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Abstract. This paper investigates the notions of θ-bordered words and
θ-unbordered words for various pseudo-identity functions θ. A θ-bordered
word is a non-empty word u such that there exists a word v which is a
prefix of u while θ(v) is a suffix of u. The case where θ is the identity
function corresponds to the classical notions of bordered and unbordered
words. Here we explore cases where θ is a pseudo-identity function, such
as a morphism or antimorphism with the property θn = I, n ≥ 2, or a
literal morphism or antimorphism. We explore properties of θ-bordered
and θ-unbordered words in this context.
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1 Introduction

Periodicity, primitivity, and repetitions of words are fundamental properties in
combinatorics on words and formal language theory. Their applications include
pattern-matching algorithms (see e.g. [3], and [4]) and data-compression algo-
rithms (see, e.g., [23]). Sometimes motivated by their applications, these classical
notions have been modified in various ways that, in essence, replace the identity
function with a pseudo-identity, and the notion of repetition with the notion
of pseudo-repetition. A representative example is the “weak periodicity” of [5]
whereby a word is called weakly periodic if it consists of repetitions of words with
the same Parikh vector. This type of period was also called Abelian period in [2].
Carpi and de Luca extended the notion of periodic words to that of periodic-like
words, according to the extendability of factors of a word [1].

Czeizler, Kari, and Seki have proposed and investigated the notion of pseudo-
primitivity (and pseudo-periodicity) of words in [6, 20], motivated by the prop-
erties of information encoded as DNA strands. One of the particularities of
information encoded as DNA strands is that a word u over the DNA alpha-
bet {A,C,G, T} contains basically the same information as its Watson-Crick
complement, denoted here by θ(u). This led to natural as well as theoretically
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interesting extensions of the notion of “identity”, leading to several new no-
tions in combinatorics on words and formal language theory such as pseudo-
palindrome [7], pseudo-commutativity [18], as well as hairpin-free and bond-free
languages (e.g., [13–15, 19, 21]). In this context, Watson-Crick complementarity
has been modeled mathematically by an antimorphic involution θ over an alpha-
bet Σ, i.e., a function that is an antimorphism, θ(uv) = θ(v)θ(u), ∀u, v ∈ Σ∗,
and an involution, θ(θ(x)) = x, ∀x ∈ Σ∗.

In [16], given a morphic or antimorphic involution θ, a nonempty word u
was defined to be θ-bordered if there exists v ∈ Σ+ that is a proper prefix of u,
while θ(v) is a proper suffix of u. A nonempty word u was called θ-unbordered
if it was not θ-bordered, and properties of θ-bordered and θ-unbordered words
were investigated in [16], [17]. Other generalizations of the classical notions of
bordered and unbordered words include pseudo-knot-bordered words, defined
in [19] as nonempty words w with the property that w = xyα = βθ(yx) for some
words x, y, α, and β.

In [8–10], studies of θ-periodicity have been extended to consider the cases
where the morphism or antimorphism θ is literal, non-erasing or uniform. We
continue this line of study by extending the investigation of θ-bordered words
from the case of morphic or antimorphic involutions θ to cases where θn is the
identity function, for some n ≥ 2, and the case where θ is a literal morphism or
antimorphism. We study properties of θ-(un)bordered words in Section 3, some
properties of the set of θ-(un)bordered words where θ is a morphic involution in
Section 4, and conclude with several directions of further research in Section 5.

2 Basic definitions and notations

An alphabet Σ is a finite non-empty set of symbols. Σ∗ denotes the set of all
words over Σ, including the empty word λ. Σ+ is the set of all non-empty words
over Σ. The length of a word u ∈ Σ∗ (i.e. the number of symbols in a word) is
denoted by |u|. By Σm we denote the set of all words of length m > 0 over Σ.
The complement of a language L ⊆ Σ∗ is Lc = Σ∗\L. A word is called primitive
if it cannot be expressed as a power of another word. Let Q denote the set of all
primitive words. A function θ : Σ∗ → Σ∗ is said to be a morphism if for all words
u, v ∈ Σ∗ we have that θ(uv) = θ(u)θ(v), an antimorphism if θ(uv) = θ(v)θ(u)
and an involution if θ2 is an identity on Σ∗. If for all a ∈ Σ, |θ(a)| = 1, then θ
is called literal (anti)morphism1. A θ-power of a word u is a word of the form
u1u2 · · ·un for n ≥ 1 where u1 = u and ui ∈ {u, θ(u)} for 2 ≤ i ≤ n. A word
is called θ-primitive if it cannot be expressed as a θ-power of another word. Let
Qθ denote the set of all θ-primitive words.

For a language L ⊆ Σ∗, the principal congruence PL determined by L is
defined as follows: for any x, y ∈ Σ∗ such that x 6= y, x ≡ y(PL) if and only
if uxv ∈ L ⇔ uyv ∈ L for all u, v ∈ Σ∗. The index of PL is the number of
equivalence classes of PL. L is said to be disjunctive if PL is the identity, i.e., for

1 By (anti)morphism we mean either a morphism or an antimorphism.
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any x 6= y ∈ Σ∗ there exists u, v ∈ Σ∗ such that uxv ∈ L and uyv /∈ L or vice
versa.

A language L ⊆ Σ∗ is said to be dense if for all u ∈ Σ∗, L ∩Σ∗uΣ∗ 6= ∅.

Definition 1. 1. For v, w ∈ Σ∗, w ≤p v iff v ∈ wΣ∗.
2. For v, w ∈ Σ∗, w ≤s v iff v ∈ Σ∗w.
3. ≤d=≤p ∩ ≤s.
4. For u ∈ Σ∗, v ∈ Σ∗ is said to be a border of u if v ≤d u, i.e., u = vx = yv.
5. For v, w ∈ Σ∗, w <p v iff v ∈ wΣ+.
6. For v, w ∈ Σ∗, w <s v iff v ∈ Σ+w.
7. <d=<p ∩ <s.
8. For u ∈ Σ∗, v ∈ Σ∗ is said to be a proper border of u if v <d u.
9. For u ∈ Σ+, Ld(u) = {v ∈ Σ∗|v <d u}.

10. νd(u) = |Ld(u)|.
11. D(i) = {u ∈ Σ+|νd(u) = i}.
12. A word u ∈ Σ+ is said to be a bordered word if there exists v ∈ Σ+ such

that v <d u, i.e., u = vx = yv for some x, y ∈ Σ+.
13. A non-empty word which is not bordered is called unbordered.

For a word w, Pref(w) = {u ∈ Σ+|∃v ∈ Σ∗, w = uv} and Suff(w) = {u ∈
Σ+|∃v ∈ Σ∗, w = vu} denotes the set of all prefixes and suffixes respectively.
Similarly, the set of proper prefixes and proper suffixes of a word w can be
defined as PPref(w) = {u ∈ Σ+|∃v ∈ Σ+, w = uv} and PSuff(w) = {u ∈
Σ+|∃v ∈ Σ+, w = vu} respectively.

Definition 2. [16] Let θ be either a morphism or an antimorphism on Σ∗.

1. For v, w ∈ Σ∗, w ≤θp v iff v ∈ θ(w)Σ∗.

2. For v, w ∈ Σ∗, w ≤θs v iff v ∈ Σ∗θ(w).
3. ≤θd=≤p ∩ ≤θs.
4. For u ∈ Σ∗, v ∈ Σ∗ is said to be a θ-border of u if v ≤θd u, i.e., u = vx =

yθ(v).
5. For w, v ∈ Σ∗, w <θp v iff v ∈ θ(w)Σ+.

6. For w, v ∈ Σ∗, w <θs v iff v ∈ Σ+θ(w).
7. <θd=<p ∩ <θs.
8. For u ∈ Σ∗, v ∈ Σ∗ is said to be a proper θ-border of u if v <θd u.
9. For u ∈ Σ+, define Lθd(u) = {v ∈ Σ∗|v <θd u}.

10. νθd(u) = |Lθd(u)|.
11. Dθ(i) = {u ∈ Σ+|νθd(u) = i}.
12. A word u ∈ Σ+ is said to be θ-bordered if there exists v ∈ Σ+ such that

v <θd u, i.e., u = vx = yθ(v) for some x, y ∈ Σ+.
13. A nonempty word which is not θ-bordered is called θ-unbordered. Thus, Dθ(1)

is the set of all θ-unbordered words over Σ.

For u, v ∈ Σ∗, [11] calls u <d x1 <d x2 <d · · · <d v a u − v chain. A u − v
chain, u = x1 <d x2 <d · · · <d xn = v is said to be maximal if for u′ ∈ Σ∗,
u <d u

′ <d v implies u′ = xi for some 1 < i < n. Similarly, we can define u−θ v
chain as a sequence u = x1 <

θ
d x2 <

θ
d · · · <θd xn = v. The notion of maximal

chain can be extended to that of θ-maximal chain in a similar fashion.
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3 Properties of Pseudo-(Un)Bordered Words

In this section, we study some basic properties of θ-bordered and θ-unbordered
words where θ is a (anti)morphism with the property that θn = I on Σ∗ for
n ≥ 2 or any literal (anti)morphism. In the case where θn = I and θ is an
antimorphism, it is clear that n has to be an even number.

The following result was proved in [11], and can be easily generalized to the
case of morphic involutions.

Lemma 1. [11] Let u ∈ Σ+\D(1). Then there exists v ∈ Σ∗ with |v| ≤ |u|
2

such that v <d u.

Lemma 2. Let θ be a morphic or an antimorphic involution and let u ∈ Σ+\Dθ(1).

Then there exists v ∈ Σ∗ with |v| ≤ |u|2 such that v <θd u.

The next two results, Propositions 1 and 2, establish some relations between
the set of θ-borders of a word u, namely Lθd(u), and the set of θ-borders of θ(u),
namely Lθd(θ(u)).

Proposition 1. Let u ∈ Σ+. Then for a morphism θ on Σ∗ such that θn = I
for n > 2, Lθd(θ(u)) = θ(Lθd(u)).

Proof. Let v ∈ Lθd(θ(u)) which implies θ(u) = vx = yθ(v) for some x, y ∈ Σ+

which further implies θ2(u) = θ(v)θ(x) = θ(y)θ2(v). Continuing in this way, we
will get θn(u) = θn−1(v)θn−1(x) = θn−1(y)θn(v) and thus u = θn−1(v)θn−1(x) =
θn−1(y)θn(v) which implies θn−1(v) ∈ Lθd(u) and hence v ∈ θ(Lθd(u)). Thus,
Lθd(θ(u)) ⊆ θ(Lθd(u)).
Conversely, let v ∈ Lθd(u) which implies u = vx = yθ(v) for x, y ∈ Σ+ and hence
θ(u) = θ(v)θ(x) = θ(y)θ2(v) which further implies θ(v) ∈ Lθd(θ(u)). Also, since
v ∈ Lθd(u), θ(v) ∈ θ(Lθd(u)). Thus, Lθd(θ(u)) = θ(Lθd(u)).

However, if θ is literal (anti)morphism that is not bijective, Proposition 1
does not necessarily hold, as demonstrated by Example 1.

Example 1. Let Σ = {a, b} and θ be (anti)morphism such that, θ(a) = a, θ(b) =
a, u = ababaa. Then θ(u) = aaaaaa, Lθd(u) = {λ, a, ab}, θ(Lθd(u)) = {λ, a, aa},
Lθd(θ(u)) = {λ, a, aa, · · · , aaaaa}. Clearly, Lθd(θ(u)) 6= θ(Lθd(u)).

Note that the inclusion θ(Lθd(u)) ⊆ Lθd(θ(u)) holds in case of Example 1.
Moreover, the inclusion holds in general for any literal morphism θ.

Proposition 2. Let u ∈ Σ+. Then for any literal morphism θ on Σ∗, θ(Lθd(u)) ⊆
Lθd(θ(u)).

Proof. Let v ∈ Lθd(u) which implies u = vx = yθ(v) for x, y ∈ Σ+ and hence
θ(u) = θ(v)θ(x) = θ(y)θ2(v) which further implies θ(v) ∈ Lθd(θ(u)). Also, since
v ∈ Lθd(u), θ(v) ∈ θ(Lθd(u)). Thus, θ(Lθd(u)) ⊆ Lθd(θ(u)).
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It is known, [16], that, for an antimorphic involution θ, the relation <θd is
transitive.

Lemma 3. [16] Let u ∈ Σ∗ and v, w ∈ Σ+ such that u <θd w and w <θd v. Then
for a morphic involution θ, we have u <d v and for an antimorphic involution
θ, we have u <θd v.

The statement of Lemma 3 does not necessarily hold in the case when θ is a
morphism which is literal and not bijective, as demonstrated by Example 2.

Example 2. Let Σ = {a, b} and θ be a morphism such that θ(a) = a, θ(b) = a,
u = ab, w = abaa, v = abaabbaaaa. Then u <θd w and w <θd v but u ≮d v.

The following proposition demonstrates the transitivity of relation <θd for
literal antimorphisms θ.

Proposition 3. If θ is any literal antimorphism on Σ∗, then the relation <θd is
transitive, i.e. for u ∈ Σ∗ and v, w ∈ Σ+ such that u <θd w and w <θd v, we have
u <θd v.

Proof. Let θ be any literal antimorphism such that u <θd w and w <θd v which
implies w = ux = yθ(u) and v = wα = βθ(w) for some x, y, α, β ∈ Σ+, hence
v = uxα = βθ(ux) which further implies v = uxα = βθ(x)θ(u). Hence u <θd v.

Corollary 1. Let v ∈ Lθd(u) and w ∈ Σ+. Then for any literal antimorphism θ
on Σ∗, if w <θd v then w ∈ Lθd(u).

The converse of the Corollary 1 does not hold in general. In fact, in the case
of an antimorphism, Proposition 5 holds.

The next results describe relations between the θ-borders of a word u when
θ is a morphism with θn = I, n > 2, (Proposition 4) or literal (anti)morphisms
(Proposition 5).

Proposition 4. Let u, v, w ∈ Σ+, u 6= v and u <θd w, v <
θ
d w. If θ is a morphism

on Σ∗ such that θn = I for n > 2, then either v <d u or u <d v.

Proof. Let θ be a morphism such that θn = I and u <θd w, v <θd w which
implies w = ux = yθ(u) and w = vα = βθ(v) for some x, y, α, β ∈ Σ+. If
|u| > |v|, then u = vp and θ(u) = qθ(v) for some p, q ∈ Σ+ which imply
θn(u) = θn−1(q)θn(v) = θn−1(q)v. Thus, we get u = vp = θn−1(q)v which
implies v <d u. Similarly, if |u| < |v| then v = up′ and θ(v) = q′θ(u) for
some p′, q′ ∈ Σ+ which imply θn(v) = θn−1(q′)θn(u) = θn−1(q′)u. Thus, we get
v = up′ = θn−1(q′)u which implies u <d v.

Proposition 4 does not necessarily hold if θ is a literal (anti)morphism that
is not bijective, as demonstrated by Example 3.

Example 3. Let Σ = {a, b}, and θ be a morphism or antimorphism such that
θ(a) = a, θ(b) = a, u = ab, v = abaa, and w = abaabbaaaa. Then u <θd w, v <

θ
d w

but neither v <d u nor u <d v.
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Proposition 5. Let u, v, w ∈ Σ+, u 6= v and u <θd w, v <
θ
d w. Then for any

literal morphism θ on Σ∗, either θ(v) <d θ(u) or θ(u) <d θ(v). If θ is any literal
antimorphism, then either v <p u or u <p v.

Proof. Let θ be any literal morphism and u <θd w, v <
θ
d w which imply w = ux =

yθ(u) and w = vα = βθ(v) for some x, y, α, β ∈ Σ+. If |u| > |v|, then u = vp and
θ(u) = qθ(v) for some p, q ∈ Σ+ which imply θ(u) = θ(v)θ(p) = qθ(v). Thus, we
get θ(v) <d θ(u). Similarly, if |u| < |v| then v = up′ and θ(v) = q′θ(u) for some
p′, q′ ∈ Σ+ which imply θ(v) = θ(u)θ(p′) = q′θ(u). Thus, we get θ(u) <d θ(v).

Let θ be any literal antimorphism and u <θd w, v <
θ
d w which imply that

w = ux = yθ(u) and w = vα = βθ(v) for some x, y, α, β ∈ Σ+. Hence, we have,
ux = vα. If |u| > |v|, v <p u and if |v| > |u| then u <p v.

Corollary 2. Let u, v, w ∈ Σ+, u 6= v and u <θd w, v <θd w. Then for any literal
antimorphism θ on Σ∗, either θ(v) <s θ(u) or θ(u) <s θ(v).

Corollary 3. Let u ∈ Σ+. Then

1. For any morphism θ on Σ∗ such that θn = I for n > 2, Lθd(u) is a totally
ordered set with <d, i.e. Lθd(u) = {λ <d u1 <d u2 <d · · · <d ui−1}.

2. For any literal morphism θ on Σ∗, θ(Lθd(u)) is a totally ordered set with <d.
3. For any literal antimorphism θ on Σ∗, Lθd(u) is a totally ordered set with

<p, i.e. Lθd(u) = {λ <p u1 <p u2 <p · · · <p ui−1} and θ(Lθd(u)) is a totally
ordered set with <s.

Proof. Statement 1 follows from Proposition 4, statement 2 from Proposition 5
and statement 3 from Proposition 5 and Corollary 2, respectively.

The next two propositions (Proposition 6, 7) list some properties of θ-unbordered
words for (anti)morphisms θ such that θn = I, n > 2.

Proposition 6. Let θ be a morphism on Σ∗ such that θn = I for n > 2. Then
for all x, y ∈ Dθ(1) such that x 6= y, we have that xy 6= θn−1(y)x.

Proof. Let x, y ∈ Dθ(1). As Dθ(i) ⊆ Σ+ for i ≥ 1, both x and y are non-empty.
Suppose xy = θn−1(y)x, then we have following three cases to consider.

Case 1: |x| = |y|. Then x = θn−1(y) and y = x, which is a contradiction
since x 6= y.

Case 2: |x| > |y|. Then there exists p ∈ Σ+ such that x = θn−1(y)p and
x = py which imply that x = θn−1(y)p = pθn(y), which is a contradiction since
x ∈ Dθ(1).

Case 3: |y| > |x|. Then there exists q ∈ Σ+ such that θn−1(y) = xq and
y = qx which imply that y = qx = θ(x)θ(q), which is a contradiction since
y ∈ Dθ(1).

Since all the three cases leads to a contradiction xy 6= θn−1(y)x.

Proposition 7. Let θ be an antimorphism on Σ∗ such that θn = I for n > 2.
Then for x ∈ Dθ(1) and y ∈ Σ+ such that x 6= y and θ(x) 6= x, we have that
xy 6= θn−1(y)x.
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Proof. Let x ∈ Dθ(1). As Dθ(i) ⊆ Σ+ for i ≥ 1, x is non-empty. Suppose
xy = θn−1(y)x, then we have following three cases to consider.

Case 1: |x| = |y|. Then x = θn−1(y) and y = x, which is a contradiction
since x 6= y.

Case 2: |x| > |y|. Then there exists p ∈ Σ+ such that x = θn−1(y)p and
x = py which imply that x = θn−1(y)p = pθn(y), which is a contradiction since
x ∈ Dθ(1).

Case 3: |y| > |x|. Then there exists q ∈ Σ+ such that θn−1(y) = xq and
y = qx which imply that y = qx = θ(q)θ(x), which further implies θ(q) = q and
θ(x) = x which is a contradiction since θ(x) 6= x.

Since all the three cases leads to a contradiction xy 6= θn−1(y)x.

The following lemma provides a necessary and sufficient condition for a word
to be θ-bordered, in the case when θ is a literal antimorphism.

Lemma 4. Let θ be any literal antimorphism on Σ∗. Then x ∈ Σ+ is θ-bordered
iff x = ayθ(a) for some a ∈ Σ and y ∈ Σ∗.

The result below gives several properties of θ-unbordered words, for literal
antimorphisms θ.

Proposition 8. Let θ be any literal antimorphism on Σ∗, then

1. For all u, v ∈ Σ+ and w ∈ Σ∗, we have uwv ∈ Dθ(1) iff uv ∈ Dθ(1).
2. If Σ is an alphabet such that there exist a, b ∈ Σ with θ(a) 6= b, then Dθ(1)

is a dense set.
3. Let a, b ∈ Σ such that a 6= b. Then for all u ∈ Σ+, either ua or ub is

θ-unbordered.

Proof. 1. Suppose uwv ∈ Dθ(1) and uv /∈ Dθ(1) which imply that uv = ayθ(a)
for some a ∈ Σ and y ∈ Σ∗. If w = λ, then clearly uwv /∈ Dθ(1), a contra-
diction. Now, if w 6= λ, then we have three possibilities.
Case a: u = a, v = yθ(a), hence uwv = awyθ(a) /∈ Dθ(1).
Case b: u = ay, v = θ(a), hence uwv = aywθ(a) /∈ Dθ(1).
Case c: u = ap, v = qθ(a) where y = pq for some p, q ∈ Σ∗, hence
uwv = apwqθ(a) /∈ Dθ(1).
Since all the three cases leads to a contradiction, uv ∈ Dθ(1).
Conversely, suppose uwv /∈ Dθ(1) which imply that uwv = ayθ(a) for some
a ∈ Σ and y ∈ Σ∗. Hence, u = au1 and v = v1θ(a) for some u1, v1 ∈
Σ∗ which further implies, uv = au1v1θ(a) /∈ Dθ(1), a contradiction. Hence
uwv ∈ Dθ(1).

2. Choose a, b ∈ Σ such that θ(a) 6= b. Then for all w ∈ Σ∗, there exists
a, b ∈ Σ∗ such that awb ∈ Dθ(1). Hence Dθ(1) is a dense set.

3. Let us assume that both ua and ub are θ-bordered. Then we have, ua =
a1y1θ(a1) and ub = a2y2θ(a2) for some a1, a2 ∈ Σ and y1, y2 ∈ Σ∗ which
implies u = a1y1 = a2y2 and a = θ(a1), b = θ(a2). This further implies
that a1y1 = a2y2 which implies a1 = a2 and y1 = y2 which further implies
a = θ(a2) = b, a contradiction. Hence, either ua or ub is θ-unbordered.
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If θ is an antimorphism such that θn = I, n > 2, the following result holds.

Proposition 9. Let θ be an antimorphism on Σ∗ such that θn = I for n > 2.
Then u ∈ Dθ(1) iff θn−2(u) ∈ Dθ(1).

Proof. Let u ∈ Dθ(1) and suppose θn−2(u) /∈ Dθ(1) then we have θn−2(u) =
ayθ(a) for some a ∈ Σ and y ∈ Σ∗ which imply that u = θn(u) = θ2(a)θ2(y)θ3(a)
and thus u /∈ Dθ(1), a contradiction. Hence θn−2(u) ∈ Dθ(1).

Conversely, suppose θn−2(u) ∈ Dθ(1) and u /∈ Dθ(1). Then u = ayθ(a) for
some a ∈ Σ and y ∈ Σ∗. Since n is even and θn = I, n− 2 is also even and thus
θn−2(u) = θn−2(a)θn−2(y)θn−1(a) /∈ Dθ(1), a contradiction. Hence u ∈ Dθ(1).

Lemma 5. Let θ be a morphic involution on Σ∗ and u ∈ Σ+ such that u ∈
D(1), then θ(u) ∈ D(1).

Proof. Let u ∈ D(1). Suppose θ(u) /∈ D(1). Then θ(u) = αβ1 = β2α for
α, β1, β2 ∈ Σ+. Thus, u = θ(α)θ(β1) = θ(β2)θ(α) /∈ D(1), a contradiction.
Thus, θ(u) ∈ D(1).

Along similar lines, we can prove the following result concerning Dθ(1) for a
morphism of the form θn = I, n ≥ 2.

Lemma 6. Let θ be a morphism on Σ∗ such that θn = I, n ≥ 2 and u ∈ Σ+.
Then the following are equivalent:

1. u ∈ Dθ(1).
2. θn−1(u) ∈ Dθ(1).
3. θ(u) ∈ Dθ(1).

Proof. (1)⇒ (2): Let u ∈ Dθ(1) and suppose θn−1(u) /∈ Dθ(1). Then θn−1(u) =
vx = yθ(v) for some v, x, y ∈ Σ+. This implies u = θ(v)θ(x) = θ(y)θ2(v), a
contradiction since u ∈ Dθ(1). Hence θn−1(u) ∈ Dθ(1).

(2) ⇒ (3): Let θn−1(u) ∈ Dθ(1) and suppose θ(u) /∈ Dθ(1). Then θ(u) =
vx = yθ(v) for some v, x, y ∈ Σ+. This implies θn−1(u) = θn−2(v)θn−2(x) =
θn−2(y)θn−1(v), a contradiction since θn−1(u) ∈ Dθ(1). Hence θ(u) ∈ Dθ(1).

(3) ⇒ (1): Let θ(u) ∈ Dθ(1) and suppose u /∈ Dθ(1). Then u = vx = yθ(v)
for some v, x, y ∈ Σ+. This implies θ(u) = θ(v)θ(x) = θ(y)θ2(v), a contradiction
since θ(u) ∈ Dθ(1). Hence u ∈ Dθ(1).

In fact, the implication θn−2(u) ∈ Dθ(1) ⇒ u ∈ Dθ(1) of Proposition 9 and
implications (2)⇒ (3) and (3)⇒ (1) in Lemma 6 hold if θ is a literal morphism,
not necessarily bijective.

Proposition 10. Let θ be a morphism on Σ∗ such that θn = I and u ∈ Σ+. If
u ∈ Dθ(i) for some i ≥ 2, then for all 1 ≤ k < i, Lθd(u) ∩D(k) 6= ∅.

Proof. By Corollary 3 we have

Lθd(u) = {λ <d u1 <d u2 <d · · · <d ui−1}.
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Note that uk <
θ
d u for all 1 ≤ k ≤ i − 1. Now, since uj ∈ Lθd(u) and |uj | < |uk|

for all 1 ≤ j < k, by Proposition 4 we have that uj <d uk. Hence,

Ld(uk) = {λ, u1, · · ·uk−1}.

Thus uk ∈ D(k) and Lθd(u) ∩D(k) 6= ∅.

Recall that, a u −θ v chain, u = x1 <
θ
d x2 <

θ
d · · · <θd xn = v is said to be

θ-maximal if for u′ ∈ Σ∗, u <θd u′ <θd v implies u′ = xi for some 1 < i < n.

Lemma 7. [6] Let u ∈ Σ+ be a primitive word. Then u cannot be a factor of
u2 in a nontrivial way, i.e., if u2 = xuy, then necessarily either x = λ or y = λ.

Proposition 11. Let θ be an antimorphic involution on Σ∗ and f ∈ Q. If
f ≤θd u ≤θd f2, then u = f or u = f2, i.e., f ≤θd f2 is a θ-maximal chain.

Proof. Suppose f ≤θd f2 is not a θ-maximal chain, i.e., u 6= f and u 6= f2. Since
f ≤θd u ≤θd f2, we have u = fx = yθ(f) and f2 = uα = βθ(u) for x, y, α, β ∈ Σ∗
with |x| = |y| and |α| = |β|. Then,

f2 = fxα = yθ(f)α = βθ(x)θ(f) = βfθ(y).

Now, since f2 = βfθ(y), by Lemma 7 either β = λ or θ(y) = λ.
Case 1: Suppose, β = λ. This implies f = θ(y). Since, fxα = f2, we get

xα = f = θ(y). But since, |x| = |y|, x = θ(y) = f and thus u = fx = f2, a
contradiction.

Case 2: Suppose, θ(y) = λ. This implies β = f . Since, fxα = f2, we get
xα = f = β. But since, |α| = |β|, α = β = f which implies f2 = uα = uf and
thus u = f , a contradiction.

Since both the cases leads to a contradiction, f ≤θd f2 is a θ-maximal chain.

The θ-unbounded annihilator αub(u) of a word u is defined, [12], as

αub(u) = {v ∈ Σ+|uv ∈ Dθ(1)}.

The following results find a relationship between the θ-unbounded annihilator
of a word u and the set of catenations of suffixes of u, for θ-unbordered words u,
and morphisms θ with θn = I, n ≥ 2 (Proposition 12) or literal antimorphisms
(Proposition 13).

Proposition 12. Let θ be a morphism on Σ∗ such that θn = I, n ≥ 2. If
u ∈ Dθ(1), then (PSuff(u))+ ⊆ αub(u).

Proof. Let u ∈ Dθ(1). Let v = u1u2 · · ·um for some ui ∈ PSuff(u) and 1 ≤
i ≤ m. Suppose that uv /∈ Dθ(1). Then there exists α, α1, β1 ∈ Σ+ such that
uv = αα1 = β1θ(α). Then, we have following two cases:

Case 1 : |α| > |v|. Then, we have θ(α) = u′′v and u = u′u′′ for some u′, u′′ ∈
Σ+. This implies u′′ <s u. From uv = αα1, we get uv = θn−1(u′′)θn−1(v)α1.
This implies θn−1(u′′) <p u. This will further imply that u /∈ Dθ(1), a contra-
diction.
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Case 2 : |α| ≤ |v|. Also, we have v = u1u2 · · ·um for some ui ∈ PSuff(u) for
1 ≤ i ≤ m. Thus we have following two sub-cases:

Case 2(a): |α| < |um|. Then, we have θ(α) = um′′ and um = um′um′′ for
some um′ , um′′ ∈ Σ+. Since, um ∈ PSuff(u), we have u = u′mum = u′mum′um′′

for some u′m ∈ Σ+. Thus, we have um′′ <s u. From uv = αα1, we get uv =
θn−1(um′′)α1. This implies θn−1(um′′) <p u. This will further imply that u /∈
Dθ(1), a contradiction.

Case 2(b): |α| ≥ |um|. Then, we have θ(α) = u′′i ui+1 · · ·um for ui = u′iu
′′
i ,

u′i ∈ Σ∗, u′′i ∈ Σ+ and i = 1, 2, · · · ,m − 1. Since, ui ∈ PSuff(u), we have
u = ui′ui = ui′u

′
iu
′′
i for some ui′ ∈ Σ+. Thus, we have u′′i <s u. From uv = αα1,

we get uv = θn−1(u′′i )θn−1(ui+1 · · ·um)α1. This implies θn−1(u′′i ) <p u. This will
further imply that u /∈ Dθ(1), a contradiction.

Since all the cases leads to a contradiction, (PSuff(u))+ ⊆ αub(u).

Proposition 13. Let θ be any literal antimorphism on Σ∗. If u ∈ Dθ(1), then
(PSuff(u))+ ⊆ αub(u).

Proof. Let v = u1u2 · · ·um for some ui ∈ PSuff(u) and 1 ≤ i ≤ m. Suppose,
uv /∈ Dθ(1). Then uv = ayθ(a) for some a ∈ Σ and y ∈ Σ∗. This further
implies, u = ay1, v = y2θ(a) and y = y1y2 for some y1, y2 ∈ Σ∗. Clearly,
a <p u. But, since, v = u1u2 · · ·um = y2θ(a) where um ∈ PSuff(u), we will have
um = um′θ(a) for um′ ∈ Σ∗. Also, u = u′um = u′um′θ(a) and thus θ(a) <s u.
This imply u /∈ Dθ(1), a contradiction.

4 Disjunctivity of the Set of θ-(Un)Bordered Words

In this section we study some properties of the set of θ-bordered and θ-unbordered
words. In [11] it was shown that, for every i ≥ 1, the set of all (un)bordered words
D(i) is disjunctive. Similarly, we will show that, under some conditions, if θ is a
morphic involution then the set of all θ-unbordered words Dθ(1) is disjunctive,
and the set of all words with exactly two θ-borders Dθ(2), are also disjunctive
(Theorem 1). We also study the disjunctivity of some related languages (Theo-
rem 2).

The following proposition provides a necessary and sufficient condition for a
language to be disjunctive.

Proposition 14. [22] Let L ⊆ Σ∗. Then the following two statements are
equivalent:

1. L is a disjunctive language.
2. If u, v ∈ Σ+, u 6= v, |u| = |v|, then u 6≡ v(PL).

The following auxiliary lemmas are needed for the main results of this section,
Theorem 1 and Theorem 2.

Lemma 8. Let θ be a morphic involution and a, b ∈ Σ, a 6= b. Let x, y ∈ Σm,
m > 0. Then,
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1. amxθ(b) ∈ Dθ(1).
2. If a 6= θ(a), x = θ(b)x′, x′ ∈ Σ∗ and k ≥ m, then (akyθ(b))(akxθ(b)) ∈

Dθ(1).

Proof. 1. Since there does not exist any word u ∈ Σ+ with |u| ≤ m such that
u <θd a

mxθ(b), by Lemma 2, amxθ(b) ∈ Dθ(1).
2. Let (akyθ(b))(akxθ(b)) /∈ Dθ(1). Then there exists u ∈ Σ+ such that

u <θd (akyθ(b))(akxθ(b)).

By Lemma 2, it is enough to consider only the case |u| ≤ m+ k + 1.
Case (i): |u| ≤ k. Then u = an for some n ≤ k and θ(u) = α′′θ(b) for
x = α′α′′, α′ ∈ Σ+, α′′ ∈ Σ∗. Hence an = θ(α′′)b which implies a = b, a
contradiction.
Case (ii): k < |u| < m+k+1. Then u = aky′ for y = y′y′′, y′ ∈ Σ+, y′′ ∈ Σ∗
and θ(u) = anxθ(b) = anθ(b)x′θ(b) for 0 ≤ n < k. Hence aky′ = θ(an)bθ(x′)b
which implies a = b, a contradiction.
Case (iii): |u| = m + k + 1. Then u = akyθ(b) = θ(ak)θ(x)b which implies
a = θ(a), a contradiction.
Since, all the three cases leads to a contradiction (akyθ(b))(akxθ(b)) ∈ Dθ(1).

Lemma 9. Let θ be a morphic involution and let a, b ∈ Σ, a 6= θ(b). Let x 6= y,
x, y ∈ Σm, m > 0. If x = θ(b)x′, x′ ∈ Σ∗ and k ≥ m, then (akyθ(b))(θ(akxθ(b))) ∈
Dθ(1).

Proof. Let (akyθ(b))(θ(akxθ(b))) /∈ Dθ(1). Then there exists u ∈ Σ+ such that

u <θd (akyθ(b))(θ(akxθ(b))).

By Lemma 2, it is enough to consider only the case |u| ≤ m+ k + 1.
Case (i): |u| ≤ k. Then u = an for some n ≤ k and θ(u) = θ(α′′)b for

x = α′α′′, α′ ∈ Σ+, α′′ ∈ Σ∗. Hence an = α′′θ(b) which implies a = θ(b), a
contradiction.

Case (ii): k < |u| < m+k+1. Then u = aky′ for y = y′y′′, y′ ∈ Σ+, y′′ ∈ Σ∗
and θ(u) = θ(an)θ(x)b = θ(an)bθ(x′)b for 0 ≤ n < k. Hence aky′ = anθ(b)x′θ(b)
which implies a = θ(b), a contradiction.

Case (iii): |u| = m+k+1. Then u = akyθ(b) = akxθ(b) which implies y = x,
a contradiction.

Since, all the three cases lead to a contradiction (akyθ(b))(θ(akxθ(b))) ∈
Dθ(1).

Lemma 10. Let θ be a literal (anti)morphism on Σ∗ and a, b ∈ Σ such that
a 6= θ(b). Let x 6= y, x, y ∈ Σm, m > 0. Then:

1. amxθ(b) ∈ D(1).
2. If x = θ(b)x′, x′ ∈ Σ∗ and k ≥ m, then (akyθ(b))(akxθ(b)) ∈ D(1).

Proof. Let θ be a literal (anti)morphism.
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1. Since there does not exist any word u ∈ Σ+ with |u| ≤ m such that u <d
amxθ(b), by Lemma 1, amxθ(b) ∈ D(1).

2. Let (akyθ(b))(akxθ(b)) /∈ D(1). Then there exists u ∈ Σ+ such that

u <d (akyθ(b))(akxθ(b)).

By Lemma 1, it is enough to consider only the case |u| ≤ m+ k + 1.
Case (i): |u| ≤ k. Then u = an = α′′θ(b) for some n ≤ k and x = α′α′′, α′ ∈
Σ+, α′′ ∈ Σ∗, which implies a = θ(b), a contradiction.
Case (ii): k < |u| < m + k + 1. Then u = aky′ = anxθ(b) = anθ(b)x′θ(b)
for y = y′y′′, y′ ∈ Σ+, y′′ ∈ Σ∗ and 0 ≤ n < k, which implies a = θ(b), a
contradiction.
Case (iii): |u| = m+k+1. Then u = akyθ(b) = akxθ(b) which implies x = y,
a contradiction.
Since, all the three cases leads to a contradiction (akyθ(b))(akxθ(b)) ∈ D(1).

Corollary 4 follows immediately from Lemma 8 and 10.

Corollary 4. Let θ be a morphic involution on Σ∗, where Σ is an alphabet
with |Σ| ≥ 3 that contains letters a 6= b such that a /∈ {θ(b), θ(a)}. Let x 6= y,
x, y ∈ Σm, m > 0. Then:

1. amxθ(b) ∈ Dθ(1) ∩D(1).
2. If x = θ(b)x′, x′ ∈ Σ∗ and k ≥ m, then (akyθ(b))(akxθ(b)) ∈ Dθ(1) ∩D(1).

Lemma 11. Let θ be a morphic involution and let a, b ∈ Σ such that a /∈
{b, θ(b)}. Let x ∈ Σm, m > 0. If x = θ(b)x′, x′ ∈ Σ∗ , then (amxθ(b))(θ(amxθ(b))) ∈
Dθ(2).

Proof. Clearly λ, amxθ(b) ∈ Lθd((amxθ(b))(θ(amxθ(b)))).
Let (amxθ(b))(θ(amxθ(b))) /∈ Dθ(2). Then there exists u ∈ Σ+ such that

u <θd (amxθ(b))(θ(amxθ(b)))

and u /∈ {λ, amxθ(b)}. Then, we have following cases to consider.
Case (i): |u| ≤ m. Then, u = an for some n ≤ m and θ(u) = θ(α′′)b for

x = α′α′′, α′ ∈ Σ+ and α′′ ∈ Σ∗. Hence an = α′′θ(b) which implies a = θ(b), a
contradiction.

Case (ii): m < |u| < 2m + 1. Then, u = amα′ for x = α′α′′, α′ ∈ Σ+,
α′′ ∈ Σ∗ and θ(u) = θ(an)θ(x)b = θ(an)bθ(x′)b for 0 ≤ n < m. Hence amα′ =
anθ(b)x′θ(b) which implies a = θ(b), a contradiction.

Case (iii): 2m + 1 < |u| ≤ 3m + 1. Then, u = amxθ(b)θ(ak) for some
0 < k ≤ m and θ(u) = α′′θ(b)θ(am)θ(x)b for x = α′α′′, α′ ∈ Σ+, α′′ ∈ Σ∗.
Hence, u = amxθ(b)θ(ak) = θ(α′′)bamxθ(b) which implies a = b, a contradiction.

Case (iv): 3m+1 < |u| ≤ 4m+1. Then, u = amxθ(b)θ(am)θ(α′) for x = α′α′′,
α′ ∈ Σ+, α′′ ∈ Σ∗ and θ(u) = akxθ(b)θ(am)θ(x)b for 0 ≤ k < m. Hence, u =
amxθ(b)θ(am)θ(α′) = θ(ak)bθ(x′)bamxθ(b) which implies a = b, a contradiction.

Since all the cases leads to a contradiction (amxθ(b))(θ(amxθ(b))) ∈ Dθ(2).
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Theorem 1. Let θ be a morphic involution on Σ∗, where Σ is an alphabet with
|Σ| ≥ 2 that contains letters a 6= b such that a 6= θ(b). Then the set of θ-
unbordered words, Dθ(1) and set of words with exactly two θ-borders Dθ(2) are
disjunctive.

Proof. Let x, y ∈ Σm, x 6= y, m > 0. Without loss of generality let us assume
that x = θ(b)x′, x′ ∈ Σ∗. Let u = am, v = θ(b)θ(amxθ(b)). Since a 6= b, by
Lemma 8(1), we have amxθ(b) ∈ Dθ(1) and by Lemma 11,

uxv = amxθ(b)θ(amxθ(b)) ∈ Dθ(2).

Since Dθ(2) ∩ Dθ(1) = ∅, it follows that uxv 6∈ Dθ(1). Further, by Lemma 6
θ(amxθ(b)) ∈ Dθ(1). Since a 6= θ(b), by Lemma 9,

uyv = amyθ(b)(θ(amxθ(b))) ∈ Dθ(1).

Since, for x, y ∈ Σ+ x 6= y, |x| = |y|, we got x 6≡ y(PL) where L = Dθ(1). Hence,
by Proposition 14, we have that Dθ(1) is disjunctive. From the proof it follows
that also Dθ(2) is disjunctive.

The following Lemmas are needed for the proof of Theorem 2.

Lemma 12. Let m ≥ 1, x ∈ Σ+, u′, u′′, y ∈ Σ∗ and θ be a morphic involution
on Σ∗. For any u ∈ Dθ(1)∩D(1), if (x1y1 · · ·xmym)xm+1 = u′uu′′, where xi = x
and yj = y if i and j are odd, xi = θ(x) and yj = θ(y) if i and j are even for
1 ≤ i ≤ m+ 1 and 1 ≤ j ≤ m , then |u| ≤ |xy|.

Proof. Suppose, |u| > |xy|. We will prove just 3 cases here, the other cases follow
similarly.

Case (i): u occurs as a subword of yθ(x)θ(y). Then there exists α1, α2 ∈ Σ+

and β1, β2, β
′
1, β
′
2 ∈ Σ∗ such that x = α1α2, y = β1β

′
1 = β′2β2, |β2| > |β′1|, then

there exists α ∈ Σ+ such that β1 = β′2α, β2 = αβ′1 and we have

u = β2θ(α1)θ(α2)θ(β1) = αβ′1θ(α1α2)θ(β′2)θ(α) /∈ Dθ(1)

Case (ii): u occurs as a subword of yθ(x)θ(y)x. Then there exists α1, α2 ∈ Σ+

and β1, β2 ∈ Σ∗ such that x = α1α2, y = β1β2, then

u = β2θ(α1)θ(α2)θ(β1)θ(β2)α1 /∈ Dθ(1)

a contradiction.
Case (iii): u occurs as a subword of yθ(x)θ(y)xyθ(x). Then α1, α2 ∈ Σ+ and

β1, β2 ∈ Σ∗ such that x = α1α2, y = β1β2, then

u = β2θ(α1)θ(α2)θ(y)xβ1β2θ(α1) /∈ D(1)

a contradiction.
All the other cases will lead to a similar contradiction, hence |u| ≤ |xy|.
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Lemma 13. Let θ be a morphic involution on Σ∗. If f1 · · · fm = u1u2 · · ·uk
with ui ∈ Dθ(1)∩D(1), i = 1, 2, · · · , k such that fj = f if j is odd and fj = θ(f)
if j is even, 1 ≤ j ≤ m, then |ui| ≤ |f | for all 1 ≤ i ≤ k.

Proof. Follows from the proof of Lemma 12 replacing y by an empty word λ.

Lemma 14. Let m ≥ 2, m ≥ n ≥ 1, θ be a morphic involution on Σ∗. Then
for any x ∈ Σ+, y ∈ Σ∗, (x1y1 · · ·xmym)xm+1 /∈ [Dθ(1) ∩ D(1)]n, where the
conditions placed on xi and yj for 1 ≤ i ≤ m + 1 and 1 ≤ j ≤ m are the same
as those in Lemma 12.

Proof. Suppose (x1y1 · · ·xmym)xm+1 ∈ [Dθ(1) ∩D(1)]n. Then there exists

u1, u2, · · · , un ∈ Dθ(1) ∩D(1) such that (x1y1 · · ·xmym)xm+1 = u1u2 · · ·un.
By Lemma 12, we will get |ui| ≤ |xy| for 1 ≤ i ≤ n. However, this would further
imply,

|u1u2 · · ·un| ≤ n|xy| ≤ m|xy| < m|xy|+ |x|

which is a contradiction. Hence (x1y1 · · ·xmym)xm+1 /∈ [Dθ(1) ∩D(1)]n.

Lemma 15. Let m > n ≥ 1 and θ be a morphic involution on Σ∗. Then for any
f, θ(f) ∈ Σ+, we have f1 · · · fm /∈ [Dθ(1) ∩D(1)]n, where the conditions placed
on fi for 1 ≤ i ≤ m are the same as those of Lemma 13.

Proof. Follows from the proof of Lemma 14 replacing y by an empty word λ.

Lemma 16. Let θ be a morphic involution on Σ∗. For any f, θ(f) ∈ Dθ(1) ∩
D(1) and n ≥ 2, f1 · · · fn /∈ [Dθ(1) ∩D(1)]n−1, where the conditions placed on
fi for 1 ≤ i ≤ n are the same as those of Lemma 13.

Proof. We will prove this result by induction on n. For n = 2 result holds
trivially as fθ(f) /∈ Dθ(1) ∩ D(1). Assume that the result holds for n = k,
i.e., f1 · · · fk /∈ [Dθ(1) ∩D(1)]k−1. Suppose, f1 · · · fk+1 ∈ [Dθ(1) ∩D(1)]k, then
there exists u, v ∈ Σ+ such that uv = f1 · · · fk+1, u ∈ Dθ(1) ∩ D(1) and v ∈
[Dθ(1) ∩D(1)]k−1. By Lemma 13, |u| ≤ |f |. If |u| < |f |, then f = uu′ for some
u′ ∈ Σ+. Hence, we get

f1 · · · fk+1 = u1u
′
1 · · ·uk+1u

′
k+1 = u1(u′1u2 · · ·u′kuk+1)u′k+1

where uiu
′
i = uu′ if i is odd and uiu

′
i = θ(u)θ(u′) if i is even. But then

(u′1u2 · · ·u′kuk+1)u′k+1 ∈ [Dθ(1)∩D(1)]k−1 which is a contradiction to Lemma 14.

If |u| = |f |, then u = f . Thus, v = f2 · · · fk+1 ∈ [Dθ(1) ∩ D(1)]k−1, which is a
contradiction to Lemma 15. Hence f1 · · · fn /∈ [Dθ(1) ∩D(1)]n−1.

Theorem 2. Let θ be a morphic involution on Σ∗, where Σ is an alphabet with
|Σ| ≥ 3 that contains letters a 6= b such that a /∈ {θ(b), θ(a)}. Then the set
[Dθ(1) ∩D(1)]n is disjunctive for any even number n ≥ 2.
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Proof. Choose x 6= y ∈ Σm, m > 0 with y = θ(b)y′ for some y′ ∈ Σ∗. Let
L = [Dθ(1) ∩ D(1)]n. By Corollary 4(1), amxθ(b) ∈ Dθ(1) ∩ D(1) and thus
by Lemma 5 and 6 θ(amxθ(b)) ∈ Dθ(1) ∩ D(1). Since x 6= y and a 6= θ(b), by
Lemma 9 we have amxθ(b)θ(amyθ(b)) ∈ Dθ(1)∩D(1), which further by Lemma 5
and 6 implies θ(amxθ(b))amyθ(b) ∈ Dθ(1) ∩D(1) . Let

u = (u1 · · ·un)am, v = θ(b).

where ui = amxθ(b) if i is odd and ui = θ(amxθ(b)) if i is even.
Since n is even, we obtain

uyv = (u1 · · ·un)amyθ(b) = (u1 · · ·un−1)(θ(amxθ(b))amyθ(b)) ∈ L.

On the other hand, by Lemma 16,

uxv = (u1 · · ·un)amxθ(b) = u1 · · ·un+1 /∈ L.

Since, for x, y ∈ Σ+, x 6= y, |x| = |y|, we got x 6≡ y(PL) , by Proposition 14, L
is disjunctive.

In [11], it was shown that the language D(i) ∩ Q is disjunctive for i ≥ 1.
However, the following example shows that there exist morphic involutions θ for
which the language Dθ(1) ∩Qθ is not disjunctive.

Example 4. Let Σ = {A,C,G, T} with θ being the morphic involution defined
as θ(A) = T , θ(T ) = A, θ(G) = C and θ(C) = G. Let u = ACT , v = CA,
x = AGG and y = TCA. Then uxv = ACTAGGCA ∈ Dθ(1) ∩ Qθ and uyv =
ACTTCACA ∈ Dθ(1) ∩Qθ, which shows that Dθ(1) ∩Qθ is not disjunctive.

Proposition 15. If θ is any literal antimorphism on Σ∗, Dθ(1) is a regular
language.

Proof. We know that, for all a ∈ Σ, a is θ-unbordered and from Lemma 4, we
have Dθ(1) = Σ ∪ Y where Y = ∪a,b∈ΣaΣ∗b such that θ(a) 6= b. Since Σ is
finite, Y is regular and hence Dθ(1) is regular.

5 Conclusions

In this paper we investigate properties of θ-bordered words, where θ is not just
the identity function or a morphic or antimorphic involution, but, more generally,
a morphism or an antimorphism with the property that θn = I, for n ≥ 2, or
a literal (anti)morphism θ. Results we obtained include the transitivity of the
relation <θd for literal antimorphisms θ, and the disjunctivity of the set of all
θ-unbordered words for morphic involutions θ.

Future directions of research includes exploring other properties of θ-bordered
and θ-unbordered words, as well as the disjunctivity of other languages related
to Dθ(i).
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