State complexity of union and intersection of star on k regular languages ${ }^{\text {sh }}$

Yuan Gao ${ }^{\mathrm{a}, *}$, Lila Kari ${ }^{\mathrm{a}}$, Sheng Yu^{a}
${ }^{a}$ Department of Computer Science, The University of Western Ontario, London, Ontario, Canada N6A 5B7

Abstract

In the paper, we continue our study on state complexity of combined operations. We study the state complexities of $L_{1}^{*} \cup L_{2}^{*}, \bigcup_{i=1}^{k} L_{i}^{*}, L_{1}^{*} \cap L_{2}^{*}$, and $\bigcap_{i=1}^{k} L_{i}^{*}$ for regular languages $L_{i}, 1 \leq i \leq k$. We obtain the exact bounds for these combined operations and show that the bounds are different from the mathematical compositions of the state complexities of their component individual operations.

Keywords: state complexity, combined operations, regular languages, finite automata

1. Introduction

State complexity is a type of descriptional complexity based on finite automaton model. It is the study of the number of states of finite automata. The research on state complexity can be recalled to 1950's [20]. Up to today, motivated by new applications of regular languages that require automata of very large sizes, state complexity has received increased attention. Many results on the state complexity of individual operations, such as union, intersection, catenation, star, reversal, shuffle, power, proportional removal, and cyclic shift have been obtained $[1,4,5,6,11,13,14,15,19,24,25,26]$.

On the basis of these results on individual operations, the research on state complexity of combined operations was initiated in 2007 [22]. This is because, in practice, the operation to be performed is often a combination of several individual operations in some order. Since 2007, there have been a number of publications on the topic of state complexity of combined operations. Most of

[^0]the papers focused on the combinations composed of two individual operations, e.g. $\left(L_{1} \cup L_{2}\right)^{*},\left(L_{1} \cap L_{2}\right)^{*},\left(L_{1} L_{2}\right)^{*},\left(L_{1} \cup L_{2}\right)^{R},\left(L_{1} \cap L_{2}\right)^{R},\left(L_{1} L_{2}\right)^{R}$, etc [2, $3,7,8,9,10,16,17,22]$. These combinations can be viewed as basic combined operations. The research on their state complexities is helpful for the work on the combined operations whose structures are more complex.

The state complexity of a combined operation is usually not a simple mathematical composition of the state complexities of its component individual operations, but much lower [22]. For example, let L be a regular language accepted by an n-state deterministic finite automaton (DFA). The state complexity of L^{*} is $\frac{3}{4} 2^{n}$ and the state complexity of L^{R} of the reversal is 2^{n}. Then the mathematical composition of these two state complexities for the combined operation $\left(L^{R}\right)^{*}$ is $\frac{3}{4} 2^{2^{n}}$. However, the state complexity of $\left(L^{R}\right)^{*}$ is only 2^{n} [8]. Recently, it has also been proved that there does not exist a general algorithm to compute the state complexities of combined operations even if all the state complexities of individual operations are known [23]. Thus, the state complexity of each combined operation should be studied separately.

In [22], the state complexities of two combined operations were investigated: $(L(M) \cup L(N))^{*}$ and $(L(M) \cap L(N))^{*}$, where M and N are m-state and n-state DFAs, respectively. An interesting question is what are the state complexities of these combined operations if we change the orders of the component individual operations. Therefore, in this paper, we study the state complexities of four particular combined operations that are $L_{1}^{*} \cup L_{2}^{*}, \bigcup_{i=1}^{k} L_{i}^{*}, L_{1}^{*} \cap L_{2}^{*}$ and $\bigcap_{i=1}^{k} L_{i}^{*}$. The combined operations $L_{1}^{*} \cup L_{2}^{*}$ and $L_{1}^{*} \cap L_{2}^{*}$ can be viewed as special cases of $\bigcup_{i=1}^{k} L_{i}^{*}$ and $\bigcap_{i=1}^{k} L_{i}^{*}$, respectively. Since they are not only basic combined operations but also the basis for the study on the latter two operations on k operands, we investigate their state complexities separately.

We show that the state complexities of $L_{1}^{*} \cup L_{2}^{*}$ and $L_{1}^{*} \cap L_{2}^{*}$ are both $\frac{9}{16} 2^{m+n}-$ $\frac{3}{4} 2^{m}-\frac{3}{4} 2^{n}+2$ for $m, n \geq 2$, which are less than the mathematical compositions of the state complexities of their component operations by $\frac{3}{4} 2^{m}+\frac{3}{4} 2^{n}-2$. The languages L_{1} and L_{2} are accepted by m-state and n-state DFAs, respectively.

For $\bigcup_{i=1}^{k} L_{i}^{*}$ and $\bigcap_{i=1}^{k} L_{i}^{*}$, we prove that their state complexities are also the same:

$$
\left(\frac{3}{4}\right)^{k} 2^{g}-\sum_{i=1}^{k}\left[\prod_{j=1}^{i-1}\left(\frac{3}{4} 2^{n_{j}}-1\right) \prod_{t=i+1}^{k}\left(\frac{3}{4} 2^{n_{t}}\right)\right]+1
$$

for $n_{i} \geq 2$, where L_{i} is an n_{i}-state DFA language, $1 \leq i \leq k, k \geq 2$, and $g=\sum_{i=1}^{k} n_{i}$. The state complexities are less than the mathematical compositions by $\sum_{i=1}^{k}\left[\prod_{j=1}^{i-1}\left(\frac{3}{4} 2^{n_{j}}-1\right) \prod_{t=i+1}^{k}\left(\frac{3}{4} 2^{n_{t}}\right)\right]-1$.

In the next section, we introduce the basic definitions and notations used in
the paper. In Sections 3, 4, 5 and 6, we investigate the state complexities of $L_{1}^{*} \cup L_{2}^{*}, \bigcup_{i=1}^{k} L_{i}^{*}, L_{1}^{*} \cap L_{2}^{*}$, and $\bigcap_{i=1}^{k} L_{i}^{*}$, respectively. In Section 7, we conclude the paper.

2. Preliminaries

A DFA is denoted by a 5 -tuple $A=(Q, \Sigma, \delta, s, F)$, where Q is the finite set of states, Σ is the finite input alphabet, $\delta: Q \times \Sigma \rightarrow Q$ is the state transition function, $s \in Q$ is the initial state, and $F \subseteq Q$ is the set of final states. A DFA is said to be complete if $\delta(q, a)$ is defined for all $q \in Q$ and $a \in \Sigma$. All the DFAs we use in this paper are assumed to be complete. We extend δ to $Q \times \Sigma^{*} \rightarrow Q$ in the usual way.

In this paper, the state transition function δ is often extended to $\hat{\delta}: 2^{Q} \times \Sigma \rightarrow$ 2^{Q}. The function $\hat{\delta}$ is defined by $\hat{\delta}(R, a)=\{\delta(r, a) \mid r \in R\}$, for $R \subseteq Q$ and $a \in \Sigma$. We just write δ instead of $\hat{\delta}$ if there is no confusion.

A word $w \in \Sigma^{*}$ is accepted by a finite automaton if $\delta(s, w) \cap F \neq \emptyset$. Two states in a DFA A are said to be equivalent if and only if for every word $w \in \Sigma^{*}$, if A is started in either state with w as input, it either accepts in both cases or rejects in both cases. A language is said to be regular if and only if it is accepted by a DFA. The language accepted by a DFA A is denoted by $L(A)$. The reader may refer to $[12,21,27]$ for more details about regular languages and finite automata.

The state complexity of a regular language L, denoted by $s c(L)$, is the number of states of the minimal complete DFA that accepts L. The state complexity of a class S of regular languages, denoted by $s c(S)$, is the supremum among all $s c(L), L \in S$. The state complexity of an operation on regular languages is the state complexity of the resulting languages from the operation as a function of the state complexity of the operand languages. Thus, in a certain sense, the state complexity of an operation is a worst-case complexity.

3. State complexity of $L_{1}^{*} \cup L_{2}^{*}$

We first consider the state complexity of $L_{1}^{*} \cup L_{2}^{*}$, where L_{1} and L_{2} are regular languages accepted by m-state and n-state DFAs, respectively. It has been proved that the state complexity of L_{1}^{*} is $\frac{3}{4} 2^{m}$ and the state complexity of $L_{1} \cup L_{2}$ is $m n[18,26]$. The mathematical composition of them is $\frac{9}{16} 2^{m+n}$. In the following, we show this upper bound of the state complexity of $L_{1}^{*} \cup L_{2}^{*}$ can be lowered.

Theorem 3.1. For any m-state DFA $M=\left(Q_{M}, \Sigma, \delta_{M}, s_{M}, F_{M}\right)$ and n-state DFA $N=\left(Q_{N}, \Sigma, \delta_{N}, s_{N}, F_{N}\right)$ such that $\left|F_{M}-\left\{s_{M}\right\}\right|=k \geq 1,\left|F_{N}-\left\{s_{N}\right\}\right|=$ $l \geq 1, m \geq 2, n \geq 2$, there exists a DFA of at most

$$
\left(2^{m-1}+2^{m-k-1}\right)\left(2^{n-1}+2^{n-l-1}\right)-\left(2^{m-1}+2^{m-k-1}\right)-\left(2^{n-1}+2^{n-l-1}\right)+2
$$

states that accepts $L(M)^{*} \cup L(N)^{*}$.

Proof. Let $M=\left(Q_{M}, \Sigma, \delta_{M}, s_{M}, F_{M}\right)$ be a DFA of m states, $m \geq 2$. Denote $F_{M}-\left\{s_{M}\right\}$ by F_{0}. Then $\left|F_{0}\right|=k \geq 1$. Let $N=\left(Q_{N}, \Sigma, \delta_{N}, s_{N}, F_{N}\right)$ be another DFA of n states, $n \geq 2$. Denote $F_{N}-\left\{s_{N}\right\}$ by F_{1} and $\left|F_{1}\right|=l \geq 1$. Let $M^{\prime}=\left(Q_{M^{\prime}}, \Sigma, \delta_{M^{\prime}}, s_{M^{\prime}}, F_{M^{\prime}}\right)$ be a DFA where

$$
\begin{aligned}
& s_{M^{\prime}} \notin Q_{M} \text { is a new initial state, } \\
& Q_{M^{\prime}}=\left\{s_{M^{\prime}}\right\} \cup\left\{P \mid P \subseteq\left(Q_{M}-F_{0}\right) \& P \neq \emptyset\right\} \\
& \quad \cup\left\{R \mid R \subseteq Q_{M} \& s_{M} \in R \& R \cap F_{0} \neq \emptyset\right\}, \\
& F_{M^{\prime}}=\left\{s_{M^{\prime}}\right\} \cup\left\{R \mid R \subseteq Q_{M} \& s_{M} \in R \& R \cap F_{M} \neq \emptyset\right\},
\end{aligned}
$$

and for $R \subseteq Q_{M}$ and $a \in \Sigma$,

$$
\begin{aligned}
\delta_{M^{\prime}}\left(s_{M^{\prime}}, a\right) & = \begin{cases}\left\{\delta_{M}\left(s_{M}, a\right)\right\}, & \text { if } \delta_{M}\left(s_{M}, a\right) \cap F_{0}=\emptyset \\
\left\{\delta_{M}\left(s_{M}, a\right)\right\} \cup\left\{s_{M}\right\}, & \text { otherwise },\end{cases} \\
\delta_{M^{\prime}}(R, a) & = \begin{cases}\left\{\delta_{M}(R, a)\right\}, & \text { if } \delta_{M}(R, a) \cap F_{0}=\emptyset \\
\left\{\delta_{M}(R, a)\right\} \cup\left\{s_{M}\right\}, & \text { otherwise. }\end{cases}
\end{aligned}
$$

It is clear that M^{\prime} accepts $L(M)^{*}$. In the second term of the union for $Q_{M^{\prime}}$ there are $2^{m-k}-1$ states. And in the third term, there are $\left(2^{k}-1\right) 2^{m-k-1}$ states. So M^{\prime} has $2^{m-1}+2^{m-k-1}$ states in total.

Symmetrically, we can construct a DFA $N^{\prime}=\left(Q_{N^{\prime}}, \Sigma, \delta_{N^{\prime}}, s_{N^{\prime}}, F_{N^{\prime}}\right)$ of $2^{n-1}+2^{n-l-1}$ states that accepts $L(N)^{*}$. Now we construct another DFA $A=(Q, \Sigma, \delta, s, F)$ where

$$
\begin{aligned}
& s=\left\langle s_{M^{\prime}}, s_{N^{\prime}}\right\rangle \\
& Q=\left\{\langle i, j\rangle \mid i \in Q_{M^{\prime}}-\left\{s_{M^{\prime}}\right\}, j \in Q_{N^{\prime}}-\left\{s_{N^{\prime}}\right\}\right\} \cup\{s\}, \\
& \delta(\langle i, j\rangle, a)=\left\langle\delta_{M^{\prime}}(i, a), \delta_{N^{\prime}}(j, a)\right\rangle,\langle i, j\rangle \in Q, a \in \Sigma, \\
& F=\left\{\langle i, j\rangle \in Q \mid i \in F_{M^{\prime}} \text { or } j \in F_{N^{\prime}}\right\} .
\end{aligned}
$$

We can see that

$$
L(A)=L\left(M^{\prime}\right) \cup L\left(N^{\prime}\right)=L(M)^{*} \cup L(N)^{*}
$$

Note $\left\langle s_{M^{\prime}}, j\right\rangle \notin Q$, for $j \in Q_{N^{\prime}}-\left\{s_{N^{\prime}}\right\}$, and $\left\langle i, s_{N^{\prime}}\right\rangle \notin Q$, for $i \in Q_{M^{\prime}}-\left\{s_{M^{\prime}}\right\}$, because there is no transition going into $s_{M^{\prime}}$ and $s_{N^{\prime}}$ in the DFA M^{\prime} and N^{\prime}, respectively. There are $\left(2^{m-1}+2^{m-k-1}\right)+\left(2^{n-1}+2^{n-l-1}\right)-2$ such states. Thus, the number of states of minimal DFA that accepts $L(M)^{*} \cup L(N)^{*}$ is no more than

$$
\left(2^{m-1}+2^{m-k-1}\right)\left(2^{n-1}+2^{n-l-1}\right)-\left(2^{m-1}+2^{m-k-1}\right)-\left(2^{n-1}+2^{n-l-1}\right)+2
$$

If s_{M} and s_{N} are the only final states of M and N, respectively, $(k=l=0)$, then $L(M)^{*}=L(M)$ and $L(N)^{*}=L(N)$.

Corollary 3.1. For any m-state $D F A M=\left(Q_{M}, \Sigma, \delta_{M}, s_{M}, F_{M}\right)$ and n-state DFA $N=\left(Q_{N}, \Sigma, \delta_{N}, s_{N}, F_{N}\right), m \geq 2, n \geq 2$, there exists a DFA A of at most

$$
\frac{9}{16} 2^{m+n}-\frac{3}{4} 2^{m}-\frac{3}{4} 2^{n}+2
$$

states such that $L(A)=L(M)^{*} \cup L(N)^{*}$.
Proof. Let k and l be defined as in the previous proof. There are four cases in the following.
(I) $k=l=0$. In this case, $L(M)^{*}=L(M)$ and $L(N)^{*}=L(N)$. Then A simply needs at most $m \cdot n$ states, which is less than $\frac{9}{16} 2^{m+n}-\frac{3}{4} 2^{m}-\frac{3}{4} 2^{n}+2$ when $m, n \geq 2$.
(II) $k \geq 1, l=0$. We can see that $L(M)^{*} \cup L(N)^{*}=L(M)^{*} \cup L(N)$. The state complexity of $L(M)^{*} \cup L(N)$ has been proved to be $\frac{3}{4} 2^{m} \cdot n-n+1$ in [10] which is less than the upper bound in Corollary 3.1 when $m, n \geq 2$.
(III) $k=0, l \geq 1$. The case is symmetric to Case (II).
(IV) $k \geq 1, l \geq 1$. The claim is clearly true by Theorem 3.1.

Next, we show that the upper bound $\frac{9}{16} 2^{m+n}-\frac{3}{4} 2^{m}-\frac{3}{4} 2^{n}+2$ can be reached when $m, n \geq 2$.
Theorem 3.2. Given two integers $m \geq 2, n \geq 2$, there exist a DFA M of m states and a DFA N of n states such that any DFA accepting $L(M)^{*} \cup L(N)^{*}$ needs at least

$$
\frac{9}{16} 2^{m+n}-\frac{3}{4} 2^{m}-\frac{3}{4} 2^{n}+2
$$

states.
Proof. Let $M=\left(Q_{M}, \Sigma, \delta_{M}, 0,\{m-1\}\right)$ be a DFA, where $Q_{M}=\{0,1, \ldots, m-$ $1\}, \Sigma=\{a, b, c, d\}$ and the transitions of M are

$$
\begin{aligned}
& \delta_{M}(i, a)=i+1 \bmod m, i=0,1, \ldots, m-1 \\
& \delta_{M}(0, b)=0, \delta_{M}(i, b)=i+1 \bmod m, i=1, \ldots, m-1, \\
& \delta_{M}(i, c)=i, i=0,1, \ldots, m-1 \\
& \delta_{M}(i, d)=i, i=0,1, \ldots, m-1
\end{aligned}
$$

The transition diagram of M is shown in Figure 1.
Let $N=\left(Q_{N}, \Sigma, \delta_{N}, 0,\{n-1\}\right)$ be another DFA, where $Q_{N}=\{0,1, \ldots, n-1\}$ and

$$
\begin{aligned}
& \delta_{N}(i, a)=i, i=0,1, \ldots, n-1 \\
& \delta_{N}(i, b)=i, i=0,1, \ldots, n-1 \\
& \delta_{N}(i, c)=i+1 \bmod n, i=0,1, \ldots, n-1, \\
& \delta_{N}(0, d)=0, \delta_{M}(i, d)=i+1 \bmod n, i=1, \ldots, n-1 .
\end{aligned}
$$

Figure 1: Witness DFA M for Theorems 3.2 and 5.2

Figure 2: Witness DFA N for Theorems 3.2 and 5.2

The transition diagram of N is shown in Figure 2.
It has been proved in [26] that the minimal DFA that accepts the star of an m-state DFA language has $\frac{3}{4} 2^{m}$ states in the worst case. $M(N)$ is a modification of the worst-case example given in [26] by adding c - and d-loops (a - and b loops) to every state. So we can design a $\frac{3}{4} 2^{m}$-state, minimal DFA $M^{\prime}=$ $\left(Q_{M^{\prime}}, \Sigma, \delta_{M^{\prime}}, s_{M^{\prime}}, F_{M^{\prime}}\right)$ that accepts $L(M)^{*}$, where
$s_{M^{\prime}} \notin Q_{M}$ is a new initial state,

$$
\begin{aligned}
Q_{M^{\prime}} & =\left\{s_{M^{\prime}}\right\} \cup\{P \mid P \subseteq\{0,1, \ldots, m-2\} \& P \neq \emptyset\} \\
& \cup\{R \mid R \subseteq\{0,1, \ldots, m-1\} \& 0 \in R \& m-1 \in R\} \\
F_{M^{\prime}} & =\left\{s_{M^{\prime}}\right\} \cup\left\{R \in Q_{M^{\prime}} \mid R \subseteq\{0,1, \ldots, m-1\} \& m-1 \in R\right\}
\end{aligned}
$$

and for $R \subseteq Q_{M}, R \in Q_{M^{\prime}}$ and $a \in \Sigma$,

$$
\begin{gathered}
\delta_{M^{\prime}}\left(s_{M^{\prime}}, a\right)=\left\{\delta_{M}(0, a)\right\}, \\
\delta_{M^{\prime}}(R, a)= \begin{cases}\delta_{M}(R, a), & \text { if } m-1 \notin \delta_{M}(R, a) ; \\
\delta_{M}(R, a) \cup\{0\}, & \text { otherwise. }\end{cases}
\end{gathered}
$$

In a similar way, a $\frac{3}{4} 2^{n}$-state, minimal DFA $N^{\prime}=\left(Q_{N^{\prime}}, \Sigma, \delta_{N^{\prime}}, s_{N^{\prime}}, F_{N^{\prime}}\right)$ can be constructed to accept $L(N)^{*}$.

Then we construct the DFA $A=(Q, \Sigma, \delta, s, F)$ that accepts $L(M)^{*} \cup L(N)^{*}$
exactly as described in the proof of Theorem 3.1, where

$$
\begin{aligned}
& s=\left\langle s_{M^{\prime}}, s_{N^{\prime}}\right\rangle, \\
& Q=\left\{\langle i, j\rangle \mid i \in Q_{M^{\prime}}-\left\{s_{M^{\prime}}\right\}, j \in Q_{N^{\prime}}-\left\{s_{N^{\prime}}\right\}\right\} \cup\{s\}, \\
& \delta(\langle i, j\rangle, a)=\left\langle\delta_{M^{\prime}}(i, a), \delta_{N^{\prime}}(j, a)\right\rangle,\langle i, j\rangle \in Q, a \in \Sigma, \\
& F=\left\{\langle i, j\rangle \in Q \mid i \in F_{M^{\prime}} \text { or } j \in F_{N^{\prime}}\right\} .
\end{aligned}
$$

Now we need to show that A is a minimal DFA.
(I) All the states in Q are reachable.

For an arbitrary state $\langle i, j\rangle$ in Q, there always exists a string $w_{1} w_{2}$ such that $\delta\left(\left\langle s_{M^{\prime}}, s_{N^{\prime}}\right\rangle, w_{1} w_{2}\right)=\langle i, j\rangle$, where

$$
\begin{aligned}
& \delta_{M^{\prime}}\left(s_{M^{\prime}}, w_{1}\right)=i, w_{1} \in\{a, b\}^{*}, \\
& \delta_{N^{\prime}}\left(s_{N^{\prime}}, w_{2}\right)=j, w_{2} \in\{c, d\}^{*} .
\end{aligned}
$$

(II) Any two different states $\left\langle i_{1}, j_{1}\right\rangle$ and $\left\langle i_{2}, j_{2}\right\rangle$ in Q are distinguishable. Without loss of generality, assume that $i_{1} \neq i_{2}$. Since $i_{1}, i_{2} \in Q_{M^{\prime}}$, there exists a word w such that $\delta_{M^{\prime}}\left(i_{1}, w\right) \in F_{M^{\prime}}$ and $\delta_{M^{\prime}}\left(i_{2}, w\right) \notin F_{M^{\prime}}$. Then the two states $\left\langle i_{1}, j_{1}\right\rangle$ and $\left\langle i_{2}, j_{2}\right\rangle$ can be distinguished by the string $w d^{n}$ because

$$
\begin{aligned}
& \delta\left(\left\langle i_{1}, j_{1}\right\rangle, w d^{n}\right) \in F, \\
& \delta\left(\left\langle i_{2}, j_{2}\right\rangle, w d^{n}\right) \notin F,
\end{aligned}
$$

Since all the states in A are reachable and distinguishable, the DFA A is minimal. Thus, any DFA that accepts $L(M)^{*} \cup L(N)^{*}$ has at least $\frac{9}{16} 2^{m+n}-\frac{3}{4} 2^{m}-\frac{3}{4} 2^{n}+2$ states.

This result gives a lower bound for the state complexity of $L(M)^{*} \cup L(N)^{*}$. It coincides with the upper bound in Corollary 3.1. So we have the following Theorem 3.3.

Theorem 3.3. For any integer $m \geq 2, n \geq 2, \frac{9}{16} 2^{m+n}-\frac{3}{4} 2^{m}-\frac{3}{4} 2^{n}+2$ states are both sufficient and necessary in the worst case for a DFA to accept $L(M)^{*} \cup L(N)^{*}$, where M is an m-state DFA and N is an n-state DFA.

When $m=1, n \geq 2, L(M)$ is either \emptyset or Σ^{*}. Then the state complexity of $L(M)^{*} \cup L(N)^{*}$ is the same as that of $L(N)^{*}$ which is $\frac{3}{4} 2^{n}$. When $m=n=1$,

$$
L(M)^{*} \cup L(N)^{*}= \begin{cases}\{\varepsilon\}, & \text { if } L(M)=L(N)=\emptyset \\ \Sigma^{*}, & \text { otherwise }\end{cases}
$$

The state complexity of $L(M)^{*} \cup L(N)^{*}$ is 2 in this case.

4. State complexity of $\bigcup_{i=1}^{k} L_{i}^{*}$

In this section, we investigate the state complexity of $\bigcup_{i=1}^{k} L_{i}^{*}$, where L_{i} is a regular language accepted by an n_{i}-state DFA, $1 \leq i \leq k, k \geq 2$. Since the state complexity of L_{i}^{*} is $\frac{3}{4} 2^{n_{i}}$ and the state complexity of $L_{i} \cup L_{i+1}$ is $n_{i} n_{i+1}[18,26]$, the mathematical composition of them gives an upper bound $\prod_{i=1}^{k} \frac{3}{4} 2^{n_{i}}$ to the state complexity of $\bigcup_{i=1}^{k} L_{i}^{*}$. In the following, we first show that the upper bound can also be lowered.
Theorem 4.1. For any n_{i}-state DFA $N_{i}=\left(Q_{N_{i}}, \Sigma, \delta_{N_{i}}, s_{N_{i}}, F_{N_{i}}\right)$ such that $\left|F_{N_{i}}-\left\{s_{N_{i}}\right\}\right|=l_{i} \geq 1, n_{i} \geq 2,1 \leq i \leq k, k \geq 2$, there exists a DFA of at most $\prod_{i=1}^{k}\left(2^{n_{i}-1}+2^{n_{i}-l_{i}-1}\right)-\sum_{i=1}^{k}\left[\prod_{j=1}^{i-1}\left(2^{n_{j}-1}+2^{n_{j}-l_{j}-1}-1\right) \prod_{t=i+1}^{k}\left(2^{n_{t}-1}+2^{n_{t}-l_{t}-1}\right)\right]+1$ states that accepts $\bigcup_{i=1}^{k} L\left(N_{i}\right)^{*}$.
Proof. Let $N_{i}=\left(Q_{N_{i}}, \Sigma, \delta_{N_{i}}, s_{N_{i}}, F_{N_{i}}\right)$ be a DFA of n_{i} states, $n_{i} \geq 2,1 \leq i \leq k$, $k \geq 2$. Denote $F_{N_{i}}-\left\{s_{N_{i}}\right\}$ by T_{i}. Then $\left|T_{i}\right|=l_{i} \geq 1$. We construct the DFA $N_{i}^{\prime}=\left(Q_{N_{i}^{\prime}}, \Sigma, \delta_{N_{i}^{\prime}}, s_{N_{i}^{\prime}}, F_{N_{i}^{\prime}}\right)$ for $L\left(N_{i}\right)^{*}$ in a similar manner to the proof of Theorem 3.1, where

$$
\begin{aligned}
& s_{N_{i}^{\prime}} \notin Q_{N_{i}} \text { is a new initial state, } \\
& Q_{N_{i}^{\prime}}=\left\{s_{N_{i}^{\prime}}\right\} \cup\left\{P \mid P \subseteq\left(Q_{N_{i}}-T_{i}\right) \& P \neq \emptyset\right\} \\
& \quad \cup\left\{R \mid R \subseteq Q_{N_{i}} \& s_{N_{i}} \in R \& R \cap T_{i} \neq \emptyset\right\}, \\
& F_{N_{i}^{\prime}}=\left\{s_{N_{i}^{\prime}}\right\} \cup\left\{R \mid R \subseteq Q_{N_{i}} \& s_{N_{i}} \in R \& R \cap F_{N_{i}} \neq \emptyset\right\},
\end{aligned}
$$

and for $R \subseteq Q_{N_{i}}, R \in Q_{N_{i}^{\prime}}$ and $a \in \Sigma$,

$$
\begin{aligned}
\delta_{N_{i}^{\prime}}\left(s_{N_{i}^{\prime}}, a\right) & = \begin{cases}\left\{\delta_{N_{i}}\left(s_{N_{i}}, a\right)\right\}, & \text { if } \delta_{N_{i}}\left(s_{N_{i}}, a\right) \cap T_{i}=\emptyset ; \\
\left\{\delta_{N_{i}}\left(s_{N_{i}}, a\right)\right\} \cup\left\{s_{N_{i}}\right\}, & \text { otherwise },\end{cases} \\
\delta_{N_{i}^{\prime}}(R, a) & = \begin{cases}\left\{\delta_{N_{i}}(R, a)\right\}, & \text { if } \delta_{N_{i}}(R, a) \cap T_{i}=\emptyset \\
\left\{\delta_{N_{i}}(R, a)\right\} \cup\left\{s_{N_{i}}\right\}, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Clearly, N_{i}^{\prime} accepts $L\left(N_{i}\right)^{*}$. There are $2^{n_{i}-l_{i}}-1$ states in the second term of the union for $Q_{N_{i}^{\prime}}$ and $\left(2^{l_{i}}-1\right) 2^{n_{i}-l_{i}-1}$ states in the third term. So N_{i}^{\prime} has $2^{n_{i}-1}+2^{n_{i}-l_{i}-1}$ states in total.

Now let $A=(Q, \Sigma, \delta, s, F)$ be another DFA, where

$$
\begin{aligned}
& s=\left\langle s_{N_{1}^{\prime}}, s_{N_{2}^{\prime}}, \ldots, s_{N_{k}^{\prime}}\right\rangle \\
& Q=\left\{\left\langle p_{1}, p_{2}, \ldots, p_{k}\right\rangle \mid p_{i} \in Q_{N_{i}^{\prime}}-\left\{s_{N_{i}^{\prime}}\right\}, 1 \leq i \leq k\right\} \cup\{s\}, \\
& \delta\left(\left\langle p_{1}, p_{2}, \ldots, p_{k}\right\rangle, a\right)=\left\langle\delta_{N_{1}^{\prime}}\left(p_{1}, a\right), \delta_{N_{2}^{\prime}}\left(p_{2}, a\right), \ldots, \delta_{N_{k}^{\prime}}\left(p_{k}, a\right)\right\rangle, a \in \Sigma, \\
& F=\left\{\left\langle p_{1}, p_{2}, \ldots, p_{k}\right\rangle \in Q \mid \exists i\left(p_{i} \in F_{N_{i}^{\prime}}, 1 \leq i \leq k\right)\right\} .
\end{aligned}
$$

It is easy to see that

$$
L(A)=\bigcup_{i=1}^{k} L\left(N_{i}^{\prime}\right)=\bigcup_{i=1}^{k} L\left(N_{i}\right)^{*}
$$

Note that the state $\left\langle p_{1}, \ldots, p_{i-1}, s_{N_{i}^{\prime}}, p_{i+1}, \ldots, p_{k}\right\rangle \notin Q$ if $p_{j} \in Q_{N_{j}^{\prime}}-\left\{s_{N_{j}^{\prime}}\right\}$, $1 \leq i, j \leq k, j \neq i$, because there is no ingoing transition to the new initial state $s_{N_{i}^{\prime}}$ in the DFA N_{i}^{\prime}. There are

$$
\sum_{i=1}^{k}\left[\prod_{j=1}^{i-1}\left(2^{n_{j}-1}+2^{n_{j}-l_{j}-1}-1\right) \prod_{t=i+1}^{k}\left(2^{n_{t}-1}+2^{n_{t}-l_{t}-1}\right)\right]-1
$$

such states in total. Thus, we obtain the upper bound shown in Theorem 4.1.

Next, we consider the case when $l_{i}=0,1 \leq i \leq k$, combine it with Theorem 4.1, and get a general upper bound.

Corollary 4.1. Let $N_{i}=\left(Q_{N_{i}}, \Sigma, \delta_{N_{i}}, s_{N_{i}}, F_{N_{i}}\right)$ be an arbitrary n_{i}-state DFA, where $n_{i} \geq 2,1 \leq i \leq k, k \geq 2$. Denote $\sum_{i=1}^{k} n_{i}$ by g. Then there exists a $D F A$ of at most

$$
\left(\frac{3}{4}\right)^{k} 2^{g}-\sum_{i=1}^{k}\left[\prod_{j=1}^{i-1}\left(\frac{3}{4} 2^{n_{j}}-1\right) \prod_{t=i+1}^{k}\left(\frac{3}{4} 2^{n_{t}}\right)\right]+1
$$

states that accepts $\bigcup_{i=1}^{k} L\left(N_{i}\right)^{*}$.
Proof. Let l_{i} be defined as in the proof of Theorem 4.1. When $l_{i}=0, s_{N_{i}}$ is the only final state in N_{i} and we know that $L\left(N_{i}\right)^{*}=L\left(N_{i}\right)$. Thus, in the construction of the resulting DFA A for $\bigcup_{i=1}^{k} L\left(N_{i}\right)^{*}$, the DFA N_{i} can be used to replace N_{i}^{\prime}, which reduces the size of the state set of A. When every $l_{i} \geq 1$, the corollary is true by Theorem 4.1.

Next, we show that the upper bound in Theorem 4.1 is reachable when every $n_{i} \geq 2$.

Theorem 4.2. Given an integer $n_{i} \geq 2$, there exists a DFA N_{i} of n_{i} states such that any DFA accepting $\bigcup_{i=1}^{k} L\left(N_{i}\right)^{*}$ needs at least

$$
\left(\frac{3}{4}\right)^{k} 2^{g}-\sum_{i=1}^{k}\left[\prod_{j=1}^{i-1}\left(\frac{3}{4} 2^{n_{j}}-1\right) \prod_{t=i+1}^{k}\left(\frac{3}{4} 2^{n_{t}}\right)\right]+1
$$

states, where $1 \leq i \leq k, k \geq 2$, and $g=\sum_{i=1}^{k} n_{i}$.

Proof. Let $N_{i}=\left(Q_{N_{i}}, \Sigma, \delta_{N_{i}}, 0,\left\{n_{i}-1\right\}\right)$ be a DFA, where $Q_{N_{i}}=\left\{0,1, \ldots, n_{i}-\right.$ $1\}, \Sigma=\left\{a_{i, j} \mid 1 \leq i \leq k, j \in\{1,2\}\right\}$ and the transitions of N_{i} are

$$
\begin{aligned}
& \delta_{N_{i}}\left(p, a_{i, 1}\right)=p+1 \bmod n_{i}, p=0,1, \ldots, n_{i}-1 \\
& \delta_{N_{i}}\left(0, a_{i, 2}\right)=0, \delta_{N_{i}}\left(p, a_{i, 2}\right)=p+1 \bmod n_{i}, p=1, \ldots, n_{i}-1, \\
& \delta_{N_{i}}(p, c)=p, c \in \Sigma-\left\{a_{i, 1}, a_{i, 2}\right\}, p=0,1, \ldots, n_{i}-1
\end{aligned}
$$

The transition diagram of N_{i} is similar to Figure 1.
As we mentioned before, it has been shown in [26] that the minimal DFA that accepts the star of an n_{i}-state DFA language has $\frac{3}{4} 2^{n_{i}}$ states in the worst case. N_{i} is also a modification of the witness DFA shown in [26] by adding c-loops to every state, where $c \in \Sigma-\left\{a_{i, 1}, a_{i, 2}\right\}$. So we can design a $\frac{3}{4} 2^{n_{i}}$-state, minimal DFA $N_{i}^{\prime}=\left(Q_{N_{i}^{\prime}}, \Sigma, \delta_{N_{i}^{\prime}}, s_{N_{i}^{\prime}}, F_{N_{i}^{\prime}}\right)$ that accepts $L\left(N_{i}\right)^{*}$, where

$$
s_{N_{i}^{\prime}} \notin Q_{N_{i}} \text { is a new initial state, }
$$

$$
\begin{aligned}
Q_{N_{i}^{\prime}} & =\left\{s_{N_{i}^{\prime}}\right\} \cup\left\{P \mid P \subseteq\left\{0,1, \ldots, n_{i}-2\right\} \& P \neq \emptyset\right\} \\
& \cup\left\{R \mid R \subseteq\left\{0,1, \ldots, n_{i}-1\right\} \& 0 \in R \& n_{i}-1 \in R\right\} \\
F_{N_{i}^{\prime}} & =\left\{s_{N_{i}^{\prime}}\right\} \cup\left\{R \in Q_{N_{i}^{\prime}} \mid R \subseteq\left\{0,1, \ldots, n_{i}-1\right\} \& n_{i}-1 \in R\right\},
\end{aligned}
$$

and for $R \subseteq Q_{N_{i}}, R \in Q_{N_{i}^{\prime}}$ and $a \in \Sigma$,

$$
\begin{gathered}
\delta_{N_{i}^{\prime}}\left(s_{N_{i}^{\prime}}, a\right)=\left\{\delta_{N_{i}}(0, a)\right\}, \\
\delta_{N_{i}^{\prime}}(R, a)= \begin{cases}\delta_{N_{i}}(R, a), & \text { if } n_{i}-1 \notin \delta_{N_{i}}(R, a) ; \\
\delta_{N_{i}}(R, a) \cup\{0\}, & \text { otherwise. }\end{cases}
\end{gathered}
$$

Then we construct the DFA $A=(Q, \Sigma, \delta, s, F)$ that accepts $\bigcup_{i=1}^{k} L\left(N_{i}\right)^{*}$ exactly as described in the proof of Theorem 4.1, where

$$
\begin{aligned}
& s=\left\langle s_{N_{1}^{\prime}}, s_{N_{2}^{\prime}}, \ldots, s_{N_{k}^{\prime}}\right\rangle \\
& Q=\left\{\left\langle p_{1}, p_{2}, \ldots, p_{k}\right\rangle \mid p_{i} \in Q_{N_{i}^{\prime}}-\left\{s_{N_{i}^{\prime}}\right\}, 1 \leq i \leq k\right\} \cup\{s\}, \\
& \delta\left(\left\langle p_{1}, p_{2}, \ldots, p_{k}\right\rangle, a\right)=\left\langle\delta_{N_{1}^{\prime}}\left(p_{1}, a\right), \delta_{N_{2}^{\prime}}\left(p_{2}, a\right), \ldots, \delta_{N_{k}^{\prime}}\left(p_{k}, a\right)\right\rangle, a \in \Sigma, \\
& F=\left\{\left\langle p_{1}, p_{2}, \ldots, p_{k}\right\rangle \in Q \mid \exists i\left(p_{i} \in F_{N_{i}^{\prime}}, 1 \leq i \leq k\right)\right\} .
\end{aligned}
$$

In the following, we show that the DFA A is minimal.
(I) All the states in Q are reachable.

For an arbitrary state $\left\langle p_{1}, p_{2}, \ldots, p_{k}\right\rangle$ in Q, there always exists a string $w_{1} w_{2} \cdots w_{k}$ such that $\delta\left(s, w_{1} w_{2} \cdots w_{k}\right)=\left\langle p_{1}, p_{2}, \ldots, p_{k}\right\rangle$, where

$$
\delta_{N_{i}^{\prime}}\left(s_{N_{i}^{\prime}}, w_{i}\right)=p_{i}, w_{i} \in\left\{a_{i, 1}, a_{i, 2}\right\}^{*}, 1 \leq i \leq k
$$

(II) Any two different states $\left\langle p_{1}, p_{2}, \ldots, p_{k}\right\rangle$ and $\left\langle q_{1}, q_{2}, \ldots, q_{k}\right\rangle$ in Q are distinguishable.

Without loss of generality, we assume that $p_{i} \neq q_{i}, 1 \leq i \leq k$. Then there exists a word w_{i} such that

$$
\begin{aligned}
& \delta\left(\left\langle p_{1}, p_{2}, \ldots, p_{k}\right\rangle, a_{1,2}^{n_{1}} a_{2,2}^{n_{2}} \cdots a_{i-1,2}^{n_{i-1}} w_{i} a_{i+1,2}^{n_{i+1}} \cdots a_{k, 2}^{n_{k}}\right) \in F, \\
& \delta\left(\left\langle q_{1}, q_{2}, \ldots, q_{k}\right\rangle, a_{1,2}^{n_{1}} a_{2,2}^{n_{2}} \cdots a_{i-1,2}^{n_{i-1}} w_{i} a_{i+1,2}^{n_{i+1}} \cdots a_{k, 2}^{n_{k}}\right) \notin F .
\end{aligned}
$$

where $w_{i} \in\left\{a_{i, 1}, a_{i, 2}\right\}^{*}, \delta_{N_{i}^{\prime}}\left(p_{i}, w_{i}\right) \in F_{N_{i}^{\prime}}$ and $\delta_{N_{i}^{\prime}}\left(q_{i}, w_{i}\right) \notin F_{N_{i}^{\prime}}$.
Since all the states in A are reachable and pairwise distinguishable, A is a minimal DFA. Thus, any DFA that accepts $\bigcup_{i=1}^{k} L\left(N_{i}\right)^{*}$ has at least $\left(\frac{3}{4}\right)^{k} 2^{g}-$ $\sum_{i=1}^{k}\left[\prod_{j=1}^{i-1}\left(\frac{3}{4} 2^{n_{j}}-1\right) \prod_{t=i+1}^{k}\left(\frac{3}{4} 2^{n_{t}}\right)\right]+1$ states, where $g=\sum_{i=1}^{k} n_{i}$.

This lower bound coincides with the upper bound in Corollary 4.1. Thus, we obtain Theorem 4.3.

Theorem 4.3. For any integer $n_{i} \geq 2$,

$$
\left(\frac{3}{4}\right)^{k} 2^{g}-\sum_{i=1}^{k}\left[\prod_{j=1}^{i-1}\left(\frac{3}{4} 2^{n_{j}}-1\right) \prod_{t=i+1}^{k}\left(\frac{3}{4} 2^{n_{t}}\right)\right]+1
$$

states are both sufficient and necessary in the worst case for a DFA to accept $\bigcup_{i=1}^{k} L\left(N_{i}\right)^{*}$, where N_{i} is an n_{i}-state $D F A, 1 \leq i \leq k, k \geq 2$, and $g=\sum_{i=1}^{k} n_{i}$.

5. State complexity of $L_{1}^{*} \cap L_{2}^{*}$

The state complexity of intersection on regular languages has been proved to be the same as that of union $[18,26]$. Thus, the mathematical composition of the state complexities of star and intersection for $L(M)^{*} \cap L(N)^{*}$ is also $\frac{9}{16} 2^{m+n}$. In this section, we show that the state complexity of $L(M)^{*} \cap L(N)^{*}$ is $\frac{9}{16} 2^{m+n}-\frac{3}{4} 2^{m}-\frac{3}{4} 2^{n}+2$ which is the same as the state complexity of the combined operation $L(M)^{*} \cup L(N)^{*}$.

Theorem 5.1. For any m-state $D F A M=\left(Q_{M}, \Sigma, \delta_{M}, s_{M}, F_{M}\right)$ and n-state DFA $N=\left(Q_{N}, \Sigma, \delta_{N}, s_{N}, F_{N}\right)$ such that $\left|F_{M}-\left\{s_{M}\right\}\right|=k \geq 1,\left|F_{N}-\left\{s_{N}\right\}\right|=$ $l \geq 1, m \geq 2, n \geq 2$, there exists a DFA of at most

$$
\left(2^{m-1}+2^{m-k-1}\right)\left(2^{n-1}+2^{n-l-1}\right)-\left(2^{m-1}+2^{m-k-1}\right)-\left(2^{n-1}+2^{n-l-1}\right)+2
$$

states that accepts $L(M)^{*} \cap L(N)^{*}$.
Proof. We can construct the DFA A for $L(M)^{*} \cap L(N)^{*}$ which is the same as in the proof of Theorem 3.1, except that the set of final states of A is

$$
F=\left\{\langle i, j\rangle \in Q \mid i \in F_{M^{\prime}} \& j \in F_{N^{\prime}}\right\} .
$$

Thus, after removing the $\left(2^{m-1}+2^{m-k-1}\right)+\left(2^{n-1}+2^{n-l-1}\right)-2$ unreachable states $\left\langle s_{M^{\prime}}, j\right\rangle \notin Q$, for $j \in Q_{N^{\prime}}-\left\{s_{N^{\prime}}\right\}$, and $\left\langle i, s_{N^{\prime}}\right\rangle \notin Q$, for $i \in Q_{M^{\prime}}-\left\{s_{M^{\prime}}\right\}$, the number of states of A is still no more than

$$
\left(2^{m-1}+2^{m-k-1}\right)\left(2^{n-1}+2^{n-l-1}\right)-\left(2^{m-1}+2^{m-k-1}\right)-\left(2^{n-1}+2^{n-l-1}\right)+2 .
$$

Now we consider the cases when M or N has no other final state except s_{M} or s_{N}. The following corollary shows a general upper bound of the state complexity of $L(M)^{*} \cap L(N)^{*}$.
Corollary 5.1. For any m-state $D F A M=\left(Q_{M}, \Sigma, \delta_{M}, s_{M}, F_{M}\right)$ and n-state $D F A N=\left(Q_{N}, \Sigma, \delta_{N}, s_{N}, F_{N}\right), m \geq 2, n \geq 2$, there exists a DFA A of at most

$$
\frac{9}{16} 2^{m+n}-\frac{3}{4} 2^{m}-\frac{3}{4} 2^{n}+2
$$

states such that $L(A)=L(M)^{*} \cap L(N)^{*}$.
Proof. Let k and l be $\left|F_{M}-\left\{s_{M}\right\}\right|$ and $\left|F_{N}-\left\{s_{N}\right\}\right|$, respectively. In a similar manner to the proof of Corollary 3.1, we have

$$
L(M)^{*} \cap L(N)^{*}= \begin{cases}L(M) \cap L(N), & \text { if } k=l=0 \\ L(M)^{*} \cap L(N), & \text { if } k \geq 1 \text { and } l=0 \\ L(M) \cap L(N)^{*}, & \text { if } k=0 \text { and } l \geq 1\end{cases}
$$

Clearly, the third case above is symmetric to the second case. The state complexities of $L(M) \cap L(N)$ and $L(M)^{*} \cap L(N)$ are $m n$ and $\frac{3}{4} 2^{m} \cdot n-n+1$, respectively $[10,18,26]$. They are both less than the upper bound shown in Corollary 5.1. When $k, l \geq 1$, the corollary also holds by Theorem 5.1.

Next, we show that this general upper bound of state complexity of $L(M)^{*} \cap$ $L(N)^{*}$ can be reached by some witness DFAs.
Theorem 5.2. Given two integers $m \geq 2, n \geq 2$, there exist a DFA M of m states and a DFA N of n states such that any DFA accepting $L(M)^{*} \cap L(N)^{*}$ needs at least $\frac{9}{16} 2^{m+n}-\frac{3}{4} 2^{m}-\frac{3}{4} 2^{n}+2$ states.
Proof. We use the same DFAs M and N as in the proof of Theorem 3.2. Their transition diagrams are shown in Figure 1 and Figure 2, respectively. Construct the DFA $M^{\prime}=\left(Q_{M^{\prime}}, \Sigma, \delta_{M^{\prime}}, s_{M^{\prime}}, F_{M^{\prime}}\right)$ for $L(M)^{*}$ and the DFA $N^{\prime}=\left(Q_{N^{\prime}}, \Sigma, \delta_{N^{\prime}}, s_{N^{\prime}}, F_{N^{\prime}}\right)$ for $L(N)^{*}$ in the same way as in the proof of Theorem 3.2.

Then we construct the DFA $A=(Q, \Sigma, \delta, s, F)$ that accepts $L(M)^{*} \cap L(N)^{*}$ exactly as described in the proof of Theorem 3.2 except that

$$
F=\left\{\langle i, j\rangle \in Q \mid i \in F_{M^{\prime}} \& j \in F_{N^{\prime}}\right\} .
$$

In the following, we will prove that A is a minimal DFA. We omit the proof for the reachability of an arbitrary state $\langle i, j\rangle$ in A, because it is the same as that in the proof of Theorem 3.2. Next, let us prove that any two different states $\left\langle i_{1}, j_{1}\right\rangle$ and $\left\langle i_{2}, j_{2}\right\rangle$ of A are distinguishable.

1. $i_{1} \neq i_{2}$.

We can find a string $w_{1} w_{2}$ such that

$$
\begin{aligned}
& \delta\left(\left\langle i_{1}, j_{1}\right\rangle, w_{1} w_{2}\right) \in F \\
& \delta\left(\left\langle i_{2}, j_{2}\right\rangle, w_{1} w_{2}\right) \notin F
\end{aligned}
$$

where

$$
\begin{aligned}
& \delta_{M^{\prime}}\left(i_{1}, w_{1}\right) \in F_{M^{\prime}}, \delta_{M^{\prime}}\left(i_{2}, w_{1}\right) \notin F_{M^{\prime}}, w_{1} \in\{a, b\}^{*} \\
& \delta_{N^{\prime}}\left(j_{1}, w_{2}\right) \in F_{N^{\prime}}, w_{2} \in\{c, d\}^{*}
\end{aligned}
$$

2. $i_{1}=i_{2}, j_{1} \neq j_{2}$.

There exists a string $w_{1} w_{2}$ such that

$$
\begin{aligned}
& \delta\left(\left\langle i_{1}, j_{1}\right\rangle, w_{1} w_{2}\right) \in F \\
& \delta\left(\left\langle i_{2}, j_{2}\right\rangle, w_{1} w_{2}\right) \notin F
\end{aligned}
$$

where

$$
\begin{aligned}
& \delta_{M^{\prime}}\left(i_{1}, w_{1}\right) \in F_{M^{\prime}}, w_{1} \in\{a, b\}^{*} \\
& \delta_{N^{\prime}}\left(j_{1}, w_{2}\right) \in F_{N^{\prime}}, \delta_{N^{\prime}}\left(j_{2}, w_{2}\right) \notin F_{N^{\prime}}, w_{2} \in\{c, d\}^{*}
\end{aligned}
$$

Since every state of A is reachable from its initial state and all the states are pairwise distinguishable, A is a minimal DFA with $\frac{9}{16} 2^{m+n}-\frac{3}{4} 2^{m}-\frac{3}{4} 2^{n}+2$ states which accepts $L(M)^{*} \cap L(N)^{*}$.

This lower bound coincides with the upper bound in Corollary 5.1. Thus, the bounds are tight.
Theorem 5.3. For any integer $m \geq 2, n \geq 2, \frac{9}{16} 2^{m+n}-\frac{3}{4} 2^{m}-\frac{3}{4} 2^{n}+2$ states are both sufficient and necessary in the worst case for a DFA to accept $L(M)^{*} \cap L(N)^{*}$, where M is an m-state DFA and N is an n-state DFA.

When $m=1, n \geq 2$, the state complexity of $L(M)^{*} \cap L(N)^{*}$ is the same as that of $L(N)^{*}$ which is $\frac{3}{4} 2^{n}$, because $L(M)$ is either \emptyset or Σ^{*} in this case. When $m=n=1$,

$$
L(M)^{*} \cap L(N)^{*}= \begin{cases}\{\varepsilon\}, & \text { if } L(M)=\emptyset \text { or } L(N)=\emptyset \\ \Sigma^{*}, & \text { otherwise }\end{cases}
$$

Then the state complexity of $L(M)^{*} \cap L(N)^{*}$ is clearly 2 when $m=n=1$.
6. State complexity of $\bigcap_{i=1}^{k} L_{i}^{*}$

Next, we will investigate the state complexity of $\bigcap_{i=1}^{k} L_{i}^{*}$, where L_{i} is an $n_{i^{-}}$ state DFA language, $1 \leq i \leq k, k \geq 2$. The mathematical composition of the
component operations of this combined operation is $\prod_{i=1}^{k} \frac{3}{4} 2^{n_{i}}$ which is the same as that of $\bigcup_{i=1}^{k} L_{i}^{*}$. This upper bound can also be lowered.
Theorem 6.1. For any n_{i}-state DFA $N_{i}=\left(Q_{N_{i}}, \Sigma, \delta_{N_{i}}, s_{N_{i}}, F_{N_{i}}\right)$ such that $\left|F_{N_{i}}-\left\{s_{N_{i}}\right\}\right|=l_{i} \geq 1, n_{i} \geq 2,1 \leq i \leq k, k \geq 2$, there exists a DFA of at most $\prod_{i=1}^{k}\left(2^{n_{i}-1}+2^{n_{i}-l_{i}-1}\right)-\sum_{i=1}^{k}\left[\prod_{j=1}^{i-1}\left(2^{n_{j}-1}+2^{n_{j}-l_{j}-1}-1\right) \prod_{t=i+1}^{k}\left(2^{n_{t}-1}+2^{n_{t}-l_{t}-1}\right)\right]+1$ states that accepts $\bigcap_{i=1}^{k} L\left(N_{i}\right)^{*}$.

Proof. The DFA A for $\bigcap_{i=1}^{k} L\left(N_{i}\right)^{*}$ can be constructed in a same way as in the proof of Theorem 4.1, except that the set of final states of A is

$$
F=\left\{\left\langle p_{1}, p_{2}, \ldots, p_{k}\right\rangle \in Q \mid \forall i\left(p_{i} \in F_{N_{i}^{\prime}}, 1 \leq i \leq k\right)\right\}
$$

Thus, the number of states of A is no more than the upper bound shown in Theorem 6.1 which is the same as that for the state complexity of $\bigcup_{i=1}^{k} L\left(N_{i}\right)^{*}$ in Theorem 4.1.

In a similar manner to the proof of Corollary 4.1, we obtain the following corollary on the basis of Theorem 6.1, by considering the cases when N_{i} has no other final state except $s_{N_{i}}\left(L\left(N_{i}\right)^{*}=L\left(N_{i}\right)\right)$.

Corollary 6.1. Let $N_{i}=\left(Q_{N_{i}}, \Sigma, \delta_{N_{i}}, s_{N_{i}}, F_{N_{i}}\right)$ be an arbitrary n_{i}-state DFA, where $n_{i} \geq 2,1 \leq i \leq k, k \geq 2$. Denote $\sum_{i=1}^{k} n_{i}$ by g. Then there exists a $D F A$ of at most

$$
\left(\frac{3}{4}\right)^{k} 2^{g}-\sum_{i=1}^{k}\left[\prod_{j=1}^{i-1}\left(\frac{3}{4} 2^{n_{j}}-1\right) \prod_{t=i+1}^{k}\left(\frac{3}{4} 2^{n_{t}}\right)\right]+1
$$

states that accepts $\bigcap_{i=1}^{k} L\left(N_{i}\right)^{*}$.
Next, we show that the upper bound in Theorem 6.1 can be reached when every $n_{i} \geq 2$.

Theorem 6.2. Given an integer $n_{i} \geq 2$, there exists a DFA N_{i} of n_{i} states such that any DFA accepting $\bigcap_{i=1}^{k} L\left(N_{i}\right)^{*}$ needs at least

$$
\left(\frac{3}{4}\right)^{k} 2^{g}-\sum_{i=1}^{k}\left[\prod_{j=1}^{i-1}\left(\frac{3}{4} 2^{n_{j}}-1\right) \prod_{t=i+1}^{k}\left(\frac{3}{4} 2^{n_{t}}\right)\right]+1
$$

states, where $1 \leq i \leq k, k \geq 2$, and $g=\sum_{i=1}^{k} n_{i}$.
Proof. We use the same DFA N_{i} as in the proof of Theorem 4.2. Construct the DFA $N_{i}^{\prime}=\left(Q_{N_{i}^{\prime}}, \Sigma, \delta_{N_{i}^{\prime}}, s_{N_{i}^{\prime}}, F_{N_{i}^{\prime}}\right)$ for $L\left(N_{i}\right)^{*}$ in the same way as in the proof of Theorem 4.2.

Then we construct the DFA $A=(Q, \Sigma, \delta, s, F)$ that accepts $L(M)^{*} \cap L(N)^{*}$ exactly as described in the proof of Theorem 4.2 except that

$$
F=\left\{\left\langle p_{1}, p_{2}, \ldots, p_{k}\right\rangle \in Q \mid \forall i\left(p_{i} \in F_{N_{i}^{\prime}}, 1 \leq i \leq k\right)\right\}
$$

Now we will show that A is minimal. The proof for the reachability of an arbitrary state in A is omitted, because it is the same as that in the proof of Theorem 4.2. Thus, we prove that any two different states $\left\langle p_{1}, p_{2}, \ldots, p_{k}\right\rangle$ and $\left\langle q_{1}, q_{2}, \ldots, q_{k}\right\rangle$ of A are distinguishable in the following.

Without loss of generality, we assume that $p_{i} \neq q_{i}, 1 \leq i \leq k$. Then there exists a word $w_{1} w_{2} \cdots w_{k}$ such that

$$
\begin{aligned}
& \delta\left(\left\langle p_{1}, p_{2}, \ldots, p_{k}\right\rangle, w_{1} w_{2} \cdots w_{k}\right) \in F, \\
& \delta\left(\left\langle q_{1}, q_{2}, \ldots, q_{k}\right\rangle, w_{1} w_{2} \cdots w_{k}\right) \notin F .
\end{aligned}
$$

where

$$
\begin{aligned}
& w_{j} \in\left\{a_{j, 1}, a_{j, 2}\right\}^{*}, \delta_{N_{j}^{\prime}}\left(p_{j}, w_{j}\right) \in F_{N_{j}^{\prime}}, 1 \leq j \leq k, j \neq i, \\
& w_{i} \in\left\{a_{i, 1}, a_{i, 2}\right\}^{*}, \delta_{N_{i}^{\prime}}\left(p_{i}, w_{i}\right) \in F_{N_{i}^{\prime}}, \delta_{N_{i}^{\prime}}\left(q_{i}, w_{i}\right) \notin F_{N_{i}^{\prime}} .
\end{aligned}
$$

Since all the states in A can be reached and are pairwise distinguishable, the DFA A is minimal. Thus, any DFA that accepts $\bigcap_{i=1}^{k} L\left(N_{i}\right)^{*}$ has at least $\left(\frac{3}{4}\right)^{k} 2^{g}-\sum_{i=1}^{k}\left[\prod_{j=1}^{i-1}\left(\frac{3}{4} 2^{n_{j}}-1\right) \prod_{t=i+1}^{k}\left(\frac{3}{4} 2^{n_{t}}\right)\right]+1$ states, where $g=\sum_{i=1}^{k} n_{i}$.

This lower bound coincides with the upper bound in Corollary 6.1. Thus, we obtain the state complexity of $\bigcap_{i=1}^{k} L\left(N_{i}\right)^{*}$.

Theorem 6.3. For any integer $n_{i} \geq 2$,

$$
\left(\frac{3}{4}\right)^{k} 2^{g}-\sum_{i=1}^{k}\left[\prod_{j=1}^{i-1}\left(\frac{3}{4} 2^{n_{j}}-1\right) \prod_{t=i+1}^{k}\left(\frac{3}{4} 2^{n_{t}}\right)\right]+1
$$

states are both sufficient and necessary in the worst case for a DFA to accept $\bigcap_{i=1}^{k} L\left(N_{i}\right)^{*}$, where N_{i} is an n_{i}-state DFA, $1 \leq i \leq k, k \geq 2$, and $g=\sum_{i=1}^{k} n_{i}$.

7. Conclusion

In this paper, we studied the state complexities of union of star and intersection of star. We obtained the state complexities of four particular combined operations that are $L_{1}^{*} \cup L_{2}^{*}, \bigcup_{i=1}^{k} L_{i}^{*}, L_{1}^{*} \cap L_{2}^{*}$ and $\bigcap_{i=1}^{k} L_{i}^{*}$ where L_{i} is an n_{i}-state DFA language, $n_{i} \geq 2,1 \leq i \leq k$, and $k \geq 2$. The state complexities of these combined operations are all less than the mathematical compositions of the state complexities of their component individual operations.

Comparing with other known state complexities of combined operations, it is interesting to see that the state complexities of $L_{1}^{*} \cup L_{2}$ and $L_{1}^{*} \cap L_{2}$ are the same, and $L_{1}^{*} \cup L_{2}^{*}$ and $L_{1}^{*} \cap L_{2}^{*}$ share the same state complexity, whereas the state complexities of $\left(L_{1} \cup L_{2}\right)^{*}$ and $\left(L_{1} \cap L_{2}\right)^{*}$ are different.

One possible, future topic could be the state complexities of $\bigcup_{i=1}^{k} L_{i}^{*}$ and $\bigcap_{i=1}^{k} L_{i}^{*}$ on a smaller, fixed alphabet when k is also fixed. We also expect more results on the state complexities of combined operations on k regular languages, which are more general and closer to the nature of combined operations.

References

[1] C. Campeanu, K. Salomaa, S. Yu: Tight lower bound for the state complexity of shuffle of regular languages, Journal of Automata, Languages and Combinatorics 7 (3) (2002) 303-310
[2] B. Cui, Y. Gao, L. Kari, S. Yu: State complexity of two combined operations: catenation-star and catenation-reversal, International Journal of Foundations of Computer Science, accepted
[3] B. Cui, Y. Gao, L. Kari, S. Yu: State complexity of two combined operations: catenation-union and catenation-intersection, International Journal of Foundations of Computer Science, accepted
[4] M. Daley, M. Domaratzki, K. Salomaa: State complexity of orthogonal catenation, in: Proceedings of Descriptional Complexity of Formal Systems, Charlottetown, PE, Canada, July 16-18, 2008, 134-144
[5] M. Domaratzki: State complexity and proportional removals, Journal of Automata, Languages and Combinatorics 7 (2002) 455-468
[6] M. Domaratzki, A. Okhotin: State complexity of power, Theoretical Computer Science 410(24-25) (2009) 2377-2392
[7] Z. Ésik, Y. Gao, G. Liu, S. Yu: Estimation of state complexity of combined operations, Theoretical Computer Science 410 (35) (2009) 3272-3280
[8] Y. Gao, K. Salomaa, S. Yu: The state complexity of two combined operations: star of catenation and star of Reversal, Fundamenta Informaticae 83 (1-2) (2008) 75-89
[9] Y. Gao and S. Yu: State complexity approximation, in:Proceedings of Descriptional Complexity of Formal Systems Magdeburg, Germany, 2009, 163174
[10] Y. Gao and S. Yu: State complexity of four combined operations composed of union, intersection, star and reversal, Proceedings of Descriptional Complexity of Formal Systems, Limburg, Gemany, July 25-27, 2011, LNCS 6808, 158-171
[11] M. Holzer, M. Kutrib: State complexity of basic operations on nondeterministic finite automata, in: Proceedings of International Conference on Implementation and Application of Automata 2002, LNCS 2608, 2002, 148157
[12] J. E. Hopcroft, R. Motwani, J. D. Ullman: Introduction to Automata Theory, Languages, and Computation (2nd Edition), Addison Wesley, 2001
[13] J. Jirásek, G. Jirásková, A. Szabari: State complexity of concatenation and complementation of regular languages, International Journal of Foundations of Computer Science 16 (2005) 511-529
[14] G. Jirásková: State complexity of some operations on binary regular languages, Theoretical Computer Science 330 (2005) 287-298
[15] G. Jirásková, A. Okhotin: State complexity of cyclic shift, in: Proceedings of DCFS 2005, Como, Italy, June 30-July 2, 2005, 182-193
[16] G. Jirásková, A. Okhotin: On the state complexity of star of union and star of intersection, Turku Center for Computer Science TUCS Technical Report No. 825, 2007
[17] G. Liu, C. Martin-Vide, A. Salomaa, S. Yu: State complexity of basic language operations combined with reversal, Information and Computation 206 (2008) 1178-1186
[18] A. Maslov: Estimates of the number of states of finite automata, Soviet Mathematics Doklady, 11 (1970) 1373-1375
[19] G. Pighizzini, J. Shallit: Unary language operations, state complexity and Jacobsthal's function, International Journal of Foundations of Computer Science 13 (1) (2002) 145-159
[20] M. Rabin, D. Scott: Finite automata and their decision problems, IBM Journal of Research and Development 2 (3) (1959) 114-125
[21] G. Rozenberg, A. Salomaa: Handbook of Formal Languages, SpringerVerlag, 1997
[22] A. Salomaa, K. Salomaa, S. Yu: State complexity of combined operations, Theoretical Computer Science 383 (2007) 140-152
[23] A. Salomaa, K. Salomaa, S. Yu: Undecidability of the State Complexity of Composed Regular Operations, Proceedings of Language and Automata Theory and Applications Tarragona, Spain, LNCS 6638, 2011, 489-498
[24] A. Salomaa, D. Wood, S. Yu: On the state complexity of reversals of regular languages, Theoretical Computer Science 320 (2004) 293-313
[25] S. Yu: State complexity of regular languages, Journal of Automata, Languages and Combinatorics 6 (2) (2001) 221-234
[26] S. Yu, Q. Zhuang, K. Salomaa: The state complexity of some basic operations on regular languages, Theoretical Computer Science 125 (1994) 315-328
[27] S. Yu: Regular languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol. 1, Springer-Verlag, 1997, 41-110

[^0]: ${ }^{2}$ This work is supported by Natural Science and Engineering Council of Canada Discovery Grant R2824A01, Canada Research Chair Award to L. K, and Natural Science and Engineering Council of Canada Discovery Grant 41630 to S. Y.
 *Corresponding author
 Email addresses: ygao72@csd.uwo.ca (Yuan Gao), lila@csd.uwo.ca (Lila Kari), syu@csd.uwo.ca (Sheng Yu)

