequence is also called the de Bruijn-Good sequence,
named after de Bruijn [2] and Good [10] who independently studied the
existence of such words over the binary alphabet; the former also calcu-
lated the formula 22" for the total number of those words of order n. The
study of the de Bruijn sequence, however, dates back at least to 1894, when
Flye Sainte-Marie [6] studied the words and provided the same formula 22".
For an arbitrary alphabet ¥, van Aardenne-Ehrenfest and de Bruijn [1] pro-
vided the formula (| £ 1)I®1" for the total number of de Bruijn sequences
of order n. Besides the total number of de Bruijn sequences, another in-
teresting topic is how to generate a de Bruijn sequence (arbitrary one,
lexicographically least one, lexicographically largest one). For generating
de Bruijn sequences, see the surveys [7, 17]. The de Bruijn sequence is
some times called the full cycle [7], and has connections to the following
concepts: feedback shift registers [9], normal words [10], generating random
binary sequences [15], primitive polynomials over a Galois field [18], Lyn-
don words and necklaces [8], Euler tours and spanning trees [1]. There are
generalizations of the de Bruijn sequences from various aspects, such as the
de Bruijn torus (two-dimensional generalization). Usually, the de Bruijn
sequences are represented by their circular counterparts.

In this paper, we consider two generalizations of the de Bruijn sequence,
namely the multi-shift de Bruijn sequence and the pseudo de Bruijn se-
quence. To understand the concept of multi-shift de Bruijn sequence, let



us return to the glass pipe game presented at the beginning. Now the
trap-door can support more weight. When there are n 4+ m or more balls
in the pipe, the trap-door opens and the balls drop off until there are
only n balls in the pipe. Is there an arrangement of putting the balls
such that every n ball sequence appears exactly once in the pipe? The
answer is “Yes” for arbitrary positive integers m,n. The solution repre-
sents a multi-shift de Bruijn sequence. We will discuss the existence of the
multi-shift de Bruijn sequence, the total number of multi-shift de Bruijn
sequences, generating a multi-shift de Bruijn sequence, and the application
of the multi-shift de Bruijn sequence to the Frobenius problem in a free
monoid, which is the original motivation we study the multi-shift de Bruijn
sequence. To understand the concept of pseudo de Bruijn sequence, we
first let the mirror image be the chosen antimorphic involution, where the
concept of antimorphic involution is of particular interest in the study of
bioinformation. Now if every n ball sequence either appears in the normal
order or in a reversed order in the pipe and appears exactly once in this
way, then the solution represents a pseudo de Bruijn sequence. No pseudo
de Bruijn sequence exist for certain alphabets and antimorphic involutions.
We will discuss the total number of pseudo de Bruijn sequences in particular
settings.

2 Multi-Shift Generalization of the de Bruijn Se-
quence

Let ¥ C {0,1,...} be the alphabet and let w = ajasz - --a, be a word over
Y. The length of w is denoted by |w| = n and the factor a;---a; of w
is denoted by w[i..j]. If u = w[im+1..9m + n| for some non-negative
integer 7, we say the factor u appears in w at a modulo m position. The
set of all words of length n is denoted by ™ and the set of all finite words
is denoted by ¥* = {e} UX UX2... where € is the empty word. The
concatenation of two words u, v is denoted by w - v, or simply uv.
Multi-shift de Bruijn sequences are implicitly defined and used in the
second author’s paper [11] in solving the Frobenius problem in a free monoid.
The precise definition of the multi-shift de Bruijn sequence is given below.

Definition 1. A word w over ¥ is called a multi-shift de Bruijn sequence
of shift m and order n, if each word in X" appears exactly once in w as a
factor at a modulo m position.



For example, one of the 2-shift de Bruijn sequences of order 3 is
00010011100110110,
which can be verified as follows:

00010011100110110 = (000)10011100110110 = 00(010)011100110110
= 0001(001)1100110110 = 000100(111)00110110 = 00010011(100)110110
= 0001001110(011)0110 = 000100111001(101)10 = 00010011100110(110).

The multi-shift de Bruijn sequence generalizes the de Bruijn sequence in
the sense that de Bruijn sequences are exactly 1-shift de Bruijn sequences of
the same order. It is easy to see that the length of each m-shift de Bruijn
sequence of order n, if it exists, is equal to m|X|" + (n — m). By the
definition of multi-shift de Bruijn sequence, the following proposition holds.

Proposition 2. Let w be one m-shift de Bruijn sequence w of order n,
n > m. Then the suffiz of length n — m of w is identical to the prefix of
length n — m of w.

From Proposition 2, we know that when n > m, every multi-shift
de Bruijn sequence can be written as a circular word and the discussion
on multi-shift de Bruijn sequences of the two different forms are equiva-
lent. In this paper, we discuss the multi-shift de Bruijn sequence in the
form of ordinary words.

A (non-strict) directed graph, or digraph for short, is a triple G =
(V, A, 1) consisting of a set V' of vertices, a set A of arcs, and an incidence
function ¢ : A — V x V. Here we do not take the convention A CV x V,
since we allow a digraph to contain self-loops on a single vertex and mul-
tiple arcs between the same pair of vertices. When ¢ (a) = (u,v), we say
the arc a joins u to v, where vertex u = tail(a) and vertex v = head(a) are
called tail and head, respectively. The indegree 6~ (v) (outdegree 67 (v),
respectively) of a vertex v is the number of arcs with v being the head
(the tail, respectively). A walk in G is a sequence aj,as,...,ar such
that head(a;) = tail(a;y+1) for each 1 < i < k. The walk is closed, if
head(ay) = tail(ag). Two closed walks are regarded as identical if one is
the circular shift of the other. An Fuler tour is a closed walk that traverses
each arc exactly once. A Hamilton cycle is a closed walk that traverses
each vertex exactly once. An (spanning) arborescence is a digraph with a
particular vertex, called the root, such that it contains every vertex of G,
its number of arcs is exactly one less than the number of vertices, and there



is exactly one walk from the root to any other vertex. We denote the total
number of Euler tours, Hamilton cycles, and arborescences of G by | G |,
|G |y, and | G| 4, respectively.

An (undirected) graph is defined as a digraph such that for any pair
of vertices vy, vy, there is an arc a, ¥(a) = (v1,v2), if and only if there is
a corresponding arc a’, ¥(a’) = (ve,v1). In this case, we write §~(v) =
5% (v) = §(v) and a spanning arborescence is just a spanning tree.

The line-graph L(G) of G = (V, A, %) is defined as (A, C, ¢) such that
for every pair of arcs aj,as € A, head(a;) = tail(az), there is an arc ¢ € C,
¢(c) = (a1,a2) and those arcs are the only arcs in C. Euler tours exist in
a graph G if and only if Hamilton cycles exist in the line-graph L(G).

We define the word graph G(m,n) by (X", X"t™ ), where ¢ (w) =
(u,v) for v = w[l..n],v = wim+1..m+mn]. Then by definition, the
following lemmas are straightforward.

Lemma 3. The digraph L(G(m,n)) is the digraph G(m,n +m).

Lemma 4. Suppose m <n. (1) There is a | X |"-to-1 mapping from the set
of m-shift de Bruijn sequences of order n onto the set of Hamilton cycles
in G(m,n). (2) There is a |X|"-to-1 mapping from the set of m-shift
de Bruijn sequences of order n onto the set of Euler tours in G(m,n —m).

Theorem 5. For any alphabet X, positive integers m,n, some m-shift
de Bruin sequences of order n over ¥ exist.

Proof. First we assume m > n. Let uj,uo,...,u; be any permutation of
the words in X" for [ = | X |". Then the word u10™ ™0™ ™ .- 0™ "y is
one m-shift de Bruijn sequence of order n over X.

Now we assume m < n and prove there exists an Euler tour in G(m,n—
m). Then by Lemma 4, the existence of m-shift de Bruijn sequences of
order n over Y is ensured. To show the existence of an Euler tour, we
only need to verify that G(m,n —m) is connected and that 6~ (v) = §+(v)
for every vertex v, both of which are straightforward: for every vertex v

in G(m,n —m), v is connected to the vertex 0"~ ™ in both directions and
8 (v) =6"(v) =|Z|™ O

2.1 Counting the Number of Multi-Shift de Bruijn Sequences

Since m-shift de Bruijn sequences of order n exist, in this section we discuss
the total number of different m-shift de Bruijn sequences of order n, and
we denote the number by #(m,n). First, we study the degenerate case.



Lemma 6. For 1< n <m, #(m,n) = a™a™ 0" =D where a = | 2.

To study the case 1 < m < n, we need a theorem by van Aardenne-
Ehrenfest and de Bruijn [1], which describes the relation between the num-
ber of Euler tours in a particular type of digraph and the number of Euler
tours in its line-graph.

Theorem 7 (van Aardenne-Ehrenfest and de Bruijn). Let G = (V, A, 1)) be
a digraph such that a = 6~ (v) = 67 (v) for every v € V.. Then | L(G) | g
o (a) VDG .

The digraph G(m,n) satisfies the conditions in Theorem 7 with a =
| |™. So, by the relation between the multi-shift de Bruijn sequences and
the Euler tours in the word graph G(m,n), we have the following recursive
expression on #(m,n).

Lemma 8. For m > 1,n > 2m, #(m,n) = (a™!)®
where a = | X |, r = n mod m.

n—m

~H#(m,m + 1),

To finish the last step of obtaining #(m,n) for 1 < m < n, we again
need two theorems, the BEST theorem [19, 1] and Kirchhoff’s matrix tree
theorem [14], which are often used in the literature to count the number of
Euler tours in various types of digraphs.

Theorem 9 (BEST theorem). In a digraph G = (V, A,v), the number of
Euler tours and arborescences satisfy |G | = [[,ey (67 (v) = DG 4.

Theorem 10 (Kirchhoff’s matrix tree theorem). In a graph G = (V, A,v),
the number of spanning trees is equal to any cofactor of the Laplacian matriz
of G, which is the diagonal matrix of degrees minus the adjacency matriz.

Lemma 11. For 1 <m <n < 2m, #(m,n) = (a™)*" ", where a = | 2.

Proof. Let r = n—m and a = |¥|. Then 0 < r < m. By definition,
G =G(m,n—m) = (X",X™,4). So from any vertex to any vertex, there
are a™ "-many arcs in G. We convert G into a undirected graph G’ by
omitting all self-loops; there are a™~"-many of them for each vertex. Since
for every pair of vertices v1, vo there are ™ "-many arcs joins v1 to v9 and
correspondingly there are ™ "-many arcs joins vy to vy, the graph G’ is
indeed an undirected graph by our definition. Each vertex in G’ is of degree

a™ — a™~". Then the Laplacian matrix of G’ is
a™ — gm-T —qmT —qmT
_am T am _ am_T _am_"‘
L= i . :
—agm-T —am-T Q™ — gm-T



By Theorem 10, the number of arborescences |G|, = | G’ | 4 is equal to the
cofactor of L, which is (a™)* 2™ = (a™)* /a". Then by Theorem 9,
the number of Euler tours in digraph G is |G |5 = ((a™ — )Y |G|, =
(@™ — )N (a™)" Ja" = (a™!)*" /a™. Finally, by Lemma 4, the number of
m-shift de Bruijn sequences of order n is #(m,n) = a*| G |5 = (a™)*". O

Theorem 12. For 1 < n < m, #(m,n) = a™a™ "1 and for 1 <
m < n, #(m,n) = (@) ", where a = | Z|.

Proof. For 1 < n < m, the equality #(m,n) = a™a(m=m@"=1) g shown
in Lemma 6. Now we assume 1 < m < n. Let r = nmodm. Fol-
lowing Lemmas 8,11, we have #(m,n) = (a™)*" "~ #(m,m +r) =

(@)@ = (gm)a = (g O

2.2 Generating Multi-Shift de Bruijn Sequences

In this section, we study the problem of generating one m-shift de Bruijn
sequence of order n for arbitrary alphabet and positive integers m,n. When
1 < n < m, a m-shift de Bruijn sequence of order n is easy to construct as
given in Theorem 5. Now we consider the case 1 < m < n. We will present
two algorithms for generating a m-shift de Bruijn sequence of order n.

We claim that m-shift de Bruijn sequences of order km can be gen-
erated using the ordinary de Bruijn sequence generating algorithm, such
as described by Fredricksen [7]. To do this, we first generate a de Bruijn
sequence w of order k over the alphabet I' = ¥™. Then we replace each
letter of w in I' by the corresponding word of length m over X. It is easy
to see that the new word is a m-shift de Bruijn sequence of order km.

The first algorithm of generating multi-shift de Bruijn sequence is to
generate m;-shift de Bruijn sequences of order k;m; for some k;, m;,7 = 1,2
before rearranging the words to obtain an arbitrary m-shift de Bruijn se-
quence of order n. Let 1 < m < n be two integers, and n = km + r, where
r =n mod m. The case r = 0 is already discussed and the case | X | =1 is
trivial. So we assume r # 0 and | X | > 2. We define my =r, ny = (k+1)r
and generate wi = 7(my,n1)0™! such that 7(m1,ny) is a mq-shift de Bruijn
sequence of order n; and wi[l..n1] = 0™; and define mg = m —r, ny =
k(m —r) and generate wy = 7(ma2,n2)0™2 such that 7(msg, ns) is a mo-shift
de Bruijn sequence of order ny and ws[l..ny] = 0"2. Let a = |X|, Ny =
a™, Ny = a™. We define u; = wi[ng + (1 —1)my +1..ny +imy], u} =
Uy (i mod (Ny—1))» Vi = Wa[na + (i — 1)ma + 1..ng + ima], v = V14(i-1 mod Ny)-



Input: two integers m,n with 1 < m < n and alphabet size a.

Output: an m-shift de Bruijn sequence of order n over
{0,...,a—1}.

Let n = km + r, where r = n mod m ;

if r = 0 then return an m-shift de Bruijn sequence of order n ;

generate an r-shift de Bruijn sequence of order (k + 1)r ;

generate an (m — r)-shift de Bruijn sequence of order k(m — r) ;

return a word as constructed by Eq. (1)

U W N =

Figure 1: Generating a multi-shift de Bruijn sequence, method one.

Then the following word

n mi . mi / L A /

07 w107 vg -+ Ny 107 UNy Uy, 1), VIUT VoW VN 1) Ny — 1 Y(N 1) Na—1
(1)

is one m-shift de Bruijn sequence of order n, where vy, = 0% and u’( Ni—1)Ny =

u1. The algorithm is illustrated in Fig. 1.

Theorem 13. The algorithm in Fig. 1 correctly generates an m-shift de Bruijn
sequence of order n.

Now, we will see an example. Consider generating a 2-shift de Bruijn
sequence of order 5. Then m1 = 1,n1 = 3,me = 1,ny = 2 and we can
obtain two words w; = 00011101000, which is 7(1,3)0, and we = 001100,
which is 7(1,2)0. So one 2-shift de Bruijn sequence of order 5 is as follows

000001501500,00,
11151115170501021115041501021102111511150102110201150115
11021102111504151105010201151115171021102011217115010504,

where the subscripts 1 and 2 denote whether the letter is from the word w;
(words w;, u}) or from the word wy (words vj, v}).

Now we present the second algorithm, which uses the same idea of
“prefer one” algorithm [16] for generating ordinary de Bruijn sequences.
Let m, n be two positive integers. To generate a m-shift de Bruijn sequence
w of order n, we start the sequence w with n zeros. Then we append to
the end of current sequence w the lexicographically largest word of length
m such that the suffix of length n of new sequence has not yet appeared as
factor at a modulo m position. We repeat this step until no word can be
appended to w. The algorithm is illustrated in Fig. 2.



Input: two integers m,n with 1 < m < n and alphabet size a.
Output: an m-shift de Bruijn sequence of order n over
{0,...,a—1}.

1 Let w:=0";

2 Mark all word of length n except w as unvisited ;

3 repeat

4 Find the lexicographically largest u of length m such that
wllw| —n+m+1..|w|luis unvisited ;

5 Then let w := wu and mark word w[|w|—n+m+ 1. |wllu

visited ;
6 until no such word can be found;
7 return w

Figure 2: Generating a multi-shift de Bruijn sequence, method two.

Theorem 14. The algorithm in Fig. 2 correctly generates an m-shift de Bruijn
sequence of order n.

Now, we use the algorithm to generate one 2-shift de Bruijn sequence of
order 5. Starting from 00000, since 00011 does not appear as a factor at a
modulo 2 position, we append 11 to the current sequence 00000. Repeating
this procedure and appending words 11, 11, 10, 11, ..., finally we obtain
the word:

0000011111110111010110111011001110011001
010011000100001010100010000

If we circularly move the prefix 0" to the end, the sequence generated
by the second algorithm is the lexicographically largest m-shift de Bruijn
sequence of order n.

2.3 Application to the Frobenius Problem in a Free Monoid

The study of multi-shift de Bruijn sequences is inspired by a problems
of words, called the Frobenius problem in a free monoid. Given k inte-
gers 1, ..., Ty, such that ged(zq,...,x;) = 1, then there are only finitely
many positive integers that cannot be written as a non-negative integer

linear combination of x1,...,xr. The integer Frobenius problem is to find
the largest such integer, which is denoted by g(z1,...,zx). For example,
9(3,5) =T.



If words x1,...,x, instead of integers, are given such that there are
only finitely many words that cannot be written as concatenation of words
from the set {x1,...,zk }, the Frobenius problem in a free monoid [11] is
to find the longest such words. If all x1, ..., x; are of length either m or n,
0 < m < n, there is an upper bound: the length of the longest word that
cannot be written as concatenation of words from the set { z1,...,z } is
less than or equal to g(m,l) = ml —m —1, where | = mX""™ +n —m. [11]
Furthermore, the upper bound is tight and the construction is based on the
multi-shift de Bruijn sequences. We denote the set of all words that can be

written as the concatenation of words in S, including the empty word, by
S*.

Theorem 15. [11] There exists S C ¥ U X", 0 < m < n, such that
¥*\ S* is finite and the longest words in ¥* \ S* constitute exactly the
language (TX™)™ 27, where T is a m-shift de Bruijn sequence of order
n—m.

For example, for any set of words S C U = {0,1}*U{0,1}" such that
{0,1}*\ S* is finite, the longest words in { 0,1 }*\ S* are of length less than
or equal to g(3,3-2%+4) = ¢(3,52) = 101. To construct S to reach the up-
per bound, we first choose an anbitrary 3-shift de Bruijn sequence of order
4as7T=0000111111110110101101100100011011010010001001000. Then
based on 7, we construct the set S = U \ { 0000111, 0111111, 1111110,
1110110, 0110101, 0101101, 1101100, 1100100, 0100011, 0011011, 1011010,
1010010, 0010001, 0001001, 1001000 }. We have L = {0,1}*\ S* =
7{0,1 }37 and one of the longest words in L of length exactly 101 is given
below:

0000111111110110101101100100011011010010001001000
1110000111111110110101101100100011011010010001001000.

3 Pseudo de Bruijn Sequence Defined by Anti-
morphic Involutions

Here we discuss another generalization of the de Bruijn sequence. Let
¥ C {0,1,2,...} be the alphabet. A function 6 : ¥* — ¥* is called
an involution if 6(6(w)) = w for w € ¥* and called an antimorphism if
O(uv) = 0(v)B(u) for u,v € ¥*. We call § an antimorphic involution if
f is both an involution and an antimorphism. For example, the classic

10



Watson-Crick complementarity of DNA strands in biology is an antimor-
phic involution over the four-letter alphabet of DNA nucleotides { A, T, C,
G }, where §(A) =T, 6(C) =G, and §(ACG) =CGT. The mirror image, or
reverse, @(ajag - - - an) = an -+ - azaq is another antimorphic involution. Let
0 be an antimorphic involution. We write ¢tr(f) = {a:a € X,0(a) #a}
and thus € can be written as composition of ¢r(f) transpositions with a
mirror image. The antimorphic involution is motivated by the particu-
larities of DNA-encoded information for the purpose of DNA computing.
Several concepts in combinatorics on words have natural counterparts in
this setting, e.g., pseudo-palindromes [5], involutively bordered words [13],
Watson-Crick conjugate words, Watson-Crick commutativity [12], pseudo-
primitive words [4], and pseudo-powers of words [3]. In the following, we
define and discuss the pseudo de Bruijn sequence.

Definition 16. A word w over ¥ is called a pseudo de Bruijn sequence of
order n if for every word x € X", either x or 6(x) appears in w as a factor
and the total number of those appearances is exactly one.

For example, 0011 is a pseudo de Bruijn sequence of order 2 with respect
to the mirror image (word reverse), by the following observation:

0011 = (00)11 = 0(01)1 = 04(10)1 = 00(11).

As we saw in Section 2, most properties of the multi-shift de Bruijn
sequence are analogous to those of the usual de Bruijn sequence. This is
not true for the pseudo de Bruijn sequence.

3.1 Contrast Between the Usual de Bruijn Sequence and
the Pseudo de Bruijn Sequence

The length of a de Bruijn sequence of order n over ¥ is a” +n — 1 (or
a™ in the circular form), where a = |X|. By contrast, the length of a
pseudo de Bruijn sequence of order n over ¥ is N +n — 1, where N =
2" = [{uw:ue X" 0(u) #u}|/2. More precisely:

Proposition 17. A pseudo de Bruijn sequence of order n over ¥ with
respect to 0 is of length (a™ + (a — 2 - tr(0))" ™4 2a17/2]) /24 (n—1), where
a=|%]|.

Obviously, for a unary alphabet, we can always write a pseudo de Bruijn
sequence in a circular form, since the last n letters are identical to the first
n letters. In general, however, not all pseudo de Bruijn sequences can be
written in a circular form.

11



Proposition 18. Let ¥ = {0,1}, let 6 be the mirror image, and let w be
a binary de Bruijn sequence of order n. Then either 1™ is a prefiz of w and
0" is a suffiz of w; or O™ is a prefix of w and O™ is a suffiz of w.

As a direct result, none of the binary de Bruijn sequence can be written
in a circular form.

3.2 Counting the Number of Pseudo de Bruijn Sequences
for Special Cases

For a pseudo de Bruijn sequence of order 1, say w, the word w is just a
permutation of letters in I', where I' C X consists exactly of letters a with
f(a) = a and one of the letters b, c with 6(b) = ¢ # b. We have the follow
proposition.

Proposition 19. Let ¥ be an alphabet and let 6 be an antimorphic invo-
lution. Then the pseudo de Bruijn sequences of order 1 exist and the total
number of them is 2t(a — t)!, where a = | 3| and t = tr(0).

Now we assume @ is the mirror image. There are two binary pseudo
de Bruijn sequences, 0011 and 1100, of order 2. To discuss de Bruijn
sequence over a more general alphabet, we need the following lemma.

Lemma 20. Let ¥ be an alphabet with a = | X | > 3 and let 6 be the mirror
image. Then every pseudo de Bruijn sequence of order 2 can be written
i a circular form and there is an a(aTH to 1 mapping from the pseudo
de Bruijn sequences of order 2 onto the Euler tours in K, where K¢ is the

complete graph K, where a self-loop is added on each verter.

In contrast to the existence of ordinary de Bruijn sequence, not all
pseudo de Bruijn sequences exist. In other words, the number of such
sequences can be 0.

Proposition 21. Let ¥ be an alphabet with even a = |X| > 4 and let 0 be
the mirror image. Then there is no pseudo de Bruijn sequence of order 2.

Proof. Since there is no Euler tour in K¢ for a being even and a > 4, by

Lemma 20, the number of pseudo de Bruijn sequences in this setting is
0. O

Discussion of the total number of Euler tours (also called Euler circuits)
in a complete graph dates back at least to the year 1859 by Reiss, about
100 years after Euler’s work on Konigsberg Bridges Problem. The following

12



proposition discloses the relation between the number of pseudo de Bruijn
sequences of order 2 over an odd alphabet with respect to the mirror image
and the number of Euler tours in a complete graph.

Proposition 22. Let ¥ be an alphabet with odd a = |X| > 3 and let
be the mirror image. Then the pseudo de Bruijn sequences of order 2 exist
and their total number is %Ea, where E, is the total number of

FEuler tours in K,.

The precise formula for E, is complicated and so far there is no closed
form for E,. We know that the formulae for the number of pseudo de Bruijn
sequences is at least as hard as that for £, and any formula for the latter
leads to a formula of the former.

4 Conclusion

In this paper, we generalized the classic de Bruijn sequence to a new multi-
shift setting and to a bioinformation inspired setting.

A word w is an m-shift de Bruijn sequence 7(m,n) of order n, if each
word of length n appears exactly once as a factor at a modulo m position.
An ordinary de Bruijn sequence is a 1-shift de Bruijn sequence.

We showed that the total number of distinct m-shift de Bruijn sequences
of order n is #(m,n) = (a™)!a™M" =D for 1 <n < m and is #(m,n) =
(@)™ for 1 < m < n, where a = |¥|. This result generalizes the
formula (a!)®" " for the number of ordinary de Bruijn sequences [1]. Here
we use an ordinary word form; if counting the sequences in a circular form,
then the number is to be divided by a™.

We provided two algorithms for generating a m-shift de Bruijn sequence
of order n. The first algorithm is to rearrange factors from two simpler
multi-shift de Bruijn sequences, where the order is a multiple of the shift.
The second is the analogue of the “prefer one” algorithm (for example,
see [7]) for generating ordinary de Bruijn sequence.

The multi-shift de Bruijn sequence has applications to the Frobenius
problem in a free monoid by providing constructions of examples. It will
be interesting to see whether this generalized concept of the de Bruijn
sequence has an impact in other fields of theoretical computer science and
discrete mathematics.

A word w is a pseudo de Bruijn sequence with respect to an antimorphic
involution 6 if for each word w of length n, either u or #(u) appears as a
factor and it appears exactly once in this way.

13



We showed that a binary pseudo de Bruijn sequence with respect to
the mirror image does not have a circular form. We showed that a pseudo
de Bruijn sequence of order 2 with respect to the mirror image over alphabet
of even size > 4 does not exist.

We showed that the number of pseudo de Bruijn sequence of order
2 with respect to the mirror image over an alphabet of odd size > 3 is
(a — 1)%(a + 1)E, /2%, where E, is the total number of Euler tours in
the complete graph K.

With respect to antimorphic involution other than the mirror image,
no non-trivial property on the pseudo de Bruijn sequences is known.
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